THE STRUCTURE AND
OSCILLATION OF RAPIDLY
ROTATING STARS

William Thorne
TRINITY COLLEGE
JNIVERSITY OF CAMBRIDGE

A DISSERTATION
SUBMITTED FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY AT THE
UNIVERSITY OF CAMBRIDGE

2004

i



This dissertation is the result of my own work and includes nothing which
is thg outcome of work done in collaboration,””

encapl whve parbired. P 2

_—

-
y gy

g i;/é:z«f;—



Contents

PREFACE ix
SUMMARY X
ACKNOWLEDGMENTS xi
INTRODUCTION 1
1.1 The Sun and other stars 1
1.2 Helio- and Asteroseismology 3
1.3 Outline 15
1.4 ~-Doradus stars 17
THE TRADITIONAL APPROXIMATION 21
2.1 Introduction 21
2.2  Formulation of the System 22
2.3 Benefits of the Traditional Approximation 28
2.4 A Justification of the TA - Local analysis 29

2.5 A Justification of the TA - Numerical Investigation 35

ALTERATION TO STRUCTURE FOR A BAROTROPIC EQUA-

TION OF STATE 47
3.1 Motivation 47
3.2 Mathematical Framework 48
3.3 Calculation of the h; in terms of A, 49
3.4 Calculation of the A, 52

3.5 Mass “Alteration” resulting from the change of Basis 58



CONTENTS

ADIABATIC PULSATIONS IN THE NEW BASIS 61
4.1 Motivation 61
4.2  Pulsation equations in the new basis 61
4.3 Re-casting the Pulsation equations in Self-Adjoint

form 63
4.4 Equations for the frequency shifts and the alter-

ation to eigenfunctions 65
4.5 Mode Trapping 71
RESULTS FOR BAROTROPIC EQUATIONS OF STATE 75
5.1 Effects of the TA upon frequencies 75
5.2 Rotational Distortion for Polytropes 79
5.3 Eigenfrequency shifts due to Centrifugal force 83
5.4 Alteration to the eigenfunctions 88
5.5 Mode trapping 89
5.6 White-Dwarf Rotational Distortion 91
5.7 Conclusions 94
GENETIC ALGORITHMS 97
6.1 Background 97
6.2 Toy model 103
6.3 Polytropes 116
6.4 Conclusions 128
THEORY OF NON-BAROTROPIC EQUATIONS OF STATE 129
7.1 Generalization of previous chapters 129
7.2 Structure from mild non-conservative rotation laws 134
7.3 Correcting the frequencies 140
v-DORADUS STARS 145
8.1 An introduction to y-Doradus Stars 145
8.2 Numerical model used 154
8.3 FEigenfrequencies - TA 160
8.4  Asphericity 163

v



CONTENTS

8.5 Frequency fit for HD 152896
8.6 Conclusions

FUuTurRE WORK AND CONCLUSIONS
9.1 Future Work
9.2 Conclusions

A LIST OF NOTATION USED

167
171

173
173
175

177

DEFINITION OF THE PRINCIPAL VARIATIONAL-PRINCIPLE

FUNCTIONS

SOME USEFUL MATHEMATICAL RESULTS
C.1 Legendre Polynomials
C.2 Associated Legendre Functions

C.3 Vector Identities

13
AR i ULLUEOH wUrviil

R SRS LI
1ear Coordinates

179

PERTURBATIONS TO THE PULSATIONAL OPERATORS IN

TERMS OF THE METRIC COEFFICIENTS

189

SEARCHING FOR EIGENVALUES AND EIGENFUNCTIONS 195

E.1 Relaxation
E.2 Obtaining a

BiBLiOGRAPHY

195

10Q
1JO

201






ROTATING STARS






Preface

This dissertation does not exceed 60,000 words in length.

Some of the work contained in this dissertation has been pub-
lished, or is due to be published in refereed scientific journals or
conference proceedings.

Material from chapter 2 is prepared for submission in:

xT7

Thorne, W. A. & Gough, D. O., 2005, MNRAS

Material from chapters 3, 4 and 7 is prepared for submission
in:

Thorne, W. A. & Gough, D. O., 2005, MNRAS

A summary of material from chapters 2-5 has been published
in:

Thorne, W. A., Rotation: Distorted Co-Ordinate Systems and
a Generalization of the Traditional Approximation in Helio- and
Asteroseismology: Towards a Golden Future, USA. Ed: D. Danesy

An overview of this work also has been published in:
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Summary

The study of how rotation affects the pulsations of stars dates back
many years. It has often been achieved by using a perturbative ap-
proach. This approach is often acceptable, as in the case of the Sun,
because the Sun rotates slowly. Problems then arise when rotation is
not “small” enough to be treated as a perturbation.

For considering rotation, there are two immediate scalings that define
“small” — either scaling by the natural frequency of the star, or by
scaling by the observed pulsational frequency. Quite large values of
rotation scaled in the latter way have been dealt with in geophysics
by use of the “Iraditional Approximation” without conflicting with
observed data. This approximation has recently been transferred over
to Astronomy, in a direct way without explicit, thorough, testing.

In this thesis, the Traditional Approximation as defined in geophysics
is extensively tested, and generalized to the oblate orthogonal co-
ordinates that will form a natural basis for a star distorted by the cen-
trifugal effects of rotation. The method of finding these co-ordinates,
and further calculating their effect on the pulsations, is presented, and
several examples are given.

By use of this method, we are able to define accurately the effects of
rotation upon the structure and pulsations of a star, when the method
is valid, regardless of the ratio of the rotation rate to the pulsational
frequency. This has opened up a new realm of stars to our future
study.

As a use of this method in fitting asteroseismic data, genetic algo-
rithms, optimizers that have become increasingly popular in recent
times, are also investigated, and methods of increasing their efficiency
are discussed.
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Chapter 1

INTRODUCTION

“He also made the stars.” — Genesis 1:16b

1.1 THE SUN AND OTHER STARS

From the dawn of time, mankind has wondered about the Sun
and stars — as is evinced from ancient monuments such as Stone-
henge to the plethora of references in the Biblical psalms, our
fascination with these sources of light (although we now know
them to be much more) is possibly matched only by the difficulty
which we have classically encountered when trying to study them.
The ancient concept of “as high as the heavens” to express vast
distances remains with us, as can be seen in the use of the term
“astronomical” in everyday life.

It is only relatively recently that the Sun has actually been
viewed as a star, or, to invert the problem, that other stars are
viewed as being like the Sun. The case of Galileo’s suggestion
that there might be better theoretical starting points than the
model of the celestial spheres is well known.

The rotation of the Sun, or at least its surface, is probably the
first well-measured solar parameter; returning to Galileo, his use
of the newly invented telescope found sunspots, which rotated
around the Sun about once every month, showing the rotation
of the Sun and giving it a rough rotational period that would
be further refined. By comparison, it was not until 1752 that
Lacaille, using a transit of Venus, managed to obtain a reasonably



1.1 THE SUN AND OTHER STARS

accurate measure of distance to the Sun, and hence its radius.
Measuring the mass of the Sun was then possible with Newton’s
theory of gravitation and the determination of the gravitational
constant GG by Cavendish.

The identification of the source of energy for the light that
man had so long enjoyed took even longer: it was realised that
this amount of energy could not be produced by chemical re-
actions; so the onus fell upon gravitational energy to provide.
Kelvin and Helmholtz calculated that the system could radiate

for 107 years, and all seemed fine!. However Eddington realised,
and stated. that the enerov was oenerated by the nuelear hu
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ing of hydrogen into helium; this, to some extent, completed the
foundations of the problem of solar and stellar modelling.
Eddington also acknowledged the previously referred to dif-
ficulty in studying the stars in yet another way - that of being
certain of the makeup of the interior of stars. Beginning his work,
The internal constitution of the stars (1926), he famously writes:
At first sight it would seem that the deep interior of the sun and

stars is less accessible to scientific investigation than any other
TP(MO’n nf the universe. Our telescones mav nrobe farther and for-

vl ol CLLCo LU CO Wy iUVl Jwiviver Wivls jlur —

ther into the depths of space; but how can we ever obtain certain
knowledge of that which is hidden behind substantial barriers?
What appliance can piece through the outer | layers of a star and
test the conditions within?

He would then go on to show a way of modelling that would
not actively “probe”, suggesting that we learn “by awaiting and
interpreting the messages dispatched to us by the objects of na-
ture” which we still do, but in a more direct route than he fore-
saw. We now have the joy of knowing of such an appliance that
Eddington wondered whether would exist: the tool of asteroseis-

! Although it is interesting to note that evolutionary theories had no prob-
lem in fitting into this time scale; the phrase “real bronx cheer” was not
invented by this stage.
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mology.

1.2 HELIO- AND ASTEROSEISMOLOGY

In 1960, a study of the Doppler shift of the spectral line of Ba II
showed oscillatory motion, with a dominant period of about five
minutes. The frequency spectrum was found to be discrete, and
is was concluded that the oscillations are waves trapped in the
resonant cavity of the Sun. It was soon realised that these oscilla-
tions, and in particular their frequencies, could tell us about the
interior of the Sun. Traditionally in helio- and asteroseismology,
the frequencies measured are those of normal modes, viewed as
standing waves. This is different to the use of seismology as usu-
ally practised by geophysicists, where usually individual waves
are traced back to a single exciting event, as the excitation of
stellar waves is not caused by an event at a fixed point in space
and time, but rather by a type of event, such as stochastic ex-
citation by the convection, which occurs continually throughout
the outer layers of the star.

1.2.1 A BRIEF PRIMER ON SEISMOLOGY

Before we proceed to study perturbations, we must look at the
equations that govern the structure of the star (in this case the
Sun). These fall into five categories:

1. The equation of hydrostatic support:

Vp = —pVe+ F, (1.1)

where p, p and ® are the hydrostatic pressure, density and
gravitational potential respectively, and F' represents non-
gravitational body forces. This equation comes from the
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momentum equation, with time derivatives set to zero (al-
though these time derivatives will re-appear when this equa-
tion is perturbed later).

. Poisson’s equation:

V@ = 4nGp , (1.2)
with G the gravitational constant.

. An equation of energy transport, whose r component (in
spherical polar co-ordinates) is

L

42

:Frad+Fconv ) (13>

in which L is the luminosity, and F.,q and F..,. are the
radiative and convective fluxes respectively, given by equa-
tions such as

—40T3dT
Fra = ) 1.4
d 3kp dr (14)
Gm\ 1/2
3/2
Fconv = P& (ﬁ) (AVT) / )‘Iznl ) (15)

with o, T, k, ¢,, m, AVT, Ay are the Stefan-Boltzmann
constant, temperature, Rosseland mean opacity, heat ca-
pacity at constant pressure, interior mass, superadiabatic
temperature gradient, and the mixing-length parameter, re-
spectively. The opacity is obtained from quantum effects,
and is a large study in its own right, with stellar theorists
often using tabulated values, such as those provided by the
OPAL project. Examples of opacity formulae include



INTRODUCTION

K = kopT3*° (1.6)

for Kramer’s opacity (when the opacity is dominated by
bound-free and free-free absorption), and k = &, for when
opacity is dominated by electron scattering.

4. Energy generation, again in spherical polar co-ordinates:

L
—8; = 4mr?p (e — T—?é\ : (1.7)
or \ ot/

where s is the specific entropy, and ¢ is the nuclear energy
generation rate per unit mass, which is a function of the
thermodynamic state and of the chemical composition:

e =¢elp,T,X,Y, Z,...), (1.8)

and is obtained from nuclear physics. X, Y, and Z are the
abundances per unit mass of hydrogen, helium and metals
(other elements) respectively.

5. An equation of state:

p =p(p,T,X,Y,Z,..) . (1.9)

In helioseismology, the measurements and their interpre-
tations are so refined that one must take into account a
number of physical factors such as relativistic effects, non-
ideality of the gas (e.g., the effects of electron screening),
turbulent motions and the ionization of elements.

There are also equations to follow the chemical evolution of a
star, such as
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90X, mi N N U0 ixine (1.10)
8t 2 i £,k \ J
P15 |

where X; denotes the abundance by mass of an element, m; is the
mass of element 4, and r;; denotes the reaction rate for the con-
version of element ¢ into element 7, and ¢ is the time. Mixing can
be by diffusion or advection, the magnitude of which individually
will strongly vary depending on the region of the star.

There are huge areas of ongoing research attached to the last
three of these structure equations (energy transport, energy gen-
eration and the equation of state) and to the reaction rate cal-
culations; for instance refining opacities and convective theories
for the equation of energy transport, cross-section calculations to
refine the formulae for the nuclear energy generation rate, and
understanding some of the factors already listed for the equation
of state. Many of these factors will only be touched upon here.
For mathematical ease, a number of simplifications of the equa-
tion of state exist, in which the pressure is viewed as a function
of density only. These are called barotropic equations of state,
and will be adopted extensively in this work as they retain much
of the physics whilst reducing the complexity.

Once we have a solution to these equations (i.e. a solar/stellar
model), we can investigate its normal modes, which we do by per-
turbing the model, assuming our perturbations to be proportional
to eT? for some Y. It is important to note when we consider this
perturbation that hydrostatic equilibrium is instanteously satis-
fied inside the star, whilst a wave propagates over a dynamical
timescale (of the order of an hour for the Sun); this satisfying
of hydrostatics gives us R(T) = 0, so our perturbations are pro-
portional to e™** for some real w. Also the fact that we observe
the Sun to be stable over this dynamical timescale encourages
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us to view the perturbation as small enough to justify neglect
of second-order terms in the perturbation. For an overview of
seismology, see Gough (1993).

We shall first look at the case of no rotation; define € to be
the displacement of a Huid element. Because we are ignoring
quadratic terms and have no rotation, the velocity, u, is given by

DE
815 —iwé ; (1.11)

for the other perturbatlons (such as to the density p and the
pressure p), we shall denote Eulerian perturbations by primes,
and Lagrangian perturbations by using a §, so ép =p' + € - Vp,
and similarly for other variables. Thus perturbing about our
equilibrium state gives

—w?p€ = —Vp — pVP — pVP' | (1.12)
V20 = 4Gy, (1.13)
p+V.(p€) = (1.14)
D /
fo = pe — V.F | (1.15)

in which p, p, T and ® now represent the unperturbed values as-
sociated with the equilibrium state. If we neglect heating, looking
for adiabatic pulsations, we can greatly simplify the last of these
equations, arriving at

5 5
L -mz, (1.16)
D P
o (24 ag) (1.17)
p =" Kp 7‘) 3 .

where we have introduced an adiabatic exponent
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_(Olap ‘
1= (m)ad ; (1.18)

and &, denotes the r component of £ with respect to spherical
polar coordinates. Equations (1.12), (1.13), (1.14) and (1.16)
close the system, and we can solve for the perturbation. However,
it will be useful to note some simplifications of the system:

1. We note that there is no coupling between the horizontal
and vertical components of any of the equations that close
the system. Hence we can look for separable solutions f =
fo(r)fu(0,¢). Looking at equation (1.13), it is apparent
that the sensible choice for the basis of horizontal functions
fu(8, ¢) is a set of eigenfunctions of the horizontal Laplace

operator
L2
2
Vihh ===k, (1.19)
for some eigenvalue L2 Further expanding this equation,
we see that we can write
Ju(0,8) = (=1)"cyp, P"(cos §)e™ = Y™ (1.20)

where P/™ is the associated Legendre function of the first
kind, ¥;™ is a spherical harmonic, and ¢y, is a normalization
constant chosen such that

T 27
/ / Y * (cos 6, ¢)Y;™(cos b, ¢) sin fdddd
Jo Jo

1 2
—z/ /o ﬂ”'*(ﬂa &)Y (u, p)dddu = 6; 16y v (1.21)

1
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where we have used the notation (that will be assumed
from now on) that u = cos@ and that complex conjugates

are denoted by an asterigk.

uid

Y™ is characterized by the degree, I, and azimuthal order,
m, both of which are integers; from the properties of spher-
ical harmonics, we also know that

L =i(l+1), (1.22)

and

im| <1, (1.23)

2. It is often possible to neglect the perturbation to the grav-
itational potential, ®’; this is known as the Cowling Ap-
proximation. This has been well discussed in the literature
(e.g. Christensen-Dalsgaard, 2003) and gives results in good
agreement with the results for the full problem when either

[ is large, or the radial order, n, of the mode is large.

1.2.1.1 THE FIRST-ORDER EFFECTS OF ROTATION

If we now assume that the stellar system is rotating (and that
rotation is the only zero-order velocity to consider) with an an-
gular velocity, €(r, 1), which depends only on radius and lati-
tude, obeying $2(r, ) = Q(r, p)e,, then in the perturbed mo-
mentum equation the velocity we had denoted by w is replaced
by v = u + Q x r (to save on confusion), and the displacement
£ must be determined relative to the moving equilibrium fluid:

— _l_)é = (—9§+(’UV)€ (1.24)

=g = 3



1.2 HELIO- AND ASTEROSEISMOLOGY

o
= o HImQE+QxE. (1.25)

Shifting to a co-ordinate frame rotating with uniform angular
velocity (2, our frequencies will change to @ = w—m¢); this causes
equation (1.12) to be modified to, to first order in 0,2

—&*p€ + 2i@p[(Ax 1) - V]E = —Vp — p'Vd — pVP . (1.26)

From this point onwards, we shall drop tildes in our equations,
replacing @ by w.

If €2 were small, then had we viewed our perturbation equation
that described the spectrum of possible oscillations as

W€ = LE, (1.27)
rotation would have changed the operator £ to £+ AL, with
(1.28)

which would cause a frequency shift of (using the fact that the
normal modes of pulsation form a complete set (Dyson & Schutz,
1979), V is the volume of the star)?:

2 (@ x 1) - VIR v

A("Jnlm =
*
f\ /E -&dy

(1.29)

We can also write this equation for the frequency splitting Awpm
as

2Assuming Q is uniform and Q = Q.
3The subscripts n, I and m classify the mode, with n being the radial
order, and ! and m classifying the spherical harmonic part of the mode.

10
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This method of getting a frequency shift from viewing the
introduced rotation as a small change in the differential opera-
tor is an example of using a variational principle, which will be
expanded upon later.

In equation (1.30), K, is called a kernel, and the subject
is well studied in helioseismology (e.g. Christensen-Dalsgaard,
2003); it is the case that Awyy, is what is measured, whereas
Q(r, 1) is what we desire to know. Returning to equation (1.29),
we see that an individual Awy,,, will only be sensitive to the rota-
tion in places where the accompanying & is appreciably non-zero.
The region of points where £ is appreciably non-zero (i.e. where
it behaves in an oscillatory manner, rather than an exponentially
decaying one) is known as the region of propagation, and the
bounding points known as upper and lower turning points.

Because different Aw,;, are sensitive to different regions, we
can use the differing shifts experienced to build up a map of the
rotation inside the star. This method of building up a map of the
interior properties (in this case rotation) is known as inversion;
similar methods exist to calculate sound speeds and such like.

1.2.2 ASTEROSEISMOLOGY

It is not the case that the Sun is the only star to be seen to
pulsate: in locations all over the H-R diagram, as shown in fig-
ure 1.1, we find pulsating stars. These range from white dwarfs
to Mira variables, showing different types of pulsation, such as
p modes (where the restoring force is pressure - comparable to
acoustic waves in the air) and g modes (where the restoring force
is gravity, via buoyancy). The Sun is a low-amplitude p-mode

11
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pulsator, stochastically excited by its convection, whereas other
stars, such as y-Doradus stars, are g-mode pulsators. Likewise,
the method of excitation also differs between types of pulsat-
ing star. We have reached an exciting time for asteroseismology
(Gough, 1996), with space missions such as COROT, and MOST,
and with current observations being able to detect, and exploit,
solar-like oscillations in nearby stars (for example, Baglin et al.
(2001) for COROT and Rucinski et al. (2003) for MOST). Inver-
sion methods based on, for example, equation (1.30) can thus be
used, but we must acknowledge that, as would be expected there

18 no one method that will work for every star and its pulsations

-M LAY V A AN AC I et VUL AL Ly PDucl Quliud U MPUuloauiuliloe.

1.2.2.1 OBSERVATIONS & THEIR RESTRICTIONS

Inversion methods are very refined for helioseismology, and in
the Sun we have immense spatial and temporal resolution. For
instance, we can look at high-/ p modes, and do inversions on
them. This simply is not possible in other stars: we must use
whole-disc integrated measurements.

It is the case that we shall need to work with modes of very
low degree, [, or their equivalents. These are some of the most
penetrating modes, and tell us things about the deep structure of
stars. These modes do not give us as much information as having
a raft of solar-like oscillations, but they are still very useful.

1.2.2.2 'WHEN DOES THE PERTURBATION METHOD BREAK DOWN?
Whilst this method provides a simple way of determining the al-
teration of various modes by mild rotation, it is limited to just
that: mild rotation. We have pulsating stars in locations all
over the H-R diagram (see figure 1.1), many of which have much
faster rotation, both in absolute terms and also, as will be defined
shortly by the parameter v, relative to its pulsational frequency,
w. Whilst the variational principle will give an answer, we desire

12
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Figure 1.1: A schematic Hertzsprung-Russell diagram, show-
ing the regions occupied by pulsating stars. Also shown are
the zero-age main sequence (ZAMS), evolution tracks for 1,
2,3,4, 7, 12, and 20 M, stars, the horizontal giant branch
and the white-dwarf cooling track. Figure first produced by
Jgrgen Christensen-Dalsgaard.

13
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to obtain very accurate frequencies because of the high precision
data that will shortly be available. For example the quoted ac-
curacy (see Baglin et al., 2001) of the upcoming space mission
COROT is given as 0.6uHz for a 9th magnitude star observed for
20 days, a magnitude and observation length picked as typical for
the mission.

Rotation affects a star in two main ways: The first is by
Coriolis force, which comes in at order Q; the second is centrifu-
gal effects, for instance by distortion of the background state of
the star, which comes in at order Q2. Whilst the mean rotation
of the Sun is roughly 28 days, which allows effective neglection
of centrifugal force, an average y-Doradus star (y-Doradus stars
are another class of pulsating stars, which will be discussed in
detail later) has a mean rotation period of the order of approxi-
mately 3 days, causing centrifugal effects to be of the order of a
hundred times larger than the Sun, and may hence possibly be
non-negligible.

The distortion of the background state away from spherical
symmetry also suggests viewing the problem of modes in el-
lipsoidal co-ordinates; Lignieéres et al. (2001) looked briefly at
acoustic modes in ellipsoidal co-ordinates, taking into account
the chaos of ray dynamics and such factors, and found that this
distortion from sphericity would lead to alterations above the
quoted accuracy of, for example, the upcoming asteroseismologi-
cal mission COROT mentioned above. Thus this change of basis
is a factor to take into consideration.

One important thing to note is that the different methods
given always® involve truncating expansions in the rotation rate,

“This is not the case for extensive numerical modelling of individual pul-
sations of an individual stellar model, as done by Dintrans and Rieutord
(2000); however, this can become extremely computationally intensive (al-
though it holds many possibilities for the future, as mentioned in chapter 9).

We shall focus on (at least partially) perturbative theory.

14
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but we can find different expansion parameters which can be more
sensible in certain cases.

1.3 OUTLINE

As has been mentioned, pulsating stars are located all over the
H-R diagram, with different values of radius, R, mass, M, lu-
minosity, L, effective temperature, Tog, composition, X, angular
velocity, 2, and pulsational frequency, w, amongst others. In

fact. one could bhe exciuced for thinkine inst abhout the onlv con-

1L, VHIDU LU LI U TALUWOUA UL VLGRS JUDU VUL LD Uiy VUL

sistent feature in the modelling of these stars is the constant of
gravitation, G !

If we look at the list above, it is apparent that three dimen-
sionless parameters including rotation are possible®:

2Q
= — 1.31
vo= =, (1.31)
Foo 2 (1.32)
V/GM/R3
L
4= Trmes (1.33)

We shall not include d in our analysis, but it is listed here
for completeness; the remaining two parameters show us that we
can define “large” rotation rates in at least two ways — by large
v or large f. The v scaling takes account of the direct effect of
the Coriolis force on the dynamics of the oscillations, whereas
the f scaling takes account of the geometrical distortion of the
star. These scalings define a multi-dimensional parameter space
within which we must work.

5The factor of two in (1.31) is not strictly needed, but will prove to be
useful later.

15
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This thesis will present a method of dealing with these two
scalings separately, which does not obviously break down for large
v (unlike the normal perturbative method), via the Traditional
Approximation, from geophysics. The approximation will be
analysed, tested and generalized in order to model stars previ-
ously inaccessible to detailed investigation. The thesis is laid out
in the following way:

e Chapter 2 introduces and discusses the approximation to
be used, as well as investigating its realm of validity.

e Chapter 3 introduces the equations for a natural basis for a
rotating star which retains orthogonality. This is done for
barotropic equations of state.

e Chapter 4 looks at the theory concerning the alteration that
this basis causes to pulsational eigenfrequencies, eigenfunc-
tions, and mode trapping.

e Chapter 5 presents results from chapters 3 and 4.

e Chapter 6 discusses a rapid way of findin
pulsational data, via genetic algorithms.

e Chapter 7 generalizes the theories and methods of chapters
3 and 4 to non-barotropic equations of state.

e Chapter 8 presents results of this generalization, with a
particular view to y-Doradus stars.

e Chapter 9 summarises, and discusses future work on this
subject.

16
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1.4 ~v-DORADUS STARS

One class of star that will be discussed later is that of v-Doradus
stars. Stars of this class have only recently (of the order of ten
to fifteen years ago) been classified as a separate type of pul-
sating star. They are low-frequency (see accompanying table)
pulsators (believed to be high-radial-order g-mode pulsators) of
moderate (compared with similar stars in the same region of the
H-R diagram) raw rotation rate, with masses of the order of
1.5Mg. Unsurprisingly, they are found just above the Sun in
the H-R diagram on the main sequence. Although they lie in a
region overlapping that where 0-Scuti stars are found, only one
star (HD 209295) has been found to pulsate with both §-Scuti
(low-radial-order p-mode) and y-Doradus (as already mentioned,
high-radial-order g-mode) pulsations. This star is a member of
a close binary system, and is thought to be anomolous, whilst
many other candidates (e.g. see Handler and Shobbrook, astro-
ph/0202152) have been closely examined without finding any sign
of both types of pulsations (indeed, the authors were able to put
quite tight upper bounds to the magnitudes of any undetected
pulsations). A table of some ~v-Doradus stars is displayed below,
including the parameter v which, as we have seen, will become
relevant later when considering how to model the pulsations and
predict model pulsation frequencies.

