2VNRAS. 330: 8551

rz

Mon. Not. R. Astron. Soc. 330, 855-875 (2002)

Photometric modelling of slowly pulsating B stars

R. H. D. Townsend*

Department of Physics & Astronomy, University College London, Gower Street, London WCIE 6BT

Accepted 2001 November 3. Received 2001 October 30; in original form 2001 June 30

ABSTRACT

The photometric characteristics of slowly pulsating B stars are investigated using a numerical
approach. Stability calculations are performed for a set of stellar models representative of the
mid-B type, using a non-radial non-adiabatic pulsation code. The results from these
calculations are used to synthesize photometry, in several common systems, for unstable
modes of harmonic degrees £ = 1...4. Focusing on the Geneva system for illustrative
purposes, a variety of techniques are employed to analyse and visualize the synthetic data,
including the use of multicolour-amplitudes and amplitude—phase diagnostic diagrams. One
outstanding aspect of the analysis is the discovery, for the £ = 2...4 modes, of ‘inter-term
cancellation’ (ITC) — the process of destructive interference between the flux variations
originating from surface temperature perturbations and those arising from radius
perturbations.

The ITC can be severe enough that a mode may be excited to a significant amplitude, and
yet exhibit levels of photometric variability that fall below typical observational detection
thresholds. Furthermore, it can affect not only the light variations in a given photometric
passband, but also the variations of the bolometric flux. However, the cancellation is
dependent on wavelength, and will not occur to the same degree in more than one passband.
Therefore, simultaneous observation in a multitude of passbands represents the best approach
to ensuring that no modes are overlooked during searches for variability in B-type stars.

A consequence of ITC is that ratios between the variability amplitude, in differing
passbands, become very sensitive towards mode-to-mode changes in the pulsation. This
increased sensitivity will tend to complicate any attempts at identifying the harmonic degrees
of the modes responsible for observed variability. However, the cancellation also introduces
significant phase differences between the light variations in each passband, especially for the
£ = 3 and £ = 4 modes. On the grounds that correspondingly large phase differences are not
seen in observational data, it is argued that the variability seen in slowly pulsating B stars can
tentatively be attributed to £ = 1 and £ = 2 modes.

Key words: methods: observational — techniques: photometric — stars: early-type — stars:
oscillations — stars: variables: other.

1 INTRODUCTION

Much of the recent interest in early-type stellar variability has been
directed toward the slowly pulsating B-type (SPB) stars. First
introduced as a distinct class by Waelkens (1991), these systems
exhibit multiperiodic, long-time-scale (~1-5d) light and colour
fluctuations, and have been identified as the photometric
counterparts to the 53 Per spectroscopically variable pulsators
discovered by Smith (1977). Theoretical studies (see e.g.
Pamyatnykh 1999, and references therein) indicate that the
k-mechanism excitation of multiple non-radial g modes, arising
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from a metal-line opacity bump at a temperature 7 ~ 2 X 103K,
can explain the SPB phenomenon. Although there remains some
uncertainty regarding the physical nature of mode selection
(Dziembowski, Moskalik & Pamyatnykh 1993), the close
agreement between the observed and predicted instability domains
in the Hertzprung—Russell diagram (Pamyatnykh 1999, his figs 3
and 4) indicates that the SPB class is well understood.

With the unanticipated discovery by the Hipparcos satellite of a
large number (~100) of new candidate SPB stars (Waelkens et al.
1998), and looking forward to upcoming space-based missions
(Eyer 2000), which may reveal even more members of the class,
these systems will soon be within the reach of statistical analysis
techniques (Gautschy 2000). First, however, it will be necessary to
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Figure 1. Tracks in the theoretical Hertzprung—Russell diagram for the eight evolutionary sequences of mid-B type stellar models considered throughout. Each
track is labelled with the initial stellar mass, in solar units; thick (thin) lines are used to indicate which stages are overstable (stable) against one or more non-
radial pulsation modes of the indicated harmonic degree €. The dotted lines indicate the implied boundaries of the SPB instability strip.

secure reliable identification of the g modes responsible for the
observed variability. How may these identifications be made? One
approach is the modified Baade—Wesselink technique devised by
Dziembowski (1977), which permits the inference of the harmonic
degree £ of a mode from light and radial velocity observations. The
technique has been improved by a number of authors (e.g. Buta &
Smith 1979; Balona & Stobie 1979), and Stamford & Watson
(1981) have adapted it for use with multicolour photometric
measurements alone. It has been deployed successfully by both
Heynderickx, Waelkens & Smeyers (1994) and Cugier, Dziem-
bowski & Pamyatnykh (1994) in the analysis of 8 Cepheid stars,
the higher luminosity cousins to the SPBs.

The outstanding aspect of the last authors’ treatment was the
incorporation of quantitative theoretical data, derived from
stability calculations, which describe the non-adiabatic character
of pulsation at the stellar surface. In the case of early-type stars,
reliable values for these data have become available only since the
discovery of the metal-line k-mechanism instability (Cox et al.
1992; Dziembowski & Pamyatnykh 1993; Dziembowski et al.
1993). Therefore, it is no mystery why prior photometric studies of
both B Cepheid and SPB variability were restricted to ad hoc or
empirical estimates of non-adiabacity (e.g. Watson 1988;
Heynderickx et al. 1994), or to the assumption of completely
adiabatic pulsation (e.g. Buta & Smith 1979). Nevertheless, despite
of the fact that the non-adiabatic characteristics of SPB pulsators
are now well-understood, photometric modelling of these systems,
with the quantitative treatment of non-adiabacity, has yet to be
undertaken.

This last point is addressed by the present paper, which
investigates the theoretically predicted light and colour variations
of SPB stars, using an approach similar to that of Cugier et al.
(1994). Linear stability calculations are undertaken for a large
number of mid-B type stellar models, producing parameters which
characterize the photospheric perturbations resulting from each
overstable non-radial mode. These parameters are combined with
line-blanketed model atmospheres to obtain light curves in a
number of passbands for the overstable modes. Details of the
method are presented in the following section, while Section 3 is
devoted to analysis of the resulting synthetic data. In Section 4,
these data are compared with recent observations of SPB
variability; conclusions for the entire paper are then drawn in
Section 5.

