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Spatial wavelet analysis of line-profile variations
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AB S TRACT

The technique of wavelet analysis is discussed in the context of line-profile variations in

rapidly rotating stars undergoing non-radial pulsation. This technique may be used to

determine the harmonic degree l of the pulsation using isolated residual spectra; it is able to

handle spectra with relatively low signal-to-noise ratio levels, and is well suited to extracting

previously unobtainable information from low-quality, patchy data. A demonstration of the

technique is presented using data generated from a spectral synthesis code.
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1 INTRODUCTION

High-resolution, high signal-to-noise ratio (S/N) spectroscopic

observations of early-type (OB) stars over the past two decades

have shown that many such stars exhibit subtle, periodic temporal

variations in their absorption-line spectra. Smith & Karp (1976)

first reported such line-profile variations (lpv) in sharp-lined

(slowly rotating) OB stars; they suggested that these lpv were

caused by photospheric velocity fields resulting from non-radial

pulsation (NRP), a hypothesis that Osaki (1971) had already

used to model variability in b Cephei stars with some success.

Smith (1977) subsequently supported this NRP hypothesis with

observations and modelling of 53 Per and other slowly rotating

OB stars, whilst Walker, Yang & Fahlman (1979) presented

similar evidence for lpv in the rapidly rotating, Doppler-

broadened O star z Oph.

Vogt & Penrod (1983) suggested that the variability in z Oph,

consisting of characteristic `bumps' and `dips' of pseudo-emission

and absorption moving across absorption-line profiles, could also

be attributed to NRP. More recent observations (Kambe, Ando &

Hirata 1990; Reid et al. 1993) of this and other rapidly rotating

OB stars (e.g. e Per, Gies & Kullavanijaya 1988; m Cen, Baade

1988; HD 93521, Howarth & Reid 1993; z Pup, Reid & Howarth

1996) has shown that such lpv seem to be commonplace;

theoretical studies of NRP in OB stars (Gautschy & Saio 1993;

Dziembowski & Pamyatnykh 1993; Kiriakidis, Fricke & Glatzel

1993) suggest that pulsational instability is to be expected in most,

if not all, such stars. This is indeed fortuitous, for the existence of

NRP in these stars opens them up for scrutiny by the newly

emergent field of asteroseismology, which may be able to offer

fundamental insights into the interior stellar structures inacces-

sible to other fields of stellar astrophysics.

It is thus of paramount importance that as much information

pertaining to the pulsating star as is available is extracted from

spectra exhibiting lpv, so that the data used for asteroseismo-

logical studies are of the highest quality. This information can be

divided for purposes of discussion into temporal and spatial parts,

the temporal relating to the time-dependent behaviour of the lpv,

and the spatial relating to the spectral morphology of the lpv at

each epoch. Temporal analysis of stellar variability has long been

realized using the familiar tool of Fourier analysis, whilst a

number of techniques have recently been developed to extract

information about the spatial structure of the lpv.

This structure is of interest to the observer, because it contains

information relating to the angular dependence of the NRP over

the surface of the pulsating star. In non-rotating stars, it can be

shown (Unno et al. 1989) that the normal modes of pulsation are

proportional to the spherical harmonics Ym
l �u;f� (Abramowotz &

Stegun 1964), labelled by harmonic degree l and azimuthal order

m. In rotating stars, these modes are modified by Coriolis and

centrifugal forces, but still in general may have values assigned for

l and m (Lee & Saio 1990; Townsend 1997a); it is an aim of lpv

analysis to extract these quantities from the spatial structure of the

variations. For 53 Per (slowly rotating) stars, this can be achieved

using moments methods (Balona 1986; Aerts, De Pauw &

Waelkens 1992; Aerts 1996), whilst wavelength-dependent Four-

ier analysis techniques appear to be more effective for the z Oph

(rapidly rotating) pulsators (Baade 1988; Gies & Kullavanijaya

1988; Telting & Schrijvers 1997), which show the characteristic

redward-migrating bumps and dips in their lpv.

A new method of performing lpv spatial analysis is presented

herein, based on the wavelet transform, which is well suited to

extracting spatial information from line-profile variable spectra.

The following section reviews the underlying methods of lpv

spatial analysis, providing a brief overview of Fourier transform

based techniques, whilst the subsequent section introduces the

wavelet transform. Sections 4 and 5 present some examples of the

application of wavelet analysis to lpv, and Section 6 illustrates

how the analysis can be used to recover pulsation parameters.
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Future work is discussed in Section 7, and the research presented

herein is summarized in Section 8.

2 SPATIAL ANALYSIS

In the spatial analysis of lpv, the data that are of principal interest

are not the morphology of spectral lines as a whole (although the

moments method previously mentioned can readily extract this

information), but rather the morphology of the residual spectra.

These residual spectra can be typically defined as the difference

between a given spectrum and some suitably chosen reference

spectrum, and provide a measure of the time-dependent departure

of a given spectrum from the reference spectrum. A popular

choice for the reference spectrum is the mean of all spectra in the

data set (e.g. Telting & Schrijvers 1997), which is assumed to

provide a close approximation to the underlying time-independent

spectrum that would be observed if the star were not variable.

However, such a choice is not the only one available, as will be

demonstrated in Section 4.