17



1.4 v-DORADUS STARS

V8Nt

(sing

e w(/day ~1) | vsini
(Jkws™) | | (/day~)

Sun - 1 ~ 1/30 0(288) 2e-4
v Dor 62 1.47 - 1.3210 1.2616
1.3635 1.2223
9 Aur 20 1.64 - 0.795 0.6062
0.345 1.3968
HD 38 1.44 | 0.5214 1.111 0.9386
277 1.081 0.9465
1.387 0.7518
HD 11.5 1.64 ~ 1.6014 0.1730
62454 1.4368 0.1929
1.7367 0.1596
1.8337 0.1511
1.8075 0.1533
HD 85.5 2.14 - 1.3002 1.2142
68192 1.202 1.3134
HD 40 1.55 1 0.5099 1.321 0.7719
105458 0.946 1.078
1.251 0.8152
1.409 0.7238

1.552 0.6571
1.091 0.9347

HD 68 1.40 - 1.4045 1.3665
108100 1.3210 1.4529
HD 180 1.49 | 2.3868 2.898 1.6472
155154 3.098 1.5409
3.200 1.4918

9 NRQ
D.ULJI

1 BEEE
l.09U
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Star | vsini I‘;{g Qsini | w(/day 1) | vsing
(/day™!)

HD 59 1.85 ] 0.6301 1.208 1.0432

160314 1.184 1.0644

HD 60 1.66 - 1.2321 1.1592
164615

HD 140 | 1.57 | 1.7618 2.432 1.4488

206043 2.360 1.4931

2.524 1.3558

2.599 1.3558

2.266 1.5550

2.461 1.4318

HD 91 | 1.76 - 0.3855 0.5300
207223

HD 37.5 | 1.74 - 1.9791 0.4303

218396 1.7268 0.4931

1.6498 0.5162

HD 24 1.87 - 0.6848 0.7406

224638 0.8115 0.6249

HD 95 1.82 - 0.6692 1.7844

224945 0.9330 1.2799
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Chapter 2

THE TRADITIONAL
APPROXIMATION

“Fach problem that I solved became a rule which served afterwar

to solve other problems.” — Descartes, Discours de la Méthode,
1637.

2.1 INTRODUCTION

Once we have seen from equations (1.31) and (1.32) that the
Coriolis and centrifugal forces are characterized by different di-
mensionless parameters, which often differ in magnitude, we must
think how to deal with them. One option is to proceed with a per-
turbative method, expanding to higher and higher order, which
may, or may not, increase the realm of validity, but must itself
break down eventually. Another method is to switch entirely to
numerical simulation; this would, if there were adequate reso-
lution, solve the problem completely, but can be prohibitive in
terms of computational resources, especially if a many-parameter
survey is sought for fitting stellar data.

Another way to proceed is to simplify the mathematical sys-
tem, by approximating the equations in a manner that casts them
into a more tractable form. One such approximation is what is
known in geophysics as the “Traditional Approximation”, which
we shall call the TA. In essence, it neglects the contribution of Qy,
the horizontal component of the angular velocity, to the Coriolis
force.



2.2 FORMULATION OF THE SYSTEM

This approximation has been used for some time in geophysics
to good effect, and has also been used recently in astronomy: for
example, to analyse the angular behaviour of eigenfunctions (Lee
and Saio, 1997); to investigate the surface trapping and leakage
of g modes (Townsend, 2000); and to expand asymptotically’ the
angular oscillation equations for very large values of the param-
eter v (Townsend, 2003b).

As with all approximations, there are circumstances in which
the TA is not valid and should not be used. It is therefore impor-

tant to determine under what conditions the TA can be used. In
thie chanter the TA <¢hall he nraoan%—ar] minad nd ita raalyn

VLIS AL ULy LT L0 DlQud UG L TOTILuoU, eAau.Llu.bu, ana J_UD 1TAlilL
of validity explored. One method of doing this will be by solving
the “exact” problem (by formal expansion) in the range of small
v in which it is valid.

(3} AT -

2.2 FORMULATIO!

EM

ST
nd (1.16), under the Cowl-
spherical background state,

OF THE SY
Returning to equations (1.12), (1.14), a
a

14
ing approximation, and assuming
we have:

—w2$?~+21wﬂsin9§¢ =g, (2.1)
p or p
—10p
2 .
—wy — 2iwQcosh £y = —2L (29
w €y — 2w cos b &, o 90 (2.2)
-1 9y
9 . PR P
—wéy + 21wl cos £y — 2iwsind &, = - (2.3)
Wihg T+ AIAICOST 5y — Sl prsind dg¢ A
10 p 0 p 0
/ ——"/T'Z /-T\ o Sln(g + e =0 ) 24\
p—f—"r@@frk p )—'—rsmé‘ﬁﬁ( s6) rsmé"ﬁgbk‘%) (24)

'Due to the parameter ranges focused upon in this thesis, we shall not
use these asymptotic expansions.
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/

l

=M (%l + Afr) (2.5)

AN

2.2.1 THE TRADITIONAL APPROXIMATION

Under this approximation, we neglect terms containing {2sing.
This removes the direct rotational coupling between the radial
and horizontal parts of the momentum equation, leaving the sole
coupling via the pressure gradient and buoyancy, as in the corre-
sponding non-rotating system.

Once this is done, it can be seen from the interplay between
the altered versions of (2.1), (2.4) and (2.5) that the equations
will now admit separable solutions of the form:

f(r,0,0) = f(r)0(u,v) e™ (2.6)
where we have used the parameter v given in equation (1.31),
and f represents &, p/ or p'.
To see and derive this separability, we re-arrange equations
(2.2) and (2.3) in terms of p'/p and its angular derivatives:

—1/1—p2 /0 i o\
56: 5 :—2&: h——‘—l“yu—n—.\?—, (2-7)
wrl—1v2p? \Op  1—p*0¢) p
1 /1—p2 /(. 0 1 90\Yp
- v~ —_ —_—] = 2.8
§¢ wir 1 —v2p? (Wué‘ﬁl—u?&ﬁ)p (28)

Substituting these expressions for & and &, into equation (2.4)
gives:

Lo
AN
<
~~
D
€©o
~—

PO+ ——(r?p&)0 +
T“ ClT' W

2Note that this re-arrangement has assumed that p has no angular deriva-
tives, a fact that will become important when we seek to generalize the TA.
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2.2 FORMULATION OF THE SYSTEM

where
d 1—p? de\
Lo )] = - (14 29)
ap \ 1 —v=p? du y
1 14122 m?
— . 2.10
1—V2,u,2 (myl_VQMZ 1_M2 © ( )

From this equation, it is easy to see that the requirement for
separability is that

L0 v)] = —L*O(u;v) (2.11)

where L? is a constant (but depends on v)®. Equation (2.11) is
Laplace’s Tidal Equation (which reduces to the associated Leg-
endre equation when v = 0); its solutions are Hough functions.
The solutions are determined by requiring regularity of the solu-
tion at the singular points y = £1. From the symmetry of the

equation, we can see that the solutions are alternately (ordering
according to L*(v)) even and odd functions of .

The solutions to this equation have been extensively discussed
(by Lee and Saio, 1997, already mentioned); however, owing to
possible concerns about regularity at interior mesh points, it is
preferred to use the coupled first-order equations of Townsend

(2003b):
d@ ! 22 - 16 0 2.12
W —-1_Mﬂvu—) +mpe) | (2.12)
d A 1 2 2 2 A
Eﬁ@ = T [(L (1—u)—m)®—muu@} ,(2.13)
with

3This constant is often denoted by Agm, but we use L2 here to emphasize
that it is the analogue of the constant L? = [(I + 1) in a non-rotating star.
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© Eﬁ (—(1—;JJ )— +muu\‘@ (2.14)
Whilst it is possible to enforce regularlty using Lee & Saio’s for-
mulation by placing mesh points at u = v~ (with due care), we
wish to search for v as a coupled eigenvalue, rather than prescribe
it, as they did. The formulation given here avoids this problem.
Returning to the equations for the radial part of the eigenfunc-
tion, we see that they can be written in one of the two following
forms:

d 9 g L2C2 p/
Ty (r*&) - ot T (1 ——3)z =0 (2.15)
d /
L Iy (N — W)k, =0, (2.16)
ar c“
ort:
dz Va L? Vi
—— =|=-3 - — 2.17
" dr (’71 > Z1+ (cldﬂ - 29 ( )
ng 5 \ ) \
r—= = (a0’ —rd)s + (1 -U—rd)z . (2.18)

The first form shows the physics of the pulsations, whereas the
second form is easier for numerical evaluation. It should also
be noted that these equations are identical to those given by an
analysis for a non-rotating star, with the only alteration that L?
is no longer a constant integer value, by instead is dependent
upon the rotation.

v1il 1L

The boundary conditions adopted here are those of ensuring

420 = &.(r)/r, z2 = p'(r)/grp; for the rest of the definitions, the reader

is directed to appendix A.
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2.2 FORMULATION OF THE SYSTEM

regularity of the displacement as we approach the origin, and of
having a vanishing fractional Lagrangian pressure perturbation
at the surface.

These equations (equations (2.17) and (2.18)) can then be
represented by finite difference equations, which are then solved
by relaxation. Second-order accuracy centred differences were
used to represent derivatives, and the differential equations were
represented midway between the mesh points. The boundary
condition of regularity at the centre translates mathematically
to:

21, Rg o~~~ % s (219)
VITAZ—5
@ = ——+—2-— . (2.20)

It is remarked that the limit of ¥ = 0 recovers the limit we would
expect.

2.2.2 THE USE OF THE COWLING APPROXIMATION

For the previous analysis, we employed the Cowling Approxima-
tion; the question arises whether we can find separable solutions
if ®" is not ignored. Were we not to neglect the perturbation to
the gravitational potential, the equations would be:

—w?p€ + 2wp[(Q x 1) - VIE = —Vp' — 'V — pVI' |, (2.21)
09 p 0% _
rsind o (sin 69) + rsingd ¢ 0,(2:22)

6
v \

Py
= ! (ﬁ' + Agr) ) (223)
p p

V2O = 4nGp' .(2.24)
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THE TRADITIONAL APPROXIMATION

Now the benefits of the TA under the Cowling approximation
hinge upon p’, ¢ and & having the same angular form, that
of ©(u,v). With the above equations, especially (2.21), it is
apparent that we would need @' also to have this angular form
— i.e. sharing the angular form of p’. The question then arises

whether equation (2.24) is consistent with this.

Placing a Hough function into VZ gives:

Vie = 1 ( — L*(1 —v2u?)

r2

0
2,2 2 2
# ViO < © . (2.206)

These equations make it apparent that the Traditional Ap-
proximation cannot be valid if the Cowling Approximation is not
adopted. However, we shall be able later to use a variational prin-
ciple to correct for the Cowling Approximation after calculating
the eigenfunctions and eigenfrequencies.

( Were we to return to this argument after reading chapters

3 and 4, thinking about generalizing the Traditional Approxima-
tion in a distorted co-ordinate system, expanded in powers of f2,
the above analysis is true to O(f°). A possible suggestion would
be to think about the inclusion of the metric co-efficients h; in
our expression for V2 and wonder if that would make a difference,
but the inconsistency here is in terms of v, whereas the h; are ex-
panded in f%; because these are different scalings, this reasoning

cannot rectify the problem.)
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2.3 BENEFITS OF THE TRADITIONAL APPROXIMATION

2.3 BENEFITS OF THE TRADITIONAL APPROXIMA-
TION

The TA has three major benefits:

(i) Separability: By rendering the solutions separable, the TA
reduces the dimensionality of the system (and possibly simplifies
the topology of the solutions). The radial component of any
eigenfunction satisfies an ordinary differential eigenvalue equation
of only second order (in the Cowling approximation), of which
there is much theoretical analysis. Moreover, it is straightforward
to determine the angular dependence.

(ii) Relation to the nonrotating case: Aside from the values of
L?, equations (2.15) and (2.16) are identical to those for a non-
rotating star. Therefore essentially all of the techniques for solv-
ing the equations for non-radial oscillations®, and many of the
results obtained from them, can be transferred from the studies
of the oscillations of non-rotating stars. In particular, provided
that the Hough functions evolve continuously away from the as-
sociated Legendre functions without bifurcation as v increases
from zero (which they appear to), it is likely (indeed, definitely
under the Cowling approximation) that many of the modes of
oscillation can be identified with their nonrotating counterparts.
(i) No expansion is required: As a result of the separation, the
governing equations can be solved straightforwardly as a one-
dimensional problem, essentially exactly (albeit numerically), for
any angular velocity € without expansion.

Formally the TA provides frequencies for any rotation rate. In
simply solving the equations there is no concern whether the os-
cillations correspond to large or small values of v. Note, however,
that owing to our assumption in this study that the background
state is spherically symmetrical, we must take care that the value

SWhilst the TA strictly can be used for radial modes, an examination of
equation (2.3) quickly shows that this is not sensible.
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of 7Q%/g is never so large as to make the effect of the centrifu-
gal force significant. Moreover, we must also be concerned about
the validity of the TA. Nevertheless, we bear in mind that the
approximation has been used by geophysicists for a long while,
and often appears to work well, although perhaps not always. To
quote from p96 of Eckart (1960):

‘... the question arises: “What terms of the equations
are responsible for the mathematical difficulties?” ...
observationally it is true for all large-scale motions
on the earth. It cannot be foreseen, without detailed
study, whether it will be true under all circumstances.’

In the following sections, the result of such a study is pre-
sented. This is essential before transferring the procedure over to
astrophysics where the consequences cannot so easily be assessed
by observation as they can in geophysics.

Our assessment is possible in a number of ways: for low values
of v we have a traditional perturbation expansion which we can
compare with, and for high values of v we can look at the size
of the neglected terms in equations (2.1) and (2.3) compared to
the kept ones. These are both numerical exercises, but we shall
begin with a local wave analysis to acquire a prior opinion of the
conditions under which we might expect the TA to be valid.

2.4 A JUSTIFICATION OF THE TA - LOCAL ANAL-
YSIS

To begin a local wave analysis, we shall consider the magnitude

ky, of the horizontal wavenumber to be large compared with 771,

In this case we can consider the background to be approximated

by a locally plane-parallel stratification under a constant gravita-
tional acceleration g. We shall set up local Cartesian coordinates
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2.4 A JUSTIFICATION OF THE TA - LOCAL ANALYSIS

(z,vy, z) such that e,, e, and e, coincide with ey, —e, and e,, re-
spectively. Then the angular velocity € is of the form (0, £,,0,)
in this coordinate system; and we shall consider all perturbed
variables to be proportional to ellk=z+kyy),

We can, by following a procedure similar to that used by Lamb
(1932) and Gough (1993), manipulate equations (2.1)- (2.5) to
a single second-order equatlon for V - &; upon scaling the new
dependent variable (¥ = p3c2V - &) to remove the first derivative
of the dependent variable, we arrive at

2 2 Nz
V20 + Loy —SViv = 2w lpr F (2.27)
C

where w} = (1—-2dH/dr)c?/4H? is the square of the critical cutoff
frequency, H is the density scale height, and the function F on
the right-hand side contains all the (linear) effects of rotation:

F = (w2 - g%) V- (2xE&)+gViQxE),. (2.28)

To express the function F in terms of ¥, we eliminate p’ and s
from equations (2.1) - (2.5) in favour of ¥ = V£, using equations
(2.4) and (2.5), yielding:

WA X & = ~V(c*x — 9€.) — g7 N yn | (2.29)

where 1 is a unit vector in the z direction. The three components
of this equation can then be used to express the three components
of £ in terms of y.

The advantage of this procedure over some others (such as
replacing x by V - £ and eliminating two of the components of &
to obtain a single equation for the third) is that in this case the
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determinant, A, of the coeflicients is a constant.

A = WPk + dwgk.Qy — 40%0%) . (2.30)

The components of & will be written out later. The formula
(2.28) for F' can then be written:

A\

oz’

2
—iw I prF = 2?A7! Z n, (2.31)

in which

@ = —w 2% (K +w?/c?) — H ' (w!' + g%k)] kally

+ 2wt (K202 + kE02) — 207k kS

+ 2"+ P2 Wi/ — 2wigHREQ? ,  (2.32)
ap = 4i(wt — ¢?kD)k, 0, (2.33)
4y = 2wk, + 2002 + 20k, . (2.34)

After substituting these expressions into equation (2.27), the
resulting equation can be reduced to standard form, removing
the first derivative of the dependent variable, by writing ¥ =

1(kwa~+k y— az)ﬁ\( z), where o = w 2A~ 1nﬁ<1 + Qw2 A 101\ and ® is

not to be confused with the grav1tat10nal potential, yielding

26,
— + K =0, (2.35)
where
M2 — )2 2
K? = ! |Y "% g2l 1)
1+ 202Ala, | ¢ " w2 )
4A_2a2

9w A gy 4 — 2 2.36
T a3 + 1+ 2w2Atay ( )
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2.4 A JUSTIFICATION OF THE TA - LOCAL ANALYSIS

Then, by writing d/dz = ik, and k% = kZ + k2, we arrive at the
following dispersion relation®:

wh — (K2 + 2 + 40%)w? + 2wT(n x k).Q
+ [Nk + 4(k.Q)%) + 4w?(n.Q)? ~0 . (2.37)

Notice that if the equilibrium state were isothermal and "
were constant, this dispersion relation would reduce almost to
equation (33.9) of Unno et al. (1989), save for the sign of w?,
provided that k is identified with the magnitude of the real part
of the wavenumber k of Unno et al. which itself must necessarily
be complex if w is real; the imaginary part of k accounts for the
scaling between x and .

Looking at this dispersion relation, we see that for high-order
g modes that satisfy |k,| > |ky| and k%2 > w? + 402, the fre-
quency w satisfies w? < ¢®k?, and we can therefore approximate
equation (2.37) by:

202 k)Q 1.2

¢
%
=S

5+ (2n.Q)° . (2.38)
The rotational contribution due to the Coriolis force is therefore
dominated by the vertical component of Q, and Qy, can hence be
safely neglected; only very near the equator, where n.{2 almost
vanishes, does the term 2wI'(n x k).Q in equation (2.37) formally
become more important than 4c?(k.Q)2. However, its influence
extends over such a small region — and in any case the term
is small compared with ¢V 2k — that it is unlikely to have a
substantial influence on the global properties of the modes.
This argument leads us to expect the TA to be a good ap-
proximation for g modes of high order n satisfying n > [ (more

fP=g— c2N?/g, and the other symbols are as already defined.

I
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formally |k,| > |kn|). It is noteworthy that for such modes the
Cowling approximation, which we have adopted here, provides a
good representation to the full equations.

In the case of high-order p modes, once again having |k,| >
|kn|, the inequalities w =~ k¢ > |N|, w > |w,| are satisfied every-
where in the region of propagation except near the upper turning
point, and the dispersion relation (2.38) reduces to

w? ~ B2+ w? 402 (2.39)

oing to be a

09

For grave p and g modes, the influence of {2 and {2, appear
to be comparable; the local analysis provides no clear prediction,

and it requires a more careful analysis to assess the accuracy of
the TA.

2.4.1 EXPLICIT FORMULAE FOR THE COMPONENTS OF &

Returning to the local analysis, we can write the components o
the eigenvector as:

iprA J '
Wé’x = w(wk, + 2ik, Q. — 29k},
1
+@@m _ m@)+mﬂmz ( > \\, (2.40)
) / /
A ka0 — 2wk Q2 — 1wk,
Cd?"Iny - w y+2(gmyy"“wyy—lw xz)
r 1/ 1\
+lg(wk, — 2ikQ,) +4iwQ, Q.| ik, — — | , (2.41)
(7 4 </ 4 1 \ ZH/' \ /
ipt A o |
ww@ = —iw| (ghi + 2wk, Q, — 4ik,,0)
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2.4 A JUSTIFICATION OF THE TA - LOCAL ANALYSIS
+ (W —4Q2) ik, — L , (2.42)
# 2H

which will prove useful later.

2.4.2 THE LIMIT v — 00

Considering the fact that the Coriolis force acts as an equatorial
waveguide of width |v|~! for g modes, whilst looking at equations
(2.7) and (2.8) we see that in the limit v — oo we would expect
ke/ky ~ 1/v. As k, can be associated with the m value for a
mode, and hence viewed as constant, this may also lead us to
question the assumption in this limit that |[k,| > |ky|.

Indeed, looking at equation (2.37) under the TA, we arrive at
the balance:

RAZ-w?) = B N?)
4?22 N wt — wiw? — 40?)

+
c? c?

(2.43)

From this we can see that, taking v to infinity with mod-
est rotation (i.e. O is not dwarfed by N?), the assumption of
\ky| > |kn| breaks down and hence the above analysis to jus-
tify the TA becomes invalid. Physically, we can tie this to the
fact that the equatorial waveguide focuses the mode to a region
for which neglecting the overall effects of {2, = Qsin§ compared
with those of 2, = Qcos@ is no longer sensible. This leads us to
question the TA under very high v.
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2.5 A JusTIFICATION OF THE TA - NUMERICAL
INVESTIGATION

2.5.1 INFLUENCE ON THE FREQUENCIES FOR SMALL v

For small values of v, we can see to what extent the predictions
for the behaviour of w as a function of v agree with those of
solving the problem “exactly” with a formal expansion. As we
are not considering the alteration of background structure at this
point, we shall expand only to first order in the rotation rate
in order to provide a “clean” analysis. Due to the reduction of
equation (2.11) to the equation for associated Legendre functions
at v = 0, the two methods for determining w will agree. But do,
for instance, the gradients of the functions dw/dv agree?

The effects of rotation can be discussed in the framework of
Hilbert space”; under the definition for the inner product of two

~ QA |

oscillation elgc ifunctions g ana ;

—~
ey
4m2
i
Eﬂ»—a

/ *EpdV = / (£*€ + ) pridr (2.44)
V 0

the first integral being over the volume V of the star®. The as-
terisk denotes complex conjugate. The system, which may be
described formally by HE + w?€ = 0 in which the differential
operator H is independent of w, is self-adjoint when 2 = 0 (e.g.
Lynden-Bell and Ostriker (1967)).
It follows immediately from the solubility condition for th

perturbed eigenfunction that the first-order (in rotation rate)
modification to the frequency by ) may be written in terms of

"Completeness of the eigenfunctions satisfying the boundary conditions
that we use here was established by Dyson and Schutz (1979).

8To obtain the second integral we adopt a normalization of the spherical
harmonics ¥;™ according to [ [ |¥;"|?sin 6dfd¢ = 4.
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the rotationally unperturbed eigenfunction &, thus®:

w =i = (& % = , (2.
(€ p€) Al ), \S0TS0P
where we have defined
(€1,&) = £1&dV (2.46)
v
T = (€0t (2.47)

To determine the influence of rotation under the TA, one
could simply replace € by its vertical component £, in equa-
tions (2.45). Alternatively, one can simply analyse the system
(2.11)—(2.16), using already-established results from the theory of
nonrotating stars, although if one is content to stop at the first-
order correction the former procedure is more straightforward.
But also one could, for example, introduce ¥ = (gpr=3 f)~1/26p,
f now being the f-mode discriminant:

Wi r L%
f = P +2+Hg 5 (2.48)
where H, is the scale height of the gravitational acceleration g.

In the Cowling approximation ¥ satisfies an equation of the

form

d?v 5

57:2—+/C\P—0, (2.49)
where K(w; L(v)) is essentially a local vertical wavenumber (for
example, see Gough, 1993):

%0One could argue this alternatively from the variational properties of
I71(€,P¢), as did Lynden-Bell and Ostriker (1967).
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w2 _ w2 L2 / N2
K? = C - l-=] . (2.50

c? r2 \ w2> (2:50)
Equation (2.49) is also self-adjoint, because (it can be shown that)
UdW /dr vanishes at » = 0 and r = R. Consequently the first-

order rotational perturbation to the frequency may be written:

2[Rk aL2) 03
Senw = —voE Jy (oK) i (2.51)
dv 2w, fo IK?/dw?)Widr

the value of dL?/dv being obtained from equation (2.11); once
again the subscript zero denotes the value in the absence of ro-
tation. However, as we have pointed out above, the TA may be
valid also when v is not small, so it is better to solve equation
(2.49), or equivalently equations (2.15)—(2.16), exactly.

The terms omitted by the TA from the expressions for dw in
equations (2.45) may be written

A N - — - . fR . a - 7
Adw = —2m1"*L“*&2/ Eonopredr . (2.52)
0

This should not surprise: in the TA the terms in equations (2.1)-
(2.3) that have been removed are those that mix & with & and &,
so one should expect that that should be manifest as the removal
of the cross term in the integral in equation (2.45). The question
now is: how important is that term?

To answer that question we consider the ratio ¢ of the ne-
glected term Adw and the term retained:

H R ~
Adw | |2 [ emopridr|
ow — Aéwl ! foR n2pridr ‘ ’

|
- |

N
.h>
ot
w

Nl

for several stellar models. In the following we restrict ourselves
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to displaying the case of a polytrope of index n,'° satisfying!!:

p = Kp'ti/m. (2.54)

we shall present results for other models in later chapters.

One expects ¢ to be small particularly for high-order g modes,
partly because for such modes |§| < || and partly because the
spatial oscillations of & and 7, are asymptotically out of phase.
Indeed, since &y/no = O(n™!) for large radial order n, application
of Riemann’s lemma suggests that |¢| = O(n~?), and hence, since
wo o< ™, that |¢| = O(w?). For high-order p modes, |&| > |nol,
and one might expect, according to Riemann’s lemma, that ¢
tends to a constant as the order n increases; but to determine
whether or not that constant is small requires either more careful
analysis or numerical computation.

Values of ¢ are plotted in Figures 1, 2 and 3 for modes of
degrees [=1, 2 and 3, and for differing polytropic indices. In all
cases the w2 dependence is evident in the envelope at low wy. The
approach to a (degree-dependent) constant that we expected at
large wy is also evident. That constant, for low degree, is not
small. Moreover, for grave modes, |(| is typically larger still.
Therefore the approximation is not good for p modes and grave
g modes; it is only for the high-order g modes that the Tradi-
tional Approximation works well. Note that if the neglected and
kept terms nearly cancel for large w, as they seem to in the Sun,
the TA is very bad indeed, because the resulting traditionally
approximated value for C' (defined in equation (2.45)) is almost

19Not to be confused with the order of the mode.

HFor this, and later polytrope calculations, 4000 mesh points were used,
and the code was tested for zero rotation against the high-precision (of the
time) tabulated g mode periods in Mullan (1989), and found to agree with
this work to at least 5 significant figures. As we have not employed Richard-
son extrapolation or such like, this causes us to trust our results to a high
level of precision.
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i
o]
=)

0.4F o 8 ]
0.3F a 6F :
A
0.2F
0.1E
0.0
-5 -4

Figure 2.1: Values of { for an n = 3 polytrope, plotted verses
lnw on the left to emphasise g modes, and against w on the
right for p modes. [ = 1, 2, 3 are denoted squares, crosses and
diamonds respectively. The “bouncing” effect is from taking
the modulus in equation (2.53).

Figure 2.2: As in 2.1, but for [ = 1 modes in polytropes of
index n = 2, 3, 4 denoted by crosses, squares and diamonds
respectively.
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entirely error.