2 METHOD
2.1 Stellar models

The Warsaw—New Jersey evolutionary code' was used to calculate
eight tracks of mid-B type stellar models, uniformly sampling the
initial mass range M = 3.0 Mp—6.5 M, and extending from zero-
age main sequence to somewhat beyond the cessation of core
hydrogen burning. Details of this code have already been given by
Dziembowski & Pamyatnykh (1993) and Dziembowski et al.
(1993); the only significant difference in the present work was the
adoption of more-recent OPAL tabulations for opacity (Iglesias &
Rogers 1996) and equation of state (Rogers, Swenson & Iglesias
1996). In all cases, the initial hydrogen and metal mass fractions
were set at X = 0.7 and Z = 0.02, respectively, with a heavy-
element mixture taken from Grevesse & Noels (1993).

Fig. 1 shows the evolutionary tracks, for each initial mass, in
the theoretical Hertzprung—Russell diagram. The thickness of the
track lines has been used to indicate the vibrational stability of the
models against the excitation of non-radial modes with harmonic
degrees £ = 1...4. Details of the stability calculations are
discussed in the following section.

2.2 Stability calculations

Stability calculations for all stellar models were undertaken using
NARK, a new finite-difference relaxation code for solution of the
full system of linear, non-radial, non-adiabatic pulsation equations.
The implementation of NARK is based largely on the detailed
descriptions given by Unno et al. (1989), with an outer mechanical
boundary condition taken from Dziembowski (1971). Pertur-
bations to the convective flux are neglected throughout (the so-
called ‘frozen convection’ approximation), and radiative heat
transfer is treated within the Eddington approximation (see Ando
& Osaki 1975). As discussed by Unno & Spiegel (1966), the latter
is exact in both the optically thick and optically thin limits, and
reasonably accurate across intermediate regions. Mesh points are
inserted automatically, to ensure adequate resolution of the spatial
oscillation of eigenfunctions, and the accuracy of solutions is
checked using the work-integral technique of Ando & Osaki (1975).

!Kindly provided by R. Sienkiewicz.
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The overall normalization of eigenfunctions, regarding which
the linear formalism can say nothing, has a direct bearing on
predicted variability amplitudes, and must be selected with some
care. Although a full non-linear theory for modal limiting
amplitudes has yet to be developed, Dziembowski et al. (1993)
have suggested a simple yet physically reasonable approach to the
problem, based around the assumption that amplitude limitation
arises from non-linear saturation of the k-mechanism driving. This
approach, adopted within NARK, may be expressed by the
requirement that the relative Lagrangian perturbation 67 to the
temperature 7 satisfies

2
<3_TT >—0.1 M

in the driving zone, where (...) denotes the average over all solid
angles. Dziembowski et al. (1993) chose to apply this condition at a
constant fraction (96 per cent) of the stellar radius; however, NARK
implements a more flexible approach, invoking the requirement (1)
at the peak of the metal-line opacity bump.

Results from the stability calculations, for harmonic degrees
£ =1...4, are summarized in Fig. 1. Exploratory calculations
indicated that higher degree (£ =5) modes generate light
variations at very low levels (=2.5 mmag), and cannot therefore
be considered a significant source of SPB photometric variability.
The implied boundaries of the SPB instability strip shown in the
figure, located at zero- and terminal-age main sequence, exhibit
good agreement with those presented by Pamyatnykh (1999).

The principal goal of the stability calculations was to obtain
parameters describing the perturbative influence of each overstable
mode upon the stellar photosphere. Let the time-dependent relative
Lagrangian perturbation 8y to a given variable y, at the stellar
surface, be expressed in the canonical form

% = Re[Y7(0. )€™ A,]. @

where Y7 is the spherical harmonic of the appropriate harmonic
degree £ and azimuthal order m, and Re]. . .] denotes the real part.
The complex coefficient A,, which completely characterizes the
perturbation, is found from the stability calculations as the surface
value of the corresponding radius-dependent eigenfunction
(8yly)(r). In the present case, the coefficients obtained for every
overstable mode were A,, Ay and Ag, describing respectively the
perturbations to the photospheric pressure p, effective temperature
T. and stellar radius R. Together with the eigenfrequency o, they
represent the data required for photometric modelling of any given
mode.

Before discussing the method adopted for this modelling, it is
instructive to compare the results of the non-adiabatic calculations
with the predictions of adiabatic pulsation theory. Fig. 2 shows the
complex modulus and argument of Ay — the effective temperature
coefficient — as a function of pulsation period 11 = 2w/, for the
unstable € =2 modes of an M = 4.0-Mg stellar model, the
parameters of which are specified in Table 1. This model was
chosen to coincide loosely with the one examined in detail by
Dziembowski et al. (1993), and will be used for illustrative
purposes throughout the present investigation. Also shown in the
figure are the corresponding data predicated by the adiabatic
approximation,

Ar = Va4, ©)]
(Buta & Smith 1979), and those for the radius perturbation
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Figure 2. The modulus and phase of Ag the effective temperature
perturbation coefficient, as a function of pulsation period II for the unstable
(g16- - -842) € = 2 modes of the 4-M stellar model specified in Table 1.
Filled (open) diamonds show the results obtained with non-adiabatic
(adiabatic) theory, while open triangles indicate the corresponding values
for Ag, the surface radius perturbation coefficient.

Table 1. The mass M, radius R, luminosity L, effective
temperature T, and central hydrogen mass fraction X,
of the stellar model considered within the text and
subsequent figures.

MMo) RRo) logL(Lo) logT. (K) X

4.00 3.40 2.50 4.12 0.37

coefficient Ag; here, V,q is the adiabatic temperature gradient
within the photosphere.

The figure demonstrates that — as found by Cugier et al. (1994)
for the B Cephei pulsators (and see also Dupret 2001) — the
adiabatic approximation is decidedly inadequate in the context of
SPB stars: the amplitude of temperature perturbations is
consistently overestimated by a factor ~3, and the phase lags
between Ay and A are not reproduced correctly. This result is
hardly surprising, because the thermal time-scale in the photo-
spheres of the latter systems (~12.4 min in this particular case) is
very much shorter than typical pulsation periods, and significant
heat exchange between neighbouring fluid parcels is to be
expected. With this fact in mind, the continued use of the adiabatic
approximation for SPB modelling should certainly be discouraged.