One of the most popular Fourier transform (FT) techniques was

pioneered by Baade (1988) and Gies & Kullavanijaya (1988),

hereinafter GK88, and subsequently adopted by a number of other

authors (e.g. Kambe et al. 1990; Telting & Schrijvers 1997). This

technique proceeds by taking the temporal FT of spectra along

each wavelength bin, and subsequently, for each temporal period

detected, decomposing the time dependence of the residual spectra

into sinusoidal signals with periods that are integral submultiples

(harmonics) of the fundamental period. The reference spectrum is,

formally, the mean spectrum, although this mean is implicit in the

method and not actually required for the analysis (indeed, the

analysis can be used to actually calculate the mean spectrum). The

phase F(l) of the resulting sinusoids at some reference epoch is

used as a measure of the spatial morphology of the bumps and

dips of pseudo-emission and absorption across line profiles. GK88

suggested that the rate of change of F(l) with respect to

wavelength l at the line centre was a direct measure of the

azimuthal order m, resulting from the exp (imf) angular

dependence of pulsation normal modes; however, Schrijvers et al.

(1996) have claimed more recently that DF, a related quantity

giving the maximum change in F(l) across the line profile, is

actually a measure of the harmonic degree l, and it is the change in

the phase of the first harmonic that gives information relating to

m; strong evidence for this claim has been provided by Telting &

Schrijvers (1997), and Howarth et al. (1998) have noted an

equivalent relationship between l and the morphology of F(l)

with respect to l .

What is evident is that this rate of change of F(l) across a line

profile, which essentially `counts' the number of bumps and dips

in the profile, contains useful information of one form or another

about the characteristics of the underlying NRP, and that

measuring this rate of change is of fundamental importance. In

the following sections, a new method by which this can be

achieved is presented; this method can extract spatial information

directly from individual residual spectra, in contrast to the GK88-

based techniques, which rely on extensive time series to obtain

(indirectly) these data.

3 WAVELET ANALYSIS

Wavelet analysis is a technique akin to Fourier analysis, which has

the ability to detect periodicities of finite extent in a signal. It has

already been used extensively to investigate the temporal structure

of photometric variability (SzatmaÂry, VinkoÂ & GaÂl 1994), as it

represents the ideal tool with which to study pulsation phenomena

such as mode switching and multiple-mode excitations. For a

detailed description of the wavelet transform and the discipline of

wavelet analysis, the interested reader is referred to Chui (1992)

and SzatmaÂry et al. (1994).

A spatially adapted version of the discrete wavelet transform

(DWT) defined by SzatmaÂry et al. (1994) is used throughout this

paper to calculate the wavelet amplitude map (WAM) of a residual

spectrum dF(l). The WAM, represented herein by W(l ,g), is an

absolute function of both spectral wavelength l and spatial

frequency g ; it takes large values at a given (l ,g) when the

spectrum contains a component of approximate spatial period

2p=g at wavelength l , and small values otherwise (SzatmaÂry et al.

1994). The WAM used herein, which is based on the so-called

`Morlet wavelet', is given by the expression
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where l j and dF(l j) are the wavelength and spectral flux

respectively of the jth wavelength bin of the residual spectrum; it

is assumed that the residual spectrum consists of N such bins. It is

usually desirable that some of these wavelength bins points are

chosen from continuum regions adjacent to the line profile under

scrutiny, so that it may be verified that variability in residual

spectra is confined to line profiles.

The Morlet wavelet used in the expression for W(l ,g) is

essentially a sinusoid modulated by a Gaussian; the parameter c 0

governs the width of the Gaussian at a given spatial frequency, and

is adjusted to alter the trade-off between resolution in spatial

frequency and resolution in wavelength (the latter being unrelated

to the intrinsic spectral resolution, which is set by the spectrograph

itself). Larger c 0 leads to higher resolution in spatial frequency and
lower resolution in wavelength, and vice versa; this trade-off is an

inevitable consequence of the localized nature of wavelets, and

can be viewed as analogous to the uncertainty principle of

quantum mechanics. Throughout this paper, c 0 was assigned a

value of 10, chosen to provide good resolution in spatial frequency

and acceptable resolution in wavelength. The finite spatial extent

of the residual spectrum does not lead to aliasing problems,

because the DWT is a localized transform; furthermore, it

provides a two-dimensional (spatial frequency±wavelength)

description of the residual spectrum, in contrast to the `1� 1'

dimensions (frequency and phase) of traditional FT analyses (the

two-dimensional method of Kennelly, Walker & Merryfield 1992

is discussed in the subsequent section). Note that, because the

WAM is an absolute quantity, all phase information is discarded in

its evaluation; hence it contains insufficient data to reconstruct the

original spectrum, and a fully complex version of the WAM must

be retained if an inverse transform is required.

4 APPL ICATION TO HEURISTIC LPV

To discuss the application of the DWT to pulsation-originated lpv,

it is instructive to use a very simple heuristic model to describe the

morphology of the residual spectra. If the bumps and dips of a

residual spectrum repeat over a spatial period of 2p/gp and have a

temporal frequency of v , and if the amplitude of the bumps and

dips is well described by an envelope function E(l), then the
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residual flux dF(l , t) may be written as

dF �l; t� � E �l� exp�i�vt2 gpl��: �2�

This heuristic model reproduces a set of localized, spatially and

temporally, periodic bumps and dips which evolve across the line

profile with time, and hence describes at a qualitative level the

morphological characteristics of most lpv in rapidly-rotating stars.