For g modes whose order is not very high the TA can be used,
but its validity must be considered for each case; it is not always
true that the neglected term is small enough to be neglected. For
example, the effect of ignoring the cross term for an [ = 1 mode
with radial order of £ = 9 is not very small (¢ = 0.132 for a
polytrope of index 3), and such a mode is not atypical of those
observed!?.

For p modes, ( is almost always too large to ignore (apart
from a few modes for which (£, 7o) is accidentally small). This
is true for all the stellar models we have considered. Qur tests
suggest that it would be dangerous to adopt the TA for such
modes, because the accidental cancellation is no doubt model
dependent. However, for these modes the Coriolis parameter C
is very small, and second-order effects may dominate.

2.5.2 COMPARISON OF TERMS FOR LARGE v

When v is large, a formal expansion in v is no longer valid. How-
ever, it is still possible to provide a diagnostic by first computing
a solution in the TA and then comparing the neglected terms in
equations (2.1) to (2.3) with those that were retained. Accord-
ingly, we define the following ratios:

2ipwS) sin B¢
ar) = ———22, (2.55)
—pwi + Z-

21pw(l sin €,
_ . 2.56
x2(7) —pw2€y + 2ipwQ cos O, (2:56)

2ipwil sin OE,
_ Zpwiisin0§, (2.57)
x3(r) 2ipwQ cos By’ Y

2The gravest g mode detected in GD358, for example, has k = 9 (see
Kepler et al., 2003).
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which one must require to be generally small almost everywhere
if one is to expect the TA to provide a reliable outcome.

The ratio x3 is included to investigate the approximation
when m = 0; in this case the rhs of equation (2.3) vanishes, and
X2 is undefined under the TA. Of course, because the numerators
and denominators of these diagnostics are oscillatory functions
with zero means, the point values of these diagnostics are unreli-
able: they are deceptively small near the zeros of the numerators,
and they diverge at the zeros of the denominators. We therefore
express each of these functions, which we denote here by K, in
terms of an amplitude [K 4] and a phase ¢, according to

K =[K]asing¢g , (2.58)

and replace each function K in y; by its amplitude. As do Gough
et al. (1998), we can use the Hilbert transform, defined as

K(z) = H(K(z)) = 7P [ N f_lidn , (2.59)

where P denotes the principal part. It is the case that for any

det
constants A, x > 0 and phase shift «, the following identities
hold:

H[Acos(kz + )] = —Asin(kz + «) , (2.60)
H[Asin(kz +a)] = Acos(kz + a) . (2.61)

Therefore, the amplitude of our function K can be estimated in
terms of K and its Hilbert transform K as:

[K]a = V/K? + K2 (2.62)

Incidentally, this also shows the way to calculate the Hilbert
transform easily: as it is far more straight forward to express the
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Value

—40 P S TN S S R S S DUV R S S E U
0.0 0.2 0.4 0.6 0.8 1.0
Scaled Radius

Figure 2.3: The value of &.(r) (triangles), its Hilbert trans-
form (diamonds), and hence the amplitude function (aster-
ixes). The mode displayed is the radial part of what would
be an (n,l,m) = (9,2,2) g mode, under the TA with a rota-
tion f =3 x 10~

W

function as a Fourier series, carry out the Hilbert transform on
this, and then convert back, rather than calculate residues of the
function K (n)/(n — z) and so forth. However, using this method
does introduce the problem of the Gibb’s phenomenon, and also
the complication that we need [K]a and & to vary on a scale much
greater than k™!, which can break down towards the centre of the
star. For this second reason, we shall consider only the functions
after the first zero in the eigenfunction £(r), and plot from this
point. An example of this is shown in figure 2.3.

As can be seen, even with this truncation before the centre,
because [K]x does not vary on a large enough length scale, it
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still contains some oscillatory structure. We shall hence use the
mean value of K, over the range going from the first zero to the
surface, for our 5Lapho

Using the separable-solution expansions for the components
of &, we can replace the ratios by:

~vp'(r)
xir) = W) 2 (r)
(m —vp(l - “2)5%) ©
) et (2.63)
i) = (=)« o
o pmﬂ&( ). =) -p Va) (2.65)
7 (mV/J 1 - 5—>

To look at the variance of these diagnostics with v, figures 2.4
and 2.5 show the average values of the radial parts of these ;.
It is interesting to note that, despite having vw? (i.e. w) in the
numerator of its definition, x, climbs as w — 0.

Returning to the asymptotic theory from earlier, we can place
the expansions for &, to £, (equations (2.40) to (2.42)) into the
definitions of the x;. Upon doing this, we see that the limits of
X1,2/€2 do not tend to zero as w — 0, whereas the expansion for
x3 does.

This implies that the TA is not valid as ¥ — oo, which the
confirms our analytic predictions for this limit by performing a
short-wavelength dispersion relation and expansion.

43



Average vaiue of Chi 1

2.5 A JUSTIFICATION OF THE TA - NUMERICAL

INVESTIGATION
10~ T 000 T
D
1omsl % 0,100 . E|
) "m}m\ g %Wwo%o .
P et 4 feesr M&MAA" R
T R .
e
1073 1 1 < 0.001 L ‘
o1 1.0 10.0 100.0 0.1 1.0 10.0 100.0
Omegy
Figure 2.4: Average values of x; and x2 for m = 2 modes

around [ = 2, with f = 3 x 1073 (squares) and f = 6 x 103

(triangles).
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Figure 2.5: Average values of y3 for m = 0 modes around

1=2, f=3x10"2

44



THE TRADITIONAL APPROXIMATION

2.5.3 CONCLUSIONS
We have discussed the Traditional Approximation, why it works,

and its benefits. Also, we have developed a diagnostic structure
and asymptotic formalism under which to quantify its validity.

These three methods (asymptotic theory, and numerics for
small and large v) encourage us to retain the TA only for mid-
degree g-modes for modest rotation. For high-order p-modes,
equation (2.39) shows that the TA is a poor approximation for
all non-zero rotation rates, whereas for low-order p-modes the
diagnostic ¢ shows that it gives bad predictions for low v, with
no sign of it improving for larger v.

Also, the TA is questionable in the limit v — oo. This leaves
modest-v g modes as the regime in which we can use the TA, but
we must always quantify our use of it, which shall be done with
the y; diagnostics.

Whilst this micht seem like a disanvointment. we are saved
VV IS8T T1S Mgl Seeill 11Ke & QlSappPOoINuinient, we are savea

by the fact that mid-range-v g modes are ezactly the modes seen
in many stars; thus the realm of (quantifiable) validity is the one
of interest! It is also the case that the Traditional Approximation
can be generalized, which we now proceed to do.
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Chapter 3

ALTERATION TO STRUCTURE FOR A
BAROTROPIC EQUATION OF STATE

“Ubi materia, ibi geometria.” (Where there is matter, there is
geometry.) — Johannes Kepler

3.1 MOTIVATION

The alteration due to rotation of the structure and shape of a
star with a barotropic equation of state is a long-studied subject.
For instance, James (1964) computed the surface displacement at

the equator and the prﬂp.q for uniform rotation in nolvtrones hy

vile Tl uaLLl allll LILT MalaS AUL WaaadUr il LUVGUALVEL il LY LIV TS

expanding the full equations in Legendre polynomials for given
rotation rates, and Chandrasekhar and Lebovitz (1962) calcu-
lated the first order (in f2) distortion to the surface, with terms
of second order being added by Anand (1968).

Whilst these explorations are useful for observational selec-
tion, as they detail the surface, it is desired to know the full
structure of the inside of the star to investigate its pulsations.

In this chapter, only barotropic equations of state are dealt
with; these equations of state admit a simple hydrostatic rotating
structure, avoiding Von Ziepel’s paradox and the necessity of an
Eddington-Sweet flow. This is done for mathematical ease, and
will be generalized in chapter 7.

Thinking physically, a given perturbed fluid element is not go-
ing to know about the global properties of the star, but will just



3.2 MATHEMATICAL FRAMEWORK

feel it’s local equipotentials and flow. Thus, whilst not mathemat-
ically pleasant, the equipotental surfaces (as used by Papaloizou
and Pringle, 1978) naturally form the most physically sensible ba-
sis to work in. Gough and Thompson (1990) looked at rescaling
the 7 co-ordinate to coincide with these surfaces, and the extra
terms that this rescaling introduced, for instance, into V.

This work proved to be incredibly useful, but it will be neces-
sary, in addition to being physically sensible, to retain the orthog-
onality of the distorted coordinate basis. It will be convenient to
work with the analogue of 1 = cos@. The distorted (r, ) will be
labelled as (z,7). It should be noted that some of the equations
in this chapter are somewhat complicated, but necessary. Some
results from the theory presented in this chapter are displayed in
chapter 5.

3.2 MATHEMATICAL FRAMEWORK

To define a transformation between the two co-ordinate systems
just mentioned, it is possible to use either of them ((r, 8) or (z,7))
as the independent variables. Whilst these give the same answer,
physically the perturbation equations that will be considered will
be in the distorted star, so it will work out as more convenient
in the long run to work in that basis. Therefore, the following
transformations are defined®:

/
L+ > fPum)a(z

\ 1>0,a>1 /
\ \
T n|/1+ > P Pu(n)tyale) | (3.2)
\ {>0,a>1

'The ¢ co-ordinate is left unaltered.
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(The choice of orthogonal functions in which to expand the an-
gular dependence is natural, owing to the angular dependence
of centrifugal force in spherical polar co-ordinates being sin?f =
1= 12 = 2[1 = Pyfu)])

To define V, V2 and other operators in the new co-ordinate
basis, it is convenient to obtain the metric coefficients h; in the

following expression:

or = Jre, +réfey + S rsin ey
= hl&rex + hgénen + h35¢e¢ . (33)

Once these are obtained, then formulae for, for example, V,V.
and VX exist (see appendix C).

3.3 CALCULATION OF THE h; IN TERMS OF Ao

There are two effects that govern the distortion of the h; from
those of spherical polars: the first is that the r and V1= p?
factors appearing in the D spherical Will be expanded according to
equations (3.1) and (3.2); these are straightforward to calculate.

The second effect is more subtle, in that the fractional changes
0 of one coordinate in equation (3.3) must be made at fized values
of the remaining coordinates in the coordinate system in which
the first coordinate is contained. Thus Sz really means (0z), ;.
This shows itself, for example in the fact that, in spherical polar
coordinates:

~ 8:3)
) =e,. — A4
ere, =e,.Vrx (87“ , (3.4)

NS e

The derivative on the right-hand side is evaluated at fixed p (=
fixed #), whereas the transformation between the co-ordinate sys-
tems is defined in terms of (x,7). It is thus necessary to use:
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/
or = (ﬁ\\ ox + | 27:\ on , (3.5)
\d.'L' 7,0 \dn z,0
%), ()
S = | — oz + | — o, 3.6
0 <83: » o)., 7 (3.6)

to obtain:

SN r, N , -1

5. -[E-G.@.6] e

which can then be calculated using equations (3.1) and (3.2).
Similar equations exist for the other derivatives, but they are
straightforward to calculate and are not displayed here.

When we place both of these effects into equation (3.6), and
calculate the expansions, to order (f*), the following equations
are obtained:?

+ (3Py Poy, (zA11) (A1)’

I,m >0

—(1 =) Py Py diidma)| (3.8)

2The listing of the independent variables has been dropped to save room —

L1 0s 1las DOC

all are functions of =, apart from Legendre polynomials, which are functions

of n. To save on space, derivatives with respect to the argument are denoted
)

by primes, and will be either 5% or 5> as appropriate.
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+2) [(Plpm Vb + Py

>0

{ [ Py Py)t o+ Py (
>0

+2 Py Poy (x A1) (A1)

2 [
+7‘71—l__1—77l (Po(PrPy) + P21P2m)} } I , (3.9)
| 2 [ Pt
s —:c\/l—n2[1+f ZPm(AH— ’2)
>0 1=n
/ ﬂ2t12 \
1) P A — ——
= k 1 —772)
N7l tm,1
+f4 Z 1 QPQZPQm (Am,l 1 — 2) :l (3 10)
i,m >0 4

It should also be noted that we have conserved the handedness
of the system, allowing us to preserve vector identities (such as
summation convention for A x B). It is straightforward to see
that the limit of f = 0 recovers a spherical co-ordinate system.
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3.4 CALCULATION OF THE A,

Consider a general barotropic equation of state p = p(p) and
uniform rotation® at a rate {2; hydrostatics gives (in spherical
polar co-ordinates):

S~

1
Vp = —pV&+pV {§Q2r2[1 — Pg(u)]} , (311
V*® = 4nGp. (3.12)

Thus it is convenient to define a modified potential V = & —
£0%r%[1 — P3(u))], which gives the analogous equations to these
two above as:

1_ .
Vp = -V, (3.13)

V3V = 47Gp— 202, (3.14)

which equations have no reference to basis choice beyond what is
contained implicitly in the V and V2.

The definition of = is such that it is constant on surfaces of
constant modified equipotential, V. This means that only the z
component of VV is non-zero, and thus, by taking the curl of
equation (3.13), p = p(z) and p = p(z) also, so our surfaces of
constant p, p and V coincide: there is no baroclinicity. This fact
that p, p and V' have the same asphericity is what we expect for
a barotropic equation of state. However, it is worth noting that
because of this, V' and p contain no 22 terms. Thus

3We have picked uniform rotation for simplicity; the analysis given pro-
ceeds almost identically for conservative rotation laws, giving very similar
equations.
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OF STATE
1@3 — _8_V /3.15}
p Oz or ’ '

2 20V

oV — 4Gy (3.16)

o2 'z 0z
which is the same form of equations as for a non-rotating star,
but now viewed in the distorted co-ordinate frame. Although
this result has to be the case (consider the case of zero rotation,
J =0, with = and 7 being the same), it is still very significant,
as it means that the results from zero rotation are still consistent
to zeroth order for a rotating star.

To higher orders, equation (3.13) does not yield any more
equations, as it only differs from the zero-rotation case by a
multiplicative factor of h7! identically on both sides. However,
our modified Poisson equation, having subtracted equation (3.16)
yields:

1N PV [ 18 [hehs) 2\ OV ,
~ (s )Y
(h% ) 92 (hlhghg 83:( hy > :C) Ox @

(3.17)

which gives, at orders f? and f* respectively?

1@V + X 22V + 4T)

VI \ Vel VQQ
+A1 <—;(4 —20(2 + 1)) + 2V ) = 010 <2VF) . (3.18)

W ois a suitably scaled V. As before, the listing of the independent
variables has been dropped to save room — all are functions of z, apart from
Legendre polynomials, which are functions of 57. To save on space, derivatives

are denoted by primes, and will be either 5% or % as appropriate.
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No(@V') + N, (227" + 4T")

(‘7, N//\
+ Ao \?(4—21(2l+1))+2v | =-5B;. (3.19)

We can calculate the B as being the coefficient of Py in

.....

Z HV// [3P91Pom(gj/\, 1) (2 1)/

I,m

- [ 6
—2( ?72)P£ZP )\l,l/\m,l +V/{EP21P2m<:E)\l’1)I(xAm,1)/

4
_E( n*) Py Py mAL1Am1 — 2Py (N Pam) (N 1tm.1)’

+[(77P2l> tl,l + 2P2l)‘;n,l][(np2m)ltm,l + 2P2m)\m,1]
—|—2P21(SE)\l’l)l[(nPQm)/tlm,l -+ 2P2m)\/ ]
=21\ 1 [Por Py — 2(1 — )PQZP/ ]

A
200 [(1 = 97) By Py — 2120+ 1) PPy

—Pglpgm(l')\[71),<l'/\m71)//} ‘ ,(3.20)

which will later give non-zero B; for [ in {0, 1, 2}, and B; = 0

otherwise.

Once the non-rotating structure is calculated, it is a conceptu-
ally simple matter to solve the equations (3.18) and (3.19), once
we have boundary conditions, to give the A;,.
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3.4.1 DBOUNDARY CONDITIONS FOR Aa

We have arrived at second-order equations ((3.18) and (3.19))
for the distortion of the star, but must consider the boundary
conditions that complete the statement of the problem and allow
a unique solution to be found.

Imposing regularity at « = 0 of the solution to these equations
gives one of the boundary conditions for this system; it is®

limn/\l,l = A151,0 R (321)

T —u

llH%) /\1’2 = A25l,0 . (322)

At the surface, x = g, we match ® onto a vacuum solution

(I)vac = Z r_?_.l:fpl(u) (323)
>0

expressed in terms of z and 7, to obtain the second boundary
condition. To order f° this gives:

a; o< 80V (o) . (3.24)

Which will result for solid body rotation, to order f2, (as will be
seen in chapter 5) in non-zero outer boundary conditions only for
l'=0and [ =1. From this fact and equation (3.18) it can be
seen that the only non-zero \;; are for [ equal to 0 and 1, greatly
simplifying some of the summations throughout this chapter.

The f* outer boundary conditions contain t11, and thus it
is apparent that, before proceeding, consideration must now be
turned to these t;,.

5The fact that lim, A1,1 = 0 requires some algebra, owing to the cancel-
lation that will occur inside the bracket multiplying A1 ; in equation (3.18).
However, it is easy to appreciate physically that our equipotential surfaces
tend towards spheres as we approach the centre of the star.
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3.4.2 DEFINING THE ?;, BY ORTHOGONALITY

One of the central points of this basis choice is that it retains
the orthogonality of the basis vectors by the rescaling effect of
the #,, in equation (3.2). This defines the ¢,,, and is implicit in
the equations for the metric coefficients h;. However, an explicit
derivation will be presented here.

It is possible to define e, = Vz and e, = % in spherical polar
co-ordinates, as in equation (3.4). Taking the scalar product of
these two vectors shows that the conditions for orthogonality are,

to order f? and f* respectively:

A
Zﬁpzﬂfh = - Z(l -7 2/1‘:;‘E , (3.25)

1>0 >0
S Pty = = 31— ) P
>0 >0 z
A
+ > 1= 2'1—3%1 [(2Am1) Pom + 3(nPam) tma] - (3.26)

Il,m >0

Now equation (3.25), using the fact that A\ ; = 0 for all z if I is
not 0 or 1, gives:

A
t;,l = 2“;}‘ X (=010 + 011) - (3.27)

Thus the ¢;; are determined to within a constant. For [ > 1 it is
obviously sensible to pick this to be 0, so that these ¢;; vanish.
For [ € {0,1} we realise that it is desired to map both 1 = 0 onto
p = 0, which is automatically satisfied, and n = 1 onto u = 1.
To order f2, this needs t, 1 = —t1o for all z. The derivatives
obviously allow this with the choice #11(0) = —¢1,0(0).

To select our remaining constant, there remains an arbitrary
choice, but choosing t;4(0) = 0 is sensible owing to the fact
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that very close to the centre the equipotentials are approximately
spherical.

The choice of ¢, and the fact that A1 =0 Vi > 1 tightens
the outer boundary conditions for A;» to be non-zero only for [
equal to 0, 1, or 2. Thus, similarly to the f? correction terms,
the only non-zero A5 are for these I. This, likewise, tightens the
equations in (3.26) to:

o, = —2 —
%2 z 9 =x
22 9 1
- ;’1 [3&,1 + g(:c/\l,l)’ — (on,l)'J , (3.28)
p o —giz 80k
12 9 =z
2A -5
- ;’1 {7(9751,1 + (zA1)) + (I)\o,l)i , (3.29)
A 36 A
th, =422 - 20 911+ (zh1)] (3.30)
’ x 90 T

and ¢, = 0 otherwise. As for f? the mapping needs to take
n=~0and n =1%o pu=0and 4 =1 respectively. The first is
automatically satisfied, and the second reduces to the constraint
to2(x) +t12(2) + taa(z) = 0. Now, adding the equations for to
obtains:

toa Fllg+1t5, =0. (3.31)

So again the equations allow 7 = 1 to map to p = 1, as long
as the constants of integration are chosen suitably. Again the
physics of the problem encourages us to pick the surfaces near
x = 0 to be spherical ({;2(¢) =~ 0).
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CHANGE OF BASIS
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When scaling the frequencies of a star, especially polytropes, the

natural scaling often used is to divide by \/GM/R3. Obviously,
when then scaling up the frequencies thus calculated, changes in
the mass will lead to different predicted frequencies.

Were we hypothetically to spin up a star, centrifugal force
would cause the star to become oblate and occupy a larger vol-
ume. This would occur without changing the mass, meaning a
change in pressure and density at points in the star, specifically a
reduction in central pressure and density. However, mathemati-
cally the structure equations are often solved by integrating from
a given central pressure and density.

Many authors (for example Saio, 1981) keep the central den-
sity and pressure (hence polytropic constant) fixed. This causes
the mass they give to vary, as given in, with some values tabu-
lated, James (1964). For a barotropic equation of state this “al-
teration” to the mass can be removed by re-scaling of the central
density, but we must be careful to act in a consistent manner, or
confusion can arise, as has been noted by Christensen-Dalsgaard
and Thompson (1999).

This re-scaling of central pressure and density cannot be done
for a non-barotropic equation of state, and is not sensible even
for barotropic equations of state. The reason for this is that for
a lone star, we cannot measure the mass, but only the effective
temperature and luminosity of the object, from which the mass is
deduced. Thus if we are seeking to model stars, we should leave
the mass as a variable to be resultant from, rather than driving,
our analysis.

We therefore need to quantify how much taking a given den-
sity profile for a rotating star changes the mass from the result
that would be given by taking the same density profile in a ro-
tating star.
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ALTERATION TO STRUCTURE FOR A BAROTROPIC EQUATION
OF STATE

It has been seen from equations (3.15) and (3.16) that the
structure of p(x) for the centrifugally distorted star is the same

() ¥, +h ixralant 4ot} 4
as g\7) 107 tne egulva:ent non-rovaving siar. HO‘v‘v’G‘v’Cr, the mass

of the star is defined as:

2 pl R.(u,¢)
M :/ / / p(r, wridrdpdg | (3.32)
o J-1Jo

which in the new co-ordinates is:

2n 1 xo 8(')", M)
M = 2 dnd
/0 [1/0 plz)r (:v,n)a(xm dzdndé
1 X0

j
— 2 O(r, 1)
—or [ ), orengesy

with both 72 and the Jacobian being able to be calculated as

before. This again has a natural decomposition into coefficients
of f2a, M= Mo -+ f2M1 + f4M2, with

dzdn , (3.33)

M, = 47r/ dzp(z)z? (3.34)
0

M, = 4n / drp()a? (Bhor) + 20on) »  (3.35)
0

o
M, = 47r/ dzp(z)x?
Jo

hY A 3 AY
X [(l‘/\oyz)/ + 2/‘\072 + g(mAl,l),tl,l + /\il} . (336)

This allows us to quantify the “alteration” to the mass by carry-
ing across a given density profile from spherical polar co-ordinates
into our new co-ordinates mapping out the surfaces of constant
modified equipotential V' in the rotating star. However, as dis-
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3.5 MASS “ALTERATION” RESULTING FROM THE CHANGE OF
Basis

cussed in chapter 6, a thoughtful consideration of M is important
before the analysis begins.
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Chapter 4

ADIABATIC PULSATIONS IN THE
NEW BASIS

‘We used to think that if we knew one, we knew two, because one
and one are two. We are finding that we must learn a great deal
more about “and” — Sir Arthur Eddington

4.1 MOTIVATION

In the last chapter, a generalized orthogonal co-ordinate system
mapping out the modified equipotentials was described, and a
way of finding the mapping between these surfaces and standard
spherical polars was shown. In this basis, it is desired to calculate
the pulsations. The method for doing this is given in this chapter,
with results displayed in chapter 5.

4.2 PULSATION EQUATIONS IN THE NEW BASIS

As with standard pulsational theory, it is possible to perturb the
equations of hydrostatic support (equations (3.13) and (3.14)) in
the new basis!, doing this under uniform rotation and the Cowl-
ing Approximation. It gives, along with the equations governing
adiabatic pulsations and the continuity equation (assuming g Wt

1Note that the mapping is not perturbed.



4.2 PULSATION EQUATIONS IN THE NEW BASIS

dependence; p’, p" and V' are the Eulerian perturbations to p, p
and V' respectively):

—pw?€ 4+ 2ipwQ x &€ = —Vp — p'VV — pVV', (4.1)
VAV =4nGp + 202 (4.2)

P (¢ 4 1 ))
— = —+(EV){lnp— —1n , 4.3
pvlp(é)\lp%p (4.3)
P+ V.(€) =0. (4.4)

These are almost the same equations as for a spherically symmet-
ric configuration, the only changes being replacing ® with V', and
the extra 20 term in equation (4.2). Thus, under the Cowling
Approximation, setting € to be ().e, and v to be 2Q.e,/w:

19y 10V
2 . e = _9j 4.5
R R ipwels ,  (4.5)
1 op
2 s 2 =
_ - X = 0. (4.6)
pw &y — ipwv€, + o O ) \%.0)
1 /
—szfqb + iﬂw2V§n + }‘L‘g‘g% = 2ipweg, . (4'7)

Thus an obvious outworking of the generalization of the Tradi-
tional Approximation would be to ignore the terms that couple
the r component of equation (4.1) to the other equations for com-
ponents of £ (i.e assuming ¢ to be a factor whose effects are con-
sidered small). The form of the terms neglected is geometrically
the same, as the choice of equator is such that €2 is orthogonal to
€y, apart from the coefficient of e changing between £, and g
With this approximation, it is possible to write &, and &,
in terms of p’/p (note that we can place 1/p inside the angular
derivatives owing to the choice of co-ordinate system); placing
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ADIABATIC PULSATIONS IN THE NEW BASIS

these in the continuity equation gives (with ¢"™¢ dependence):

0
(hihshs)p’ + éz(th:aPﬁx)
P 0 hl h3 0
i [877 (1 — 2 (hg on Tm
mh1 0 mhg p'
() (5) e e

This equation, the equation governing &, (equation (4.5)), and
the adiabatic equation, (equation (4.3)), describe the pulsations.
From here the analysis proceeds as in the introduction. It is worth
noting that these equations ((4.1), (4.3) and (4.8)) give the right
limit when f = 0 and we recover spherical polar co-ordinates.

For a non-rotating basis, the square bracket in equation (4.8)
is the only thing explicitly involving angular dependence, so we
assume a separable solution, the angular part of which is an eigen-
function of the square bracket with eigenvalue —L?. However,
with our new basis, the h; contain sums of angular functions, so
it is apparent that it is necessary to think of another way or be
a little more clever about it.