2.3 Photometric modelling

Expanding on previous work by Dziembowski (1977) and others,
Watson (1987) introduced a useful semi-analytical model for the
flux variations resulting from a non-radial mode, which includes
the first-order contributions from temperature, pressure and radius
perturbations. Adopting this model, suitably modified for the
present parametrization scheme, the time-dependent perturbation
0F, to the observed flux F, in some photometric passband
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(denoted by the subscript x) is expressed as

8F. )
T Re{y';(@,@) el
X
A, @ Ar 9 Ag
X —_ — Q2481 —£8)|Leep, (4
{Io_xalng—i_fo_xalnTe—i_IoX( OO0 =0 Ter g B
where {A,, Az Ag} are the complex amplitude coefficients

introduced in the preceding section, (O, ®) are the spherical-polar
coordinates of the sub-observer point, and g = GM/R? is the
surface gravity of the star. The term Z,, depends on the radiation
field of the equilibrium photosphere, and is defined, for a given £
and x, by

0 1
Toe = JO Uom, WPe(p)pdp| Sc() dA; ®)

here, Z(A, ) is the specific intensity at wavelength A and cosinus u
to the local surface normal, which is obtained from static model
atmospheres. Furthermore, Pe(w) is the Legendre polynomial of
degree £, and S,(A) is the overall response function of photometric
band x, combining the individual contributions from atmosphere,
telescope, filter and detector. With these definitions, Z, is related
to Watson’s (1988) weighted limb-darkening integral be, through

00

Tex = IOXJ beraSx(A) dA, (6)
0

where Z,, being the value of Z,, for £ = 0, is proportional to the
total flux F, in band x.
In the derivation of equation (4), the approximation

0Zgy  0Tgx
dlnp dlng

(O]

was adopted when considering the light variations engendered by
pressure perturbations. This approximation is useful because the
radiation field is more naturally parametrized by surface gravity
than by photospheric pressure. It is reasonably accurate for hot
stars (Watson 1988, and references therein), and becomes exact
when the radial gradient of &p/p is negligible within the
photosphere (Cugier et al. 1994; Balona & Evers 1999). In the
present work, the latter condition is implicitly enforced, for all
modes, by the adoption (Section 2.2) of Dziembowski’s (1971)
outer mechanical boundary condition (see e.g. Townsend 1997 for
proof). Therefore, the incorporation of the approximation (7) does
not degrade the physical realism of the modelling any further. In
any case, pressure perturbations typically contribute little towards
the light variations of SPB stars (see Section 3.1), and the accuracy
of the approximation will be of secondary importance in the
majority of cases.

To widen the generality of results, it is useful to remove from
equation (4) the dependence of 6, on the arbitrary sub-observer
coordinates (O, ®) and azimuthal order m. This is readily achieved
by replacing the Y5'(®, ®) term in the equation with an appropriate
average

~ 1 £ 1 2T o " )
T 1’2 —J L|Yé(0,q>)|5m0d0dcl> (®)

m=—4~ 4m 0

over all aspect angles and permissible azimuthal orders. The flux

Table 2. The factors, for each appropriate
value of € and |m|, by which photometric
modelling using averaged spherical harmonics
Ye (equation 8) will, ceteris paribus, under-
estimate the flux variations from a star aligned
in the most favourable orientation.

]

0 1 2 3 4

1.86  1.32

248 152 152

299 178 157 1.70

343 203 174 1.65 1.80

BN -

variations are then expressed as

8F. - (A, Ar 9
L= ¥,Rede” | 22—+ =L
.7:)( I()Xdlng I()XalnTe

+

AR 24 o)1 - E)}Iex}, ©)
Lox

which is independent of both m and (@, ®). In those situations
where a star has a particularly favourable orientation (i.e. when
[Y7(©,®)| is maximal), the latter expression can significantly
underestimate the flux variations; Table 2 details the worst-case
scenarios for all £ <4 non-radial modes. Nevertheless, when
modelling a large ensemble of stars, with randomized orientation
and azimuthal degree, equation (9) should lead to statistically valid
results. A similar averaging technique was adopted by Balona &
Dziembowski (1999) for the purpose of establishing upper limits
on the photometric amplitude of & Scuti stars.

For the unstable modes found by NARK, equation (9) was used to
synthesize photometry in the Johnson—Cousins, Stromgren,
Geneva and Hipparcos photometric systems. Response functions
Si(A) for the passbands of these systems were obtained from
Bessell (1990), Matsushima (1969), Rufener & Nicolet (1988) and
Perryman (1997), respectively; where necessary, data for
atmospheric extinction and the reflectivity of aluminium were
taken from the tabulations by Allen (1976). Specific intensity data
Z(A,u), and their appropriate partial derivatives, were linearly
interpolated in an ATLAS9 grid of local thermodynamic
equilibrium (LTE) line-blanketed synthetic spectra (Kurucz
1993), at solar abundance and 2 km s~ ! microturbulent velocity.

Each resulting periodic light curve was characterized by its
cosinusoidal semi-amplitude A, and phase ¢, relative to the
nominal t = 0 epoch of equation (9). As almost all observations of
SPB stars have been undertaken in the Geneva photometric system
(e.g. Waelkens & Rufener 1985; Waelkens 1991; North & Paltani
1994; Waelkens et al. 1998; De Cat & Aerts, in preparation) the
focus of subsequent sections is placed almost wholly on the
presentation and analysis of the data in the Geneva UB BB,V VG
passbands. However, the amplitude and phase data of all
photometric systems considered have been made available for
download from the World Wide Web, at http://www.star.ucl.ac.uk/
~rhdt/download/

3 RESULTS
3.1 Light variations in the V band

Fig. 3 shows the Geneva V-band light amplitude .4y as a function of
mode period II and central hydrogen mass fraction X, for each
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harmonic degree and evolutionary sequence considered. Although
the mode spectrum at a given X_ is discrete, linear interpolation has
been used to represent Ay as a continuous function of I1. Across
those regions of the I1-X, plane where the stellar configuration is
stable against pulsation, Ay has been set identically to zero.

The synthetic data plotted in the figure can be regarded as
theoretical upper limits for the V-band light variations across the
SPB instability strip; however, the approximations and assump-
tions adopted during the modelling should be borne in mind when
applying such an interpretation. As discussed in the preceding
section, the use of angle-averaged spherical harmonics Y, when
calculating 8, (equation 9) is appropriate only when considering
the mean properties of an ensemble of pulsating stars. Moreover, it
has been assumed that amplitude limitation occurs through
saturation of the opacity-mechanism driving. Even if this
assumption is correct, the normalization condition (1) is valid
only for monomodal pulsation; the simultaneous excitation of two
or more modes will lead to a corresponding reduction in the
variability generated by each one (see Dziembowski et al. 1993).