If equation (2) is substituted into equation (1), the resulting WAM

is a function that takes (relatively) large values around a spatial

frequency of g � gp and over a wavelength range where E(l)

differs significantly from zero, and small values otherwise. To

illustrate this, Fig. 1 shows the residual spectrum and associated

WAM for lpv calculated using equation 2. The intrinsic spatial

frequency gp of the lpv was taken to be 1.29 radAÊ 21, and a

Gaussian was adopted as the envelope function E(l), with a

central height of 0.6 per cent (relative to a rectified continuum

level of unity) and a full width at half-maximum equal to that of

the He i 6678-AÊ absorption line modelled in Section 5. These

values were used to allow direct comparison between the WAM in

Fig. 1 and those in subsequent sections. Plotted over the WAM are

curves indicating the peak wavelet amplitude (dotted) and mean

(dashed) spatial frequencies at each wavelength; the latter has

been calculated using the wavelet amplitude as a weighting

function. Both of these curves vary slowly with wavelength, and

demonstrate that the WAM is dominated by a wavelet amplitude

ridge of approximately constant spatial frequency which extends

in wavelength over the variability region. The small degree of

wavelength dependence which is evident in this ridge is a general

characteristic of WAMs for signals of finite extent, and arises

because the approach towards zero of the envelope function E(l)

at the boundaries of the signal effectively lengthens its local

period, and thus leads to slightly lower frequencies at these

boundaries.

As the spatial phase of the lpv described by dF(l , t) at a given

epoch may be defined by

F�l� ; gpl; �3�

then it is immediately apparent that gp is the rate of change of the

phase F(l) with respect to l , discussed in Section 2, and that the

WAM may be readily used to measure this rate of change for a

single residual spectrum when a single pulsation mode dominates

the lpv. Of course, this assertion assumes that dF(l , t) is a

reasonably accurate description of more physically realistic lpv

residual spectra. This issue is discussed in the subsequent section,

where it is demonstrated that, although the WAMs for such spectra

contain more structure than shown in Fig. 1, the results presented

in this section still retain a high degree of validity.

There are other points concerning the DWT that recommend its

applicability to the study of lpv. Of particular note is that the

WAM of equation 2 is time-independent. The reason for this is

that the temporal dependence of dF(l , t) appears only as a phase

term exp(iv t); since, as was noted previously, phase information is

discarded in the calculation of a WAM, it is apparent that this term

plays no part in the value of the WAM, and that the WAM is time-

independent. This result immediately suggests that the WAMs of

more realistic lpv residual spectra will exhibit little time

dependence, and that these WAMs may be coadded to improve

the S/N of a detection; Sections 5.2 and 5.5 explore these

hypotheses. Such coaddition is not constrained by any require-

ments of complete or extensive time coverage, and may be used to

collect all suitable spectra of a pulsating star into one summed

`master-WAM'.

Also worthy of investigation is the result of taking the DWT of

the difference between two residual spectra dF1 and dF2 from

epochs t1 and t2 respectively. This difference may be written as

dF 1 2 dF 2 � E �l� exp�igpl��exp�ivt1�2 exp�ivt2��

� E1;2�l� exp�i�gpl� a��; �4�

where E1,2(l) is some modified envelope function (zero if t1 � t2,

and in general dependent on t1 and t2) and a is some phase term.

The WAMs of this differential and the original residual spectra

will not be identical, but they will be similar in that they will both

exhibit a strong component of spatial frequency gp. A similar

result exists for the DWT of the sum of two or more spectra, and

these results hold even in the case of multiple-mode pulsation.

Consequentially, it is of no matter whether the reference spectrum

used to prepare residual spectra contains some measure of lpv

structure itself ± this structure will not affect the results of the

wavelet analysis. In fact, a single rectified spectrum from a given

epoch may be taken to be the reference spectrum, as long as the

other spectra differ sufficiently in temporal phase Ft ; vt for the

modified envelope function E1,2(l) to have a significantly large

amplitude; this powerful feature is demonstrated in Section 5.2.

Thus, in principle, wavelet analysis may be performed with as few

as two individual spectra.

It is instructive to compare the wavelet analysis technique with

the two-dimensional FT method that Kennelly et al. (1992) used to

analyse d Scuti pulsators. They mapped residual spectra of t Peg

q 1999 RAS, MNRAS 310, 851±862

Figure 1. The residual spectrum and associated WAM W(l ,g) for lpv

calculated using equation (2), with a Gaussian envelope function E(l) and

a spatial frequency gp � 1:29 rad �A21. The dotted and dashed lines

indicate the position of the peak-amplitude and mean spatial frequencies

respectively at each wavelength. The normalization of the WAM is such

that black and white correspond to zero and maximum wavelet amplitude

respectively, and the contours are drawn at 16 equally spaced intervals

between these extrema.
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from wavelength into Doppler velocity, and thence, by use of the

Doppler imaging approximation, into stellar azimuth f . By taking

the two-dimensional (azimuth-time) FT of these transformed

spectra, they were able to recover both the pulsation frequency v

and the azimuthal order jmj for four separate pulsation modes of

the star. The two-dimensional FT technique is similar to spatial

wavelet analysis, in that it calculates the spatial frequencies of the

lpv bumps and dips; it hence shares many of the strengths of

wavelet analysis. However, although the technique may detect the

spatial periodicity of lpv, it cannot reveal the spatial extent of such

lpv in the way that spatial wavelet analysis can, because of the

non-localized nature of FT sinusoids; this non-localization also

leads to spatial aliasing problems.