4.3 RE-CASTING THE PULSATION EQUATIONS IN
SELF-ADJOINT FORM

Lynden-Bell and Ostriker (1967)* re-cast the pulsational equa-
tions in a self-adjoint form, which thus had an associated varia-
tional principle with it. The equation they obtained was:

—w?A(6) +wB.(6)+C.(§) =0, (4.9)

2Ty save on space, their analysis is not reproduced here.
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4.3 RE-CASTING THE PULSATION EQUATIONS IN
SELF-ADJOINT FORM

with, for no background flow?,

A = pol, (4.10)
B.(§) = 2ipQ x &, (4.11)
C.(&) = T()+P.(5)+V.(9), (4.12)
T(§) = po2x(2x¢), (4.13)
P.(£) VI =7)poV.& — poV(V.E)

— VIEV)po] + (£.V)Vpy , (4.14)
V&) = pl&V)VE. (4.15)

It should be noted that, written in the form of equations (4.10)-
(4.15), these equations make no reference to basis choice, and are
self-adjoint over the inner product*:

(&€ = /fé*-sdg’x . (4.16)

®)

4.3.1 (GENERALIZING THE TRADITIONAL APPROXIMATION

There are two obvious possible definitions of the generalized Tra-
ditional Approximation; one is only to replace B with Bra, given
Ky
U‘y .

00 O

01 0 J

The other is to neglect consistently all terms in {le,, including
the terms in T.(§). This second definition includes the steps

3To obtain equation (4.15), the Cowling approximation has been implic-
itly assumed.

4Note this is the same definition as given by equation (2.44), but has been
reproduced here.
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ADIABATIC PULSATIONS IN THE NEW BASIS

taken for the first, but goes further in a search for consistency.
However, it also neglects terms in the centrifugal force, making
it unclear which is the better assumption.

To arrive at our background state, we have absorbed the cen-
trifugal effects of rotation into the definition of V' (see, for exam-
ple, equations (3.13) and (3.14)) before perturbing. This means
that the operator T.(£) will be “absorbed” into V.(§), replacing
equation (4.15) with

V.(€) = p(€V)VVh, (4.18)
and altering the definition of C.(€) to:

C.(¢&) =P.(&) +V.(¢) . (4.19)

If one looks at the definition of Bra, given by equation (4.17), the
matrix is obviously Hermitian, and therefore By is self-adjoint
over the inner product in equation (4.16). Thus the new system,
given by:

~W?A.(&) +wBra.(§) + C.(6) =0 (4.20)
is still self adjoint, and has an associated variational principle,
which will now be exploited.

4.4 EQUATIONS FOR THE FREQUENCY SHIFTS AND

4.4.1 FREQUENCY SHIFTS

The distorted orthogonal co-ordinates calculated in the previous
chapter retain the structure of the pulsational equations. How-
ever, V and associated operators have f? and f* corrections to
them®, which can be viewed as perturbations about the f° state

5We shall be neglecting higher orders than these.
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4.4 EQUATIONS FOR THE FREQUENCY SHIFTS AND THE
ALTERATION TO EIGENFUNCTIONS

for small values of f.

We define ¢ as the alteration to order f? of the object (eigen-
value, eigenvector or operator) upon which it acts, and &, as the
alteration to order f4. Thus, expanding C — C+ f25C + f46,C,
and the other terms similarly® in equation (4.20), and taking the
inner product given by equation (4.16) (which it should be noted
also needs to be expanded in powers of f, owing to the presence
of the Jacobian d(z,y, z)/0(z,n, ¢)), the following formulae are
obtained:

L _ {&9C.(8)

= , 4.21
—2W<€aﬂoﬁ>o ( )
2
52&) = —-(5W)
2w
A8 TBrn (38))o 1 (£.0.C.E)0 + (€:0C.08)00 )

*2w<€7 €>0

It should be noted to re-derive these equations that much cancel-
lation occurs both from the constraint that we take §¢ and 6,&
orthogonal to £, and from the use of previous orders of governing
equations to cancel terms inside, for example, (, ), terms in the
equation for dyw. This will be done in appendix B. However,
the exact equations for, for example, §,C in terms of the Al g are
extremely long and involved, and will not be reproduced here;

the derivation of these equations is outlined in appendix D.

The com leteness of the 6& has also been assumed: this will
§ )
be touched upon later.

81t will prove mathematically useful to take the perturbations to the eigen-
function (i.e. 6§ and d2€) orthogonal, under the inner product given, to the
original eigenfunction; this is allowed, as components in the direction of the
original eigenfunction can be absorbed into the normalization of £.
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ADIABATIC PULSATIONS IN THE NEW BASIS

4.4.2 ALTERATION TO FIGENFUNCTIONS

return to the continuity equation, an
&, after the elimination of p':

ol

&

o
5]

Iso the equation governing

e Lo 1ovip o &AN
pw €y + iy B1 + h 9z \ 7 h1 =0, (4.23)
111213 (7 &4 __‘U”L2n3,0§ )
"Nvp ™ )T pon *

1 P
+Zd—2_£tot <;> = 0 5 (424)

with

0
A = T(lnp————lnp) (4.25)
O \ Y1
0
e = (i ()
mhy 0  mhy
_ 1_1/2( 8n+h—3> . (4.26)

Equations (4.23) and (4.24) can then be themselves expanded in
terms of f 2, as above, and then re-arranged to provide the govern-
ing equations for the perturbation to the eigenfunction in terms
of w and the zeroth-order solution. The equations thus derived
are of the same form as those for the zeroth-order solution, with
an extra forcing function being linear in the zeroth-order solution.
For numerical ease, the scalings used are those used in equations
(2.17) and (2.18), and the resulting equations are

67



4.4 EQUATIONS FOR THE FREQUENCY SHIFTS AND THE
ALTERATION TO EIGENFUNCTIONS

LZ
20 —3\ 620+ (2L = Y (52,
oz \ "1 \awg 7/
x8(§§>2 = (awg +zA)(02) + (1 = U — 24)(62),
+ K(x), (4.28)
with
H(x) = -3z (2N, Py +1],(nP)")
!
Vi
—zp— Z($)\z,1)/le
N
-2
+ [ﬁl + ( 1y 2(2/\1,11321 + fz,l(npzl)/)) ﬁo] , (4.29)
Wo 7 c1wg

:
K(x) =2z |2ciwowr + (c1wf + zA) Z (xA1) PQZJ . (4.30)
!

"

oth that the completeness of the normal

It is important to no
modes of oscillation in a general co-ordinate system was shown by
Dyson and Schutz (1979), and also that the Traditional Approx-
imation provides a description of p and g modes, and r modes
simultaneously. These facts allow and encourage the use of the

zeroth-order solutions as an expansion basis.

+~ L
e O

It should be noted that the solutions of equations thus derived
from equations (4.23) and (4.24) (i.e. equations (4.27) and (4.28))
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ADIABATIC PULSATIONS IN THE NEW BASIS

are obviously not themselves separable, but, just as the forcing,
can be defined as the sum of separable functions. The most natu-
ral decomposition is into Hough functions for the particular value
of v = 2Q)/wp, which, as was remarked in chapter 2, form a com-
plete set. Thus we pick:

06 = 56()Oum(n)e™ . (4.31)

However, computationally we need to truncate the expansion in
Hough functions.

To calculate a good way to do this truncation, note that the
metric coefficients h; contain only Py(n) and terms which are
constant in 1. Were the eigenfunction expansion to have been in
Legendre polynomials, this expansion would have contained only
three terms (remember Py(u1)Po(pt) = NiPoy—o(e) + NoPoy(p) +
N3Py o(p) for some coeflicients N;). Motivated by this, it would

be expected that the magnitude of the integral:

1
Nip = J/ Po(m)O1m(n)km(m)cln
-1

and similar integrals would drop-off rapidly as [ counts away from
k. This is indeed the case, as can be seen in figure 4.1.

This trend of very fast drop off for increasing |l — k| continues
for higher v, and thus it is required to consider at most three
or four ©;,, to either side of the ©y,, for approximating the
perturbation to the eigenfunction. For more on this, the reader
is directed to Chapman and Lindzen (1970).

4.4.2.2 DBOUNDARY CONDITIONS
For the equations for the calculation of the alteration to the eigen-

function, the outer boundary condition remains that the deriva-
tive of the relative Lagrangian pressure perturbation vanishes.
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4.4 EQUATIONS FOR THE FREQUENCY SHIFTS AND THE
ALTERATION TO EIGENFUNCTIONS
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Figure 4.1: A graph of the value of N;;. The x-axis is the
value of L? for I, with ©%™ being of even parity and Ag =
6.7570, v = 0.3 and m = 2.
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ADIABATIC PULSATIONS IN THE NEW BASIS

For the inner boundary condition, note that the value of L2
for the individual 6&;(z) is not necessarily the L2 of the original
mode; thus, as in chapter 2, the homogeneous system would desire
0&;(x) ~ z* with o = (=5 + /1 +4L?)/2, whereas the forcing
behaves like 2% with 3 = (=5 + /1 + 4L2)/2. This gives rise to
three possibilities:

e o < [3: behaviour of solution as z — 0 becomes explicitly
independent of the forcing of the original mode.

o = 3: inner boundary

®

e o > (3: assumption that the form of the solution as z — 0 is
governed by the homogenous equation breaks down; physi-
cally this is due to the fact that the interference pattern of
all the modes of a given type does not cancel perfectly at
the centre of the star.

4.5 MODE TRAPPING

It is also possible to explore the consequences of the distorted
co-ordintate system for mode trapping; returning to equations
(4.23) and (4.24), changing variables to dp = p’ — pgh; '€, and
eliminating &, between the two resultant equations gives a second-
order equation for dp. As per standard mode trapping (Gough,
1993), we then introduce a new variable ¥ defined by

/
k ) P, (4.32)

/
(4.33)

~ Wz g\ 0
/ hi + J

7 FRhahs h1 833

to eliminate the single derivatives of o0p. Doing this yields
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4.5 MoODE TRAPPING

O*T
Fro K*U =0, (4.34)

with the following definitions:

i (W =)W =u?),  (4.35)

A =yl e M rap -, @

S = ;llchj;l; . (4.37)

N? = hi% <g (ﬂ—l - % - 2%*1) + —(%(m/\tot)) . (4.38)
W2 = Elf (Zc% (1-27t) - ), (439)

a— %(ln(}lgh;})) +H'—H,', (4.40)

H! = %(m(hghg)) +H, '+ H];1 +H 14+ % . (4.41)

and Ay is the outcome of the operator L, having acted upon
the angular part of W:

/:'tot\p - Atotqj . (442)

Once again, note that these equations reduce to what is ex-
pected for zero rotation.

Equation (4.34) provides an immediate way to tell, by looking
at the sign of K2 if a mode is propagative (K2 > 0, so solutions
are of the form U = Asin(Kxz + B)) or evanescent (K? < 0, so
solutions are of the form ¥ = Aexp(+Kz)). Equation (4.35)
reveals the fact that this requirement for the modes to be prop-
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agative is either

wo> Wy, W (4.43)

or

w < Wi, Wo . (4.44)

With a natural definition of p modes (w satisfies the inequali-
ties (4.43)) and g modes (w satisfies the inequalities (4.44)) arising
from this, as for non-rotation”. It is then possible to plot both w_
and wy as functions of both = and 1 for a given frequency (note
that this must be included for f and its derivatives) to explore
mode trapping as a function of latitude. Again, results for this
are shown in the next chapter.

It is worth noting that these equations ((4.32)-(4.41)) reduce to the
known forms in the cases both of a plane parallel atmosphere and spherical
geometry.
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Chapter 5

RESULTS FOR BAROTROPIC
EQUATIONS OF STATE

“...mathematical proofs, like diamonds, are hard and clear, and
will be touched with nothing but strict reasoning.” — John Locke

Now that we have constructed the mathematical framework in
which we can study the effects of rotation upon the pulsations, we
can begin to quantify these effects, in the test case of barotropic
equations of state. This will be broken down into viewing the
immediate effects of the Coriolis force under the TA, then looking
at how the star will distort due to centrifugal effects, and then

the £ :
the changes that these effects produce upon both the frequencies

and the eigenfunctions. Mode trapping will also be explored.

5.1 EFFECTS OF THE TA UPON FREQUENCIES
The pulsational system has been reduced to the following form!

d [ 1-p* de
£,[0(u: = & (2=ZF %©
©(u0) du(l_,/%dﬂ)
2,2 2
N 1 (ml/1+yu _om \:
R e AN e N N
= —L*O(uv), (5.1)

'Reproduced from equations (2.11), (2.15) and (2.16).



5.1 EFFECTS OF THE TA UPON FREQUENCIES

Figure 5.1: Left panel: L? dependence with v for angular
functions that start as | = 2. m = 2, 1,0, —1, —2 are displayed
as the solid curve, the dotted curve, the dashed curve, the
dotted curve with crosses and the solid curve with crosses
respectively. Right panel: as for left panel, but for functions
that start as [ = 3, m = 3, -3 are displayed in addition, by
dot-dash lines and dot-dash lines with crosses respectively.

1d,, g L2\ o

T—2(—j—;(r &) - Z6+ (1—w2r2 Z =0, (5.2)
dp’ g 2 2
e Tl L (N2 —_q- '
L+ Ly (V- whs =0 (53)

we can see that the angular and radial parts of the system are
only weakly coupled via the eigenvalues L? and v.

Taking equation (5.1) alone for different given values of v, the
v dependence of L? for an angular function that starts as [ = 2
is displayed in figure 5.1 for various m values.

It can be seen that, as we would expect from equation (5.1),
the shape of the v dependence varies strongly with the m value.
In fact, the L? values cross at various values of v (the most obvious
in figure 5.1 being the crossing of m = 0 and m = —2 curves at
v = 1.65)2. Thus for large values of v, we are going to deviate

?Figure 5.1 is similar to figure 2 in the paper by Bildsten et al. (1996),
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RESULTS FOR BAROTROPIC EQUATIONS OF STATE

by a very large extent from even splitting in m — in fact, we shall
end up with the m = 0 and m = —2 modes being very finely
split.

It is also worth noting that the L? value grows quickly with
increasing v for non-positive m values; thus were we to nalvely at-
tempt a mode identification for large v, we would mis-identify the
[-value of the mode, possibly with non-negligable consequences.
Also, rotation will produce selection effects upon the detection
of modes, as the mode will be concentrated toward the equator,
meaning that we might be unable to detect it if we see the star
pole-on.

One of the most remarkable things about the left-hand panel
of figure 5.1 is that it is the m = —1 mode that grows the fastest,
not either the m = 0 nor the m = —2 mode. If we then look
at the right-hand side of figure 5.1, it is apparent that this large
growth is for the negative m values which begin neither having
their dependence entirely in the p nor in the ¢ direction.

The fact that it is negative values of m (i.e. retrograde) that
will feel the effect of increasing v most can be seen in the fact
that for v around unity there is no cancellation between the terms
in the second bracket of equation (5.1). The fact that it is the
modes that begin by not having their variation solely in the y nor
¢ direction that are most effected by increasing rotation should
not surprise us either, as these modes are the ones that will be
distorted most by Coriolis terms under the TA .3

Figure 5.2 shows the evolution of the g3, “l = 2” mode fre-
quencies in an n = 3 polytrope with increasing f, in the co-
rotating frame.

but these crossings appear to have gone unremarked.

$Mathematically, it is evident that the second bracket in equation (5.1)
will vanish for m = 0. For an example of how the L? = m? can result
in different mathematical structure (in the regime of v > 1), the reader is
directed to the paper by Townsend (2003b).
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0.08 4

Figure 5.2: Evolution of the g13, “/ = 2” mode frequencies
with increasing f, in the co-rotating frame. Key is as for
figure 5.1.

We can see, as would be expected due to the fact that the
only coupling of the angular behaviour into the radial behaviour
is via the eigenvalue L?(v), that the evolution of the frequencies
(in the co-rotating frame) follows a very similar pattern to the L2
values. Looking at the asymptotic regime, Lee and Saio (1987)
found that low-frequency g modes trapped between the boundary
of the convective core (r = r.) and the surface of a rotating early-
type star have eigenfrequencies of*

2V L2 BN
(k +ne/2 — 1/6) ‘/rc

From equation (5.4) the broad qualitative similarity of the

behaviour of L? (or rather v/L?) and w as v departs from zero for

various m values can be seen. This similarity in pattern is going to

cause, for mid- to high-v, the frequencies to differ drastically from

the even rotational splitting in m that is given by a perturbative

. dr (5.4)

4This is derived by approximating the eigenfunction near the surface by
the Bessel function of order ne, where n, is the effective polytropic index at
the surface. k is the radial order of the mode.
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analysis of the first order effects of rotation.

5.2 ROTATIONAL DISTORTION FOR POLYTROPES

For a polytropic equation of state with polytropic index n

p = Kptin (5.5)

we can make the following definitions

p = pb", (5.6)
~ 14
Vo — 5.7
which gives
Ve =-VV (5.8)

and the Lane-Emden equation for the zeroth-order solution:

2
0+ =0 = 0" (5.9)

Placing this in equations (3.18) and (3.19), after substituting
for 0, gives®

(226M)A], + M (207 2020+ 1)E) — 2628,

;’,1 = v , (5.10)
L
, (226™) X, 5 + A2 (20" + 21(21 + 1)) + B,
Ly = — . (5.11)

SUnits have been removed entirely, and the radial mesh rescaled to [0,1] by
multiplying the equation by the square of the radius &,. Note ) = f+/47Gp,
for polytropes.
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Returning to the boundary conditions for ), ,, equation (5.10)
shows that imposing regularity at z = 0 gives:

lim A
70 1
r—0

lim )\52
x—~0

2610 (5.12)

—90"¢t0 (5.13)
1

——2—311511)0 By . (5.14)

The outer boundary conditions (from matching ® onto a vac-

uum solution) are®

ap
o1

AL

9/
51,0——@230) , (5.15)
&
1 \
-, (5.16)
o
5
2 5.17
T’ (5.17)
0,1>1, (5.18)

to order f° and f2. To order f%,

0

1 1
2X2 — Ao = — (()\0,1 + o) + g(/\l,l + Xl,l))

—~
[\™]
Y

1 /5

0 \3

2 A V! \/ ~ 3 E 10
1,1 -+ &/\\1,1/\171 + 3?51,1/\1’1 - Utl,l/\l,1> y (0.13)

17
21

Ao = No =— | z(No1 = Ag1) + 57 (A1 — Ao)
a

8

/ , / /
+ k = 8A01A11 + AoiAy s + A1 + ?)\1,1)\1,1

6Note that z¢ is 1.
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3 12 10
+ ?51,1)\/1,1 - 7t1,1>\1,1 - -7—)\%,1) : (5.20)
Ghop — Ay = i(3/\\114—/\'11)
' ’ 7&0 ’ ’
36
+ g (PN Bhaty = Nt = TA) L (5.21)
Mo = 0,1 >2. (5.22)

5.2.1 RESULTS

As has been mentioned already. the alteration of the sur

a
148 been mentione Sl TOALY 53 UL iy

the star is a long-studied subject, so as such, there are results (for
instance, as published by James (1964) for polytropes) that we
can compare the end values of our function to. Such a comparison
is shown in figure 5.3.

For rotation rates up to roughly 25% of breakup, the agree-
ment with the alternative method of calculating the equatorial
and polar radii is very good indeed (the difference being of the
order of the last decimal place given by James (1964)). The agree-
ment remains good except for predicting polar radii for a rotation
rate above 35-40% of the breakup value, when the f* correction
proves too large. It is the case that the polar radius remains
robust to increases in rotation rate until near breakup, when it
shrinks dramatically with increasing rotation; thus a perturba-
tion model has difficulty modelling high, but non-huge, rotation

rates.
Whilst this fact reguires 1

1Q
D I U LU UL TS us

(

to check that we are not modelling

a regime where the adoption of this perturbative method might
cause problems, the method works very well for all rotation rates
that we can foresee modelling.

The rescaling functions A, ,(z) and ¢, ,(x) for this n = 3 poly-
trope are shown in figure 5.4. These are smooth, and the size of
Aio is comparable with )\il, as we would expect because of the
form of B; in equation (3.19). These facts are in accordance with
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5.2 ROTATIONAL DISTORTION FOR POLYTROPES
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Figure 5.3: Left panel: Predictions to f? (dashed lines) and
f* (dotted lines) for the equatorial (upper branch) and polar
(lower branch) radii for a rotating polytrope of index n = 3;
crosses are values from James (1964) using a numerical expan-
sion in legendre polynomials for a given rotation rate; breakup
is approximately at f = 0.044. Right panel: predictions of
the surfaces of constant modified equipotential for this poly-
trope with a rotation rate of f = 0.03; diamonds map out
curves of constant 7. The oblate structure is clearly visible.
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Figure 5.4: Graphs of rescaling functions for an n = 3 poly-
trope. Left panel: Ag 1 (black), A1 1 (red), tg1 (green) and ¢; 3

Vs O

(blue). Right panel: Ag2 (black), A12 (red), and A22 (green).

what we would expect and desire.

5.3 EIGENFREQUENCY SHIFTS DUE TO CENTRIFU-
GAL FORCE

Graphs of the eigenfrequency for an L2 ~ 6, gg; mode in a n =
3 polytrope (again used as an example), for various m values,
rotation rates and order of corrections, are displayed in figure
5.5.

Several things are immediately noticeable from figure 5.5:

The first is that for this mode, and moderate rotation rates
(~15% of breakup), the geometrical corrections’” can dominate
the non-geometrical Coriolis corrections, and are very large (de-
pending upon the mode, the assumption of the centrifugal force
as a perturbation breaks down; for example, for the worst case
(m = 1) from about 18% of breakup; this should not surprise us,

"Note that these are not simply the corrections of centrifugal force upon
the mode, but also the combination of Coriolis force and the basis distortion.
Despite this, for brevity these will be referred to as “Centrifugal corrections”.
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Figure 5.5: Graphs of the eigenfrequencies of a L? ~ 6,
gs1 mode (again for the n = 3 polytrope, viewed in an in-
ertial frame) for different m values plotted and orders of
corrections against rotation rate. Green is taking just into
account the effects of the Traditional Approximation, red
is with O(f?) corrections, black is with O(f4) corrections;
m = {2,1,0,—1,—2} are denoted by long dashed, dash dot
dot dot, dotted, dashed and dash dot lines respectively.
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Figure 5.6: As for figure 5.5, but this time for g45, L% ~ 2,
hence only m = {1,0,—1} are shown with same key as for
figure 5.5.
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hence in addition m = {—3,3} are also displayed by solid

lines and solid lines with diamonds respectively.

Figure 5.7: As for figure 5.5, but this time for g113, L? ~ 12,
1
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5.3 EIGENFREQUENCY SHIFTS DUE TO CENTRIFUGAL FORCE

given figure 5.3).

The second is that certain modes are far more resistant
large alteration by the effects of rotation than others. Thi
result of a large number of effects cancelling each other out and
may mean physically that the mode is more probable to occur,
should the forcing be suitable®.

The third is that the |m| = 2 modes have a smaller centrifugal
correction to their frequency than the |m| = 1 modes in figure
5.5. If we then look at figure 5.7, we see that this is a general
trend, that the higher the value of |m|, the smaller the centrifu-
gal correction. This again makes physical sense, as the mode
becomes more and more azimuthally dependent, the distortion of
the equipotentials becomes less and less important, as this dis-
tortion is not in the ¢-coordinate, only the (z,7n) coordinates.

acting as a perturbation breaks down for a given mode, figure 5.8
shows the f2 correction to the eigenfrequency against eigenfre-
quency (under the Traditional Approximation) for several rota-
tion rates.

It is immediately noticeable that the form of the graphs for
various rotation rates are very similar until v becomes signif-
icantly different from zero. This is obviously what would be
expected, but confirms the observation from figure 5.5 that for
modes with small Coriolis parameter v, the centrifugal correc-
tions dominate.

The form of the graph is that the f? correction term grows
quickly with decreasing wy (roughly as wy?, half of which can be
easily explained by the wy! factor in equation (4.21)) then turn-
ing over as the eigenfunction becomes increasingly oscilatory, so

81t is the case that observationally, we see more prograde ~y-Doradus pul-
sations than other types, but this statement is an interesting observation of
theoretical predictions only.
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Figure 5.8: Left panel: Absolute values of the f2 correc-
tions to the eigenfrequency plotted versus eigenfrequency;
f =1{1,2,3,4,5} x 1073, are denoted by green diamonds,
red, green and blue crosses and red diamonds respectively.
The lines at which f2w; = 0.5wp and fPw1 = 0.1wp are also
given (solid and dashed respectively). Right panel: same as
for the left panel, but scaled by the respective f~2. Modes
have m = —2.
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any radial variations in 6C quickly become over so comparatively
large a length-scale (compared to the oscillations) that the inte-
gral shrinks rapidly with decreasing wy.

This means that, for a given f, the Coriolis force will establish
itself as the main perturbation to the eigenfrequency much faster
than a possibly expected wy ! rate once this point is reached.
However, the initial growth means that we must always examine
the size of the centrifugal corrections, even if we then go on to
neglect them.

5.4 ALTERATION TO THE EIGENFUNCTIONS

To look at the shape of the perturbation to the eigenfunction,
figure 5.9 shows some of the 17 and z dependence of one part of
the 0€, and 6§, for the following mode:

m -2

f | 0.008
k 14
w | 0.4299
L?| 6.08

Both because of the forcing, and because of the fact that
the eigenfunction is not determined by the system, in both of
equations (4.27) and (4.28), the perturbation to the eigenfunction
is not nearly as strongly peaked as the original eigenfunction,
instead sampling the whole star, albeit to a much smaller level
(the original eigenfunction has been scaled down by a factor of
200 in figure 5.9). Also the perturbations become reasonably
large as r — 1.

If we view the pulsation physically, the sampling of the star by
a global oscillation mode is governed by the paths a ray is encour-
aged to take; as we are perturbing the geometry of the star, the
interference pattern built up by many rays will no longer cancel
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Figure 5.9: Left panel: Hough functions with (L?,v) =
(20.12,0.035) and (L?,v) = (42.21,0.035) (black and red re-
spectively). Compare PZ(n) o< (Tn* — 8n% + 1). Right panel:
Radial-like dependence of the parts of ¢, and d&y, with angu-
lar dependence of the black Hough function on the left (black
and red respectively). The green curve is &, scaled down by
a factor of 200 for comparison.

as completely as they would have, meaning that the perturbation
samples almost the whole star to a small level. Also, the regions
sampled towards the surface are going to be the ones with the
most change to them, meaning the perturbation will be peaked
there. It is worth noting that the fact that the peak is very con-
fined to the surface, where p (and such-like) is very small, means

that the f* correction will not be dominated hugely by this peak.

5.5 MODE TRAPPING

To explore mode trapping, one of these modes was taken (m =
—2, L? ~ 6) for an arbitrary choice® of @ = 0.2, and the behaviour
of w4 looked at for various rotation rates, f.

9% = w/+/GM/R3 is required for f, and to calculate the value of L?(v)
and the behaviour of Ay in f and S? (equations (4.33) and (4.37) repec-
tively).
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Figure 5.10: Graphs of w4 against z and 7 for a n = 3 poly-
trope and @ = 0.2, m = —2, L? ~ 6. Left panel is for (f=0,
L? = 6), the right for (f = 0.005, L? = 6.10).