The most prominent feature of Fig. 3, for all stellar models, is the
rapid decline of the flux variations with increasing harmonic
degree: at £ =1, the maximal averaged light amplitude is
Ay = 49mmag, but for £=2,3,4 it falls to Ay =
23,5, 10 mmag, respectively. This behaviour, endemic to non-
radial pulsation, arises from partial cancellation between regions of
the stellar disc oscillating in antiphase with one another. Towards
larger values of £, the disc is subdivided into an ever-increasing
number of these regions, and the cancellation becomes
correspondingly more complete. Disc-averaging cancellation was
first considered by Dziembowski (1977), who demonstrated that
the weighted limb-darkening coefficient b,, is asymptotically
proportional to 22335 for modes of even (odd) harmonic
degree. The same dependence is exhibited by the radiation-field
term Zp, in equation (9), owing to the inter-relationship (6)
between bg, and Zg,; accordingly, even with the growth of other
£-dependent terms in the former equation, the flux variations will
decline along each sequence of even- or odd-£ modes, the decline
being most rapid in the latter. Judging from the figure — which, it
should be recalled, provides upper limits on the anticipated light
amplitude of SPB stars — it would appear that £ =3 or £ =4
modes will be hard pushed to generate variability at amplitudes
approaching those observed in SPB stars.

The other aspect of Fig. 3 warranting attention is the appearance,
most obvious in the intermediate-mass £ =2 panels, of
pronounced ‘valleys’ in the light-amplitude data. These valleys —
minima of Ay with respect to II — are a consequence of what shall
be termed inter-term cancellation (ITC). In contrast to the disc-
averaging cancellation of the foregoing discussion, ITC is the
process of destructive interference between contributions towards
the light variations arising from each type of photospheric
perturbation. Two separate factors conspire to produce ITC in SPB
stars. First, temperature and radius perturbations in these systems
vary approximately in phase, as can be appreciated from the Ayand
Ag data plotted in Fig. 2. This is a general characteristic of g-mode
pulsation, for which the regions of maximum compression — and
hence, maximum heating — tend to occur where the stellar surface
is displaced outwards. Because the (2 4+ £€)(1 — -£) term in equation
(9) is negative when £ = 2, the flux changes from temperature and
radius perturbations are then in approximate antiphase, opening up
the possibility of destructive interference between the two.

Secondly, temperature perturbations in SPB stars result
primarily from horizontal compression of the photospheric gas.

© 2002 RAS, MNRAS 330, 855-875
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The relative strength of the compression grows with increasing
pulsation period; therefore, while the light variations of shorter
period modes are primarily generated by radius perturbations,
those of the longer period modes arise from the increasingly
dominant temperature perturbations. At some intermediate period,
the two perturbations will make approximately equal contributions
towards the variability; as these contributions are in antiphase, a
minimum in the light amplitude will result.

To illustrate the foregoing discussion, Fig. 4 plots the V-band
light amplitude Ay and phase ¢y as a function of period, for £ = 2
modes of the 4.0-Mo model introduced in Table 1. Also shown in
the figure are the individual contributions towards the variability
from the pressure, temperature and radius perturbations; these
contributions may be identified with the terms in equation (9)
proportional to A,,, Arand Ag, respectively. Evidently, although the
radius contribution is strongest at the short-period limit, that of the
temperature perturbations becomes more and more significant as
the period is increased. Approaching Il ~ 1d, the two are
approximately equal in magnitude; however, their phases differ by
nearly 180° and they thus combine in opposition to produce a
distinct minimum in the total light amplitude .Ay. Observe that the
pressure contribution, accounting for only a tiny fraction of the
variability, plays little part in the process; this latter result holds for
the vast majority of modes studied, but — as will be discussed
subsequently — there exist a few situations where the pressure
contribution can play a significant role.

If the radius and temperature contributions were in precise
antiphase, the light variations would vanish completely at the
period where their magnitudes are equal. In physically realistic
situations, however, total cancellation rarely occurs: non-adiabatic
processes at the stellar surface introduce a small phase lag between
Arand A, (see Fig. 2), which means that the phase difference
between the two corresponding contributions deviates somewhat
from 180°. The size of this deviation plays a role in determining the
minimum value of Ay attained, and — to a much lesser part — the
period at which the minimum will occur.

Returning to Fig. 3, minima in the £ =2 amplitude data
resulting from ITC are evident in the intermediate and higher mass
(M = 4.0-6.5Mp) evolutionary sequences. Along each sequence,
the increasing stellar luminosity promotes ever-larger departures
from adiabacity within the photospheres of the models (see Unno
et al. 1989, section 22.1), which tend to dilute the temperature
perturbations. As a consequence, the period of the Ay minimum
lengthens as the models evolve from zero- to terminal-age main
sequence. A similar lengthening is also seen in the short- and long-
period boundaries of the k-mechanism instability, owing to the
growth in the dynamical time-scale of the models. Taken together,
these two effects mean that the positioning of the Ay minima,
relative to the boundaries of the instability, remains largely
unaffected by evolutionary processes.

For the unstable £ = 3 and £ = 4 modes shown in Fig. 3, ITC
also occurs, but tends to be most pronounced very close to the
long-period boundaries of the instability. Therefore, rather than
appearing as a distinct minimum in the light amplitude, as for
the £ =2 modes, cancellation in the higher order modes
manifests itself as a decline in the light amplitude with
increasing pulsation period. This decline is so rapid that the
V-band light amplitude of the unstable, longest-period £ =3
(€ = 4) modes did not exceed 1.32 mmag (1.60 mmag) in any of
the stellar models considered — values which are well below the
typical detection thresholds of current ground-based observing
facilities.
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Figure 3. The cosinusoidal semi-amplitude Ay (in mmag) of light variations in the Geneva V-band, as a function of pulsation period Il and central hydrogen
abundance X, for the unstable £ = 1,2,3 and 4 modes, of the eight evolutionary sequences considered throughout. Note the different vertical scaling for
each £.

