
GYRE: Yet another 
oscillation code, why we 
need it and how it works

Rich Townsend & Seth Teitler
University of Wisconsin-Madison

Tuesday, December 11, 12



What might one want from a new code?

• Improved flexibility to handle new problems

• oscillations with differential rotation & magnetic fields

• dynamic tides in binary stars

• Greater accuracy and robustness

• “hands-off” asteroseismic analyses

• integrated oscillation & stellar evolution simulations

• Higher performance

• Take advantage of multiple cores / nodes 
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GYRE: A new oscillation code suite

• Programmatic motivation: developed as part of 
“Wave transport of angular momentum: a new spin 
on massive-star evolution” (NSF grant #AST 
0908688)

• Personal motivations:

• why does the BOOJUM code (Townsend 2005) work in cases x 
and y, but not in case z?

• I enjoy programming!

Tuesday, December 11, 12



Statement of the problem

• Stellar oscillation is a linear two-point boundary-
value problem (BVP):

• The problem specifics are defined by the Jacobian 
matrix A and the boundary conditions B

dy

d
= A( )y

B y � B y( ) =

B y � B y( ) =
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Alternative approaches to solving BVPs

Shooting Relaxation

Smeyers (1966, 1967) Castor (1970)
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Alternative approaches to solving BVPs

Shooting Relaxation

Smeyers (1966, 1967) Castor (1970)

At a fundamental level, both approaches are the same!
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Relaxation

• Replace the differential equations by finite 
differences on a discrete grid x = xk (k = 1,...,N):

• Combine the difference equations with the 
boundary conditions to form a large, sparse linear 
system for yk

y + − y
+ − = A

( + +
)

y + + y
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Shooting via superposition

• Use initial-value problem (IVP) integrator to solve

• The fundamental solution Y relates yb back to ya:

• The BVP becomes a linear system for ya:

dY

d
= A( )Y, Y( ) = I

y = Y( )y

B y =

B Y( )y =
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Multiple shooting: the best of both worlds

• Apply shooting across multiple intervals of a 
discrete grid x = xk (k = 1,...,N):

• Combine with the boundary conditions to form 
large, sparse linear system for yk

• Stability is improved vs. single/double shooting

• Depending on how we evaluate Yk+1,k = Y(xk+1;xk), 
accuracy is improved vs. relaxation

• Multiple shooting is easy to parallelize 

y + = Y( + ; )y
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Calculating the fundamental solution matrices

• Simple approach following Gabriel & Noels (1976): 
assume the Jacobian matrix A(x) is constant in 
each interval xk ≤ x ≤ xk+1

• The fundamental solution matrix is then a matrix 
exponential:

• This approach has arbitrarily high resolution of 
eigenfunction oscillations

• However, it is only second-order accurate

Y + ; = exp
�
[ + � ]A

�
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Higher-order approaches using the Magnus method

• Magnus (1954): solutions to the IVP

can be written as

• The Magnus matrix M can be expanded as an 
infinite series, with leading terms

dY

d
= A( )Y, Y( ) = I

Y = exp {M( )}

M( ) =

�
A( ) d �

� ��
A( ) d , A( )

�
d + . . .
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Magnus methods in GYRE

• Integrals in the Magnus expansion are evaluated 
using Gauss-Legendre quadrature

• Matrix exponentials are evaluated via a spectral 
decomposition of M:

• Three choices in GYRE:

• MAGNUS_GL2 – 2nd order (Gabriel & Noels approach)

• MAGNUS_GL4 – 4th order

• MAGNUS_GL6 – 6th order

exp M = U(exp )U�
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Stellar oscillation is an eigenproblem

• The oscillation equations appear to be over-
determined:

• 4 differential equations (adiabatic case)

• 4 boundary conditions

• 1 arbitrary normalization condition

• The BVP can only be solved at discrete values of 
the oscillation frequency ω appearing in the 
Jacobian matrix

• These discrete values are the eigenfrequencies; the 
corresponding solutions are the eigenfunctions
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Castor’s method

• Replace one of the boundary conditions with the 
normalization condition

• The BVP can then be solved for any value of the 
frequency ω

• Use the neglected boundary condition to define a 
discriminant function D(ω), such that D is zero 
when the boundary condition is satisfied

• The roots of D(ω) then correspond to the stellar 
eigenfrequencies
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With Cowling Approximation
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This problem can affect any code which involves a single-point 
determinant (e.g., GraCo; PULSE; ADIPLS; NOSC)

Ill-behaved discriminants: The downfall of Castor’s method
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This problem can affect any code which involves a single-point 
determinant (e.g., GraCo; PULSE; ADIPLS; NOSC)

Ill-behaved discriminants: The downfall of Castor’s method

Without Cowling Approximation
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Recognizing the problem

• The equations plus boundary conditions can be 
written as a linear, homogeneous system:

S =

�

��������

B · · ·
�Y ; I · · ·

�Y ; I · · ·

· · · �Y ; � I
· · · B

�

��������

, u =

�

����

y
y

y

�

����

Su =
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Solution of linear, homogeneous systems

• Any system of linear, homogeneous equations 
admits non-trivial solutions (u ≠ 0) when the 
determinant of the matrix S vanishes

• Hence, the determinant can be adopted as the 
discriminant function:

• The determinant is a polynomial in the 
components of S; if these components are well 
behaved, then so is D

( ) = det S
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• LU decompose the system matrix

• Form the determinant as the diagonal product

• Wright (1994, Numer. Math. 67, 521) gives a 
parallel algorithm for LU decomposition, which 
performs well on shared-memory systems

Evaluating the determinant in GYRE

S = LU

det S =
∏

U ,
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Dealing with determinant overflow

“For a matrix of any substantial size, it is quite likely that the determinant 
will overflow or underflow your computer’s floating point dynamic range”

Numerical Recipes in Fortran, 2nd ed., “Determinant of a Matrix”

Solution: use extended-precision arithmetic

� R, . < � .