The functions w4 (z,n) to order f? are shown in figures 5.10
and 5.11. It is important to note that we have considered the an-
gular behaviour of ¥ to be governed by the single Hough function,
Ok,m, for the particular (m, v, L?), in our calculation of A.; and
because of this have artificially removed terms involving ©’/©
in producing these graphs. This is because there are, in both of
wx, values of 7 when the denominator of these terms goes through
zero and the numerator (©’ multiplied by various coefficients aris-
ing from the h;) does not. This is found not to change the shape
of the w; beyond removing these numerical “spikes”.

For these graphs, the Hough-function like P} is peaked to-
wards the equator. The shape of these types of graphs is sur-
prisingly robust to changes in the value of L?(v) — the left panel
of figure 5.11 is almost identical to the left panel of figure 5.10,
meaning that the main effects are geometrical.

The primary effect of rotation is to begin to exclude low-
radial-order modes (w_ is lowered, whilst w, is raised) from near
the centre of the star. These modes with fewer nodes (and there-
fore larger length scales) find it hardest to remain propagative in
the distorted state, which has increasingly different length scales
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Figure 5.11: As for figure 5.10, but with (f = 0.01, L% = 6.21)
(left) and (f =0.12 T2 =13 R2\ with no f corrections t

Aoy &l Vel 4, AUid

the altered Hough functions (r1ght)

at different latitudes with increasing rotation rate. Thus finding
a neatly separable propagative solution becomes impossible.

Of important note is the fact that these results describe the
“radial” effects trapping of the mode. As already mentioned,
the Coriolis force will act as an equatorial waveguide, causing
the amplitude of the mode to be strongly peaked towards the
equator, a well-studied subject.

5.6 WHITE-DWARF ROTATIONAL DISTORTION

As another test case, we can investigate the distortion of a zero-
temperature-white-dwarf model having an equation of state given
implicitly by

3

3

b

5.
1z 5.

'j‘

UJ

sinh

N TN
I\D BO
(9]

\._/ S’

af(z),
f(2) =z(2 W224+1+43

3

with a = mmic®/3h3, b = 8mu.mic®/3Noh® and z = po/me, where
po is the electron Fermi momentum (m, is the electron mass, c
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is the speed of light, h is Planck’s constant, N, is Avogadro’s
number and g is the mean mass of the fluid per free electron).

Thus!®

Vp = —pVV (5.25)
8
=V = “'7?\/1 + 22 (5.26)
— —VQ\/l + 22 = 47 Gb2® + 207 . (5.27)
Then the rescalings
=241, (5.28)
y =y, D=y ?, (5.29)
/| 2a
0? 2nGb (5.31)
- D’ \Jdd)
givel!
V3% = —(6° - D)*? 4 f2. (5.32)

This equation, after the correct non-dimensionalization, dif-
fers from that for the polytrope only in its zeroth order solution,
although we cannot eliminate #” in the same way as we did for
equation (5.10). Thus, to successive orders in f2, starting from

7o

10The definition of V is once again given by V = & — 192 2(1 - Py(p)).
11¥ denotes V after the non-dimensionalization of lentrth
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2¢'

0" = —-=——(6>—D)*?, (5.33)
T
z0'), = 2x(6> — D)*)\),
/
+ A (2(92 — D32+ 21(21 + 1)—@)
T
— &, (5.34)
z0'Ny, = 2z(6> — D)2\,
+ o (20 D‘3/2+2z‘zz+1)9/\
12 \ ( ) ( x)
+ B. (5.35)

The only difference to the boundary conditions is now that

. &
;ghiny() )\l’]_ = W&’O ) (5.36)
3 _3 o > Loy A
= iii“% Bl = ?4(1—_%953/—2&’0 y (0.0I}

equations (5.15)—(5.22) and the definitions of the ¢, (such as
given by equation (3.27)) are unchanged.

Figure 5.12 shows an example of the A1 and ¢, and ratios
of the equatorial over polar radii against rotation rate for various
values of D.

The overall form of the distortion functions );; and 111 are
very similar to those for the polytrope, although the scale makes
it very obvious that the white dwarf considered (D = 0.2) is much
less compressible and thus more resistant to rotational distortion
than the n = 3 polytrope. This also shows from the range of f
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Figure 5.12: Left panel: )\;; and t;; for a zero-temperature
white-dwarf with D = 0.2; key as for figure 5.4. Right panel:
Equatorial radius divided by polar radius for various zero-
temperature white dwarf models plotted against rotation rate;
D =0.025,0.5,1,2 are denoted by green, red, black and blue
lines respectively.

values shown in the right-hand panel of figure 5.12. However, not
too much should be made of this as the f values are difficult to
compare directly, owing to the different scalings used.

The non-rotating radii are again in excellent agreement with
James (1964); a direct comparison with his rotating radii is not
made owing to concerns over scaling; however, the result that the
equatorial radius is far more affected by the rotation than the po-
lar radius is well reproduced. Pulsations will not be considered in
these models, as the Brunt-Véisala frequency is zero throughout
the star.

5.7 CONCLUSIONS
We can see that the method presented in chapters 3 and 4 gives
sensible, and quantifiable, answers for these test barotropic equa-

tions of state (polytropes and zero-temperature white dwarfs),
and are able to exhibit the results of both Coriolis (under the
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TA) and centrifugal forces.

For more compressible equations of state, it has been seen that
the centrifugal distortion can cause the assumption that the cen-
trifugal terms cause a perturbation to the eigenfrequency to break
down at a rotation rate lower than the accuracy of predicting the
oblate structure would imply (although still at a significant frac-
tion of the breakup rotation rate).

The results produced by this method are in accordance with
what we expect from a physical understanding, and thus give us
confidence in generalizing the theory to real equations of state,
as will be done in chapter 7, with results presented in chapter 8.
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Chapter 6

(GENETIC ALGORITHMS
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tence” — The Origin of Species, chapter 3.

6.1 BACKGROUND
6.1.1 A PROBLEM IN FORWARD MODELLING

The problem of asteroseismology is, at its heart, a simple one; we
have an equation like the following, governing stellar pulsations:

W€ = FE (6.1)

where F depends on our background state - i.e. our model of
the star. This equation predicts eigenfunctions and observable
pulsational frequencies; if our stellar model predicts the observed
frequencies well, it is kept and/or refined whereas if it fails to
predict what we observe, then we must adopt a new model. Thus
the frequencies are not an input parameter into our models, but
a judge of the output.

The aim is thus to make models, and compare them, and then
refine our models until we fit the data. Once again, the issue
of time arises; how do we do this without being prohibitive in
terms of computer time? An answer comes in the form of genetic
algorithms.



6.1 BACKGROUND

6.1.2 GENETIC ALGORITHMS: AN INTRODUCTION

We are seeking to optimize the fit of predicted pulsational fre-
quencies to the observed pulsational frequencies. There are a
large number of ways to do this, but we shall focus on one which
has become more widely used in recent years: the genetic algo-
rithm.

Genetic algorithms are a powerful way of fitting data; they do
suffer from the drawback that they do not prove that the optimal
fit found is global, but they have the great advantage of efficiently
sampling large parameter spaces.

Before we proceed, it is useful to define many of the terms
that will be used from this point on:

e Phenotype - the list of parameters that makes up an indi-
vidual in its particular generation;

e Genotype - the attributes that come out of the individual’s

phenotype: in our case, these are the pulsational frequencies.

Any genetic algorithm?! follows the following steps:

1. Calculates random models to form the first generation of
the population.

[N}

Calculates the suitability of each member of the population.

3. Calculates breeding partners using an evaluation of their
suitability.

4. Breeds these pairings, replacing the previous generation.

5. Mutates some parameters.

! As has been pointed out in, for example, Charbonneau (1995), the formal
name should probably be “genetic algorithm-based optimizer” — we shall
stick to the use of “genetic algorithm”
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6. Returns to (2), repeating this until either a pre-determined

number of generations is reached, or a tolerance criterion is
met.

For a good introduction to genetic algorithms, and their use in
Astronomy, the reader is directed to the paper by Charbonneau
(1995) already mentioned. This paper also gives a now widely-
used genetic algorithm, called PIKATA; this code is a generally
optimized one, and has often already made a decision on a number
of issues that will be investigated, so has not been used.

Like most complex search routines, genetic algorithms need
to be specialized to the problem. Owing to this fact, there are
a number of arenas in which it would be good to investigate the
behaviour and results of the algorithm. These will now be listed.

6.1.2.1 BREEDING AND PHENOTYPE CONSTRAINTS

The sampling of parameter space performed by the genetic algo-
rithm is for a large part tied up with how the new generation is
obtained from the last. This is known as breeding. In humans,
we have paired chromosomes, one obtained from each parent, and
these are combined to form our phenotypes, with complications
like recessive and co-dominant alleles.

The commonly formed breeding method in widely-used ge-
netic algorithms is that of a one-point crossover, where the first
m of the n points on the phenotype are from the first parent,
and the remaining n — m are from the second parent. The num-
ber m is often selected randomly, and there is often a reasonable
chance of some asexual reproduction of the first parent, where
m = n, so, barring mutation, one parent is then automatically
reproduced into the next generation. The probability of non-
asexual reproduction is know as the crossover probability. What
is the best value of this, and what is the relation of this value to
the population size?
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In humans, both parents will flavour their offspring, which can
result in the offspring having better inherent characteristics than
either parent. Would such an “averaging”, probably weighted by
the suitability of each parent, for some of the n points on the
phenotype, help in finding an optimal solution?

Also, to what extent should we reduce a search range with
pre-dispositions about the data? Firstly, is the assumption that
“any reduction in search range is beneficial” true? What if the
reduction causes the optimal fit to lie on the edge of the range,
will this cause the optimal fit to be much harder to find? Will

this change the results to our previous questions? As a less-clear-
cut issue, what are sensible ranges to put on the “I” values for
observed pulsational modes? It is the case that the observable
effects of high-l modes will most likely cancel themselves out when
integrated over the whole disc, but how much should this flavour

our modelling searches?

6.1.2.2 ELITISM, DIVERSITY AND MUTATION PROBABILITY

o AL

Returning to the case of possible asexual reproduction, genetic al-
gorithms often employ FElitism, where in any generation the most
fit individual in the population is perfectly reproduced into the
next generation without mutation. Whilst this ensures that the
degree to which the best individual fits the model is a monoton-
ically increasing function of generation number, is this harmful
through being too artificial, and would an archiving routine work
better?

Another issue is how to ensure that the degree to which the
best individual fits increases after many generations (i.e. that the
goodness-of-fit does not plateau), and how to prevent the algo-
rithm from getting stuck in a local minimum. Should we enforce
a certain diversity of the gene pool, or is this again harmful?
What is the best mutation rate for a given population size, and
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should we vary the mutation rate to encourage this diversity?

6.1.2.3 SUITABILITY

This is one of the most arbitrary inputs to a genetic algorithm,
but also one of the most critical, as it can change many of the re-
sults. An often used suitability formula is that of a y? estimator:

X2 _ Z (Gmodel - Clobserved)2 : (62)

Qobserved

where a are the observables; they can be the frequencies (scaled
or unscaled), the periods of oscillation, splitting coefficients, or
other things. Which of these is the best to use?

Is it better to use the raw suitability score of an individual
for selection (and possible weighted breeding), or should the suit-
ability score be scaled, or simply turned into a linear ranking?

Would it be advantageous to use the quality of the detection
signal to weight this fitting? This would mean that the clear
detections are fitted preferentially; but would the price paid else-

ha + +9
where be too great?

These factors will be looked at using the following classes of
models:

1. The generalization of the class of toy models considered by
Charbonneau (1995) where the phenotype is the z and y
values?, in the range [0,1], and the fitness of the genotype
is given by?:

20r w, z, y and z for the four-dimensional case
%in the two-dimensional case, with the four dimensional case being

f4(w,$,y, Z) = f2(x7 y)fZ(w7 Z)
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Suitability

Figure 6.1: Two fitness functions, the left being the function
Jo given by equation 6.3, and the right being the same, but
with the central peak shifted to z, y € (0, —5—)

where n will be given, often taking the value 9. The gen-
eralization will be constructed by both adding extra peaks
in f, and by increasing to a four-dimensional parameter

ana

space.

. The same equation as above, but with the middle peak
shifted to the edge (so what would have been the f, above
at z, y € (%, g—} is shifted to z, y € (0, é) These two fitness

functions are displayed in figure 6.1.

The reason for this shift is to remove any fortuitous fits

that may occur by the optimal peak being surrounded by

the next optimal ones.

. A non-rotating polytrope, with the phenotype being the
polytropic index, the scaling of the system, and the [ values
for the individual modes. The fitness criterion will vary
between

b) using the observed frequencies,

~—

c¢) using the periods.
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4. The rotating polytropes described in chapters 3 to 5, con-
sidering only the f? change. The reason for stopping at this

order is that the time taken for a run is greatly reduced,

without losing any of the basic effects. The fitness criterion
for this class of models will be given later.

6.2 Toy MODEL

Returning to the toy model, we shall focus on the following points
to begin with:

e Elitism: is allowing the fittest individual to replicate into
the next generation wise?

e Should we rely upon a ranking system for our data, or retain
the raw suitability?

e Is it better to use a one-point crossover,
to allow a weighted average?

e Will enforcing diversity help, and what is the best way to
accomplish this?

or in our breeding

6.2.1 POPULATION SIZE, MUTATION AND CROSSOVER PROB-
ABILITIES

Although the points listed above are the focus of our search,
there are a number of input parameters to our model that must
be addressed, even though they are not the focus. These include
population size, mutation probability and crossover probability,
which need to be assigned values.

It has been suggested by a number of authors that good per-
formance requires the choice of a high crossover probability and
a low mutation probability (inversely proportional to population
size). The following values were chosen as fiducial examples after
a brief investigation:
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Parameter Description Value
Deross Crossover Probability 0.7
DPmut Mutation Probability 0.1
pop Population Size 80 |’
cont Number of individuals selected 4

to contest parent selection

although variable mutation rates will be used in diversity inves-
tigations.

6.2.2 ELITISM
Graphs of the fitness of successive generations of the toy model,
with the unaltered fitness formula, are shown in figure 6.2. In
this, and the following graphs, we have plotted both the fitness
of the most fit individual (with diamonds) and the fitness of the
individual ranked halfway in a given generation (by the dotted
line). Also, owing to the fact that we are using numerical random-
number generators which may introduce some additional effects,
we have plotted the average fitness of the most fit individuals
found from one hundred different initial seed fields.

The first thing to note is that convergence is very rapid in-
deed: in most cases the optimal peak is found, and centred on,
in a few generations. The second point to note is that although
in some cases we may get away without Elitism, there can be
cases in which it is very advantageous. Elitism also has the great
advantage of making the closeness of our optimal fit a monotonic
function, a vital thing when computational limitations may cause
pre-optimal termination of the algorithm. It can be argued that
an archiving procedure might also provide adequate protection,
but it is the case, for large enough population sizes, that a bene-
fit is gained by keeping the best fit to flavour future generations,
without any real drawbacks. Hence Elitism will be employed for
the Toy Model calculations from this point on.
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Figure 6.2: Convergence graphs for the unaltered toy model.
A weighted average has been used. The fitness of the most
fit individual, fitness of the individual ranked halfway in a
given generation and average fitness of the most fit individ-
uals found from one hundred different initial seed fields are
denoted by diamonds, the dotted line and squares respec-

tively.
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Figure 6.3: Convergence graphs for the unaltered toy model.
The fitness of the most fit individual, fitness of the individual
ranked halfway in a given generation and average fitness of the
most fit individuals found from one hundred different initial
seed fields are denoted by the solid line, the dotted line and
the solid line with periods respectively.

6.2.3 RANKING AND AVERAGING

Figure 6.3 shows four more convergence graphs; in this case, the
variation in choice of method is between a weighted average and
an one-point crossover, and between raw suitability and ranking.

The results of this are inconclusive: owing to the very fast con-
vergence, all procedures perform well. However, we are left with
a slight preference towards averaging and raw suitability. This
is both from our graphs and also from reasoning: for example,
although ranking does provide a consistent scaling of the fitness,
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Figure 6.4: Example fitness “potential well”. Two parents are
shown on the left. The possible offspring under a one-point
crossover are shown on the right.

it essentially disassociates the fitness function for the underlying
objective function.

We have another reason to favour using weighted averaging
in our breeding routine, if we think about late-time develop-
ment. Consider two breeding individuals equidistant from a two-
dimensional optimal fit, as shown on the left of figure 6.4. On
the right, all four possible offspring, before mutation, are shown;
as can be seen, these are no closer to the extrememum. However,
were averaging to be employed, the optimum could be reached in
just one more generation. This saves us from having to pursue a
fit with a genetic algorithm to a certain point, and then switch to
a steepest descent method to further refine the fit, which is often
employed — it has advantages, but it requires a perhaps arbitrary
decision as to when to switch method.

Should we reduce the search range to having z and y values
in the range [0,0.5], in order that the optimal fit now lies on the
boundary of our search range, the results are very similar. How-

107



Averogmg, Raw Suitability, Elitism

6.2 Toy

MODEL

Averaging, Ranking, Elitism

10.0F 10.0F ]
~ <o
0.1 : . 0.1 .
0 20 40 60 80 0 20 40 60 80
Generation Generation
1-p—c, Row Suﬂ(obmty, Elitism 1—-p-c, Ranking, Elitism
10.0F 10.0E " '
L 1.0 £ 1.0
0.1 . . 0.1 . . .
0 20 40 60 80 0 20 40 60 80
Generation Generation

Figure 6.5: Same graphs as for figure 6.3, but with the search
range reduced to x and y values in the range [0,0.5]

ever, employing a one-point crossover and taking straight ranking
values runs into problems, not converging as quickly as the other
methods. The reason for this is fairly obvious, in that a more
optimal fit under ranking has very little ability to “pull” the phe-
notype of its offspring towards its own value. Hence, because the
optimal fit is on a mathematically closed boundary, the pheno-
types can only approach this fit in an asymptotic-like manner.
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mean) falls below a cutoff. These are:

e We can enforce the diversity by re-mutating the population
at a fixed pry until a diversity threshold is passed, or

e we can re-mutate the population as above, and then in-
Crease Py towards a maximum, which we shall define as
Pm,max; the starting value of py,; we shall define as Dm,min-

6.2.4.1 FIXED MUTATION RATE

We performed runs with Elitism, using the raw suitability score
and the following parameters

Parameter | Value
pCI‘OSS O - 7
Pmut O 1
pop 80
cont 4

and recorded (both for one seed field, and for the average of 100
seed fields) the number of generations needed to get within the
maximum fitness.

Figure 6.6 shows the number of generations needed for a given
diversity cutoff; it is immediately apparent that enforcing diver-
sity can reduce the number of generations needed by up to a
factor of four or more, if the right cutoff is chosen. This reduc-
tion continues until a certain point, then the number of gener-
ations needed increases. The reason for this increase is that we
are trying to enforce too great a diversity for the problem — ge-
netic algorithms work by concentrating the gene pool around a
good fit, and enforcing too much diversity causes the algorithm
to essentially become closer to repeated sampling.

Other obvious things to notice from figure 6.6 is that, although
the trend for the number of generations needed versus diversity
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Generation Reached

Figure 6.6: Number of generations needed to reach within
5x107° of the maximum fitness for a given diversity cutoff.
Dots are for an individual seed field, diamonds are for the
average of 100 seed fields. The left graph is for averaging,
the right for one-point crossover. Values of 0 indicate that a
maximum of 800 generations was reached without managing
to reach the desired level of fitness.

cutoff is the same, one-point crossover is hugely out-performed by
averaging, and that an individual run has a much larger scatter
in convergence speed. The reason for this was discussed earlier,
and lies in the fact that one-point crossover has real problems in
converging on a extremum, as is shown in figure 6.4. However,
this second fact — that an individual run has a large scatter — is
extremely serious when we come to use the genetic algorithm to
fit data; so we shall employ averaging from now on.

These results still stand in the 4-d analogue of the toy model
(figure 6.7), if we change the value of n in equation (6.3) (fig-
ure 6.8), although for the latter figure the fitness threshold was
lowered to be that of a level that merely ensured that the fit
reached a level better than all the other non-global maxima (i.e.
f>0.9036 forn = 9 and f > 0.99348 for n = 35), so the problem

with high diversity cutoffs does not appear for the values shown.
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eration Reoched
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Figure 6.7: As for figure 6.6, but for the 4d analogue of the
toy model. Maximum number of generations is now 900.

fad

Figure 6.8: As for figure 6.6, for n. = 9 on the left and n = 35
on the right; searching for a fit better than all the other non-
global maxima (i.e. f > 0.9036 fo

V.oUs6 Ior v = 9 and f > (.99348
for n = 35)
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neration Reacked

Figure 6.9: As for the left hand slide of figure 6.6, but with a
variable mutation rate.

6.2.4.2 VARIABLE MUTATION RATE

To look at the effect of using the variable mutation rate whilst
enforcing diversity, the following parameters were used:

Parameter Description Value
Deross Crossover Probability 0.7
Drm,min Minimum Mutation Probability | 0.1
Dm,max Maximum Mutation Probability | 0.25

pop Population Size 80
cont Number of individuals selected 4
to contest parent selection

For each run at a given diversity cutoff, pmu was reset to
Pm,min, and then increased by a five-hundredth of the value of
Pmmax — Pmmin When the diversity fell below the cutoff. The
analogues of figures 6.6 and 6.8 are shown in figures 6.9 and 6.10
respectively.

Figure 6.9 shows that the main advantage of the variable
mutation rates is for a low diversity cutoff, when the variable-
mutation-rate method significantly outperforms (by a factor of
approximately two in the number of generations needed to ob-
tain the accuracy of fit required) the fixed-mutation-rate method.
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Figure 6.10: As for figure 6.8, but with a variable mutation

rate also.
However, for mid-range values of the mutation rate (i.e. a cut-
off between 0.03 and 0.065) there is little difference between the
two methods; and then for high range, the variable-mutation-
rate method is strongly outperformed by the fixed-mutation-rate
method. The reason for these two properties is that if the cutoff
is too large, the mutation rate quickly spirals to a level at which
the algorithm can no longer hone in on an optimum effectively.
_ Figure 6.10 shows that these same properties (a very rapid im-
provement in the number of generations required as the diversity
cutoff leaves zero, and a falling away of the effectiveness of the
algorithm for a too-high diversity cutoff) are robust for changing
both the cutoff required and the number of local optima of the
fitness function.

However, as we are seeking to pick a diversity cutoff that is
low, to avoid the upturn in the number of generations needed, a
variable-mutation-rate is recommended, although we have to be
aware of its dangers.

6.2.5 ALTERED FITNESS FUNCTION

Again to test the robustness of these results, we have recalculated
figures 6.2, 6.3 and 6.6 for the altered fitness function shown in
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Figure 6.11: As for figure 6.2, but for the altered fitness func-
tion.

the right-hand panel of figure 6.1 and described in subsection
6.1.2.3. These graphs are shown in figures 6.11 to 6.13 (note that
the required fit for figure 6.13 is slightly lower than for figure 6.6)
respectively. Figures 6.11 and 6.12 show that although conver-
gence is slower in these cases (as is understandable), the results
and arguments presented for the unaltered fitness function still
hold.

However, it is figure 6.13 that is truly significant. Without
maintaining the diversity of the gene pool, the time taken to find
a fit very close to the optimal solution is prohibitive, whereas
enforcing a certain amount of diversity allows close fit to the op-
timal solution to be found in a reasonable time. It is noteworthy
that there is no significant difference between the averaging and
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Figure 6.12: As for figure 6.3, but for the altered fitness func
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Figure 6.13: As for figure 6.6, but with the altered fitness
function and aiming to reach within 5x 1072 of the maximum
fitness for a given diversity cutofl.
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Figure 6.14: As for the left hand slide of figure 6.9, but for
the altered fitness function and seeking within 5x 1073 of the
maximum fitness for a given diversity cutoff.

the one-point crossover methods in this case, although due to
averaging outperforming one-point crossover for a more regular
fitness function, the former should still be kept.

Figure 6.14 investigates the use of a variable mutation rate
for the altered fitness function, with the lower value of required
fit but with all the other parameters the same as were used for
figure 6.9. This again shows the superiority of enforcing diversity.

6.3 POLYTROPES
6.3.1 NON-ROTATING POLYTROPES

It is the case that genetic algorithms are very problem depen-
dent. Therefore, to be assured that these results are true for
fitting pulsational data, whilst still having the construction of
models being computationally cheap enough, we look at fitting
the following data from an n = 3 polytrope*:

4Frequencies are displayed here only to six decimal places, but were en-
tered to fourteen in the code. To prevent a perfect fit resulting in dividing by
zero in the fitness formula (equation (6.4)), the difference between observed
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{ w

1 | 0.090058
110.376890
11 0.726539
2 | 0.402005

Scaled up (by /GM/R?) as in a star of M, = 1.2 Mg and
R, =2 Ry (giving \/GM/R? = 0.3873 /GM/RY).

We shall consider the same questions (of Elitism, Ranking vs.
Raw suitability, One-point crossover vs. a weighted average and
enforcing diversity) as for the polytrope, and also look at whether
using periods or frequencies gives a better result. We shall begin
by using frequencies, with a suitability formula of

-1

/ (w 1 — Wob )2\
F o= (Z model, scaled observed, scaled ) ) (64)

Wobserved, scaled

The other parameters are given by

Parameter Description Value
Peross Crossover Probability 0.7
Prmut Mutation Probability 0.1
pop Population Size 100
gens Maximum number of generations | 80
cont Number of individuals selected 4

to contest parent selection

and the parameters to be fitted were®

and predicted periods was atificially limited to exceed 1 x 1029,

*Even though | takes integer values for a non-rotating star, | was consid-
ered a real number, the integer part of which was taken in order to calculate
the frequencies.
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Figure 6.15: The equivalent of figure 6.2, but for the non-
rotating polytrope described in this section.

Parameter Description Range
l; [-value of the 7th mode 1-3
n Polytropic index 2—14
Fo M. Frequency Scaling 0.1-1.1
Mo R
Results are displayed in figures 6.15 to 6.16. Note that diver-
sity has not been enforced here, as su table diversity cutoffs will

be investigated later.

It can immediately be seen from these figures that the toy
model results (strongly encouraging using Elitism and suggestive
of using Averaging and the Raw Suitability score) carry over into
this problem. Therefore they are now adopted.
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Figure 6.16: The equivalent of figure 6.3, but for the non-
rotating polytrope.
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Figure 6.17: Convergence graph for the non-rotating poly-
trope described in 6.3.2.

6.3.2 RESTRICTING THE SEARCH RANGE

It is not the case that we shall have no information on the location
of a given star to be modelled in the H-R diagram: we shall have
fairly accurate values both of its luminosity and of its effective
temperature. These can be related to a star’s age, mass and
radius.® This information thus puts a fairly tight constraint on

the frecuencvy scaline To model Hms

11 n restrict canreh
vails A2 4 V] oo AN diANJAC L ULl
s S J o

Call resirict uue scarcna

range of the frequency to \/(R3 M, )/(Rf o) € (0.3509,0.4286)
(equivalent to assuming the values of (M*, R,) = (1.2,2) are in

error by 5%). The result of such a search is shown in figure 6.17.

