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What might one want from a new code”

e Improved flexibility to handle new problems

e oscillations with differential rotation & magnetic fields

e dynamic tides in binary stars

e Greater accuracy and robustness

e “hands-off” asteroseismic analyses

e integrated oscillation & stellar evolution simulations

e Higher performance

e Take advantage of multiple cores / nodes
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GYRE: A new oscillation code suite

e Programmatic motivation: developed as part of
“Wave transport of angular momentum: a new spin

on massive-star evolution” (NSF grant #AST
0908688)

e Personal motivations:

¢ why does the BOOJUM code (Townsend 2005) work in cases x
and y, but not in case z?

e | enjoy programming!




Statement of the problem

e Stellar oscillation is a linear two-point boundary-
value problem (BVP):

e The problem specifics are defined by the Jacobian
matrix A and the boundary conditions B




Alternative approaches to solving BVPs

Shooting Relaxation

Smeyers (1966, 1967) Castor (1970)




Alternative approaches to solving BVPs

Shooting Relaxation

Smeyers (1966, 1967) Castor (1970)

At a fundamental level, both approaches are the same!




Relaxation

e Replace the differential equations by finite
differences on a discrete grid x = ¥ (k = 1,...,N):

yhHl _ ik B P gh\ Rl
gl ok p y

e Combine the difference equations with the
boundary conditions to form a large, sparse linear

system for y*




Shooting via superposition

e Use initial-value problem (IVP) integrator to solve

dy

¥ o Alz)Y, " Az, =1

e The fundamental solution Y relates y® back to y*

y' =Y(2")y*
e The BVP becomes a linear system for y*
By* =10
BY (2") y* = 0




Multiple shooting: the best of both worlds

e Apply shooting across multiple intervals of a
discrete grid z = 2% (k = 1,...,N):

yErL = Y (5L by yh

e Combine with the boundary conditions to form

large, sparse linear system for y*

e Stability is improved vs. single/double shooting

e Depending on how we evaluate YFLF = Y (51 28),

accuracy is improved vs. relaxation

e Multiple shooting is easy to parallelize




Calculating the fundamental solution matrices

e Simple approach following Gabriel & Noels (1976):

assume the Jacobian matrix A(z) is constant in

cach interval ¥ < r < *tl

e The fundamental solution matrix is then a matrix

exponential:
Yk—l—l;k — exp {[CEk—I_l 9 iEk]A}

e This approach has arbitrarily high resolution of

eigenfunction oscillations

e However, it is only second-order accurate




Higher-order approaches using the Magnus method

e Magnus (1954): solutions to the IVP

dy

T A(2)Y, Y(z,) =1

can be written as
Y = exp {M(z)}

e The Magnus matrix M can be expanded as an

infinite series, with leading terms

T 1 r I ] 7
M(x) = / Az ) dx — 5/ / A(zp) day, A(zy)| dog + ...




Magnus methods in GYRE

o Integrals in the Magnus expansion are evaluated

using Gauss-Legendre quadrature

e Matrix exponentials are evaluated via a spectral

decomposition of M:
expM = U(exp AU

e Three choices in GYRE:

e MAGNUS GL2 — 27 order (Gabriel & Noels approach)
e MAGNUS GL4 — 4% order

e MAGNUS GL6 — 6% order




Stellar oscillation is an eigenproblem

e The oscillation equations appear to be over-

determined:

e 4 differential equations (adiabatic case)
e 4 boundary conditions

e 1 arbitrary normalization condition

e The BVP can only be solved at discrete values of
the oscillation frequency w appearing in the