Unlike the situations outlined above, cancellation between the the rare cases where the temperature perturbations are very small,
temperature and radius contributions never arises for £ = 1 modes. the normally unimportant photospheric pressure perturbations can
This is because the (2+44£)(1 —£) term in equation (9) is become a significant contributor towards the light variations.
identically zero, and the radius contribution vanishes. However, in Under these circumstances, ITC can arise between the temperature
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Figure 3 — continued

and pressure contributions; such scenarios will be encountered in
subsequent sections.

On a historical note, it should be mentioned that ITC was first
considered — albeit not under the present name — by Watson
(1987), who correctly surmised that g-mode radius and
temperature perturbations might contribute oppositely to the light

© 2002 RAS, MNRAS 330, 855-875

variations of mid-B type stars, and that these respective
contributions could interfere destructively. The strength of the
present analysis lies in the fact that it does not rely — as Watson
(1987) had to — on estimates of the temperature perturbations in
the presence of non-adiabatic processes. Inaccuracies in these
estimates can have a profound effect on the predicted nature and
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Figure 3 — continued
incidence of ITC, and lead to misleading results even at a suggested that SPB variability may be characterized by an inverse
qualitative level. dependence between light amplitude and wavelength, and the

absence of any significant phase lags between the variations in
differing photometric bands. To examine whether this character-
ization applies to the synthetic data, the discussion is now

Based on previous observational studies, North & Paltani (1994) expanded to consider the variability across the Geneva-system
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Figure 3 — continued

passbands. The present section focuses on the 4.0-Ms model
introduced previously, which illustrates well the behaviour of many
of the other models; the properties of the complete data set are then
examined in the following two sections.

Fig. 5 plots, as a function of period, the light amplitudes
{Ay, Ap, Ay} in the Geneva {U, B, V} broadband filters, for the
unstable € = 1...4 modes of the model. Evidently, the behaviour

© 2002 RAS, MNRAS 330, 855-875

noted by North & Paltani (1994) is best reproduced by the £ = 1
modes: across the blue-to-red sequence of passbands, the light
variations decline in amplitude and yet remain ostensibly in phase.
This result can readily be understood by considering a hypothetical
star in which temperature perturbations alone contribute towards
the variability. Inspection of equation (9) reveals that the phase of
the light variations in this system will be completely independent

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2002MNRAS.330..855T

2VNRAS. 330: 8551

rz

864 R. H. D. Townsend

|III|_|:

:I T T T 1T I T T I 1T | LI |:
270 —a—P —a—R |3
. E ——T —e—All| 3
n - 3
® 180 F e 3
o E =
[ ~ 4
2 E =
. 90 —_
S = 3
0 o6
:I | | L1 | | L1 1 I L1 | | 111 | L1 | F
0.8 1.0 1.2 1.4 1.6 1.8

I1 (days)

Figure 4. The cosinusoidal semi-amplitude Ay and phase ¢y (filled circles),
as a function of pulsation period I, of the Geneva V-band light variations
resulting from unstable £ = 2 modes of the 4-Mg, stellar model. Individual
contributions from perturbations to pressure (squares), temperature
(diamonds) and radius (triangles) are also shown.

of the choice of passband, and will simply reflect the underlying
phase arg(A7) of the temperature perturbations. Likewise, the
relative amplitude of the variations — between the differing
passbands — will depend only on Z,, and the partial temperature
derivative of Z,,. The partial derivative represents the sensitivity of
the photospheric flux towards temperature perturbations; in B-type
stars, this sensitivity increases rapidly with decreasing wave-
length in the visible and near-UV portions of the spectrum.
Therefore, the amplitude of the variability exhibited by the star
will be relatively smallest in the redmost Geneva G passband, and
progressively grow in those passbands situated at ever-shorter
wavelengths.

For the £ = 1 modes shown in Fig. 5, the absence of a radius
contribution (cf. Section 3.1), and the meagre contribution from
pressure perturbations, means that the light variations which they
exhibit arise almost wholly from temperature perturbations.
Therefore, these modes mirror the behaviour of the hypothetical
star introduced above: the light variations remain in phase across
the three passbands, and the amplitude ratios, Ag/ Ay ~ 0.58 and
Ayl Ay ~ 0.54, change little from mode to mode. These ratios,
measuring the relative amplitudes of the variability between the
passbands, reflect the differential sensitivity of the photospheric
flux against temperature perturbations.

The situation in the £ = 2.. .4 panels of Fig. 5 is significantly
complicated by the incidence of ITC, recognizable from the
characteristic minima in the amplitude data of the three passbands.
For each value £, the minima are located at shorter periods in the U
band, and longer periods in the V band. This is because, towards
shorter wavelengths, the increasing temperature contributions
allow those modes with correspondingly larger radius contri-
butions to participate in cancellation, and — as explained in the
preceding section — such modes are found at shorter pulsation
periods.

The differing locations of the { Ay, Ap, Ay} minima mean that

the relationships between the variability in each passband can
change significantly from mode to mode. This can be seen from the
£ = 4 panel of Fig. 5: although the amplitude ratios of the longest-
period mode, A/ Ay = 0.44 and Ay/ Ay = 0.34, follow the same
inverse wavelength dependence noted by North & Paltani (1994),
the situation is completely reversed in the shortest-period mode, for
which Ag/Ay =124 and Ay/Ay = 1.35. Another instructive
example can be seen in the £ =3 panel: at short periods, the
variations in each band are almost in phase, but, going towards
longer periods, those in the U band become almost 180° out of
phase with those in the B and V bands. Only for modes distant from
the light minima, such as those at the long-period limit of the £ = 2
panel, are the relationships between the variability in each
passband approximately constant from mode to mode.

The data presented in Fig. 5 should demonstrate that ITC is not
specific to a particular passband. Nor in fact is it specific to the
Geneva photometric system: cancellation of a similar nature was
also found in the synthetic data of the Johnson—Cousins,
Stromgren and Hipparcos systems (cf. Section 2.3). Additionally,
calculations using a neutral system, where the transmission
function S,(A) is independent of wavelength, indicated that ITC is
to be expected in the bolometric flux variations of SPB stars.
Accordingly, the possibility is raised that searches for variability,
using observations in a single passband, may overlook many
variable stars. To address this problem, multicolour observations
must always be adopted as the preferred survey approach.