Figure 6.18 shows the results of a further search with this re-
duced search range in the frequency scaling, but investigating the
effects instead searching for /; in the range (1,10). The contrast
in rate of convergence and closeness of fit between figures 6.17
and 6.18 is considerable: both results are drastically improved
by having a reduced search range, strongly suggesting that any
reduction we can safely achieve in the search range would prove
favourable.

6 Albeit loosely, and often the effects of rotation, which we see are reason-
ably important, are often neglected.
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Figure 6.18: As for figure 6.17, but with the large-I range.

6.3.3 FITNESS CRITERION FOR POLYTROPES

The figures analogous to the top left panel of figure 6.16 and
figure 6.17, but from using a fitness function of the form”

-1

(w_l —wi )2
F o= j : model, scaled observed, scaled
-1
u)observed, scaled
-1

Z (wmodel, scaled ™ Wobserved, scaled)2 , (65)

I

2
Whodel, scaledWobserved, scaled

are figures 6.19 and 6.20. The form of these graphs is very similar
to those of their analogues under the original suitability formula;
thus, choice of suitability formula has no great influence on the
convergence speed. However, making the snitability formula de-
pendent on periods rather than on frequencies can hugely help
for trying to match low-frequency modes, especially if one is not
searching in a narrow range of parameters, in particular a nar-
row range of acceptable /GM/R3. This can be seen easily if we
consider the fact that the period spacing of g modes tends to an

TLe. using periods instead of frequencies.
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Figure 6.19: The equivalent of the top left panel of figure
6.16, but using the alternative suitability formula of 6.3.3.

asymptotic limit £p/+/1(l + 1) with increasing radial order k, for
a mode with spherical harmonic degree [ and, for example, F, to
be found in Mullan (1989) for polytropes, including?:

Polytropic Index | P (/s)
2.0 11652.8
2.5 6112.6
3.0 3496.5
3.5 1926.9
4.0 915.0

The asymptotic formula shows clearly that the g-mode spec-
trum becomes more dense as k increases. Thus, local minima are
much more easily found for high scalings /GM /R3, as, for high
values, the raw frequencies are converted into lower scaled fre-
quencies that are easier to find good matches for. It is thus impor-
tant, when fitting such low-frequency data, to use a period-based
search, and to consider carefully the observational constraints
upon M and R before beginning such a search.

8Periods have been scaled by a standard frequency of 99.778uHz
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Figure 6.20: The equivalent of figure 6.17, but using the al-

fnrnafivu anita ;1;1“7 formula of 6.3.3
vernatvive sultatllly iormuia Of 8.8.0.

6.3.4 DIVERSITY CUTOFFS

Now that we have seen the advantages of Elitism, Averaging and
Raw Suitability, we shall investigate the effects of enforcing di-
versity in obtaining a fitness value (using equation (6.5) to define
fitness) above 0.13527 (compare figure 6.20), 0.15, and 0.2. We
defined the diversity of the population by a standard-deviation-

+vne meaanre hut with the Aiﬂ‘nrnncn of nanh oiven narameter
UJ y\.l RALCI AL \J, WA V) Yvaivili VAL ULV LULLUY UL U SO = 3 61 AAYE =8 .b’ L CURLENS UL

from the mean weighted by a suitable linear factor that “stan-
dardizes” the width of each parameter range to one. The graph
of the number of generations needed is displayed in figure 6.21.
We see that the results — an improvement for low diversity
thresholds, and then an upturn in the number of generations

needed — similar to that found from the toy model.

6.3.5 ROTATING POLYTROPES

Having established good parameters to use for non-rotating poly-
tropes, we shall now look at the fitting of an artificial data set
in a “hare-and-hounds” exercise for the rotating polytropes de-
scribed in chapters 3 to 5, considering only the O(f?) change.
The following parameters were used:
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Figure 6.21: Left: The equivalent of figure 6.17, but using the

alternative suitability formula of 6.3.3; the number of genera-
tions required to reach diversity cutoffs of 0 13, 0.137, 0.139
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0.141, 0.143, 0.145 are denoted by black dots, red asterlsks,
green pluses, blue diamonds, red triangles and green squares
respectively. As having a diversity cutoff of between 0.7 and
1.2 seems to be the area of interest, the right-hand panel
shows a blow-up of this region with more points (same key).
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Parameter Value
Peross 0.7
Pmut 0.1
pop 100
gens 300
cont 4
n 3
VGM/R3 | 0.3873 \/GMg/RS
f 0.005

with a fitness function:

F = ( 2 : (wmodel, scaled — Wobserved, scaled

/;72

&%

model, scaled®observed, scaled

)2)-1 . (6.6)

We sought to fit the following L? ~ 6, m = 2 data:®

Wunscaled

Radial Order

0.34445
0.36232
0.40431
0.45744

18
17
15
13

by varying the following parameters:

9 As notes to the reader, the f value given is equivalent to the Sun being a
solid body rotator with a period of = 3.6 days, and the frequencies to fit are
calculated also to an accuracy of O(f?). However, the given frequencies were
calculated with 4000 mesh points, whereas the genetic algorithm evaluations
are using only 400 to reduce computational demands. Richardson extrapo-
lation was not employed to refine the search, as we are aiming to establish a
fully automated search, as mentioned previously.
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Parameter Range
n 25—3.5
3
VM 10,351 — 0.429
f 0.0025 — 0.01

Some initial runs suggested that a diversity cutoff'® value of 0.35
was suitable.

The convergence of the fitness function, the value of n, the
value of \/(R%M,)/(R3Mg) and the value of f for the best fit
individual and the average over the population, are shown in
figure 6.22. As can be seen, the convergence is extremely rapid
to begin with; most of the parameters are fitted very accurately
by both the average and most-well-fit individual. For the rotation
rate, the average fits the data well, but a spurious local minimum
is found after 23 generations for the most-well-fit individual. This
is an example of an important fact when employing elitism: that
we should be aware that the most elite individual is not, by right,
indicative of the global minimum, and hence we should be aware
of all the information contained in the population reached at the
last generation. This may be a contributing factor in the amount
of discussion over the exact fraction of crystallisation in the white-
dwarf star BPM 37093. This (whether the crystallisation fraction
of BPM 37093 is large or small) is an area disagreed over in recent
months, due to confusion between calling something a most-well-
fit individual found in a run, and calling the fit found a conclusive
model of the star in question.

'9Defining the diversity of the population as a standard-deviation-type
measure, but again with the difference of given parameters from the mean
weighted by a linear factor to “standardise” the width of each parameter
range to 1.
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Figure 6.22: The convergence of: (a) the fitness function, (b)

the polytropic index, n, (c) the scaling V/(R%J‘vf*) J(REM),
and (d) the scaled rotation rate, f. The green denotes the
“unknown” values of the original parameters, the most-well-
fit individual is shown in black, and the average of the gene
pool in red. Only the first 40 generations are shown, to con-
centrate on the early behaviour — the values shown are re-
tained for many further generations.
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6.4 CONCLUSIONS

We have seen that genetic algorithms provide a rapid fit to data
in multi-dimensional parameter spaces. They are also well suited
to the problem of forward modelling, which is the form the prob-
lem takes when fitting asteroseismic data, as was shown at the
beginning of this chapter. This strongly encourages the use of
genetic algorithms in fitting asteroseismic data, seeking to fit,
amongst other parameters, the rotation rate. As a given shift in
frequency can often have a number of causes, this result becomes
more pertinent here.

Once we have decided to adopt the genetic-algorithmic ap-
proach to fitting our data, it is necessary to investigate how to
improve our convergence speed. By fitting data from a known
model whilst altering some of the parameters and the function-
ing of several internal subroutines of the code, we are able to
increase our convergence speed greatly, which was the purpose of
employing the genetic algorithm in the first case. This is very im-
portant when we move to the non-barotropic models of chapters
7 and 8 when model evaluations are far more computationally
expensive.

We have seen the superiority of Elitism, Averaging and a use
of the raw suitability score, as well as the quantitative effects of
enforcing the diversity of the gene-pool, especially for the problem
of fitting pulsational data.

This chapter provides quantifiable evidence of the superiority
of these factors, giving confidence in the use of these methods
and the choice of parameter values.
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Chapter 7

THEORY OF NON-BAROTROPIC
EQUATIONS OF STATE

“If we knew all the laws of Nature, we should need only one fact,
or the description of one actual phenomenon, to infer all the
particular results at that point.” — Henry David Thoreau

We developed the methods of chapters 3 and 4 for barotropic
equations of state. Even though the adoption of this equation
of state simplifies the mathematics substantially, whilst retaining
most of the basic dynamics, we must generalize the theory to
more complicated equations of state in order to model real stars,
such as the y-Doradus variables discussed in the next chapter.
We shall do this by first considering how, and to what extent, we
can retain the results of chapters 3 and 4, and then by considering
how much these results need to be changed.

7.1 GENERALIZATION OF PREVIOUS CHAPTERS

We seek to generalize the TA, which requires the components of
the momentum equation to take the form

( _1o _ pav \
h1 Ox §L1 ox
F.(¢) = ke | (7.1)

-
\ “moa  /
which then allows p’ and p’ to have the same angular form, as is
suggested by the relation
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/ /

2y (5’— +(€- V)A) . (7.2)
P P

The requirement on the lhs of the momentum equation requires
the oblate co-ordinate system to follow the surfaces of constant V.
We know that the surfaces of p, p and T" do not follow the same
distortion for a non-barotropic equation of state (in fact, they
have been listed in terms of decreasing oblateness of surfaces for
a given rotation rate); but how does the surface of constant V
relate to these?

7.1.1 HYDROSTATICS FOR A CONSERVATIVE ROTATION LAW

If we look at a general conservative rotation law (i.e. one for
which the centrifugal force can be expressed as the gradient of
a potential: Frox = Vx for some x), then we can absorb this
rotation into a modified potential V' = ® + x. Then, searching
for putative hydrostatics, we arrive at

Vp = —-pVV | (7.3)

giving that our surfaces of constant V' and constant p must co-
incide'. Physically, we see that this is what we would expect to
avoid unbalanced forces on the fluid.

This obviously neglects the Eddington-Sweet flow; if we were
to investigate the size of the meridional circulation?, neglecting
inertial terms, (u.V)w, and viscous friction, we would arrive at

LR? p AQ
anvre <Oéo + 505—5;)‘) : (7.4)

1This is due, in part, to the fact, mentioned in chapter 4, that the metric
factors h; come in as identical multiplicative factors on both sides.
A good summary is available in the book by Tassoul (2000).

uy| = fQ
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where ag and (3, are constants of order unity, g is the mean den-
sity, and A( is a measure of the prescribed nonuniform rotation
rate; thus the magnitude of Eddington-Swect flow is very small
indeed. It is also worth noting that the Eddington-Sweet flow
will advect angular momentum and destroy the irrotational na-
ture of the centrifugal force, causing a small perturbation to the
background state.

Once this neglection of E-S flow is accepted, then, by equation
(7.3) and a mathematically consistent distortion of other stellar
parameters®, a consistent non-rotating stellar model of (p, p, ®)
will be a consistent rotating stellar model of (p, p, V), although
not for the same overall stellar parameters®. Then the modified
Poisson equation,

V¥V =d4nGp+ Vix, (7.5)

once V? is expanded in terms of the metric coefficients (equa-
tions (3.8) to (3.10)) gives us formulae for the distortion mapping
(equations (3.1) and (3.2)) as in chapter 3, and we can continue,
to this order, as in chapter 4 for the distortions.

The two immediate questions arising from this theory are then
those of how do we avoid Von-Zeipel’s paradox arising from equa-
(7 23
NED)

ion . and where is the surface of a rotating star?

7.1.2 VON-ZEIPEL'S PARADOX REVISITED

Taking the curl of equation (7.3) gives

s . S | SNSRI (I . -~ ~ mivioa A 1 A aonvrtann
forcing the surfaces of constant p to coincide with the surfaces

3For example the temperature distribution that will be touched upon in
the next subsection.

4See, for example, the mass alteration section of chapter 3.

131



7.1 GENERALIZATION OF PREVIOUS CHAPTERS

of constant V' and p. The question then arises of how do we
consistently avoid Von-Zeipel’s paradox of this reasoning arriv-
ing at needing the energy generation to explicitly depend upon
rotation?

To do this consistently, we simply require that VX s 0; then
we are not allowed to say that the equation of state gives the
surfaces of constant temperature (and hence opacity, then heat
flux) to coincide again with surfaces of constant V, p and p.

In fact, to maintain mathematical consistency, what is needed
for the behaviour of X is, e.g. for a gas pressure equation of state,

T = <~7§—p> u, (7.7)

where 1 is the mean molecular weight (not to be confused with
cosf). Thus we need the surfaces of constant y and constant T
to coincide (as the surfaces of constant p and p do in our artificial
state).

From researches into the lithium depletion (Théado and Vau-
clair (2003a)) we know that the Eddington-Sweet flow will bend p
gradients in a suitable way to cause this. However, the timescale
to create the initial u gradients in an initially homogeneous star
(outside of the core) is that of gravitational settling, which is pro-
hibitively long. Thus it is important to note that this neglection
of E-S flow is not what we expect to happen, but is at least a
mathematically consistent starting point.

For the model to be fully consistent, we need V-F = 0 (where
F is the heat flux), which gives the required T distortion for a
given basis choice, using the formula F = xVT. Hence, for an
electron-scattering opacity:

VT =0 = VT =0, (7.8)

and for Kramer’s opacity:
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pV°T + (Vp- VT - 3g5§;1v:r[2) ~0, (7.9)

which we use to define the shape of T'(x, n), which it is convenient
to express as

T(z,n) =T(x)+ Y [*ToiPuln) . (7.10)

>0, a>1

7.1.3 THE SURFACE OF THE STAR

We have justified carrying across a non-rotating (p, p, ®) profile
as a consistent starting (p, p, V) profile in a rotating star, but
we do not have surfaces of temperature 7' and mean molecular
weight p coinciding with these (p, p, V') surfaces. Thus we should
take some time to consider where the surface of our rotating star
is.

We can define the surface of a star by using a grey-atmosphere
approximation:

where 7. ig denotin
W e Iy 18 aenotly

1105

this basis

p = pVVdzr = pdz, (7.12)
in which V is a vacuum solution. Here, M, is the mass that the
star would have if it where not rotating, having the given (p, p, ®)
profile. This gives the equivalent grey-atmosphere condition as

2GM,y1
== = 7.13
3 X2 R’ ( )

which is the same as for a non-rotating star, except that the
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mass used is not the true mass of the star (as just discussed,
we are using M, instead of M), and & is an opacity average at
a specific n. Whilst this slight alteration in the lower limit of
integration might cause us some worry, we note that the seismic
surface and photosphere do not have to be in the same place, and
hence we view the adoption of a non-rotating (p, p, ®) profile as
a consistent starting (p, p, V') profile in a rotating star as valid,
as the alteration introduced here is negligable.

7.2 STRUCTURE FROM MILD NON-CONSERVATIVE

ROTATION LAWS
7.2.1 MOTIVATION
Whilst conservative rotation laws are easily tractable mathemat-
ically, an Eddington-Sweet flow will cause an angular-momentum
and temperature flux through the star, causing the rotation law

to become non-conservative. For instance, an approximate rota-
tion law for the Sun is given by:

Q(r,0) = Q. + % [1+ erf(A)] (%(6) — Q) | (7.14)

O = Qeqfl = 0op® —agt), A= —=, (7.15)

in which 7, = 0.713 R is the radius at the bottom of the con-
vective zone and w = 0.025 Rg, is the tachocline thickness; (1)
is the surface angular velocity, which is parametrized in terms of
the equatorial angular velocity 2o, and the coefficients cvy and ay
whose values are 0.14 and 0.16, and Q. = 0.93Qq is the angular
velocity of the core.

For other stars, direct starspot tracking (Collier Cameron

et al., 2002) gives a best-fit surface rotation rate of
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Q) = Qoq — Qpsin®d (7.16)

with (o, = 12.2434 rad day~! and Qy, = 0.0564 rad day~*.

Moving from G-type stars to A- and F-type, it has been found
(Reiners and Royer, 2004; Reiners and Schmitt, 2003) that fitting
a rotation law of the type

Q(8) = Qpquater(1 — arsin®0) (7.17)

to broadening profiles (presumably) caused by the rotation, that
there are stars for which the fit is not consistent with o = 0.
Hence we need to explore deviations from a conservative rotation
law. However, it is also worth noting that in all these examples,
a never exceeds 1/3, and is often much smaller. This encourages
us to view the magnitude of differential rotation, AS), as signifi-
cantly smaller than the magnitude of solid body rotation, €2. The

fact that for modest-to-rapid rotation the differential rotation is

not strong is also found in numerical simulations — for example
Kueker and Ruediger (2004).

7.2.2 TFORMULATION OF THE PROBLEM

U 1 1L VY

Motivated by this, we will lock at rotation laws of the form

Q =Q + e (7.18)

with €. and Q. denoting the conservative and non-conservative
parts of rotation respectively. We consider these two components
of rotation to be co-axial and of the same magnitude, with € small
enough to be viewed as a perturbative parameter. Thus we can

Q = Q(1+eb), (7.19)

with b a function of x and 7.
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In the distorted co-ordinate basis given by the conservative
part of rotation, we have to order f*, after scaling:

Vi = —pVV +ef’5(2+ eb)(v/1 - nPe, — ne,) ,(7.20)

VWV = j+Vix, (7.21)

with x oc f2. We can then deal with ¢ in a perturbative manner;
expanding

p = po(x) + frepi(z,n) + f2Pa(z,m) + ... | (7.22)

and other variables likewise, we have, to order fZ,

Vopi = —pVoVo — goVoVi
+ 2p0(v/1—n%e, — ne,)b, (7.23)
Vihi = (7.24)

with the operator V being the V operator correct to O(f°); this
is because the distortion to the metric coefficients due to our
change of basis contains no terms in f2e.

Then, motivated by the form of the centrifugal force, we fur-
ther expand p;(z,n) (and the other variables) in terms of Legen-
dre polynomials:

ﬁl(xa 77) = Zﬁl,S(:E)PQS(n) ) (7'25)

520

and then substitute in the equations of motion, equating coeffi-
cients of these Legendre polynomials to give
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a251,3
Oz

+po(4s + 1) /
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72 0z oz

(1 - 53,0)171,5

_ (ds+1) [t
" os(2s + 1) /_1

Likewise, to order f2¢2,

1

8]52,5
ox

b
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[ oV oW,

- \plsa + Po e

\/1— PZS d,’?)

25(2s + 1)) 171’5 = p1s

(1 - 53,0)/60‘71,3

(1 =" )nPs(n)dn .

(1= n*)nPs(n)dn .

(7.26)

(7.27)

(7.28)

