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We introduce GYRE, a new open-source stellar oscillation code which solves the adiabatic/non-adiabatic pulsation equations using a 
novel Magnus Multiple Shooting (MMS) numerical scheme. The code has a global error scaling of up to 6th order in the grid spacing, 
and can therefore achieve high accuracy with few grid points. It is moreover robust and efficiently makes use of multiple processor 
cores and/or nodes. We present a selection of example calculations using GYRE, before discussing recent work to integrate GYRE into 
the asteroseismic optimization module of the MESA stellar evolution code.

Another Oscillation Code?
Interpreting the wealth of new observations provided by MOST, 
CoRoT and Kepler requires the theorist’s analog to the telescope: a 
stellar oscillation code which calculates the eigenfrequency 
spectrum of an arbitrary input stellar model. Comparing a 
calculated spectrum against a measured one provides a concrete 
metric for evaluating a model, and therefore constitutes the bread 
and butter of quantitative asteroseismology.

There’s no shortage of oscillation codes available to the 
community; the nine codes reviewed in [1] are likely only a fraction 
of those being used on a day-to-day basis. However, automated 
asteroseismic optimization tools such as AMP [2] and MESA [3] 
are placing ever-increasing demands on these codes. A code will 
typically be executed hundreds or thousands of times during an 
optimization run, and must therefore make efficient use of available 
computational resources such as multi-processor hardware. The 
code must be robust, running and producing sensible output without 
manual intervention. The code must have an accuracy that matches 
or exceeds the frequency precision now achievable by satellite 
missions. Finally, it is preferable that the code address the various 
physical processes that inevitably complicate calculations, such as 
non-adiabaticity, rotation, and magnetic fields.
 
Currently, there are no publicly available oscillation codes which 
address all of these requirements. This motivated us to develop   
another code, ‘GYRE’, which is built on a novel Magnus Multiple 
Shooting (MMS) scheme for solving pulsation boundary value 
problems (BVPs). GYRE and the MMS scheme are described in 
detail in a forthcoming paper [4]; below we briefly summarize 
them, before presenting example calculations using GYRE.

The MMS Scheme
The multiple shooting component of the MMS scheme is an 
extension of the single- or double-shooting schemes often used to 
solve pulsation BVPs, which enjoys much-improved numerical 
stability [5]. A normalized radius grid {xk} (k  =  1,…,N) extending 
from the origin (x  =  0) to the stellar surface (x  =  1) divides the star 
into N-1 subintervals. In each subinterval an initial value problem 
(IVP) integrator is used to determine the fundamental solution 
matrix Yk+1;k relating the dependent variables y(x) on neighboring 
grid points: y(xk+1) = Yk+1;k y(xk). Requiring continuity of these 
variables from one subinterval to the next leads to a set of algebraic 
equations, which combined with the boundary conditions can be 
expressed as the linear system S  u = 0. Here, S is a large, sparse 
matrix which depends implicitly on the oscillation frequency ω, and 
u is a vector composed of the dependent variables at the grid points 
y(xk). Non-trivial solutions to this system exist only when the 
determinant of S vanishes, and so the stellar eigenfrequencies are 
the roots of the discriminant function D(ω)  ≡   det[S(ω)].

Example B: Dipole-mode linear eigenfrequencies of a 1.5  M
☉

 MESA model, plotted as a 
function of stellar age during evolution through the RGB bump phase. Coupling between 
envelope p-modes and core g-modes is revealed in the avoided crossings; the reversal in the 
time-evolution of the crossing frequencies, between 2.700 and 2.705 Gyr, arises from the 
temporary contraction of the stellar envelope during the bump phase.