3.3 Multicolour-amplitude diagnostics

In the preceding section, part of the focus was placed on discussion
of the amplitude ratios and phase differences between variations in
pairs of passbands. As can be appreciated from equations (4) and
(9), these quantities are independent of the sub-observer
coordinates (®,®d), the azimuthal order m, and the overall
excitation amplitude of a given mode. This led Heynderickx et al.
(1994) to suggest that a graphical comparison of observed and
theoretically derived amplitude ratios, plotted as a function of
wavelength for a multiplet of passbands, may serve as a
discriminant for the harmonic degree £ of a mode. Although the
technique has primarily been applied to B Cephei stars, it also
appears promising for analysis of SPB stars (see e.g. De Cat &
Aerts, in preparation).

Accordingly, the present section investigates the typical
properties of the Geneva-system amplitude ratios for the SPB
class, as predicted by the modelling. The standard approach of
obtaining these ratios (e.g. Heynderickx et al. 1994) is to normalize
the light amplitude in each passband with that in the bluemost
band, since the latter is generally the largest and best determined in
observations. Thus, using

A[x,U] = AX/‘AU’ ( 10)

as a shorthand for the ratio between the light amplitude in band x
and that in the U band, A, was calculated in the x =
{U,B\,B,B,,V,V,G} Geneva passbands, for each unstable mode
found previously.

Given the multitude of unstable modes considered (~33 000), it
would be unrealistic to present the ratio data of every single one.
Therefore, for each harmonic degree and evolutionary sequence
considered, three modes were selected as representative of the
statistical properties of the data. The first of these ‘characteristic
modes’, henceforth denoted C, was selected as that which
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Figure 5. The cosinusoidal semi-amplitude A, and phase ¢,, as a function of pulsation period IT, of light variations in the U (open squares), B (open diamonds)
and V (filled circles) bands of the Geneva system, arising from unstable £ = 1...4 modes of the 4-M, stellar model.

minimized the discriminant

D= Z[A[.\",U] - Apnls (11)

here, the summation is taken over the seven Geneva passbands, and
Alx,uy represents the mean value of A, 1 in passband x, averaged
over all modes belonging to the same evolutionary sequence and
harmonic degree. Evidently, C can be regarded as the mode with
the amplitude ratio data ‘closest’ — in a least-squares sense — to the
mean ratio in each passband.

The other two characteristic modes, denoted C,,, and C,_, were
selected as the those which minimized the discriminants

Doy = Y A ~ Ao — oA (12)
and
Dy- = Z[A[.x,w — Ao + (Aol (13)

respectively; here, o(A(, 1) (not to be confused with the pulsation

© 2002 RAS, MNRAS 330, 855-875

frequency o) represents the standard deviation of Af ;) in
passband x, calculated once for all modes belonging to the same
evolutionary sequence and harmonic degree. Hence, C,, (C,-)
may be regarded as the mode with ratio data ‘closest’ to the plus
(minus) lo limit of the ratio in each passband.

Fig. 6 shows A[, y; for these triplets of characteristic modes,
plotted against the mean wavelength of each passband x. As
discussed in the preceding section, the amplitude ratios of £ =1
modes are primarily determined by the wavelength sensitivity of
the temperature contributions, rather than by any particular
properties of the pulsation. This explains why the characteristic
modes in the £ =1 panels appear so similar, exhibiting a
monotonic decline in Ay, ;; with increasing wavelength. Excep-
tions to such behaviour can be seen in the modes of the M =
4.0-Mg and M = 4.5-Mg panels, for which the decline in Ay, is
reversed (i.e. A, v < Apu; < Aps,u)) around 4200A. Tt was
found, in these particular cases, that the temperature perturbations
were small enough for ITC to occur between the temperature and
pressure contributions — a possibility suggested in Section 3.1. In a
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manner similar to that encountered for the shortest-period £ = 4
modes of Fig. 5, this ‘temperature-pressure’ ITC leads to the
reversal in the usual wavelength dependence of the £ = 1 modes.

Inter-term cancellation, of the more familiar temperature —radius
variety, explains the diverse behaviour seen in the £ = 2.. .4 panels
of Fig. 6. From mode to mode, the degree of cancellation in each
passband varies greatly, and significant differences can be seen
between the behaviour of the C, C,, and C,_- modes plotted in
each panel. This is most evident in the intermediate-mass
evolutionary sequences, for which the U-band ratio Ay ) = 1 is
the largest — amongst the seven passbands — in the C,_ modes, but
the smallest in the C,, modes. In all sequences, the amplitude
ratios in the redward (V;, V, G) bands can be seen to grow with
increasing harmonic degree; this is a consequence of the
asymptotic period relationship IToc [£(£ + 1)]7" of g-modes
(e.g. Unno et al. 1989, section 16), which means that higher degree
modes pulsate at shorter periods. As demonstrated in the preceding
section, cancellation in the U band is most pronounced at these
shorter periods; therefore, the effect of incrementing £ is to reduce
the light amplitude in the normalizing U band, and to raise by a
corresponding amount the amplitude ratios of the redward bands.

Situations where the U-band amplitude was exceeded by that in
one or more of the other bands were found to arise in over 50 per
cent of the ~20 000 unstable £ = 3 and £ = 4 modes considered.
This result should be contrasted with the fact that, amongst all
recent observations of SPB stars, the same behaviour has only ever
been recorded in a single star. It is uncertain whether this particular
star, HD 55522, is actually undergoing non-radial pulsation; De
Cat (2001) has suggested that its light variations may instead be a
signature of the rotational modulation of a chemically inhomo-
geneous photosphere.

3.4 Amplitude-phase diagnostics

The principal strength of the multicolour-amplitudes technique
developed by Heynderickx et al. (1994) lies in its ability to
compare simultaneously the observed and theoretical light
amplitudes in a multitude of passbands. However, the technique
makes no use of the corresponding phase data: in their analysis of 8
Cephei stars, Heynderickx et al. (1994) made the ab initio
assumption that the variations in each passband will always be in
phase. This assumption, made on the basis of modelling by Saio &
Cox (1980) which pre-dates the discovery of the metal-line
instability, was demonstrated in Section 3.2 to be incorrect:
calculations using up-to-date physics predict significant phase
differences, for those modes strongly affected by ITC, between the
variability in each band.