(7.29)

~~~
~1
(V]
o

~—

(7.31)

These equations can then be combined to yield second-order dif-
ferential equations for V; ¢ for non-zero s, giving

(Be(alm) — ) -g)0.
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LoV
= — .[1 {pongg(%%—l)]ﬁ(n)

4s+1 oy s O]
+m(l -7 )st(n)%(pob)}dn, (7.32)

(%_‘ZJ (%%(ﬁ%) - 2525+ 1)) - gg) Vas

1 /(. on
—_ - 5/ {pona—;(4S+1)st(77)

1
—% nQEPL(mi(ﬁgb%ldn . (7.33)
2s(4s+1)" e/ A A

For boundary conditions, physically we see that we have a
choice of the central value of the potential alteration which can
be absorbed into setting the potential at infinity to zero, and
also that the potential must match onto a vacuum solution at
the surface of the star. Mathematically, these translate to

Vis(0) = 0, (7.34)
0 ~ 25+ 1~
‘—‘Vgs s = - ‘/is s) 7.
() V() (7.35)

where x = z, is the surface of the star.

7.2.3 SPHERICALLY SYMMETRIC DISTORTION

To calculate the spherically symmetric component of the distor-
tion of the background state due to non-conservative rotation
equivalents), but both sides of equation (7.28) are identically zero,
so this equation cannot close the mathematical system. We are
left with a number of ways to proceed.
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Gough and Thompson (1990), when considering a very simi-
Jar problem concerning the effect of rotation in the Sun, took a
two-region model and perturbed the structure equations in the
outer region due to the force generated by a quadrapole toroidal
magnetic field

. d
B =10, 0, a(r)@Pk(cosﬁ)} , (7.36)

and perturbed the hydrogen abundance and mixing-length pa-
rameter, ¢, to calibrate their model to solar luminosity and ra-
dius. However, for other stars, we do not have the accuracy of
these parameters that we do for the Sun. Owing to this lack of
accuracy of data, there is a large amount of freedom with how we
may choose to close our mathematical system. Exploiting this
freedom, and in order to avoid the possibility of the correction to
N2 being larger than the value of N? at any point in the star, we
fix the radial profiles of —gN? and 7, to calculate p;o and p1,
and use the definition of —gN? to close the system, so

which closes the system. It is no longer sensible to eliminate p1,0
and p1o in favour of Vig, so we instead eliminate Vi and pig
in favour of fyo. For the outer boundary condition, we enforce
p10 = 0 at the surface.

The perturbations to order f?¢? are calculated similarly.
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7.3 CORRECTING THE FREQUENCIES

This alteration to the structure changes the frequencies to a
greater level than O(f%), which we should therefore consider.

Again, we can exploit the variational principle formulation of the
equations for oscillations in a distorted star to calculate this.

7.3.1 BACKGROUND FLOW

Unlike in chapter 4, we may now have a background flow, which
we shall denote uo, so some of the equations (4.10) to (4.18) have

to be changed to

CLiaiixClh

B.(§) = 2ipo x &+ 2ipp(uy - V)E | (7.39)
T.(&) = poluo-V)(ao- V)E+ 20002 x ((ug - V)E)
+ P x (A xE). (7.40)

We absorb all of the solid-body rotation into the rotation 2
of our co-ordinate system and therefore set®
u =(Q-Q) xr. (7.41)

Therefore we have to view B.(£) (or Bry.(£)) and T.(€) in equa-
tion as being perturbed to, for example,

B.(§) — B.(§) + ApowB.(£) (7.42)
with
ADgowB.(§) = 2ipp(ug- V)€, (7.43)
AﬂowT-(Q = ﬂo(uo . V)(UQ : V)§

SWe have neglected, owing to timescale, the direct effect of Eddington-
Sweet flow on the pulsation, as given earlier in the chapter.
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2000 x ((wg - V)E) . (7.44)

These terms have a directional derivative ug - V in them. Owing
to the definition of ug, and the choice of axis, we can say that

U = U€y , (7.45)
0
=uy-V = —;{25—5 ) (746)
3
- 2 (7.47)
hs3

assuming an ¢™? dependence to arrive at equation (7.47), which
assumption of ¢ dependence we shall adopt. Therefore, the size
of this term can be easily considered as

[imu|
lhsl

@/ T=P)"hs|

We can see from equation (3.10) that |hs| =~ |z4/1 —n?|, so
we must be certain that |€ — €] is small enough for this term to
be viewed as a perturbation. We can investigate this by looking
at the first-order change in frequencies that this alteration causes,

by using

lug - V| (7.48)

2

£)
+ C.(8) =0, (7.50)

~

[, A N2 A (N { A YA b A )\
(Wo + Afoww )" AAE) T+ (Wo T+ Afowl)(DTA + RAowD ).

which gives to first order in Agey,
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(€, Apoww(2wo A + B).(€)) + wy (€, AgowB.(§)) =0, (7.51)
<£7AﬂowB(£)>
206, 06)

the form of which equation should not surprise us: equation (7.52)
simply says that the change that non-solid-body rotation causes
to the frequency is a weighted mean (via the size of uo) of the
deviation from solid-body rotation around areas where |€| is large,
as we would expect physically.

= Aﬂoww = —

(7.52)

7.3.2 DISTORTION OF THE BACKGROUND STATE

We also need to take account of the background distortion of the
star in the calculation of frequencies. This distortion is of orders
f?e and f2€%, so, as we have said, ¢ is small: thus, we do not
have to calculate any variation to the eigenfunction to correct
the frequencies up to O(f*) as these corrections will only affect
the frequencies at order O(f%4€?). We shall denote the changes to
orders € and €? as A, and A respectively.

Also, owing to the fact that e is small, the combination of
perturbed structure along with structure/eigenfunction perturba-
tions (for instance, g1 ,0€) are also too small to produce changes
at the level at which we are looking, greatly simplifying the prob-
lem. Likewise we do not have to consider A T.(€) or ApT.(£)
as T.(§) is already of order f2.

Therefore the perturbations to the operators that we need to
consider are

AA = ) pPu(nl, (7.53)
l
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ABE) = Y (2puPum g

4

A

+ ZpuPuln)(uo- V)E) (754)
APE) = 3 Puln) (vs (1= )P0 Vs €]~ priVel(Vo6)
1

A <s'vs>vsp1,z) , (7.55)

AV(E) = D (pEV)VViu+pril€VIVW) - (7.56)

The importance of the second term in A.B.(€) can vary in im-
portance, as discussed in the previous subsection.
These perturbations to the operators give

— <£a (ngeA + WOAEB + Aec) (£)>
A, = NN , (7.57)

and similarly for Ag.
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Chapter 8
v-DORADUS STARS

“He determines the number of the stars and calls them each by
name.” — Psalm 147, verse 4

8.1 AN INTRODUCTION TO W—DORADUS STARS
8.1.1 THEIR DISCOVERY AND THEIR PULSATIONS

The class of y-Doradus stars is made up of g-mode pulsators oc-
cupying a small region of the H-R diagram (see figure 1.1; and
figure 8.1 for a magnitude verses colour diagram) just above the
Sun on the main sequence. They are of a spectral type around
F0, they have pulsational periods of the order of 1 day and am-
plitudes of variability in the V band of the order of a few tens of
millimagnitudes.

As was mentioned in the introduction, y-Doradus stars as a
group of pulsators are relatively recently discovered. Many of
these discoveries were serendipitous, as the general region that
we now know them to occupy (figure 8.1) was outside known
instability strips, and therefore many of these stars were picked
for use as comparison stars', and only then found to be variable.

The identification of these variable stars as a class of pulsators
largely post-dates? the discovery of many of the individual stars

'For example, HD 164615, mentioned later, was picked for use as a com-
parison star for the Ap star HD 165474.

2In fact, as can be seen by the name of the star after which this class of
star is named, the discovery of the individual star and the discovery of the
nature of its pulsations can differ by millennial
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that we now know to be variable. Abt et al. (1983) discovered
the variability of HD 164165, but attributed the variability to
the star being spotted. Such a hypothesis existed for many stars,
until it was realized (Balona et al. (1994b) for v Doradus itself)
that large overlapping spots and incredibly strong differential ro-
tation would be required to be consistent with the observed light
and colour amplitudes. Kaye and Strassmeier (1998) looked for
signatures of strong magnetic activity, which would support the
starspot hypothesis, in the Ca II H & K lines, and found none,
further suggesting the identification of v-Doradus variables as
(non-radial) pulsators.

After it was realized that the variability was due to pulsa-
tion, models quickly showed that the pulsations must be high-
radial-order g-mode pulsations, because of the low values of the
observed periods. Exact radial orders have not been determined,
although fitting of the spherical harmonic degrees (I,m) has been
attempted, for example by Balona et al. (1996) for v Doradus it-
self.?

After the classification of these stars as a separate group of
pulsators, systematic searches have begun. For instance, Handler
(1999) examined the Hipparcos database for variables with spec-
tral types of A-G, periods between 0.3 and 10 days, amplitudes of
pulsation less the 0.2 mmag, and brighter than H, = 8.5 mag at
minimum, which were not classified as supergiants. After this re-
finement, individual lightcurves were examined and obvious non-
7-Doradus stars (for example, eclipsing binaries, low-amplitude
Cepheids) were removed from the data set.

Subsequently a period search was performed, looking for vari-
ations on a time-scale longer than that of the period of the funda-

3This identification was based upon a first order expansion in {}/w for
spherical harmonics. It was noted that with /w > 0.55, this was not expect
to be a good fit, but thought that the “original” spherical harmonic would
still be dominant. For more on this, see chapter 9.
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2
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Figure 8.1: Location of 42 confirmed ~y-Doradus stars (and
binary components for three of them) in the H-R diagram.
Filled circles denote stars with well determined locations, and
other stars are marked as open circles. HD 209295 is marked
as the cross. The dotted lines indicate the boundaries of the
5-Scuti instability strip, dashed lines the observed domain of
~-Doradus stars, and triple-dot-dashed lines the theoretical
domain of y-Doradus stars, from Warner et al. (2003) (taken

from Henry and Fekel, 2003).
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mental radial mode. This further refinement of the data set left
70 candidates which were further sub-divided into “prime” and
“other” candidates, according to whether the stars were multi-
periodic, with clearly separated, unambiguous, periods, or not.
The resulting list, and further updates?, can be found at the fol-
lowing URL: www.astro.univie.ac.at/~gerald/gdorlist.html .

It is on the stars in this list (occasionally with some additions)
that follow-up observations are often carried out, such as those by
Henry and Fekel (2003). In these searches, after reliably obtaining
magnitude readings in B and V filters, a least-squares fitting of
sinusoids was performed. The frequency fit achieved was derived
iteratively. At each iteration only previously detected frequencies
were specified, and the mean brightness, a trial frequency, all
amplitudes and all phases were fitted. The fractional reduction
of the variance versus trial frequency was plotted at each iteration
to determine the next frequency. This method proves very good
at detecting multiple frequencies without pre-whitening, proving
an advantage, especially in the low-frequency domain.

The results of an example of this analysis can be seen in figure
8.2 for the star HD 152896, which will be discussed later in more
detail.

8.1.2 THE OVERLAP OF y-DORADUS AND #-SCUTI CLASSES

The region of parameter space occupied by v-Doradus variables
overlaps with that occupied by d-Scuti stars (which are evolved
low-radial-order p-mode pulsators), as can be seen in figure 8.1.
Because of this overlap, at least one careful search (by Handler
and Shobbrook, 2002) has been made to find stars exhibiting
both types of pulsation; apart from the star HD 209295, which is
peculiar in the sense that it is a close binary (and therefore the

#*Note that list is no longer (from 25th September 2002) updated.
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Figure 8.2: Left panel: Least-squares spectra of HD 152896
(Johnson B data set), showing the results of progressively
fixing detected frequencies (denoted by the arrows). Right
panel: Johnson B photometric data for HD 152896, phased
with the frequencies from the left-hand panel; for each graph,
the data have been pre-whitened to remove the other known
frequency (taken from Henry and Fekel, 2003).

“~-Doradus pulsations” might well be tidally excited oscillations),
none have been found.

The authors showed also that, although the pulsation peri-
ods of the longest-period §-Scuti stars are very close to those of
the shortest-period «-Doradus stars, the two types of pulsations
(and hence pulsators) can be quite clearly separated if instead
the pulsation constant @, calculated as®

[
C
o
O
1
s}
<t
Yt
O
09
«
oy
p—
]
=
[

+logTeg +log P, —6.456 , (8.1)

5Equation (8.1) is simply from the equation Q = P(p/px)Y? (i.e. what
the period would be for tne Sun undergoing such a pulsation) using the
relations p o« g/R, L o« R?*T%, and My = —2.5log(L) + C, to obtain an
observationally tractable form Hence the constant —6.456 is chosen such
that the equation collapses to log Q) = log P for the Sun.

\
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Figure 8.3: The number (known at the time of publication)
of ¢-Scuti stars (open histogram bars) and ~-Doradus stars
against pulsation period (left panel) and pulsation constant,

@ (right panel) (taken from Handler and Shobbrook, 2002).

is used. This fact is shown in figure 8.3, and is as would be
expected due to the differing nature of the two types of pulsations,
and allows us to define y-Doradus pulsations quite clearly.

8.1.3 THEIR DRIVING

As may be expected, the driving mechanisms for these two groups
of stars differ; whilst §-Scuti stars are driven by the x mecha-
nism, models of y-Doradus stars are found computationally (as
proposed by Guzik et al., 2000) to be driven by what is known as
“convective blocking”. For this driving mechanism, the local con-
vective timescale is large enough compared to the pulsational pe-
riod that the convection cannot adjust completely to the change
in luminosity due to the pulsation at the base of the convection
zone, resulting in driving of the pulsation. This is seen to occur
in computer codes modelling stars, but remains in question as to
the exact physics that is going on.

This driving of computational models provides predictions of
the edges of the instability region that can be tested; although
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Figure 8.4: H-R diagram showing theoretical (dashed lines)
and observed (dot-dash lines) regions in which models of stars
are unstable to y-Doradus pulsations. The red edge of the -
Scuti instability strip is show by the triple-dot-dash line. Evo-
lutionary tracks for 1.45, 1.55 and 1.75 Mg stars are shown

by the dotted lines, with models that are unstable to [ =1

pulsation driving shown in bold (taken from Warner et al.,
2003).

the number of v-Doradus stars is reasonably small (42), it is in
rough agreement with the current data, as is shown in figure
8.1. To calculate this theoretical instability region, Warner et al.
(2003) calculated approximately 15,000 models, and investigated
which models had growth rates (AKE/KE per period) greater
than 1077 per period for modes in the period 0.3-3 days (for [ in
{0,1,2,3,4,5}). The theoretical and observed instability regions
are again displayed in figure 8.4, with evolutionary tracks for

1 AE 1 . 1ti =
1.45, 1.55, and 1.75 Mg stars (for a solar composition of Y=0.28,

As can be seen, stars of non-negligible range of masses will
pass through the theoretical instability strip during some early
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era of their evolution. This result is in fairly good concordance
with the observations of v-Doradus stars as young stars of the re-
quired mass range. However, for the exact placement of the theo-
retical instability strip, we should note that these results have all
been obtained using the solar composition of Y=0.28 and Z=0.02.
A changing of the metallicity would cause the red and blue edges
to shift slightly.

8.1.4 THE CHALLENGE

Some y-Doradus stars, along with their values of the parameter
v, were displayed in chapter 1; it is the modelling of this type
of fast-rotating, low-frequency, g-mode pulsator that has been
driving the investigation of pulsations for which v is not small
enough to be treated as a perturbative parameter. Owing to the
fact that the pulsations of y-Doradus stars are fairly-high-order
g modes, the modelling of these modes is exactly where we would
expect the realm of validity of the generalized TA to be.

We shall therefore proceed to give an example of the implica-
tions of the theory developed in previous chapters to a model of

a y-Doradus star.

In order to both examine an individual star and construct a model
of it, we must, arbitrarily select a star. HD 152896 (= V645
Her), an F1 variable star of V-band magnitude around 7.6, was
chosen (from the paper by Henry and Fekel, 2003), as it is a single
star exhibiting more than one mode of pulsation, with no cited
possible confusion over aliasing. The properties of this star are
displayed in table 8.1.

As can be seen from table 8.1, the data are of very high pre-
cision; from now on, we shall adopt the B-band frequencies for
the fifth significant figure to calculate parameters displayed and
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Parameter Value
R/Rg 1.5
T /T 5.6

L/Le
wy (V band, day™') | 1.3384 +0.0002
wy (V band, day™) | 1.2972 +0.0002
1 (B band, day T) | 1.3385 £0.0002
wy (B band, day™') | 1.2971 +0.0003
vsing 50 km s+

m. 1.1 "F\1

Table 8.1: Table of derived properties of

TTﬁ

HD 152896.

for the sake of brevity we shall drop the errors. As can be seen
from figure 8.2, after the two frequencies have been fitted, there
is a strong indication of further periodicities at low frequencies,
but without any obvious period(s). This suggestion of further
variability is confirmed by the fact that the rms of the resid-
ual variation after the two periods given in table 8.1 have been
removed is 0.016 mag. However, we shall not postulate about
further frequencies.

The stellar parameter fit mentioned in subsection 8.2.1 gave
the star a mass of M = 1.55 Mg,° giving a natural frequency of
VGEM/R? =425 x107* s71 = 36.7 day™!. Thus, depending on
the inclination angle, ¢, values of the parameters f and v} are
shown in table 8.2. The choice of the B-band values, with this
natural frequency, gives the scaled” frequencies as w=(3.6436,
3.5309) x 1072, in the non-rotating frame.

However, should we have m = 1, then the frequencies in the
rotating frame (the natural frame of the star) would be those

o O.a.

6Note that a star of this mass value spends a relatively long time in the
v-Doradus instability strip given in figure 8.4.
7Scaled by the natural frequency.
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i Jolkms™h) | QY] f v | v

10 288 3.793 | 0.103 | 5.67 | 5.85
20 146 1.925 | 0.052 | 2.88 | 2.97
30 100 1.317 | 0.036 | 1.97 | 2.03

40 77.8 1.025 | 0.028 | 1.53 | 1.58
50 65.3 0.860 | 0.023 | 1.28 | 1.33
60 o7.7 0.760 | 0.021 | 1.14 | 1.17
70 53.2 0.701 | 0.019 | 1.05 | 1.08
80 50.8 0.669 | 0.018 | 1.00 | 1.04
90 50.0 0.659 | 0.018 | 0.98 | 1.02

Table 8.2: Non-dimensional rotation parameters of HD
152896 for various inclination angles, i, assuming m = 0.

As can be seen from tables 8.2 and 8.3, the values of v, are
much too large, for any value of inclination angle 4, for an expan-
sion in £/w to be valid, regardless of a chosen (plausible) value
of m. We shall therefore proceed with a numerical model of this
star.

8.2 NUMERICAL MODEL USED
8.2.1 InNrTiaL FiT

To select the stellar parameters for our model, a star was picked
from the twelve y-Doradus discovered by Henry and Fekel (2003),

already mentioned, and then, from published L and R, a fit was
carried out using the STARS code® to ex

abundances, ages, and so forth.

4

tract masses, helium

8Using the updated opacities published by Eldridge and Tout (2004).
For this search, models were calculated using 499 mesh points, which proved
sufficient not to introduce large inaccuracy. The author thanks J. Eldridge
for help with this search.

154



v-DORADUS STARS

) f wy Wo 12! vy
101 0.103 | 0.134 | 0.139 | 1.48 | 1.49
20 | 0.052 { 0.089 | 0.088 | 1.18 | 1.20

30 1 0.036 | 0.072 | 0.071 | 0.99 | 1.01
40 | 0.028 | 0.064 | 0.063 | 0.87 | 0.88
50 | 0.023 | 0.060 | 0.059 | 0.78 | 0.80
60 | 0.021 | 0.057 | 0.056 | 0.72 | 0.74
70 | 0.019 | 0.056 | 0.054 | 0.69 | 0.70
80 | 0.018 | 0.055 | 0.054 | 0.67 | 0.68
90 | 0.018 | 0.054 | 0.053 | 0.66 | 0.67

Table 8.3: Non-dimensional rotation parameters of HD
152896 for various inclination angles, ¢, assuming m = 1.

There is an excess of parameters in this fit, which was tight-
ened considerably by assuming a solar metallicity, for ease of
opacity calculations. Since the two lists of v-Doradus variables
mentioned above include only L/Lg and R/Rg, the model given
by the STARS code provides a satisfactory fit? (i.e. within the
error bounds that this precision allows) to the data; by reduc-
ing the metallicity slightly, it is expected that a more precise fit
could be obtained. However, it is important to note that the
model was selected only as an example; therefore the fit provided
by the STARS code is adequate for our purposes.

8.2.1.1 THE CAMBRIDGE STELLAR EvOLUTION CODE, STARS
The STARS code is a short (less than 2000 lines of Fortran 77)

code to model the evolution of stars. It was originally written by
Eggleton (1971), with a large update by Pols et al. (1995), and
further minor refinements such as expanded opacity tables.

9The model star given by the fit has L/Lg = 5.595 and R/Rg = 1.549
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In common with many stellar evolution codes, it replaces
the equations governing stellar evolution (for example, equations
(1.1)-(1.10)) by appropriate difference equations and solves by
relaxation. The boundary conditions at the surface are of con-
servation of mass, black body emission and a grey atmosphere

(optical depth of 2), which are mathematically™

d . i
‘_d:rtE = Mwind + Mbinary ) (82)
L = 4rR*T4 (8.3)
29 L
FPos = ==[(1~- 8.4
& 3K ( LEdd) ( )

The centre of the star is modelled as an uniform spherical re-
gion (as opposed to an infinitesimal point), using mass conserva-
tion, the radius-density-mass relation, and the central luminosity,
translating to

dm

m = —EE, (85)
4 3

m = —7r'p, (8.6)
3]

L = (e=TSm, (8.7)

therefore it does not treat the (co-ordinate) singularity accurately.
The properties that make the STARS code unique amongst
stellar evolution code are:

e the use of a self-adaptive non-Lagrangian mesh (Gough
et al., 1975),

10Most symbols are as defined in chapter 1; Lyqgq, k, S denote the Edding-
ton luminosity, mesh point number and entropy respectively.
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e the treatment of both convective and semi-convective mix-
ing as a diffusion process (although it is not obvious that
this is correct), and

e the simultaneous and implicit solution of both the stellar
structure equations and the diffusion equations for chemical
composition; this both increases stability and means that
little or no human intervention is required to evolve a star.

8.2.1.2 ASSUMPTIONS OF THE STARS CODE

It should be noted that, in common with almost all stellar evo-
lution codes, makes following assumptions are made:

e the star is spherically symmetric; this property is assumed
in order to reduce the problem to one-dimension; a ma-
jor part of this thesis is devoted to finding ways to make
this assumption appropriately applicable when it would not
classically be so, i.e., the case of rapid rotation;

e the star is in local thermodynamic equilibrium; this as-
sumption does occasionally break down (for instance, in
the atmosphere of Wolf-Rayet stars), but should not do so
for the modelling we are dealing with here;

e the star is in hydrostatic equilibrium; again, this constraint
can be broken (for example, during rapid mass loss, M >
0.01M¢ yr™, or in burning in degenerate regions), but such
an event should not occur during the evolution modelled in

the search outlined above.

8.2.2 FINaL MODEL

The output of the STARS code is not adequate for pulsation
calculations (for instance, in its treatment of the centre of the
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star, where consistency of the second derivatives pressure, tem-
perature and the H and *He abundances matter for pulsation
calculations); because of this, the values found in this fit were
taken and placed into another stellar evolution code, written by
Jprgen Christensen-Dalsgaard!!, which was written in such a way
as to compute models which were adequate for pulsational calcu-
lations." This code also has an adaptive mesh, but importantly
uses log (m/M) as the independent variable (as opposed to mass,
which is used by the STARS code; here m is the mass interior
to the mesh-point, and M is the total mass), with a resulting al-
teration of the exact equations of stellar evolution and structure.
The inner boundary conditions are set by matching expansions
of mand L in p, T, X and X3 (the abundance of *He) to the
values of these variables. The outer boundary conditions are that
of black-body emission and matching the pressure to the pressure
obtained by integrating the equations of hydrostatic support in
the atmosphere, in the Eddington approximation, assuming grav-
ity to be constant.

The second stellar evolution code also outputs the variables®

r = r/R, (8.8)
m/M
1 = PER (89)

dinp

— 8.1
" (dmp)ad | (8.10)

" For more details than given here, see Christensen-Dalsgaard (1982). For
the sake of brevity, this stellar evolution code will be referred to as the
“second” stellar evolution code from now on.

2This is the code that produced the well-known model S in the paper
by Christensen-Dalsgaard et al. (1996). The author thanks G. Houdek for
providing the final model.

13Reproduced here for convenience.
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Va

V, = , (8.11)
B!
dlnp 1 dlnp
A = ——— 8.12
dr vodr ( )
dinm
— 8.13
v dinr ’ ( )

which are exactly what are used for the pulsational calculations,
as shown by equations (2.17) and (2.18).

Graphs of the pressure, density and temperature of the model
provided by the second stellar evolution code are shown in figure
8.5. The full properties of the model are displayed in table 8.4,
which can be seen to be very close to the original stellar parameter
values for HD 152896 given by the observers.

Parameter Value
R/Rg 1.500
M /Mg 1.550
L/Lg 5.630
(X,Z) (0.7017,0.02)
Tt 7257 K
Age 1.98x10° yr |

Table 8.4: Properties of the final model of HD 152896.

The stellar parameter values of the model calculated using the
second stellar evolution code is closer than those of the model
calculated using the STARS code, which used updated opacity
tables; however, as the second stellar evolution code uses very
similar input tables and equations to those used by the observers
to obtain their predictions of (and hence the relation between)
R/Rg & L/Lg, this is to be expected.
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Figure 8.5: Graphs of log T (left), and logp (right) against
log p for final model of HD 152896,

8.3 EIGENFREQUENCIES - TA

Now that we have our model of HD 152986, we can investigate
the effect of rotation on its pulsations. This investigation is ac-
complished using the same formalism as adopted in chapter 5,
using equations (2.17) and (2.18) for the “radial” components of
the pulsation, and equations (2.12) and (2.13) for the horizon-
tal components, resulting in four coupled first-order differential
equations that we replace by difference equations (with second-
order accuracy centred differences used to represent derivatives,
and the differential equations represented midway between the
mesh points) and solve by relaxation, as outlined in appendix
E. The input functions for the structure of the star are given
by equations (8.8) to (8.13). To show the general behaviour of
the eigenfrequencies with rotation, figures 8.6 and 8.7 follow the
progress variation of modes with frequencies around 0.035 and
0.05 as rotation rate increases, for various m and L2 values.

It can be seen immediately that the qualitative behaviour of
these modes is identical to those for a polytrope, as displayed
in figure 5.2, and as discussed in chapter 5. We shall therefore
proceed to generalize the TA to rotationally distorted co-ordinate
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Figure 8.6: Graph of the frequency, under the Traditional
Approximation, of two g modes that start as [ = 2 against
scaled rotation rate, f. Black is for radial order, k, equal
to 71; red is for k = 92. m = {-2,-1,0, 1,2} are denoted
by dash dot-, dashed-, dotted-, dash dot dot dot- and long
dashed- lines respectively.
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Figure 8.7: Graph of the frequency, under the Traditional
Approximation, of two g modes that start as [ = 1 against
scaled rotation rate, f. Black is for radial order, k, equal
to 46; green is for k = 62. m = {-1,0,1} are denoted by
dashed-, dotted- and long dashed- lines respectively.

systems, but first we must test the approximation. The methods
of doing this testing are those given in chapter 2; as the rotation
rates considered are much too large for a comparison with a per-
turbation formalism, we shall do this by means of the y; given
by equations (2.55) to (2.57). A graph of x; and ya, for a given
mode, against rotation rate is displayed in figure 8.8. From the
values of the y; in this graph, we see that we can indeed adopt
the TA in this case, as long as the rotation rate does not get too
high (beyond v = 150 — 200km s™!, equivalent to the rotation
rate inferred from having inclination angle 7 < 20). This is in
keeping with our predictions, and the findings in chapter 2, that
the TA breaks down for very large v.
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Figure 8.8: Graphs of x; (triangles) and x2 (diamonds) for
the (k,m) = (62,1) mode, starting as | = 1, against f.

8.4 ASPHERICITY

Now we have examined the un-generalized TA, and its validity,
in y-Doradus stars, we can employ the generalized TA and look