� Z, | | �
= ×
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Summarizing the GYRE approach

• GYRE uses a Magnus multiple shooting (MMS) 
scheme for BVPs

• Multiple shooting is used for robustness & 
performance

• Magnus methods are used for accuracy

• A determinant-based discriminant avoids the 
problems of Castor’s method

• The code is parallelized with both Open MP and 
MPI
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Old vs. new discriminants
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Both discriminants have the same roots; but the determinant-based 
discriminant is well behaved

Castor (BOOJUM) Determinant (GYRE)
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For each Magnus method, the error in the eigenfrequency has 
the expected scaling

Testing convergence with the n = 0 polytrope
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In all cases, departures from ESTA results are small

Astrophys Space Sci (2008) 316: 231–249
DOI 10.1007/s10509-007-9717-z

O R I G I NA L A RT I C L E

Inter-comparison of the g-, f- and p-modes calculated using
different oscillation codes for a given stellar model

A. Moya · J. Christensen-Dalsgaard · S. Charpinet · Y. Lebreton · A. Miglio ·
J. Montalbán · M.J.P.F.G. Monteiro · J. Provost · I.W. Roxburgh · R. Scuflaire ·
J.C. Suárez · M. Suran

Received: 26 September 2007 / Accepted: 22 November 2007 / Published online: 18 April 2008
© Springer Science+Business Media B.V. 2007

Abstract In order to make asteroseismology a powerful
tool to explore stellar interiors, different numerical codes
should give the same oscillation frequencies for the same
input physics. Any differences found when comparing the
numerical values of the eigenfrequencies will be an impor-
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tant piece of information regarding the numerical structure
of the code. The ESTA group was created to analyze the non-
physical sources of these differences. The work presented
in this report is a part of Task 2 of the ESTA group. Basi-
cally the work is devoted to test, compare and, if needed,
optimize the seismic codes used to calculate the eigenfre-
quencies to be finally compared with observations. The first
step in this comparison is presented here. The oscillation
codes of nine research groups in the field have been used
in this study. The same physics has been imposed for all
the codes in order to isolate the non-physical dependence of
any possible difference. Two equilibrium models with dif-
ferent grids, 2172 and 4042 mesh points, have been used,
and the latter model includes an explicit modelling of semi-
convection just outside the convective core. Comparing the
results for these two models illustrates the effect of the num-
ber of mesh points and their distribution in particularly crit-
ical parts of the model, such as the steep composition gra-
dient outside the convective core. A comprehensive study
of the frequency differences found for the different codes is
given as well. These differences are mainly due to the use
of different numerical integration schemes. The number of
mesh points and their distribution are crucial for interpret-
ing the results. The use of a second-order integration scheme
plus a Richardson extrapolation provides similar results to a
fourth-order integration scheme. The proper numerical de-
scription of the Brunt-Väisälä frequency in the equilibrium
model is also critical for some modes. This influence de-
pends on the set of the eigenfunctions used for the solu-
tion of the differential equations. An unexpected result of
this study is the high sensitivity of the frequency differences
to the inconsistent use of values of the gravitational con-
stant (G) in the oscillation codes, within the range of the ex-
perimentally determined ones, which differ from the value

Comparison against ESTA results
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g-mode inertias in a red giant model

M = 2.0 M☉,
R = 11.0 R☉,
L = 57.8 L☉;

cf. Dupret et al. 
(2009)
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Example eigenfunction of the red giant model
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The Magnus method readily handles the highly oscillatory 
eigenfunctions in the stellar core

Tuesday, December 11, 12



0.1 1.0
-1.0

-0.5

0.0

0.5

1.0

Fully nonad

Mixed ad/nonad

!(ω)

−
#
(ω

)
×
10

4

The mixed adiabatic/nonadiabatic approach is numerically more robust, 
without sacrificing accuracy 

Nonadiabatic eigenfrequencies for a mid-B type star
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Rotational splitting in the n = 0 polytrope
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Mode tracking uses the fact that mode frequencies evolve continuously with Ω
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Rotational splitting: Cleaning up the mess
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Simple explanation: the modes are mainly trapped 
in the envelope

Differential rotation: the n = 0 polytrope with core/envelope shear
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Benchmarking the parallel performance of GYRE
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The future of GYRE

• Upcoming improvements

• implement post-processing (e.g., mode inertias, work functions)

• combine nonadiabatic & differential rotation functionality 

• add centrifugal force, departures from sphericity

• A full description of the code will appear in a 
forthcoming paper

• Scheduled for open-source release mid-2013

• Pre-release access on request
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