Example C: The differential mode inertias dE/dx (proportional to the kinetic energy density) 
of two modes from Example B at an age 2.705 Gyr, plotted as a function of normalized 
radius x. Mode A is strongly coupled between the envelope and the core, and therefore has 
appreciable amplitude in both, whereas mode B is mainly confined to the core.  The inset 
magnifies the centermost region, illustrating the very small spatial scale of the modes there 
(which is nevertheless well-resolved by GYRE).
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Example D: The speedup of GYRE running in parallel, plotted as a function of the total 
number of processors nproc = ncore · nnode used on a multi-core, multi-node cluster. Here, nnode 
is the number of cluster nodes and ncore is the number of cores per node.  Parallelism across 
nodes is implemented using MPI, and across cores using OpenMP.  The performance of 
GYRE remains reasonably close to the ideal linear speedup case shown by the dotted line.
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The MMS scheme combines this multiple-shooting technique with 
IVP integrators based on Magnus’s theorem [6]. The simplest is the 
Magnus GL2 integrator (‘GL’ for Gauss-Legendre), which 
approximates the fundamental solution matrix as Yk+1;k = exp[A(xk  +  
½Δxk) Δxk]. Here, A(x) is the Jacobian matrix of the differential 
equations, and Δxk = xk+1 - xk is the grid spacing. The GL2 integrator 
is 2nd-order accurate in Δxk; the more-sophisticated Magnus GL4 and 
GL6 integrators yield expressions for Yk+1;k which are 4th- and 6th-
order accurate in Δxk, respectively (see Appendix B of [4]).

Introducing GYRE
GYRE uses the MMS scheme to calculate the adiabatic and/or non-
adiabatic eigenfrequencies and eigenfunctions of an input stellar 
model. It is is written in standard-conforming Fortran 2008 with a 
modular architecture that allows straightforward extension to handle 
more-complicated problems. To leverage multiple processor cores 
and/or cluster nodes it is parallelized using a combination of 
OpenMP and MPI. A typical GYRE run involves the following steps: 
first, a stellar model is either read from file or built analytically, and 
calculation grids are constructed. A scan through frequency space 
then searches for sign changes in the discriminant D(ω), which are 
used as initial guesses for the discriminant roots. After these roots 
are found, the corresponding eigenfunctions are reconstructed.

GYRE is open for use and distribution under the GNU General 
Public License; our hope is that a community of practice will arise 
around the code, bringing together users and developers to shape the 
code’s future evolution in ways that best serve the field and its 
participants.  Source code, documentation and other materials can be 
found at http://www.astro.wisc.edu/~townsend/gyre/.

Example Calculations using GYRE

Example A: The absolute error in the dipole p1 mode dimensionless eigenfrequency ω of the
n   =   0 polytrope, plotted as a function of the number of grid points N. The three curves 
correspond to GYRE’s Magnus GL2, GL4 and GL6 integrators, while the thick lines show the 
asymptotic scalings |ω   -   ωexact|   ∝   N-2, N-4 and N-6, respectively; the close correspondence 
between the curves and the lines confirms the asymptotic error scaling of the integrators.
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GYRE in MESA
As of revision 5232, the MESA stellar evolution code [3] includes 
GYRE as one of the oscillation codes underpinning its   
asteroseismic optimization module (the other, currently, is the 
ADIPLS code [7]). Communication between MESA and GYRE is 
accomplished through a simple application programming interface:  
MESA passes a model to GYRE, which then returns a list of modes 
having eigenfrequencies in a given range. Example E, below, 
illustrates an optimization run using MESA/GYRE.

Example E: The trajectory taken in the mass M vs. mixing-length parameter α plane during 
an asteroseismic optimization run by MESA/GYRE to determine the parameters of 
HD49385.  The arrows show the (α,M) sequence followed by MESA’s simplex algorithm, 
with each node colored by the χ2 statistic measuring the fit between observed (see [8]) and 
calculated frequencies of ℓ  =  0,…,3 modes.  This particular run is similar to the example 
described in Sec. 3.2 of [3].

Future Work
Work is currently underway to add support for differential rotation 
in GYRE, using a variety of non-perturbative approaches. 
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