at the effects of asphericity. The first step in this endeavour is of
course to quantify the centrifugal distortion of the star. This is
accomplished via calculating the Ay ,(z) and t;,(z), given by the
equations (3.18) and (3.19), reproduced here:

! (2V") + A 22V + 4V)

‘71 - ‘~/Q2
+ A (-;(4 —2U(21+ 1)) + 2v’> = 510 <2VF> . (8.14)

(2V') + X o (22V" 4 4V

!
+Asz (K(4 — 20020 + 1)) + 2V”\l — —B,, (8.15)
A

7

with V as a suitably scaled V. It is expedient thus to scale all
our variables (z, p, p, V) governing hydrostatics. From these
equations, we can see the expedient choice is also to rescale our
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length co-ordinate to (0, 1), according to

vV Q? 1

Following this through, straightforward algebra yields

vV = GM, 14 (8.17)
v R* v 9 \U.J.I}

ViV = 4rnGp, (8.18)

Y~ R3

= VIV = 47TM* p =4np, (8.19)

-~ m/M,

&V = 7R (8.20)
Yl ~ m/M*

This allows us to obtain A;, just as in chapter 5. The main
change to the boundary conditions from the polytropic case is
that

ap = —‘7"33:1 6[70 = —5170 . (822)

The results for the centrifugal distortion are displayed in figure
8.9. For the calculation of dC and §,C), it is also useful to notice
that

7. . AﬁffGMf [Q a9\

Vp = —pVvvVy i (6.29)
R4

p = fp. .24

= P P (8.24)

(8.25)
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Figure 8.9: Left: Graph of first order rescaling functions for
model of HD 152896; Ao, (black), A1 (red), to,1 (green)
and £11 (blue). Right: Graphs of equatorial and polar radii
against scaled rotation rate, f; solid lines are with f2 cor-
rections only, dotted lines are with f2 and f* corrections in-
cluded.

Graphs of the scaled values (of g, p, V', V" ) are shown in figure
8.10. The coeflicients governing the change in (scaled) mass given
by values displayed in table 8.4 are

Parameter Value
My 1.
M, 0.032569
M, -0.067830

The general form of these results is similar to the polytropic
case. However, there are two main differences: the size of the
distortion, and the behaviour near the centre of the star.

The first of these is a result of two effects. Firstly, the mag-
nitude of the scalings differs largely: for the polytropic case, the
forcing for A;; was ox €2, whereas for the case of HD 152896, we
have chosen our scalings such that the forcing is independent of
R,. For an n = 3 polytrope, &2 ~ 50; given that the scalings

165



8.4 ASPHERICITY

Figure 8.10: Graphs of scaled values against z. Left: p and
p marked by black and red lines respectively. Right: V' and
V" also marked by black and red respectively.

differ by a factor of this order of magnitude, this scaling factor
bring the two results much closer into line. The second fact that
contributes to the magnitude of distortion functions being dif-
ferent between the two main examples (an n = 3 polytrope and
our model of HD 152896) is that an n = 3 polytrope describes
a highly compressible equation of state, so we would expect the
distortion for such a polytrope to be larger than for a realistic
stellar model, as indeed we do find.

Also worth noting is that equation (3.18) requires both lim,_.q
A1 = 0 and limg_o Aj; = 0 to keep AT, regular as = tends to
zero. The model given does not have a mesh point at zero, and
indeed has a substantial gap between the first mesh point (which
is placed very close to zero) and the remaining ones; to achieve
lim,_,q )\’1,1 = 0 requires lim,_,q A;; non-zero; this is most evident
in the #;;, due to the formula

A
fy =25 X (=do+ ) , (8.26)

so departure of A; ; from zero results in large gradients in the ;.
It is the case that the value of lim, ,g A;; thus derived is small
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(—0.0104) and does not affect the solution (enforcing a reduction
the limit by a factor of 10?° does not produce discernible change in
the tabulated 12 significant figures of \; ; and Miatz=1,and a
change in the surface value of the 111 of the order of 10‘4). Whilst
this non-zero limit (and the knock-on fractionally-non-zero limits
of the B;) is not ideal, and owing to fractional numerical error,
we do not foresee the slight error changing the results for the

asphericity to the accuracy required.

8.4.1 EIGENFREQUENCIES FROM ASPHERICITY

Now that we have obtained our distortion coefficients, we can
use the generalized TA in the orthogonal curvilinear co-ordinate
formalism from chapters 3, 4 and 7 to obtain predictions of fre-
quencies, some results of which are shown in figure 8.11.

Although this figure is only an example, it is interesting to
note that, as for the polytropic case, the largest centrifugal influ-
ence is for the |m| = 1 modes. The other modes experience what
can become a large alteration to their eigenfrequencies, with the
exception of the prograde mode with the largest |m|, which is by
far the most stable eigenfrequency to the effects of rotation.

8.5 FREQUENCY FIT FOR HD 152896

To investigate fits of the actual pulsational frequencies of HD
152896, frequencies correct to O(f?) (in order to not be pro-
hibitive in terms of computational requirements) were calculated
for values of inclination angle, i, such that

n

i =90 (1 - @) , ne{0, ..., 90} ; (8.27)

and the scaled frequencies compared to those of HD 1528964

Scaled by /GM/R3, so w=(3.6436, 3.5309) x 102,
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Figure 8.11: Graph of the frequency (in the rotating frame) of
a k = 54, g mode that starts as [ = 2 against scaled rotation
rate, f. Green is with just the TA effects taken into account,
red is with f? corrections also included, and black is with f*
corrections as well; m = {2,1,0, —1, —2} are denoted by long
dashed, dash-dot-dot-dotted, dotted, dashed and dash-dotted
lines respectively, as in figure 5.5.
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107k -

Suitability

Inclination angle, @

Figure 8.12: Graph of suitability (given by equation (8.28))
for various inclination angles, ¢; black, red and green symbols
represent m = 0, m = 1 and m = 2 respectively, crosses
are for modes that start as [ = 1, diamonds for modes that
start as | = 2. The graph is cut off at 5 x 103, equivalent to
both frequencies being fit to 1% accuracy (hence some points,
especially for higher |m| and ||, are not displayed); the red
and blue lines are equivalent to both frequencies being fit to
0.2% and 0.1% respectively.

according to a suitability formula

-1

F o= Z (u)z’,obs - C;)i,predicted)z , (828)
i wi,obs

as in chapter 6. A graph of F' for various inclination angles, and
values of m and L?(m,v) is shown in figure 8.12.
The form of these results is very much as would be expected;

£ Lmintmiog st ek 3
1 IrequeiiCies evolvir

if we view the spectrum o 1g with increasing
rotation rate, the spectrum both moves and the spacing between
adjacent frequencies evolves as the rotation rate increases. The

closeness of fit will therefore increase as two frequencies become
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Figure 8.13: Graph of “radial” order, k, of the m = 0 mode
which starts as [ = 1 which best fits @ = 3.6436 x 102
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(diamonds) and & = 3.5309 x 1072 (squares), plotted against
inclination angle, 3.

close to the observed frequencies we are trying to match, then
decrease as they move past, then eventually be replaced by other
frequencies as the “closest fit”, which will cause the closeness of
fit to again increase until another maximum, and so on; this is
clearly the behaviour seen in figure 8.12 (the “radial” order of the
best fitting modes are shown in figure 8.13). One of the major
constraints on the goodness of fit actually achieved is the spacing
of successive frequencies, so we would expect the peaks for various
(L?,m) values to be of greatly differing heights, as indeed is seen
in figure 8.12.

The best fit found for HD 152896 is that with m = 0 modes
which start as [ = 1, with the parameters

wr | 0.036424
ws | 0.035328
i | 675

f [ 0.01934
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Whilst this fit is good, it is still not within the errors of the data.
This fact should not surprise us, as there are many factors that
have not been taken into account, such as non-conservative ro-
tation laws and magnetic fields, in addition to the fact that we
have only considered one model, with a modest number of mesh
points (of the order of 700) for HD 152896. However, this search
demonstrates the need for non-perturbative theory in the mod-
elling of the effects of rotation on the structure and pulsations of
stars, and of the results achievable through the method outlined
in this thesis.

8.6 CONCLUSIONS

Having developed the presented rotation formalism, and tested
it on barotropic equations of state, with assuring quantifiable
results, we have now generalized the theory to real equations of
state, and tested it on a model of a y-Doradus star. Again this
has produced results in qualitative agreement with what we may
expect and be hoping for.

We have also investigated the class of y-Doradus stars, and
seen that pulsators in this class are exactly those that the theory
models best. This, as will be expounded upon in the next chapter,
opens up these stars to a far deeper level of asteroseismic probing.
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Chapter 9

FUTURE WORK AND CONCLUSIONS

“Doroga k Zujozdam Otkrita” (The way to the stars is open) —
Sergei Korolev

9.1

FUTURE WORK

Whilst effort has been made to point to many of the applications
of this method, there are three' areas that would benefit further
investigation:

Theae ]mawa hean u 1eed +0 1
AL LLUow 1y L AW W)

modes via the values of (I,m); whilst the effects of moder-
ate rotation have often been mcluded in these calculations,
this work allows much higher rotation rates to be consid-
ered. For example, Balona et al. (1996) noted that the full
effects of rotation had not been taken into account in their
identification of (I, m) for the pulsational modes of v Do-
radus. Work in this direction has been started, mainly by
R. H. D. Townsend (Townsend, 1997, 2003a), but it has yet
to be fully adopted.

LAt least!



9.1 FUTURE WORK

e Genetic algorithms with full stellar models. With much
high-accuracy data soon to arrive from the asteroseismic
satellites, we need algorithms in place for fitting the data.
Whilst chapter 6 touched upon a possible way to achieve
this, the models used were polytropes, unlike the example
in chapter 8. This matter is currently being approached for
standard perturbative theory with rotation (see Metcalfe
et al., 2004a).

e The full effects of rotation on stellar structure and evo-
lution. Whilst the rotating stellar models that this work
presents have mathematical consistency, they are not ex-
act; nor has the alteration that rotation may have had upon
their prior evolution been taken into account. This remains
a huge unanswered question in stellar astronomy, and one
that needs an answer before we can truly claim to under-
stand stars. Work on this has been started most promis-
ingly, in the author’s opinion, by M. Rieutord in Toulouse,
using a tensor formalism similar to that used in general
relativity, but this work is still in its early stages. The
Toulouse group (Dintrans and Rieutord, 2000) has also nu-
merically modelled individual perturbation frequencies in
an individual star (a 1.5Mg ZAMS star ignoring centrifu-
gal distortion), under the anelastic approximation and for
high ! values, finding some periodic orbits that are focused
towards calculable attractors for certain parameter ranges,
as well as ergodic orbits that are easily associated with the
distorted gravity modes that are looked at in this thesis in
detail. Combining these two numerical fields, as long as
it is not prohibitive in terms of computational demands,
could provide huge insights into the oscillations of individ-
ual stars.
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9.2 CONCLUSIONS

In this thesis, a method of dealing with extreme rotation has been
presented. Past studies have pushed the limits of completely
perturbative methods close to a logical extreme. Some of the
first works dealt with expanding in just €); however, Soufi et al.
(1998) noted, as others had before, that the crucial parameter
can well be the ratio of rotation rate to pulsational frequency?.
As that ratio is increased perturbative methods will eventually
break down, as chapter 1 showed the case for v-Doradus stars.®

To deal with some of these cases with larger v, the study pre-
sented in this thesis represents a new approach, developed from
the geophysical Traditional Approximation and the rescaling sug-
gested by Gough and Thompson (1990). In this method, oblate
orthogonal co-ordinates are found which form the natural physical
basis for the rotating star, and a generalization of the Traditional
Approximation is created, formally allowing any value of the pa-
rameter v to be considered. Once this is adopted, distortion of
the star can be dealt with in a standard perturbative way, which
is also outlined here.

The procedure allows us to explore many areas of seismology
in rapidly rotating stars, such as the alteration to eigenfrequen-
cies, the alteration to eigenfunctions, and mode trapping. Exam-
ples of the uses of this method have been presented for polytropes
and a model of the y-Doradus variable HD 152896.

Some of the issues outstanding in seeking to fit asteroseis-
mic data by the newly popular genetic algorithms have been
touched upon, and investigated, to help our fitting of data that
will be shortly available through space missions such as MOST

2Their expansion parameter was € = () /w = v/2; however, they do include
an equivalent of f to the same order without treating it separately.

3Soufi et al. (1998) , cite the accuracy of their method as one part in 103,
for the §-Scuti variables they were seeking to model, with € up to approxi-
mately 0.1.
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and COROT.

This research opens up a new realm of stars to accurate as-
teroseismic probing, further enhancing our ability to study stars,
as put by Eddington: “by awaiting and interpreting the messages
dispatched to us by the objects of nature”.

170



Appendix A

A LIST OF NOTATION USED

It may be useful to the reader to have the following notation
grouped into one place:

Symbol ] Meaning } Definition
f Scaled rotation rate Q/\/GM/R?
5 Ratio of rotation rate 20w
to pulsational frequency

. } (i p)/ar)
—(1/7)(d(np)/dr)

Vi — —d(Inp)/d(lnr)

Mass interior to

m a given radius r B

U - d(lnm)/d(lnr)

1% Scaled Potential Varies

0% Adiabatic Exponent (0(lnp)/o(Inp)),,

¢ - (r/R)*/(m/M)

w Scaled frequency w/ «V/ GM/R?

Scaling of r in a spherical
basis in terms of the r-like
Ma . . See below
: co-ordinate in the new,
rotating, basis
Likewise, but for ¢ and the
p-like co-ordinates

h; Metric coefficients See appendix C

il




A A LIST OF NOTATION USED

A, Vi, U, v and ¢ are functions of the stellar structure that
prove useful in the pulsational equations.
The N\ o(z) and ¢, ,(z) are defined by

r = .73(1+ Z f2aP21(77))\lya(33)> s (Al)

1>0,a>1

po= n<1+ > f2“P2z(77)tz,a(ff)> : (A.2)

[>0,a>1

A.0.1 MODE CLASSIFICATION

It has been noted by a number of authors (Townsend, 2003b;
Lee and Saio, 1997) that the classification of Hough functions by
(I, m) indices, although clearly identifying their non-rotating pro-
genitors, does not allow classification of the other modes (such as
r modes) described by Laplace’s Tidal Equation. These authors
have created good, holistic, classification schemes which describe
all the modes. However, because of the cases considered in this
thesis, the ({,m) index classification is retained to emphasise the
analogies to the non-rotating modes.



Appendix B
DEFINITION OF THE PRINCIPAL

VARIATIONAL-PRINCIPLE
FUNCTIONS

For using the variational principle in chapter 4, we have looked
at the equation:

~w?AE+wB.(&)+C.E) =0, (B.1)
with

A = pl, (B.2)
B.(§) = 2ipof2x§, (B.3)
C.(§) = P(+V.(E),
P.(§) = V[(1-=7)pV.£—-pV(V.E)
= VIEYR + (EV) Ve (B.5)
V.(E) = pl&V)VV . (B.6)

All the terms in this equation are Hermitian. Under the Tradi-
tional Approximation, the horizontal parts of the rotation vector
are ignored; thus B becomes

0 O 0
BTA = 21p0 0 0 ——Q.en
0 Q. 0



B DEFINITION OF THE PRINCIPAL VARIATIONAL- PRINCIPLE
FUNCTIONS ‘

0 0 0
= dwvpp{ 0 0 —Qe, | . (B.7)

\ 0 Q.en 0 /

It is important to note that this second form is different
from the simplification given in chapter 4, which is conceptu-
ally slightly easier, and is the form with which to calculate wy.
But this second form will prove to admit perturbation solutions
in much more straightforward manner here.

We now have:

w(A = Bra).(§) =C.(§), (B.8)

with all of A, Byy and C being Hermitian. Therefore, with the
inner product

Ee = / Eedx (B.9)

we can easily show that these operators (A, Byy and C) are
self-adjoint. We also define

() =00+ P20 e+ 4 (B.10)

in a natural way. Note that (£, Brs.(£))=0. Thus, the zeroth-
order equation admits

(W (A=Bm)—C).(¢§) =0 (B.11)
= (€, (W —C)E)i =0, Vi. (B.12)

And the first-order part of the inner product of € with equation
(B.8) is

[N
Co
<



DEFINITION OF THE PRINCIPAL VARIATIONAL-PRINCIPLE
FUNCTIONS

2wdw (€, po€)o = w” ((€,0.B1a(€))o — (&, pok)2)
+(€,C.(£))2+ (£,6C.(€))o,  (B13)

which becomes’

_ {£,(6C).(&))o
dw Wl by (B.14)

Likewise using the antisymmetry of § Bra and equation (B.12)
on the second-order terms yields

((6w)? + 2wiw)(€, po€)o = w*(€,6Br1a.(38))0
— 2wiw(€, po€)a + (€,0C.(§))2

[T
(@2}
~—

which, by using equation (B.14), becomes

w?(&, 0Bra.(0€))o + (€, 02C.(£))o + (§,0C.(6§))o
2w(, po&)o

(52(4) =

(B.16)

bations to the displacement vectors have now been chosen t

be orthogonal to (A -+ Bra).(€) (and (A + Bra).(0§) for the
second-order displacement). We can see that, owing to the anti-
symmetry of Bra, these retain the orthonormality of the £. Also
Bra.(€) contains no &, term, so we do not need to concern our-

selves with the possibility that picking our eigenfunction pertur-

1 Also using the fact that, like Bra, 6 Bra is antisymmetric.
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B DEFINITION OF THE PRINCIPAL VARIATIONAL-PRINCIPLE
FUNCTIONS

bations to be orthogonal to (A +Bry).(€) rather than orthogonal
to A.(€) will cause loss of completeness of the & as a basis over
which to expand the perturbations.

[IY
co
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Appendix v
SOME USEFUL MATHEMATICAL
RESULTS

It may prove useful to the reader to have the following mathe-
matical results, reproduced from Gradshteyn and Ryzhik (1994),
Abramowitz and Stegun (1972) and the appendix of Acheson
(1990), listed here.

C.1 LEGENDRE POLYNOMIALS
The Legendre polynomial of order [ is defined as:

B _ L& 21 C.1

making it a solution to the following Sturm-Liouville problem:

a7
g

a—ﬂ((l—;ﬂ) 8—Mpz<u>) = —I(l+1)P(y) . (C.2)

Equations (C.1) and (C.2) allow us to arrive at

[—2k—12>0
Pl= > (@-4k—1)P g, (C.3)
k=0
2+ DpP, = (+1)P +1P,, (C.4)

1
/ P Pydy = 51,1/ ) (C-5)

1



C.1 LEGENDRE POLYNOMIALS

and, for m <1,

k=m /01 0 1. 4N
Am—kOLQi_t { 20+ 2m — 4k + 1
APn =2, Prom—n , (C.
l k: Umti—k (2l+2m_2k+1) J+m—2k 5 (C.6)
2k — 1)
Qg (_T)__(]g#o,ao:l)_(cj)

C.1.1 SOME LOW-!/ EXPRESSIONS

There are some formulae that will be written explicitly here, as
they are used often.

1’:)0 =1 , (CS)
Pl = B (CQ)
1
Po= 503w -1), (C.10)
S 1-p? = g(l—PQ), (C.11)
5 3
P o= = C.12
g LT (C.12)
P = ;(35u —30u° +3) | (C.13)
18 2 1
AP, = —P+-P,+=-F. C.14
247 3544 + =15 + 540 ( )
It is also worth noting from the definition of P, that
P, - P -3
1—u 2

which allows us to simplify greatly the >, ((1—1%)"1Py(n)t11(z)
terms in our metric coefficients, once we have established that



SOME USEFUL MATHEMATICAL RESULTS

toa(z) = —t11(x) Yo and that the other ¢, are zero. A similar
simplification exists for the 5.

C.2 ASSOCIATED LEGENDRE FUNCTIONS

Having defined Fj(), we can define associated Legendre functions
P™(u), and normalized spherical harmonics Y™ (u, ¢), according
to

m m m ar
P = (-1)"(1 - u?) /QWPI ; (C.16)
20+10-m)"* .

ym o= (_1)™ pPm img C.17

l ( l) 47 (l_l_m)'J ;€ ) (b />
2 1

~ / / Ylel/m/d,ud(b = 6l,l’5m,m’ . (ClS)
0 —1

It is also useful to note, for m #£0,

2w 1
O s rm COS O 1
| G s =5 (19
From Gradshteyn and Ryzhik,
[ [Pm? 1 (I+m)!
JIIO 1— /lzd'u 2m, (7 —m)’ (020)
" pmpm 1L (i+m)
J_IB Pl’ d,u :2(l+1) (Z—m)!él’l/ , (021)
Py —pP™ = —m+ 11— p*) 2P (C22)

which equations allow us to derive
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C.3 VECTOR IDENTITIES

M}/lm = AZmY}’l‘l + Ble;T_rfl , (C23)

(AlmAl—l—l,m}/lTQ + BlmBl—l,mYY_ng)

P+l-m?>
+(2z— DER+3)"" (C24)
m —(l+1)BmY™ , (C.25)

d
(O = g™ = U -

NNV

= PQYEm:

with

_ (l+1)2 —m? _ 12 —m?
Am = \/(2z+1>(21+3) B = i@ - (620

¥

C.3 VECTOR IDENTITIES
The following vector identities will prove useful.

V. (¢F) =¢V - F+F Vo, (C.27)

V x (¢F) = ¢V xF+ (Vo) xF , (C.28)
Vx([FxG) =(G:-V)F—(F V)G

+F(V-G)—-G(V-F). (C.29)

C.4 ORTHOGONAL CURVILINEAR COORDINATES

Let u, v, and w denote a set of orthogonal curvilinear coordinates,
and let e, e, and e, be the basis for this orthogonal coordinate

system. Then

(C.30)

€y, =€y X €y,
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SOME USEFUL MATHEMATICAL RESULTS

and similar equations hold for e, and e,,. The equation

0x = hidue, + hadve, + hsdwe, (C.31)
defines the metric coefficients h;, e.g.
ax
e C.32
1 ey (C.32)
These give
1 90¢ 1 0¢ 1 0¢
qu = —}Z%eu -+ “;;;5;81) + '}g%ew s <C33)
1 0 0
V- F = — (hohsF,) + — (hihsF,
hlhghg[au(23 )+8U(13 )
4 |
— (hah1 F, (C.34
+8w(’21 )Ja \C3>
1 hlaeu h?gev hBaew
F = 2 2 2 .
V % h1h2h3 u Ov w ’ (C 35)

IllLlFu hQFv h3Fw I

which can then be used to obtain, for example, C given in ap-
pendix B; this is demonstrated in appendix D.
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Appendix D

PERTURBATIONS TO THE
PULSATIONAL OPERATORS IN
TERMS OF THE METRIC
COEFFICIENTS

In appendix B, A, B and C where written in a co-ordinate-
independent way by use of the V operator. However, for calcu-
lation, it is necessary to expand these, for which the following
formulae may prove useful.

We have defined

P.(€) = V[1—m)pV.& —poV(V.€)
) — VI[(&V)po + (£V)Vpy , (D.1)
V(&) = nlEV)Vh. (D.2)

It is useful to note that, owing to the choice of basis,

. 1 8p0
— érr apO
(€V)po = I 0z (D.4)

and similarly for V4. Thus



D PERTURBATIONS TO THE PULSATIONAL OPERATORS IN
TERMS OF THE METRIC COEFFICIENTS

VIEVp] = oy Oz (hl 525) +e"h26_n \ i 0z )
1 a §x apO
* i (o) -
hy0x \ hy Ox Thy On \ hy Oz
1m€a: 8]70
—_— D.
LAY (D-6)
and

/1 9pg 10
€V = |(€9) (-T2 | e -2

although it is worth noting that

Vpo = —pov‘/o, (DS)

= (EV)Vpo + po(EV)VVe = VH(EV)0
= 220 . (D.
2oz o (D)

which may prove to be an easier form. Note that

VI =m)poV.E] = peV(V.E) = —mpV(V.E)

— .1 7 s, 971\ ;
+(v~£)h—1exk( fyl)_@_poa”), (D.10)

and also
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PERTURBATIONS TO THE PULSATIONAL OPERATORS IN

TERMS OF THE METRIC COEFFICIENTS

L [0 0 |y imés

—(h- 3
(hahaa) + = (ahsty)

V. ¢ £,
h1h2h3 l_aSL' v

with the predictable formula for V(V - £):

V(V.£) = 1 8m<1m5¢

hy hs

N K e A
h1h2h3 8 (o 3§$ h 877& 1 3§77)J)
1 imé&y
+
377( hs

1 ‘"8 0 A
e |3 (ehse) + 5 <h1h3§n>b

im imé&y
+ h3 e¢< h3
1 [0 d A
hohaf - | e Lo .
hitahy (05 M) T gy (bt | )
Thus
1 .
C(fi) =€z — i (‘é—‘i\l - ’ylpg?—— (1m€¢
/ll '\ oz \ /L oz / Jx \\ h3
L ]9 hah h
—I—hlhghg [é_( 2 36%) ( 3&.77)J)
2 OVo 9po /,1 Ipo Lo /1\ /1mg¢>
hy 0z Oz * k“ ) or  *° &U) 8 hs
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D PERTURBATIONS TO THE PULSATIONAL OPERATORS IN
TERMS OF THE METRIC COEFFICIENTS

1 &, Opo 0 [imé&,
*e"hg{ an <h a:c) WO@n(

hlfjghg {aa (h2hagy) + aa(hlhsén) )} (D.13)

It is into this formula that the metric coefficients

hy =1+ f2> Pylzhg) + g ZPQL (@h2)’
>0 L5

+ Z (3Pt Poy, (zA11) " (2 A1)’

I,m >0

“‘(1 — 7]2>P2/lp2lm>\l,1/\m,1)jl s <D14) .

I rd
2 :—;\/:775{1

+f? PPyt 1 + Py (>\11+ Ll \)
/S /
o A

M

I >

(0

>0

[en]

— m
* /

(
(

—

P Py)'ty 5+ Py &A12+ ik ))

+ Z (Pzz PiPo) Mitma — 3(1 — 0 Py Py A1 Ama

lym >0

+2Py; Poy (xX1 1) (A1)’
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TERMS OF THE METRIC COEFFICIENTS

tr1tm,
+ﬂi%}5_l(faxfafém)—%f@f@m)>}}, (D.15)

hy =zy/1-7 (+f 21321()\;1" 2tl1)

2
>0 n

P [ n%t2
+f E 2 l,z—l_n2
>0
2
L4\ ntlvlnn /\ tm,l \\\ [Ty 120
_‘_.f f 1 _ 772 f2lf2m K/\m 1 1 . 772} 3 \U.lO)

are inserted to obtain 6C and §,C.

To obtain § Bps and 63 Bta, recall from appendix B that

/00 o0
Bty =iwvpef2e, | 0 0 —1 . (D.17)
01 0

Using the procedure outlined in chapter 3, we can obtain

. ) 24
Qe, =+/1-7 {—1+f Z(Almpzl 7 llez)

1
1>0

—*—fAV (/‘\1 oﬂP«(; + 1 tl2 an\

=\ 1—n> ")

Copd /n/1 2N T3/ . Utlltmlﬁ
+f zl;o VU 1) Py Pay At Am,1 + a=n2)e Py Poy,
772tl 1 / / ’
+1 TP Py Pop (2 A1) — 3Py Pop (A1) (A1)



D PERTURBATIONS TO THE PULSATIONAL OPERATORS IN
TERMS OF THE METRIC COEFFICIENTS

th
— A, 11 Py (()\mJPQm + ;7_“ 7’712 P2m> + tm,mPQ/m> )} ,(D.18)

from which equations ((D.17) and (D.18)) 6 Bra and 6,Brs are
straightforwardly constructed.
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Appendix E

SEARCHING FOR EIGENVALUES AND
EIGENFUNCTIONS

+ 4]

Throughout the thesis, solutions have been found to coupled first-
order differential equations, satisfying suitable boundary condi-
tions. This was done by relaxation, adapting a code called NRK,
provided by D. O. Gough, to calculate successive frequencies and
eigenfunctions of a oscillating string. As this is the only code
that has not written from scratch by the author, and relaxation
can be misunderstood, both the method of relaxation, and the
algorithm for searching for trial solutions will be expanded upon
in this appendix.

E.1 RELAXATION

Alidineg all +h - ihoad +hia
Many Syst\’i‘ms Of U\iu(ﬂhuuo, mceiadamg ail tnose described in this

thesis, can be reduced into a system of coupled first order equa-
tions. Writing the variables that are functions of the independent
variable! as a single vector y(z) and denoting the N eigenvalues
as A;, this system of coupled first order equations can be written
in vector form as

0
%D(y,kl,,AN)ﬁ—F(y,)\l,,)\N) =0 s (El)

IThe independent variable can be x or 1, but we shall denote by z in this
appendix. Due to our scaling of the “radial” coordinate, both = and 7 vary
over [0, 1].



E.1 RELAXATION

with D and F being vectors of dimension M. Physically our
system will also be subject to constraints, which in this thesis
take the form of boundary conditions. As mentioned in chapter
2, the differential equations are represented by finite difference
equations upon a mesh (z1,...,z;) of the independent variable,
with second-order accuracy centred differences used to represent
derivatives, and the differential equations represented midway be-
tween the mesh points; this representation, defining

Yir1 = y(Ti1) (E.2)

gives

D(YH—I) )\17 ))\N) - D(yl))\l)\N)
Lig1 — T4

(F(Yi—}—la /\\1, -‘-7/\N) - F(yi, )\1, ,/\N>) = O 5 (E?))

+

N}

subject to boundary conditions at the inner and outer mesh
points of the model

G(y17)\17~~~9>\N) = O , (E4)
H(YI7)\17"'7>\N) =0.

Motivated by this representation of the system by FDEs, we can
define, for any trial solution, y®, an “error” vector E;, at the
mesh point z;, by

t i
C DEYL A e Aw) = DY A Ay

)

(F(ygﬁl,/\b...,AN) —F(y§t>,A1,...,AN)) (E.6)
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for1>i>1—-1, and

Eoly® Ay, dn) =Gy P A ) (E.7)
Ef(y(t)7 >\1: ) )\N) - H(ygt), )\1, ceny /\N) .

This, having defined?

&
—

Y=Y |, (E.10)

AN
this notation causes us to rewrite our system of equations as

Er(Y) =0 . (E.11)

Were we to consider a trial solution, Y® in equation (E.11),
then a Taylor series would give

It is worth briefly examining the dimensions of many of these matri-
ces thus defined. For a system of M coupled first order equations (for
the system in chapter 2, M = 4), dim(E;)=M gives dim(E)=M(I —
1)+dim(Eo)+dim(E;). dim(y;)=M, giving dim(Y)=MI+ N. Thus for the
system to not be over-determined, we require dim(Eq)+dim(E;)=M + N.
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E.2 OBTAINING A GOOD TRIAL SOLUTION

E,

E,(y® +6Y®) =B, (YO + S gy Vi ... (E12)
B

g

For notational convenience, we shall define the matrix
0E,
Sag = .
“F = By,

Equation E.12 suggests a “corrected” trial solution given by the

o
equarion

(E.13)

Vit = =3 [Susl T Ea - (E.14)
[0

If the initial trial solution is close to a true solution of equation
(E.11), then this “corrected” trial solution will be closer still, pro-
viding a way to iterate (with extremely rapid convergence) until
a fit closer® than a pre-selected cutoff value is reached, provided
that the function derivative matrices, S, g, are known. These are

derived analytically for the problems considered in this thesis.

E.2 OBTAINING A GOOD TRIAL SOLUTION

The method given in the previous section works well once ini-
tial trial solutions close to a true solution are provided; to obtain
these “good” initial solutions, a method similar to shooting is em-
ployed. The outer boundary conditions are “relaxed” with only
dim(E[)—j (j < N) being used; a trial solution using guesses
of A, (N —j < n < N) is integrated outwards, and the value
of y; recorded. If the outer boundary conditions are nearly met,

3In NRK, the fit is judged by the absolute value of the relative corrections
to the trial function.
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then the solution is placed into the relaxation code with the full
boundary conditions.

a iridoe ~f +h hhtimdaro
[VRVS

A o hn Annditiana {3 vy ad??
P S iy e J 60 Ul UL1lT uuuuuouy CULIULULIULLD ¥

learly me
after a given calculation of y; for guesses of ), guesses of \, are
advanced a step, and the relaxed integration repeated, with the
new value of y; being compared to the previous one. If the sign
of the relaxed parts of E,, changes, the trial solution is close to
a true solution of the full problem.*

One issue that may arise is that of choice of step size for the
advancement of the A,. This is especially important for higher-
order g-modes, as the spectrum of eigenfrequencies becomes more
dense with increasing radial order. Thus we might have a concern
that our predicted spectrum of eigenfrequencies is incomplete.
There are two things that we can do to address this concern; the
first is to make the advancement dependent upon the previous
frequency, and the second is to take account of the radial orders
of the eigenfunctions found by our search, which allows for an
easy check of the completeness of our predicted spectrum.

ol
ClIg N

4The easiest example of this is for the probl
where the outer boundary condition is that y; = 0, so we look for when y;
changes sign between guesses. For the pulsational problem, the sign of the
fractional Lagrangian pressure perturbation is employed to judge between

the successive y;.
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