The nature of these phase differences is investigated further in
this section, with the aid of an analysis technique developed by
Stamford & Watson (1981). The technique centres around plotting
the amplitude ratio against the phase difference, for the light
variations in a given pair of passbands. As with the multicolour-
amplitudes technique, a graphical comparison of observed and
theoretically predicted plots may in principle be used as a
discriminant for . Strictly speaking, Stamford & Watson (1981)
considered colour-to-light amplitude ratios and phase differences;
however, the approach described here is equally valid. Accord-
ingly, let

P Ul = ¢ — QU (14)

denote the phase difference between the light variations in

passband x and those in the U passband. Then, Figs 7 and 8 show
the amplitude—phase diagrams — that is, A}, ¢ plotted against
@,u) — for the U-B and U-V pairs of passbands, respectively.
Unlike Fig. 6, where only three characteristic modes were
considered for each evolutionary sequence and harmonic degree,
these figures include the data of al/l unstable modes.

The figures reveal that £ = 1 modes tend to cluster around the
(e, Aoy ~ (0.0,0.6) and (¢pv,u, Av,oy) ~ (0.0,0.55) loci
of the amplitude —phase planes. Although a small amount of scatter
is seen in the 4.5-Mg panel of the U-V plane, owing to the
temperature-pressure ITC discussed in Section 3.3, the clustering
of the £ =1 modes remains reasonably tight across all eight
evolutionary sequences. The same cannot be said of the £ = 2.. 4
modes, for which the incidence of ITC leads to significant scatter in
the amplitude-ratio and phase-difference data. Notwithstanding the
scatter, however, a number of trends can be recognized in these
data. In particular, A ) tends to be systematically larger than
Ay, owing to the inverse wavelength dependence of the
temperature contributions. Furthermore, in both pairs of passbands,
there is an apparent correlation between stellar mass and phase
difference. In the low-mass models, the modes tend to be confined
to the @p.1), ¢rv,u; > 0 regions of the amplitude—phase plane, and
the light variations in the U band lag those in the redward bands.
The trend is reversed towards higher masses, with an increasing
number of modes — ultimately, almost all — appearing in the
@1 v,y < 0 regions.

To understand this correlation, it should be noted that the phase
of the temperature perturbations was found to lead that of the
radius perturbations — that is, arg(Ar) > arg(Ag) — for the
majority of unstable £ =2...4 modes in the low-mass models.
However, the phase relationship is reversed in the more massive
models, to such an extent that arg(Ar) < arg(Ag) for all such
modes of the 6.5-Mg evolutionary sequence. When combined with
the wavelength sensitivity of the temperature contributions (cf.
Section 3.2), the aforementioned correspondence between M and
phase difference emerges: ¢y, ¢v,o; < 0 for the modes
belonging to the M = 5.0-Mp evolutionary sequences, and
conversely for the M < 4.0 Me sequences.

The intermediate-mass, £ = 2.. .4 panels of Figs 7 and 8 exhibit
an interesting feature: the appearance of regions in the amplitude—
phase plane where the concentration of modes is particularly high.
Typically, these regions are situated around zero phase-difference,
and take the form of cusps in the envelopes of the amplitude —phase
data; a good example can be seen slightly below centre in the
M = 4.5-Mp, € = 2 panels of both figures. The modes falling
within these regions tend to be the ones excited at the short- or
long-period boundaries of the k-mechanism instability; because
the light variations of such modes are largely unaffected by
evolution of the underlying star (cf. Section 3.1), they accumulate
around the same point within the amplitude—phase plane, leading
to the behaviour noted.

Using results from their non-adiabatic stability calculations,
Cugier et al. (1994) demonstrated that £ = 0...2 modes of
Cephei stars fall into disjoint regions of the amplitude—phase
plane, facilitating the determination of the harmonic degrees
responsible for observed variability. Evidently, the situation is
somewhat more complicated for SPB stars. The incidence of ITC
means that the regions of the amplitude—phase plane occupied by
the € = 2...4 modes, although reasonably distinct from those of
the € = 1 modes, tend to overlap with one another, especially in
the intermediate-mass models. Therefore, in many cases it will be
difficult to discriminate between the former modes. The difficulty
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can partly be ameliorated by exploiting the wavelength dependence
of temperature contributions (cf. Section 3.2): comparison of Figs
7 and 8 reveals that, because of this dependence, the overlap is
different in the U — B and U — V passbands. Accordingly,
application of the amplitude—phase technique to the SPB class,
while certainly tricky, can be more profitable if the amplitude—
phase diagrams for more than one pair of passbands are considered.
This approach is adopted in the following section, to establish
limits on the harmonic degrees of modes observed in a number of
SPB stars.

4 COMPARISON WITH OBSERVATIONS

Although this paper adopts a largely theoretical perspective, it is
ultimately directed toward the observational community. Accord-
ingly, a confrontation between the results of modelling and data
obtained from observations of SPB variability is appropriate. Fig. 9
shows — for the four different values of £ considered — the
complete set of synthetic amplitude—phase data, in both the U-B
and U-V pairs of passbands. Overplotted are the corresponding
data of the periodic variations detected by North & Paltani (1994)
and De Cat & Aerts (in preparation) during Geneva-system
observations of 14 different SPB stars. The observations of
Waelkens (1991) have not been considered, owing to the lack of
error estimates on his data.

As mentioned in Section 3.2, North & Paltani (1994) cited the
absence of significant phase differences between the light
variations in each band as a defining characteristic of SPB stars.
Clearly, the observational data plotted in Fig. 9 conform to this
characterization: all modes fall within the limits | ¢z 7| < 15° and
|@rv.on] < 18°. However, the same cannot be said for the synthetic
£ =3 and € = 4 modes: the majority exhibit much larger phase
differences, and on these grounds may be ruled out as responsible
for the variability. Of the remainder in which both ¢ ) and ¢pv,u;
are small, the amplitude ratios are generally inconsistent, in one or
both of the passband pairs, with those observed. Accordingly —
with the exception of a couple of marginal £ = 4 cases — it would
appear that the observations cannot be reconciled with an £ = 3 or
£ = 4 identification.

It would be tempting to conclude from Fig. 9 that the observed
variability is therefore caused primarily by a combination of £ = 1
and € = 2 modes. Certainly, the observations plotted in the figure
appear to be consistent with the synthetic data of these modes, with
the only exception — seen as an outlier towards the upper-right of
the U—-B panels — being HD 53921 [the variations of this star are
already known (De Cat 2001) to be difficult to reconcile with
models of non-radial pulsation]. However, it must be stressed that
the figure provides necessary rather than sufficient evidence to
support such a mode identification. Specifically, there is no way to
tell which datum in the U — V amplitude—phase plane represents
the same mode as a given datum in the U — B plane. This
highlights one of the notable limitations of the amplitude—phase
technique: it is not easy to consider, simultaneously, the data from
more than one pair of passbands. Contrast this shortcoming with
that of the multicolour-amplitudes technique, which permits the
simultaneous comparison of amplitude data across a multitude of
passbands, but makes no use whatsoever of the corresponding
phase data.

