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Abstract. I report on preliminary results from an ongoing project that explores angular momentum transport by unstable
pulsation modes in massive stars. After briefly reviewing the underlying formalism for this transport, and describing a
numerical code that implements it, I present an example simulation for a 5M� model star. I show that prograde ` = m = 2 g
modes, unstable due to the iron-bump κ mechanism, can spin down the surface layers of the star by 25% over a short (∼ 100-
year) timescale. The resulting shear layer separating the surface from interior acts to switch off the κ-mechanism instability,
providing a natural way of limiting mode amplitudes. This process may have a role to play in the mode selection mechanism
of pulsating massive stars.
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INTRODUCTION

Stellar oscillations are typically regarded as a passive
player on the stage of stellar evolution — the internal
structure of a star determines how the star pulsates. How-
ever, the converse situation can also arise, where the os-
cillations themselves influence the internal structure of
the star. This possibility was first recognized in an astro-
physical context by Ando [1, 2, 3], who considered how
g-mode pulsations can extract angular momentum from
one part of a star and deposit it in another, modifying the
star’s rotation profile over (relatively) short timescales.

Ando’s focus was mainly on massive stars, in par-
ticular the rapidly rotating Be stars [4]. However, be-
cause his work predated the discovery of the iron-bump
κ-mechanism instability responsible for the pulsation of
massive stars [see, e.g., 5, 6], it was largely inconclusive.
In later studies the focus has shifted to angular momen-
tum transport by internal gravity waves (IGWs) — essen-
tially, g-mode transients that are damped over a crossing
time. Some authors [e.g., 7, 8] have posited that the in-
ternal rotation profile of low-mass stars is governed by
IGWs stochastically excited at the base of the envelope
convection zone. This mechanism has been invoked in
particular to explain the near solid-body rotation in the
Sun’s radiative interior [e..g, 9, 10].

Recently, there has been speculation that IGWs ex-
cited at the convective core boundary may play an im-
portant role in the angular momentum evolution of mas-
sive stars [11]. However, it seems that an equally if not
more efficient agent for angular momentum transport in
these stars are the unstable g modes suggested by Ando,
driven by the κ mechanism discovered in the 1990’s (see

above). In this contribution, I report on preliminary re-
sults from an ongoing project that explores this possi-
bility in greater detail. In the following section I briefly
review the underlying formalism, and I then describe a
numerical code that implements it. An example simula-
tion using the code is presented in the subsequent section,
and I finish by discussing and summarizing the findings.

FORMALISM

Zahn [12] has argued that angular momentum diffusion
in massive stars is highly anisotropic, with much stronger
transport in the horizontal direction than the vertical one.
This leads to effectively constant angular velocity across
constant-radius shells — that is, a ‘shellular’ rotation
profile. The radial transport of angular momentum is then
described by an advection-diffusion equation of the form
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Here, Ω(r) is the angular velocity of the shell at radial
coordinate r, U the meridional circulation velocity, ρ the
density, ν the radial diffusivity (turbulent plus molecu-
lar), and FJ is the angle-averaged angular momentum
flux associated with pulsation waves. The left-hand side
of this equation represents the rate of change of angular
momentum per unit volume, averaged over all solid an-
gles. On the right-hand side, the first term represents the
angle-averaged torque due to meridional circulation; the



FIGURE 1. Snapshots of the angular velocity profile Ω(r) during the HEIMDALL simulation. The solid line shows the initial state
of uniform rotation at 33% of the critical rate Ωc. The dotted line plots the profile after 10 years; the dashed line after 100 years;
and the dot-dashed line after 1,000 years.

second is the torque due to diffusion; and the third is the
torque arising from the divergence of the wave angular
momentum flux.

Lee and Saio [13] have given general expressions for
the wave flux, which may be written as

FJ =
〈

r sinθ

(
ρ v′

φ
v′r + vφ ρ ′v′r

)〉
. (2)

Here, vr and vφ are the radial and azimuthal velocity
components; primes denote Eulerian perturbations; over-
bars indicate averages over azimuth; and angle brackets
〈. . .〉 indicate averages over all solid angles. Inside the
parentheses, the first term is the Reynolds stress, repre-
senting the radial transport of angular velocity, while the
second term is the eddy mass flux, representing the radial
transport of moment of inertia. This expression neglects
third order terms and also the contribution of gravita-
tional torque (which is typically small for the high-order
g modes found in massive stars).

Evaluating the Eulerian-perturbed terms appearing in
the expression (2) for FJ requires solution of the govern-
ing pulsation equations for a differentially rotating star. I
discuss a simplified approach to this solution in the fol-
lowing section, and describe how this is incorporated in
a code for integrating the transport equation (1).