Note that Kennelly et al. (1992) assumed that all modes

detected in t Peg were sectoral �l � jmj� and that the inclination i

of the stellar rotation axis to the line-of-sight was close to 908. The

two-dimensional FT technique may be used without these

assumptions, but, in light of results presented by Telting &

Schrijvers (1997) and in Section 6 of this paper, the spatial

frequencies found by Kennelly et al. (1992) should be reinterpreted

as a measure of l rather than jmj.

5 APPLICATION TO SYNTHETIC LPV

To examine some of the points raised in the preceding section

using a more complete physical model of lpv, WAMs were

calculated for a number of residual spectra produced by the NRP

spectral-synthesis code bruce (Townsend 1997a,b), with the

inclusion of radial/horizontal velocity fields and temperature/

surface-area/surface-normal perturbations. Residual spectra were

calculated covering the wavelength range 6663±6693AÊ , with a

spectral resolution of 0.15AÊ ; with the exception of Section 5.2,

the time-independent mean spectrum was used as the reference

spectrum. The spectral region was chosen to span the He i

absorption line at 6678AÊ , the line originally shown to exhibit

variability in z Oph (Wallker et al. 1979). The adopted parameters

of the model pulsating star are given in Table 1, corresponding

approximately to those of z Oph (Reid et al. 1993). Unless

otherwise indicated, the pulsation amplitude was normalized so

that the maximum modulus of the three-dimensional photospheric

pulsation velocity was 20 km s21.

5.1 Individual spectra

A single residual spectrum was calculated for an l � 2m � 8

pulsation mode with a corotating pulsation period of 2 h. This

short period corresponds to pressure (p) mode excitation, where

the photospheric velocity fields are dominated by radial, as

opposed to horizontal, terms. Fig. 2 shows the residual spectrum

and associated WAM; a distinct wavelet amplitude ridge, with

g � 1:29 rad �A21 at the line-centre, is evident. The shape and

position of this ridge, as shown by the dotted line, are very

similar to those shown for the heuristic lpv model in Fig. 1; in

contrast, the wavelet-amplitude weighted mean spatial frequency

(dashed line) departs significantly from that found for the

heuristic model, in particular taking larger values, and thereby

indicating the presence of higher spatial frequency components,

at the line wings. This departure illustrates the breakdown of the

heuristic model, and shows that realistic lpv exhibit a spatial

frequency `chirp' towards the wings; however, this chirp does

not appear significantly to distort the ridge, as indicated, and

therefore it is useful to introduce the concept of the `principal'

spatial frequency for realistic lpv, which corresponds to the

intrinsic spatial frequency gp of the heuristic model described by

equation (2).

The rate of change of F(l), discussed in Section 2, is given by

the value of gp measured from the WAM. There are a number of

methods by which this principal spatial frequency can be

determined; throughout this paper, with the exception of Section

5.5, gp is taken to be the position of the ridge at the line centre,

for reasons of simplicity, and thus in this case takes a value of

1.29 radAÊ21. An alternative method, which may give better

results with real observational data, is to calculate the average

wavelet amplitude by summing the WAM in the wavelength

direction, and determine the value of gp from the peak of this

average; this approach is used in Section 5.5. Whichever method

is chosen, it is important that the same method is used in both

the analysis and the pulsation-mode parameter calibration

(Section 6).

The ability to extract meaningful asteroseismological data from

a single residual spectrum means that, with wavelet analysis, the

emphasis of observational studies may be expanded from

extensive time-series observations of single stars to extensive

few-spectra surveys of entire OB stellar populations; even if

analysis of the resultant data is unable to achieve an identification

q 1999 RAS, MNRAS 310, 851±862

Table 1. Stellar parameters used to model lpv
using the spectral-synthesis code bruce.

Quantity Value

Equatorial rotation velocity Veq 400 km s21

Rotation axis inclination i 608
Polar temperature Tpole 38 000K
Polar radius Rpole 9.0R(

Polar gravity log 10gpole 4.0 dex

Figure 2. A residual spectrum and associated WAM W (l ,g) for an l �
2m � 8 pulsation mode. The annotation and normalization of the WAM

are the same as in Fig. 1.
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of pulsation parameters, it is still able to detect underlying (and

perhaps temporally aperiodic) spatially periodic line-profile

variability, providing the motivation for more intensive studies.

5.2 Temporal stability

In this subsection, the time dependence of lpv WAMs is

investigated, and the possibility of using spectra other than the

mean spectrum as the reference spectrum is demonstrated. A time

series of six spectra, uniformly sampling one (observer's frame)

pulsation period, was calculated using the parameters given in the

preceding subsection. Five residual spectra were then calculated,

using the spectrum at zero temporal phase Ft as the reference

spectrum, and a master-WAM was formed by coadding these

individual WAMs.

Fig. 3 illustrates these residual spectra, their associated WAMs,

and the master-WAM. The individual WAMs do show some

degree of time dependence, especially in their higher spatial

frequency components. This leads to a time dependence in the

position of the mean spatial frequency (dashed line), and arises

from the departure of realistic lpv from the heuristic model

presented in Section 4. However, the wavelet amplitude ridge

(dotted line) is almost time-independent, and, therefore, so also is

the principal spatial frequency gp discussed in the preceding

q 1999 RAS, MNRAS 310, 851±862

Figure 3. The residual spectra, associated WAMs and master-WAM W (l ,g) for a six-spectrum time series of an l � 2m � 8 pulsation mode; the spectrum at

zero temporal phase Ft has been used as the reference spectrum, and is not shown. The annotation and normalization of each WAM are the same as in Fig. 1.
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subsection. This result lends support to the validity of forming a

master-WAM by coadding residual spectra, discussed in Section 4.

