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We outline a novel approach to solving the linearized equations of stellar pulsation, which avoids pathologies encountered in previous 
formulations.  Our approach is implemented in GYRE, a new pulsation code applicable to differentially rotating stars.  To demonstrate 
the strengths of the code, we apply it to calculate the frequency spectrum and eigenfunctions of g modes in a white dwarf model; and to 
explore the non-uniform splitting of a mode multiplet in a rotating B-type main sequence model.

Introduction
The process of solving the linearized stellar pulsation equations lies 
at the heart of a number of areas of current astrophysical interest  – 
e.g., stellar stability, angular momentum transport, tidal 
interactions, and most prominently, asteroseismology.  The 
pulsation equations pose a boundary-value problem (BVP), in 
which boundary conditions at the stellar core and surface can be 
satisfied only for certain choices of the pulsation frequency ω; that 
is, ω is an eigenvalue of the system.

Previous techniques for solving the pulsation BVP have almost 
universally suffered from what we call premature normalization – 
the adoption of a specific normalization choice (i.e., imposing a 
certain solution value at a certain location) during the search for 
eigenfrequencies.  An example is the method popularized by Castor 
[1]: one of the boundary conditions is set aside, allowing solutions 
to be obtained that satisfy the remaining boundary conditions and 
normalization condition for arbitrary ω.  The eigenfrequencies are 
then found by varying ω until the discarded boundary condition is 
also satisfied; if this boundary condition is represented by the 
equation D(ω)=0, then the eigenfrequencies are the roots of this 
equation.

Castor’s method has been used by many authors, within the 
computational frameworks of both relaxation (finite differencing) 
(e.g., [2]) and shooting (e.g., [3]).  However, it has the drawback 
that the discriminant function D(ω) can be pathological, often 
exhibiting singularities.  The latter arise from the imposition of the 
normalization condition at locations where the solution exhibits a 
zero.  Because these locations cannot be predicted a priori, it is very 
difficult to find a normalization that does not cause an ill-behaved 
D(ω).

Our approach to solving the pulsation equations does not require 
any choice of normalization during the search for eigenfrequencies.  
Instead, we cast the equations and all accompanying boundary 
conditions (but not a normalization condition) as a linear, 
homogeneous matrix equation S(ω)  y = 0.  Non-trivial solutions y  
≠ 0 are found when the determinant of S vanishes.  Thus,  the 
characteristic equation, whose roots define the pulsation 
eigenfrequencies, becomes D(ω) = det[S(ω)] = 0.

The GYRE Code
We have implemented this approach in a new code, GYRE, which 
solves the equations governing adiabatic pulsation in a 
differentially rotating stellar model.  The system matrix S(ω) is set 
up using a multiple shooting technique [4].  To shoot across each 

A High-Resolution Eigenfunction
To demonstrate the arbitrary spatial resolution that GYRE can 
achieve, Fig. 2 shows the relative radial displacement eigenfunction 
δr/R for a high-order g mode of the same WD model considered 
above.  A key point to note here is that although hundreds of 
thousands of points are required to resolve the eigenfunction fully, 
accurate calculation of the corresponding eigenfrequency ω requires 
only the ~ 430 original shells of the model!  This is thanks to the 
use of matrix exponentials.

Rotational Splitting in a B star
GYRE treats the Coriolis and (non-deformational) centrifugal 
effects arising from arbitrary differential rotation using the 
spherical harmonic expansion described by [6].  As a simple initial 
demonstration, Fig. 3 shows the effects of varying uniform rotation 
angular frequency Ω on the frequencies of an ℓ  = 2, -2 ≤ m ≤   2 
mode quintuplet of a mid-B type main sequence stellar model (Teff 
= 15,200 K, M = 5.0 M☉, log g = 3.9).  Although first-order 
perturbation theory predicts a uniform splitting of the mode 
frequencies, Δω ~ -mΩ, departures from this splitting can be seen in 
the figure.  In particular, the axisymmetric (m = 0) mode shows an 

shell of the model, we (reasonably) assume that the equation 
coefficients are constant within the shell.  The integration can then 
be undertaken semi-analytically with the aid of matrix exponentials.  
The advantage of this approach, which is similar to that in [5], is that 
it permits arbitrary spatial resolution.  Therefore, regions where the 
eigenfunctions have very short wavelengths pose no especial 
difficulty to GYRE.

Although GYRE remains under active development, it already 
shows great promise in terms of its flexibility and robustness.  The 
following sections present example applications demonstrating 
different strengths of the code.

Mode Spectrum of a White Dwarf
Seismic analyses of white dwarfs (WDs) can be challenging, because 
the Brunt-Väisälä frequency is real throughout the degenerate core, 
leading to a large trapping cavity and a dense spectrum of gravity (g) 
modes. Fig. 1 shows the frequency spectrum for a WD model (Teff = 
11,500 K, M = 0.6 M☉, log g = 8.0; kindly provided by Mike 
Montgomery), for g modes having harmonic degrees in the range 1  ≤  
ℓ   ≤ 200.  This spectrum comprises almost 4,000 eigenfrequencies, 
yet took minimal effort to compute (~4 minutes on a multicore 
workstation; we note here that GYRE is parallelized using MPI).

increase in frequency toward larger Ω; this is a direct result of 
second-order Coriolis effects.

Summary
The GYRE code uses a new approach to solving the linearized 
pulsation equations, which avoids the pathologies introduced by 
premature normalization.  It enjoys arbitrarily high spatial 
resolution, and is applicable to differentially rotating stars.  At the 
moment, the code is limited to adiabatic pulsation, but we are in the 
process of incorporating non-adiabatic processes.  

Upon its full completion, GYRE will be released into the public 
domain under an open-source license.  Until then, anyone with an 
interest in using the code should contact one of the authors.
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Fig. 1: Frequency spectrum of the WD model, showing the quantity 
[ℓ(ℓ+1)]1/2   /   ω (which scales approximately proportionally to the 
mode radial order n) as a function of harmonic degree ℓ for each 
mode.  Note the avoided crossings in the lower center of the figure.  
Here and throughout, frequencies are normalized by (GM/R3)1/2.

Fig. 2: Modulus of the displacement eigenfunction for the ℓ =  2, n = 
700 g mode of the WD model, plotted as a function of fractional 
radius on a logarithmic scale.  The inset illustrates the very short 
radial wavelength of the eigenfunction just below the stellar surface.

Fig. 3: Frequencies of an ℓ =  2 mode quintuplet of the B-star model, 
as a function of rotation angular frequency Ω.  Colors indicate the 
azimuthal order m: red (2), yellow (1), green (0), magenta (-1) and 
blue (-2).  At the bottom of the figure, prograde (m < 0) modes from 
adjacent quintuplets can be seen.