THE HEIMDALL CODE

In [14], I introduced a new code that self-consistently
models angular momentum transport by g modes. Here, I

describe the code in rather more detail, and highlight im-
provements since the original release. The code, HEIM-
DALL, evolves the angular velocity profile Ω(r) of an
otherwise-unchanging stellar model in accordance with
the transport equation (1), using a first-order implicit
finite-difference (backward Euler) scheme. The angular
momentum transport due to meridional circulation (i.e.,
the first term on the right-hand side of the equation) is
neglected, because it is expected to be small over the
timescales on which the other terms operate. The diffu-
sivity ν combines contributions from radiative viscosity
(typically, very small everywhere), radial turbulent vis-
cosity (evaluated using the formalism of [15]), and con-
vection (in convection zones, evaluated using standard
mixing-length theory). Following Talon and Charbonnel
[8], the diffusivity is spatially smoothed at each timestep
using a Gaussian with a width equal to 0.2 times the local
pressure scale height.

To evaluate the angular momentum flux via eqn. (2),
HEIMDALL uses a modularized version of the BOOJUM
linear, non-radial, non-adiabatic pulsation code [e.g.,
16]. At each timestep, the oscillation spectrum of the star
is calculated for a given set of harmonic degrees ` and
azimuthal orders m. (In a realistic simulation, all values
of ` and m must be included; however, in this prelim-
inary work only a subset is considered, to simplify the
analysis). The effects of differential rotation are taken
into account only through the Doppler shift experienced
by waves as they travel from one layer to another; the
Coriolis and centrifugal forces are neglected. This is a
gross simplification, but is necessary to render the pul-



FIGURE 2. Snapshot of the angular momentum flux FJ at 100 years into the HEIMDALL simulation, measured in units of
GM2/R3. The solid line shows the total flux, while the dashed (dotted) line shows the contribution from the Reynolds stress (eddy
mass flux) term in eqn. (2). Angular momentum is extracted where the slope of FJ is positive, and deposited where the slope is
negative.

sation equations solvable with modest computational ef-
fort. In this Doppler approximation, the non-adiabatic
pulsation equations are identical to the non-rotating case,
save for the fact that the pulsation frequency ω is re-
placed by the local frequency in the co-moving frame,
ωc(r)≡ ω−mΩ(r)1.

To establish realistic values for the amplitude of each
mode (which is unconstrained by linear pulsation the-
ory), HEIMDALL assigns a small, fixed value when a
mode first becomes unstable. This amplitude is then al-
lowed to evolve across each timestep in accordance with
the linear growth rate γ =−Im(ω); as long as the mode
remains unstable its amplitude will continue to grow, but
if the mode ever stabilizes then its amplitude declines
over time. To prevent unreasonably large amplitudes, the
further growth of all modes is artificially suppressed if
their combined action gives a temperature perturbation
〈|δT/T |2〉 > 0.1 in the iron-bump excitation zone. This
saturation criterion was originally suggested by Dziem-
bowski et al. [5, their eqn. 4].. However, as is discussed
further in the following section, it is often the case that
mode amplitudes are self-limiting by the formation of
a steep shear layer, well before the saturation limit is
reached.

This completes the functional description of HEIM-
DALL. Many of the remaining algorithms in the code are

1 Here, the convention is that positive (negative) m corresponds to
prograde (retrograde) propagation.

required to ensure that the current set of excited modes
can be tracked from one timestep to the next, without
one or more going ‘missing’ in frequency space. This is
a tricky task, and underscores the continued absence of
a robust computational approach to finding the complete
non-adiabatic pulsation spectrum of a model star.

SIMULATION

To provide an example of HEIMDALL in action, I sim-
ulate 1,000 years of the angular momentum evolution
of a 5M� model star2 about half-way through its main-
sequence evolution (i.e., lying in the center of the slowly-
pulsating B (SPB) instability strip; see [17]). Starting
from a state of uniform rotation at 33% of the surface
critical rotation rate Ωc =

√
8GM/27R3, I use HEIM-

DALL to evolve the angular velocity profile under the in-
fluence of prograde ` = m = 2 g modes. Fig. 1 shows
snapshots of Ω(r) taken at four stages during the simula-
tion.

Initially, g modes with radial orders in the interval
n = 14 . . .34 are unstable. These modes extract angular
momentum from the near-surface iron-bump excitation
zone at r/R ≈ 0.95, and deposit it where they are radia-
tively damped in the interior (see Fig. 2). This correlation
between mode excitation/damping and angular momen-

2 Calculated using the Warsaw-New Jersey stellar evolution code.



FIGURE 3. Time evolution of the amplitudes of the modes considered in the HEIMDALL simulation. The amplitude of a given
mode is quantified as A =

√
E/
√

GM2/R, where E is the total (kinetic plus potential) energy of the mode. Solid (dotted) lines are
used to indicate modes that are growing (decaying) with time. Note that both axes are logarithmic.

tum extraction/deposition arises through the Reynolds
stress term in eqn. (2), because it can be shown [e.g.,
18] that this term is proportional to the differential work
function.