The spatial asymmetry observed in the master-WAM arises

from the fact that a single spectrum was used as the reference

spectrum, rather than the time-averaged mean spectrum. This

choice of reference spectrum also accounts for the observed time

dependence of the envelope function E1,2; this envelope function is

identically zero at Ft � 0 (which is why the spectrum and WAM

are not shown at that temporal phase), and at a maximum at

Ft � p.

5.3 Multiple modes

Many early-type stars that exhibit lpv are known to possess more

than one temporal period (e.g. z Oph, HD 93521). This multiple

periodicity can be attributed to the excitation of more than one

NRP mode in the star. Since lpv resulting from photospheric

velocity fields arise from a perturbation of isovelocity contours on

the stellar disc (Townsend 1997b), the formation of such lpv is not

an additive process, and the principle of superposition cannot be

used to decompose variability resulting from multiple-mode

pulsation into separate signals corresponding to each mode

excited. Instead, the residual spectrum at a given epoch will be

a combination of independent contributions from each pulsation

mode, and some time-dependent spatial signals arising from

interference between these contributions. This leads to an

appreciable degree of time dependence in the WAMs of multi-

ple-mode lpv, and the results presented in the preceding

subsection do not apply. However, if the temporal coverage of

observations is suitably extended, it is still useful to form a

master-WAM for multiple-mode lpv, as the time-dependent

interference signals mentioned above will be smoothed out

when individual WAMs from differing epochs are coadded.

What constitutes a `suitably extended' temporal coverage in this

context is not immediately clear, but a prudent choice would

appear to be some multiple of the longest temporal beat period in

the observations.

To demonstrate the utility of forming master-WAMs in the case

of multiple-mode lpv, and to investigate how well the DWT is able

to resolve the spatial structure of each mode, three time series of

96 spectra were calculated using the parameters given in Section

5.1, but with the (multiple excitation of) l � �2; 8�; l � �4; 8� and
l � �6; 8� modes respectively. In all cases, the azimuthal order m

was taken to be 22; it was decided to hold m constant and vary l

because, as is demonstrated in Section 6, the WAM of a given

pulsation mode is mainly dependent on l, and almost independent

of m. The corotating pulsation periods of the l � 2; 4; 6 modes

were taken to be 8, 4 and 2.667 h respectively; these values were

chosen by scaling the 2-h period of the l � 8 mode by a factor

of l/8. Such a scaling corresponds to adopting the asymptotic

approximation for p modes (Tassoul 1980) and assuming that all

modes exhibit the same number of radial nodes in the Lagrangian

displacement. The extent of each time series was taken to be four

times the beat period of the appropriate two modes, in the

observer's frame. To ensure that each pulsation mode generated

approximately equal amplitudes of variability, the velocity

amplitudes were taken to be 20 km s21 for the l � 2; 4; 6 modes

and 40 km s21 for the l � 8 mode. Fig. 4 illustrates the master-

WAMs corresponding to each of the three time series.

It is apparent that the DWT does pick up the spatial

characteristics of the individual modes ± this is most evident in

the l � �2; 8� panel, where two distinct wavelet-amplitude ridges,

corresponding to the l � 2 (low-spatial frequency) and l � 8

(high-spatial frequency) modes, are well resolved. In the other

panels, this resolution is lost as the two ridges merge, although it

is still possible to ascertain from l � �4; 8� master-WAM that more

than one mode is excited in the star. In cases such as these, it

would be prudent to supplement the DWT spatial analysis with a

suitable (e.g. FT-based) temporal analysis, which can distinguish

multiple modes more easily because of their differing temporal

periods.

The merger of ridges for multiple modes with similar l

represents one of the weaknesses of the wavelet analysis technique

± although the DWT is able to give information concerning both

spatial frequency and wavelength, the trade-off between these two

variables (Section 3) means that the resolution in spatial frequency

can only be increased (by increasing the parameter c 0 in equation

1) at the expense of the resolution in wavelength, which is not

always desirable. The principal way to overcome these resolution

problems is to modify the method used to calculate the DWT; this

is discussed in Section 7. Another difficulty with the detection of

multiple modes using the DWT is the possibility of confusing

multiple modes with a single long-period mode; this is discussed

in the following subsection.

5.4 Long-period modes

The pulsation parameter K is given by GM=�v2
cR

3�, where vc is

the pulsation angular frequency in the corotating frame. When K

exceeds unity, the photospheric velocity fields become dominated

by horizontal components. As these horizontal components only

have appreciable projected values towards the stellar limb,

pulsation modes with large K, corresponding to gravity (g)

modes, will exhibit lpv predominantly at the line wings. This lpv

morphology, although encompassed by equation 2, introduces

some subtle aspects into the wavelet analysis. To demonstrate this,

the residual spectrum discussed in Section 5.1 was recalculated

using a corotating pulsation period of 20 h, which leads to a value

of 2.07 for K. The residual spectrum, along with the associated

WAM, is illustrated in Fig. 5. It is apparent from scrutiny of this

figure that the original wavelet amplitude ridge of Fig. 2 has been

split in the spatial frequency direction into two distinct ridges,

which are shown by the dotted lines.