Jacobian matrix

e These discrete values are the eigenfrequencies; the

corresponding solutions are the eigenfunctions




Castor’s method

Replace one of the boundary conditions with the

normalization condition

The BVP can then be solved for any value of the

frequency w

Use the neglected boundary condition to define a
discriminant function D(w), such that D is zero

when the boundary condition is satisfied

The roots of D(w) then correspond to the stellar

eigenfrequencies




I1lI-behaved discriminants: The downfall of Castor’s method

With Cowling Approximation
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This problem can affect any code which involves a single-point
determinant (e.g., GraCo; PULSE; ADIPLS; NOSC)
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I1lI-behaved discriminants: The downfall of Castor’s method
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Without Cowling Approximation
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This problem can affect any code which involves a single-point
determinant (e.g., GraCo; PULSE; ADIPLS; NOSC)
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Recognizing the problem

e The equations plus boundary conditions can be

written as a linear, homogeneous system:

Su=20
B¢ 0 0 --- 0 0
e Yl | 0o --- 0 0 y!
0 A 0 0 y?
SP— : Sl =
0 0 0 A y '




Solution of linear, homogeneous systems

o Any system of linear, homogeneous equations
admits non-trivial solutions (u # 0) when the

determinant of the matrix S vanishes

e Hence, the determinant can be adopted as the

discriminant function:
D(w) = det S

e The determinant is a polynomial in the
components of S; if these components are well
behaved, then so is D




Evaluating the determinant in GYRE

o LU decompose the system matrix

S=LU

e Form the determinant as the diagonal product

det S = H Uz’,z’

o Wright (1994, Numer. Math. 67, 521) gives a

parallel algorithm for LU decomposition, which

performs well on shared-memory systems




Dealing with determinant overflow

“For a matrix of any su

bstantial size, it is quite likely that the determinant

will overflow or undert

Solution: use e

= 02"

ow your computer’s floating point dynamic range”

Numerical Recipes in Fortran, 2nd ed., “Determinant of a Matrix”

xtended-precision arithmetic

fER, 025< f<0.5
ecZ, el <2147483647
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Summarizing the GYRE approach

GYRE uses a Magnus multiple shooting (MMS)
scheme for BVPs

Multiple shooting is used for robustness &

performance
Magnus methods are used for accuracy

A determinant-based discriminant avoids the

problems of Castor’s method

The code is parallelized with both Open MP and
MPI




Old vs. new discriminants

Castor (BOOJUM) Determinant (GYRE)
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Both discriminants have the same roots; but the determinant-based

discriminant is well behaved

Tuesday, December 11, 12



Testing convergence with the n = 0 polytrope
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Comparison against ESTA results

Astrophys Space Sci (2008) 316: 231-249
DOI 10.1007/s10509-007-9717-z

ORIGINAL ARTICLE

Inter-comparison of the g-, f- and p-modes calculated using
different oscillation codes for a given stellar model

A. Moya - J. Christensen-Dalsgaard - S. Charpinet - Y. Lebreton - A. Miglio -
J. Montalban - M.J.P.F.G. Monteiro - J. Provost - . W. Roxburgh - R. Scuflaire -
J.C. Suarez - M. Suran
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In all cases, departures from ESTA results are small
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o-mode inertias in a red giant model
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Example eigenfunction of the red giant model
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The Magnus method readily handles the highly oscillatory

eigenfunctions in the stellar core
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Nonadiabatic eigenfrequencies for a mid-B type star
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The mixed adiabatic/nonadiabatic approach is numerically more robust,

without sacrificing accuracy
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Rotational splitting in the n = 0 polytrope
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Modes with £ — 0, 2. 4, ... all appear together
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Mode tracking uses the fact that mode frequencies evolve continuously with )

Rotational splitting: Cleaning up the mess
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Differential rotation: the n = 0 polytrope with core/envelope shear

Fast core

Fast envelope
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Simple explanation: the modes are mainly trapped

in the envelope
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Benchmarking the parallel performance of GYRE
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The future of GYRE

e Upcoming improvements

¢ implement post-processing (e.g., mode inertias, work functions)
e combine nonadiabatic & differential rotation functionality

e add centrifugal force, departures from sphericity

e A full description of the code will appear in a

forthcoming paper
e Scheduled for open-source release mid-2013

e Pre-release access on request
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