While it certainly appears likely that the fourteen SPB stars
considered are pulsating in £ =1 or £ =2 modes, with the
marginal possibility of £ = 4 modes in a few cases, more intensive
modelling is required to support such a conclusion. In particular,
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the simultaneous reproduction of amplitude and phase data, across
all passbands, will have to be secured before any reliable mode
identifications can be advanced. Furthermore, it will be necessary
to restrict the analysis to stellar models with physical parameters
that match those of the stars observed, rather than — as in Fig. 9 —
considering all models that fall within the SPB instability strip.
Accordingly, a follow-up paper is planned, in which mode
identifications in the manner described will be undertaken for the
SPB observations considered in this section.

5 CONCLUSIONS

In this paper, photometric data have been synthesized for a range of
mid-B type stellar models, using input parameters derived from
non-adiabatic stability calculations. These data, visualized and
discussed using a variety of approaches, have revealed two
important properties of the SPB class of non-radial pulsators. First,
based on the approximate limits established in Section 3.1 for the
maximum amplitude of light variations, it has been found that the
photometric detection of £ = 5 modes in these systems probably
lies beyond the capabilities of present-day instrumentation. Such
modes suffer greatly from disc-averaging cancellation, and — even
when pulsating at large amplitudes — exhibit little photometric
variability. The situation can be expected to change with the
commissioning of upcoming space-based observatories (see, €.g.
Eyer 2000), which will be able to measure flux variations at
micromagnitude levels; however, observations using current
facilities are probably limited to the detection of £ < 4 modes.

Secondly, it has been discovered that inter-term cancellation —
the process of destructive interference between the light variations
generated by a pair of perturbative mechanisms — plays a key role
in determining the photometric characteristics of SPB stars. The
concept of ITC was originally suggested by Watson (1987);
however, the present analysis demonstrates the importance of using
quantitative non-adiabatic parameters if the phenomenon is to be
modelled correctly. Two variants of ITC have been encountered:
between the temperature and radius contributions for £ = 2 modes,
and — to a much lesser extent — between the temperature and
pressure contributions for £ = 1 modes. Much like the aforemen-
tioned disc-averaging cancellation, the effect of ITC is to reduce
the light variations exhibited by a star; however, because of the
wavelength dependence of the temperature contributions, the
degree of the reduction varies between differing passbands.

Accordingly, the chances of overlooking a mode as a
consequence of ITC can greatly be reduced by examining light
variations in two or (preferably) more passbands. Regrettably, of
the sample of ~100 SPB stars known to date, the majority were
discovered (Waelkens et al. 1998) from observations in a single
passband — the broad-band H, filter of the Hipparcos satellite.
Although accompanying measurements were obtained in the two
narrower filters of the Tycho star mapper (see Perryman 1997),
independent searches for variability in these latter data have proven
difficult (Friedrich, Koenig & Wicenec 1997). Therefore, it is
possible that the current sample of known SPB stars may be biased
against those modes most strongly affected by cancellation in the
H,, passband. Such a bias would certainly have to be taken into
account in any statistical analyses of the SPB class.

In addition to reducing the amplitude of light variations,
ITC greatly leverages their sensitivity towards mode-to-mode
changes in the underlying pulsation. Because the degree of this
leverage is unique to each passband, the modes most affected by
ITC — primarily, those in intermediate-mass SPB stars — exhibit
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Figure 7. The U — B amplitude ratio Az /| plotted against the corresponding U — B phase difference ¢ ), for the unstable £ = 1...4 modes belonging to
the M = 3.0...4.5-Mp and M = 5.0...6.5-Mg evolutionary sequences; each mode is shown as a point in the amplitude—phase plane. The two panels at the top
right are blank because no £ = 3 or £ = 4 modes were unstable in the M = 3.0-Mg sequence.
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Figure 8. The U — V amplitude ratio Ay, plotted against the corresponding U — V phase difference ¢v,y;, for the unstable £ = 1...4 modes belonging to
the M = 3.0...4.5-Mp and M = 5.0...6.5-Mg, evolutionary sequences; each mode is shown as a point in the amplitude—phase plane. The two panels at the top
right are blank because no £ = 3 or £ = 4 modes were unstable in the M = 3.0-Mg sequence.
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variations in the U — B (left) and U — V (right) pairs of passbands. Overplotted (filled circles) are the data for the modes observed in HD 123515, 140873,
24587, 53921, 74560, 177863, 92287, 74195, 181558, 26326, 85953, 138764, 215573 (De Cat & Aerts, in preparation) and 37151 (North & Paltani 1994).
Measurement errors for the latter are indicated by the vertical and horizontal bars.
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significant scatter in their amplitude-ratio and phase-difference
data. The scatter complicates any attempts at discrimination
between modes of harmonic degrees £ = 2...4 using the well-
established Stamford & Watson (1981) and Heynderickx et al.
(1994) techniques. Nevertheless, the observational characteristics
of these modes remain quite distinct from those of the £ =1
modes, and it should remain straightforward to distinguish between
the former and the latter.

The last point explains the partial success achieved in the
preceding section at constraining the harmonic degrees of the
various SPB modes detected by North & Paltani (1994) and De Cat
& Aerts (in preparation). In all but a few marginal cases, an £ = 3
or £ = 4 identification could be ruled out; for these values of the
harmonic degree, the synthetic data exhibit large phase differences
between the variability in each band, in contradiction to the small
or non-existent phase differences seen in the observational data.
Underpinning this result is perhaps the most important conclusion
to be drawn from the paper: photometric modelling of SPB stars
must focus around the reproduction of observed amplitude and
phase data. The consideration of amplitude data alone is
insufficient.
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NOTE ADDED IN PROOF

It has come to the attention of the author that the normalization
condition (1) was implemented incorrectly in the NARK code. As a
result, the photometric amplitudes calculated throughout the paper
are too small, by a factor of \/(4m). This error will influence the
upper limits on the photometric amplitudes, as discussed in Section
3.1. However, the subsequent sections, and the conclusions of the
paper as a whole, will remain unaffected.
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