Schrijvers et al. (1996) have noted that modes with large K lead

to lpv that exhibit a discontinuity in F(l) of p radians near the

line centre; this phase jump leads to difficulties in their analysis,

and is responsible for the frequency splitting observed in Fig. 5

(see also fig. 13b of SzatmaÂry et al. 1994). The explanation for this

is that the jump introduces a degree of spatial periodicity in the

envelope function E(l) appearing in equation 2, which corre-

sponds to a periodic amplitude modulation of the lpv. Such

modulation can be considered as the result of beating between two

spatial frequencies g1 and g2, which obey the relations

g1 � gp � ge �5�

and

g2 � gp 2 ge; �6�

where g e is the spatial beat frequency corresponding to the

periodicity in E(l). When the WAM is calculated, the DWT will

pick up these two spatial frequencies, leading to the two ridges

observed in Fig. 5; it is evident that the spatial frequency gp of the

lpv themselves is given by �g1 � g2�=2, while that of the envelope

q 1999 RAS, MNRAS 310, 851±862
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function will be given by (g1 2 g2�=2. Therefore, it remains

possible to recover gp from a WAM in the case of lpv caused by a

long-period pulsation mode.

It may be argued that the WAM in Fig. 5 could also result from

a residual spectrum exhibiting lpv because of two pulsation

modes, as was demonstrated in the preceding subsection (see also

Fig. 4). To distinguish between these cases, some technique other

that wavelet analysis must be used, either to ascertain whether

multiple modes are present in the star, or to calculate a value for

K. Evaluating the correct value of K is non-trivial ± it requires

knowledge of the corotating frequency v c, which in turn depends

on the azimuthal order m and the rotation angular frequency V.

Estimates of K may also be obtained by considering the excitation

mechanism thought to generate pulsation in the star under

observation, because knowledge of this mechanism indicates

whether p modes (small K) or g modes (large K) are expected to

be prevalent.

5.5 Effects of noise

Of great interest to the observer is how the wavelet analysis

technique is affected by noise, because lpv in pulsating stars are

typically observed with amplitudes of the order of the spectral

noise level. The effect of noise is to add a contaminatory

background signal to residual spectra; this background signal will

lead to spurious features in the corresponding WAMs, distorting

and possibly obscuring any wavelet amplitude ridges correspond-

ing to lpv. To demonstrate this phenomenon, synthetic noise

drawn from a Gaussian distribution with a standard deviation D

was added to each wavelength bin of the residual spectrum

presented in Section 5.1, and the resulting WAM was calculated.

Fig. 6 illustrates the noisy residual spectra and corresponding

WAMs for D values of 0.002, 0.004, 0.010, 0.020, 0.040 and

0.100; these values correspond to S/N levels of 500, 250, 100, 50,

25 and 10 respectively, because the S/N is given by 1/D for a

continuum flux of unity.

In this figure, the ridge corresponding to the principal spatial

frequency of the lpv is evident in the WAMs for S/N levels of 500,

250 and 100, although in the latter case the ridge cannot be

considered to be a reliable detection, as there are other, stronger,

ridges and peaks introduced by the noise. At lower S/N levels, the

ridge has been swamped by the noise and is no longer visible. This

is to be expected, because the peak semi-amplitude of the lpv is

approximately 0.6 per cent of the continuum in this case, and

therefore the lpv signal is dominated by the noise signal for a S/N

below approximately 166.

However, it is possible to recover the ridge by using a master-

WAM in the analysis, rather than the WAM of an individual

spectrum. To demonstrate this, a time series of 24 spectra,

covering one pulsation period, was generated with the addition of

q 1999 RAS, MNRAS 310, 851±862

Figure 5. A residual spectrum and associated WAM W (l ,g) for a long-

period l � 2m � 8 pulsation mode. The annotation and normalization of

the WAM are the same as in Fig. 1.

Figure 4. The master-WAMs W (l ,g) for 96-spectra time series of l � �2; 8�; l � �4; 8� and l � �6; 8� multiple pulsation modes. In all cases, the azimuthal

degree m was 22. The annotation and normalization of each master-WAM are the same as in Fig. 1.
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noise at a S/N level of 50, using the same pulsation parameters as

those in Section 5.1. WAMs for each of these spectra were

coadded to form a master-WAM, illustrated in Fig. 7. The ridge

corresponding to the lpv, with a peak spatial frequency of

g < 1:3 rad �A21, has apparently been recovered, although the

`contrast' between this ridge and surrounding regions of the

master-WAM is much lower than that in Fig. 2, and it is not

immediately clear what confidence level can be assigned to the

detection. This reduced contrast results from the fact that

wavelength amplitude can only take positive values (see equation

1), and therefore noise signals in one spectrum do not cancel those

in another spectrum when the master-WAM is calculated ± the

noise produces a background bias at each spatial frequency and

wavelength in the master-WAM, which scales linearly with the

reciprocal of the S/N.

To investigate this issue further, and to place the noise

characteristics of wavelet analysis on a more quantitative footing,

35 000 WAMs were calculated, each based on a residual spectrum

covering the wavelength range 6663±6693AÊ with a spectral

resolution of 0.15AÊ and consisting solely of noise at a S/N level of

50. Of these original WAMs, 10 000 were used to calculate a set of

5000 two-spectra master-WAMs, and a further 20 000 were used

to calculate a set of 5000 four-spectra master-WAMs, leaving a

remaining set of 5000 individual (single-spectrum) WAMs.