The effects of the angular momentum transport are al-
ready visible after 10 years of simulation time, as a slight
spin down in the rotation rate of the outermost layers
(r/R & 0.95). By 100 years, this spin down is far more
pronounced, because the amplitudes of the modes have
grown considerably. Later still, at the 1,000 year mark,
the surface layers of the star are rotating at only ≈ 75
percent of the interior, and the shear layer separating in-
terior from surface has broadened, now extending from
r/R ≈ 0.85 to r/R ≈ 0.95. Of course, throughout this
whole process the total angular momentum of the star re-
mains unchanged; therefore, counteracting the spin down
of the surface layers is a spin up of the interior, which
can be seen for instance in the 100-year data as the local
maximum in Ω at r/R≈ 0.86.

In the final stages of the simulation only a few modes
remain unstable, with the rest having become stabilized.
This is illustrated in Fig. 3, which plots the time-evolving
amplitudes of the modes contributing toward FJ . At first,
the amplitudes of all 21 unstable g modes increase ex-
ponentially in accordance with their initial growth rates.
However, as the sub-surface shear layer develops, the
κ-mechanism instability becomes less effective at driv-
ing the lower-order modes (for reasons discussed below).
One by one, these modes transition to being stable, and
their amplitudes subsequently decay with time until they
contribute little toward the angular momentum flux. Af-

ter 1,000 years, only three modes (n = 30 . . .32) remain
unstable — and for these the instability is marginal, with
normalized growth rates η =−Im(ω)/Re(ω) . 10−7.

Throughout this process, the artificial amplitude satu-
ration discussed in the preceding section plays no part —
the modes naturally self-limit their amplitudes through
their interplay with the evolving rotating profile. As
the surface layers are spun down, the co-moving pulsa-
tion frequency ωc in these layers becomes smaller (be-
cause the modes are prograde), and the corresponding
co-moving period Pc becomes longer. This leads to the
condition τth/Pc � 1 in the iron-bump zone (here, τth
is the local thermal timescale), and for the reasons dis-
cussed by Dziembowski et al. [5] the driving becomes
ineffective. Essentially, the shear layer separating sur-
face and interior acts as a switch that turns off the κ-
mechanism instability.

DISCUSSION & SUMMARY

The amplitude self-limitation described above is an in-
triguing result, in that it reveals a hitherto-unsuspected
mechanism for mode selection in massive stars — one
of the great outstanding problems in the theory of stel-
lar non-radial pulsation. The mechanism is non-linear
through the quadratic dependence of the angular momen-
tum flux on the perturbation amplitudes (cf. eqn 2), yet
can be modeled using the well-established formalism of
linear pulsation. Encouragingly, the typical limiting sur-
face velocity amplitudes encountered in the HEIMDALL



simulation — on the order of 5− 10kms−1 — are in
good accordance with values inferred from observations
of SPB stars.

There are some important caveats to these findings.
Most significantly, the simulation presented above is typ-
ical only to prograde modes. Zonal (m = 0) modes do not
transport angular momentum because they are axisym-
metric, and therefore their amplitudes cannot be self-
limited in the manner described. For retrograde (m < 0)
modes, the situation is a little more complicated. If the
Reynolds stress term in eqn. (2) were the only contribu-
tor toward the angular momentum flux, then retrograde
modes would behave like prograde modes with the sense
reversed: the surface layers would be spun up, the interior
would be spun down, and the amplitude self-limitation
would function in exactly the same manner.

However, inclusion of the eddy mass flux term in
eqn. (2) breaks this convenient symmetry, and HEIM-
DALL simulations of retrograde modes (with the same
stellar model and initial state) reveal mode amplitude
growth until the artificial saturation is triggered. That
said, if the initial rotation rate is sufficiently slow that the
eddy mass flux term is small, then some kind of ampli-
tude self-limitation for retrograde modes is conceivable.
It is also possible that the Coriolis and centrifugal forces
(neglected in the present analysis) may have some role to
play.

Investigation of these various issues will doubtless
provide fertile ground for future studies. However, the
simulation presented in the present paper already makes
a persuasive case that angular momentum transport by
unstable g modes can lead to significant modifications to
the rotation profiles of massive stars, over timescales that
are quite short. Given the preeminent role that rotation
plays in massive-star structure and evolution [e.g., 19], it
seems likely that the pulsational transport will have far-
reaching consequences.
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