Subsequently, for each WAM in each of these three sets, the

average wavelet amplitude per wavelength bin was calculated by

q 1999 RAS, MNRAS 310, 851±862

Figure 6. The residual spectra and associated WAMs W (l ,g) for an l � 2m � 8 pulsation mode, with S/N levels of 500, 250, 100, 50, 25 and 10. The

annotation and normalization of each WAM are the same as in Fig. 1.
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summing the WAMs in the wavelength direction and then dividing

by the number of bins. Finally, for each resulting set of 5000

average wavelet amplitude curves, the mean and standard

deviation s were determined as functions of spatial frequency.

Fig. 8 illustrates these mean curves normalized by Ns, where Ns

is the number of spectra used to calculate each WAM in the

corresponding set; the normalized curves, which are observed to

be independent of Ns, indicate the background bias per wavelength

bin per spectrum in master-WAMs caused by noise. Also shown in

the figure is the mean plus and minus the standard deviation s ,

again normalized by Ns; these curves indicate the 1s range of

statistical fluctuations on the bias. This range scales as 1=
������

Ns

p
, so,

as more spectra are used to calculate the master-WAM, the

statistical fluctuations on the background bias decrease.

This last point is the reason why master-WAMs are able to

recover features caused by lpv from individual WAMs which have

been swamped by noise; as Ns is increased, it becomes more and

more probable that an observed deviation from the background

bias is not attributable to the random nature of the noise. To

demonstrate this, Fig. 9 shows the average wavelet amplitude per

wavelength bin per spectrum for the 24-spectrum master-WAM

illustrated in Fig. 7, calculated using the method described

previously. Also shown is the background bias resulting from

noise, and the 1- and 2s range of statistical fluctuations for this

bias, for Ns � 24 and a S/N level of 50. From inspection of this

figure, it is evident that only one wavelet amplitude peak falls

outside the 2s range, deviating from the background bias by

somewhat more than 4s ; if the Gaussian nature of the noise is

unaffected by the DWT procedure, then probability of this peak

being a noise artefact is of the order of 1 part in 105, and the

apparent recovery of the ridge shown in Fig. 7 is confirmed at a

high confidence level. However, such confidence levels must be

quoted with caution, because the assumption of the manner in

which noise propagates through the DWT may not be valid.

Furthermore, rectification errors in the calculation of residual

spectra, which are likely at the low S/N levels discussed herein,

may generate artificial structure in the lpv, which in turn may lead

to spurious detections that appear to have high confidence levels

attached to them (although one would expect such errors to lead

solely to low-frequency features in the resulting WAMs). These

issues, and more generally the noise characteristics discussed

herein, certainly merit further research (see Section 7).

On a final note, it is evident that the spatial frequency gp of the

peak in Fig. 9 is somewhat higher than the value found in Section

5.1; the reason for this is that, even though the peak is caused by

lpv rather than noise, the noise still distorts its shape and position

somewhat. This distortion can be minimized both by increasing Ns

q 1999 RAS, MNRAS 310, 851±862

Figure 7. The master-WAM W (l ,g ) for a 24-spectrum time series of an

l � 2m � 8 pulsation mode, with a S/N level of 50. The annotation and

normalization of the master-WAM are the same as in Fig. 1.

Figure 8. The background bias per wavelength bin per spectrum (solid) caused by noise for master-WAMs calculated using Ns � 1; 2 and 4 spectra, with a

S=N level of 50. The dotted lines show the 1s limits on this bias.
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and deducting the background bias from the average wavelet

amplitude when the position of the peak is to be determined.

6 EXTRACTING PULSATION PARAMETERS

As was demonstrated in the previous section, wavelet analysis

represents an powerful tool with which to determine the principal

spatial frequency gp of the bumps and dips appearing in lpv.

However, some method of mapping the value of gp into mode

parameters l and m is required for this technique to be

quantitatively useful. To determine this mapping, three sets of

residual spectra time series, corresponding to stellar inclinations i

of 308, 608, and 858 respectively, were calculated using the

procedure outlined in Section 5. Each set contained 256 time

series of 24 residual spectra, uniformly sampling pulsation period,

with l and m extending over 0 < l < 15 and 2l < m < l. Master-

WAMs were calculated for these time series, and the value of gp,

the principal spatial frequency, was determined for each (l, m) pair

in each set using the method described in Section 5.1. Fig. 10

illustrates these values, scaled by sin(i), as a function of l and m,

for each value of i indicated; this scaling is to take into account the

different rotationally broadened linewidths at different inclina-

tions, because the principal spatial frequency will vary as the

reciprocal of the line width for a given number of lpv bumps and

dips in the line profile.

For inclinations of 308 and 608, this figure shows that, whilst gp

depends only weakly on m, it exhibits a strong, near-linear

dependence on the harmonic degree l; this concurs with the

relationship between l and DF demonstrated by Telting &

Schrijvers (1997). At an inclination of 858, the dependence on l

appears to break down for modes with an odd value of l2 jmj, in
that the value of gp is significantly larger than that `expected'. A

similar phenomenon has been reported by Schrijvers et al. (1996),

who found that such modes exhibit a doubling in the number of

lpv bumps and dips at inclinations near 908; this behaviour arises

because the pulsation of such modes is nearly anti-symmetrical

with respect to the equatorial plane at inclinations close to

equator-on, and lpv at the principal spatial frequency are almost

completely suppressed because of cancellation effects between the

two hemispheres, leaving only components of higher spatial

frequencies.

Telting & Schrijvers (1997) used Monte Carlo simulations to

derive an empirical formula relating l to DF. In their simulations,

they varied a number of parameters in addition to l and m, to

investigate the dependence of DF on other quantities, and

therefore their formula can be applied to a wide variety of

pulsation-originated lpv. A corresponding formula, relating l to

gp, is not derived herein, as only the inclination has been varied in

this work; furthermore, such a derivation would discard possibly

important information concerning the dependence of g on m at

intermediate inclinations.

7 FUTURE WORK

This paper serves to introduce the possibility of using the DWT to

probe lpv spatial structure, and is not meant to be exhaustive.

There are a number of investigations and improvements that need

to be performed before this new technique can fulfil its true

potential. Above all, the DWT must be used with caution, for, as

SzatmaÂry et al. (1994) stress, it is no `magic box' by which all lpv

analysis problems can be solved. Difficulties distinguishing

between large-K and multiple-mode pulsation ± and indeed

resolving multiple modes 2 have already been pointed out

(Section 5.4); other situations where unwary use of wavelet

analysis leads to misidentifications may exist, awaiting discovery.

On a more general note, spatial wavelet analysis provides no

temporal information about lpv, and cannot replace the use of the

FT for temporal analysis.

An area certainly worthy of attention in the development the

technique is the search for the most appropriate wavelet to use in

calculating the DWT of residual spectra. The use of such an

optimal wavelet will presumably make wavelet amplitude ridges

sharper and more localized in spatial frequency, leading to

greater accuracy in the determination of gp, and also higher

resolution in frequency for the separation of multiple modes. The

expression for W(l ,g) given by equation (1) uses the Morlet

wavelet, a sinusoid modulated by a Gaussian. Whilst this

corresponds in the crudest sense to the form of small-K lpv

themselves (as can be seen by comparing Fig. 1 and Fig. 2), a

search must be made for the aforementioned optimal wavelet (if it

exists), so as to increase the resolution and accuracy to which gp is

known. This increased resolution will be of most importance in

analysing the spectra of stars pulsating in multiple modes, because

the master-WAMs of such spectra exhibit multiple ridges (Section

5.3), which must be well separated for clear mode identifications

to be made.

One modification to the DWT wavelet that immediately

suggests itself is the introduction of a chirp at the line wings.

Such a chirp appears in the lpv themselves (Section 5.1), because

of the dependence of the projected rotation velocity on the sine of

the azimuth f , rather than on f itself. The wavelength2azimuth

mapping used by Kennelly et al. (1992) could be used to implicitly

introduce the chirp into the DWT wavelet by performing

q 1999 RAS, MNRAS 310, 851±862

Figure 9. The average wavelet amplitude per wavelength bin per spectrum

(solid line) for the 24-spectrum master-WAM shown in Fig. 7. Also shown

is the background bias caused by noise (dashed line), and the 1- and 2s

limits on this bias (dot±dashed and dotted lines, respectively). The S/N

level adopted for the calculations was 50.
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calculations in azimuth space rather than wavelength space;

presumably, the higher-frequency features present in the line

wings of Figs 2, 3 and 5 would be reduced in amplitude, resulting

in a `cleaner' WAM. It is anticipated that this modification to the

method will be investigated in a future paper.

Another important issue under consideration for future

investigation is the dependence of gp on parameters other than

l, m and i. This will allow wavelet analysis to be used with

confidence in situations where these other parameters (such as

pulsation period, degree of non-adiabacity, etc.) are not known a

priori, and thus increase the generality of the discussion.

Furthermore, it would be interesting to discover whether the

DWT can extract not only l (as was shown in Section 6), but also

m, from residual spectra, as the FT analysis of Telting & Schrijvers

(1997) is able to do. Other areas also under consideration are a

more extensive examination of the noise characteristics of the

DWT, building on the results presented in Section 5.5, and an

examination of the effect of line blends on spatial wavelet

analysis; such blends may exhibit lpv with a phase jump around

the blending region, which could lead to the spatial frequency

spitting demonstrated in Section 5.4.

8 SUMMARY

The technique of spatial wavelet analysis has been used to analyse

spectra exhibiting pulsation-originated lpv and extract information

concerning the harmonic degree l of the underlying pulsation. This

technique can be applied directly to as few or as many individual

spectra as are available, with no reference to the time coverage or

completeness of the spectra required, in contrast to Fourier

analysis techniques (Baade 1988; Gies & Kullavanijaya 1988;

Telting & Schrijvers 1997), which generally require extensive

time-series spectra to achieve (indirect) spatial analyses (although

they do provide accompanying temporal information, which the

wavelet analysis technique does not). Variability resulting from

both p-mode (small-K) and g-mode (large-K) pulsation has been

analysed using the technique, as has that resulting from multiple-

mode pulsation. The noise characteristics of spatial wavelet

analysis have also been investigated, and it has been demonstrated

that the use of master-WAMs can be used to extend the analysis

down to low S/N levels.

Although the technique has been used herein to determine the

value of l for the pulsation mode generating the lpv, spatial

wavelet analysis may be used to detect any form of spatially

periodic variability in spectra, and is not just tied to the analysis of

pulsation-originated lpv. Whatever the ultimate field of study,

however, it is hoped that spatial wavelet analysis will prove to be a

useful new tool with which to study line-profile variability,

especially in low-quality data; a future paper is therefore planned

to develop this tool.
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