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ABSTRACT
We introduce a new Rigid-Field Hydrodynamics approach to modelling the magnetospheres

of massive stars in the limit of very strong magnetic fields. Treating the field lines as effectively

rigid, we develop hydrodynamical equations describing the one-dimensional flow along each,

subject to pressure, radiative, gravitational and centrifugal forces. We solve these equations

numerically for a large ensemble of field lines to build up a three-dimensional time-dependent

simulation of a model star with parameters similar to the archetypal Bp star σ Ori E. Since the

flow along each field line can be solved independently of other field lines, the computational

cost of this approach is a fraction of an equivalent magnetohydrodynamical treatment.

The simulations confirm many of the predictions of previous analytical and numerical stud-

ies. Collisions between wind streams from opposing magnetic hemispheres lead to strong

shock heating. The post-shock plasma cools initially via X-ray emission, and eventually ac-

cumulates into a warped, rigidly rotating disc defined by the locus of minima of the effective

(gravitational plus centrifugal) potential. However, a number of novel results also emerge.

For field lines extending far from the star, the rapid area divergence enhances the radiative

acceleration of the wind, resulting in high shock velocities (up to ∼3000 km s−1) and hard X-

rays. Moreover, the release of centrifugal potential energy continues to heat the wind plasma

after the shocks, up to temperatures around twice those achieved at the shocks themselves.

Finally, in some circumstances the cool plasma in the accumulating disc can oscillate about its

equilibrium position, possibly due to radiative cooling instabilities in the adjacent post-shock

regions.

Key words: hydrodynamics – stars: magnetic fields – stars: mass-loss – stars: rotation –

gamma-rays: theory – X-rays: stars.

1 I N T RO D U C T I O N

During their main-sequence evolution, massive, hot stars lack the

envelope convection zones that generate magnetic fields in the Sun

and other cool stars. Nonetheless, since the 1970s it has been known

that a small, chemically peculiar subset – the Bp stars – possess

global-scale fields at the kilogauss level (e.g. Borra & Landstreet

1979; Borra, Landstreet & Thompson 1983). Moreover, the signif-

icant advances in spectropolarimetric instrumentation over the past

three decades have led to the discovery of ∼100–1000 G fields in a

number of other massive stars, including two O-type stars (θ1 Ori C

– Donati et al. 2002; HD 191612 – Donati et al. 2006a), X-ray bright

B-type stars (τ Sco – Donati et al. 2006b) and a number of slowly

pulsating B-type stars (Hubrig et al. 2007).

On the theoretical side, the genesis of massive-star fields re-

main the subject of some controversy, with fossil-origin expla-
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nations (e.g. Ferrario & Wickramasinghe 2005, 2006) competing

against dynamo models involving processes such as core convection

(Charbonneau & MacGregor 2001), Tayler–Spruit instabilities

(Mullan & MacDonald 2005) and global Rossby modes (Airapetian

2000). However, considerable progress has been made in under-

standing how the magnetic fields channel and confine the stars’

dense, supersonic, radiatively driven winds. The seminal Magneti-

cally Confined Wind Shock (MCWS) model of Babel & Montmerle

(1997a,b) conjectured that wind streams from opposing footpoints

collide near the summits of closed magnetic loops, shock heating

the plasma to temperatures T ∼ 106–107 K at which thermal X-ray

emission becomes important. Subsequent magnetohydrodynamical

(MHD) simulations by ud-Doula & Owocki (2002) confirmed the

basic MCWS paradigm, and led to the development of a quanti-

tative magnetic wind-shock model for the hard X-ray emission of

θ 1 Ori C, which shows good agreement with Chandra observations

of the star (Gagné et al. 2005).

MHD simulation is a powerful tool for modelling magnetic wind

confinement, but becomes increasingly difficult toward large values
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of the confinement parameter η, defined as the ratio between mag-

netic and kinetic energy densities (ud-Doula & Owocki 2002). At

large η, the field lines are scarcely affected by the plasma flowing

along them. Such a rigid character implies a high Alfvén speed,

and in turn a short numerical time-step in MHD codes to ensure

Courant stability (Press et al. 1992). In the case of the Bp stars –

characterized by confinement parameters up to η ∼ 107 – the re-

quired time-steps are in fact too short for MHD simulation to be

practical.

For these strongly magnetic stars, Townsend & Owocki (2005,

hereafter TO05) expanded on previous work by Michel &

Sturrock (1974) and Nakajima (1985) to develop a Rigidly Rotating

Magnetosphere (RRM) model based on the simplifying ansatz that

field lines are completely rigid. The RRM model does not consider

the detailed physics of the wind streams feeding into the collision

shocks, but instead focuses on the fate of the post-shock plasma

after it has radiatively cooled back down to photospheric temper-

atures. In a rotating star, this plasma has a tendency to settle into

magnetohydrostatic stratifications centred on local minima of the

effective (gravitational plus centrifugal) potential. For an oblique

dipole magnetic field, the locus of these potential wells resembles a

warped disc that corotates rigidly with the star. When applied to the

archetypal magnetic Bp star σ Ori E (HD 37479; B2Vpe), the Hα

emission from the disc plasma shows very good agreement with that

seen in observations (Townsend, Owocki & Groote 2005), lending

strong support to the model.

Building on the success of the RRM model, this paper presents

a new Rigid-Field Hydrodynamics (RFHD) approach to modelling

massive-star magnetospheres in the strong-field limit. We again as-

sume that the field lines behave as completely rigid, but we now

explicitly consider the time-dependent evolution of the magneti-

cally channelled wind. This approach not only furnishes a dynami-

cal picture of disc accumulation, it also opens up the possibility of

synthesizing observables for the shock-heated wind plasma, across

a broad range of wavelengths extending from X-ray through to

radio.

In the following section, we consider the one-dimensional (1D)

hydrodynamical problem of flow along each rigid field line, with an

emphasis on the specific, simple case of a dipole field topology. In

Section 3, we introduce a numerical code that solves the governing

equations along many field lines to build up a three-dimensional

(3D) simulation of a massive-star magnetosphere. We use this code

in Section 4 to model a star loosely based on σ Ori E; results

from these simulations are presented and analysed in Section 5. In

Section 6, we examine some of the broader issues pertaining to the

RFHD approach, and in Section 7, we summarize the paper.

2 R I G I D - F I E L D H Y D RO DY NA M I C S

As we discuss above, the key notion of the RFHD approach is that

the magnetic field at sufficiently high strengths behaves as if it were

rigid. This rigid field is anchored to the star, and corotates with it.

Under the frozen flux condition of ideal MHD, plasma is constrained

to flow along field lines, and it therefore describes trajectories that

are fixed in the corotating frame.

The shape of these trajectories is specified a priori by the chosen

magnetic topology. However, the plasma state (density, temperature,

velocity etc.) along each field line is determined by the 1D hydrody-

namical problem of flow along a tube with changing cross-sectional

area. Here, the ‘tube’ can be identified explicitly with a magnetic

flux tube, whose area varies inversely with the local magnetic flux

density B ≡ |B| in order to ensure that ∇ · B = 0. The character

of the flow is dictated primarily by the forces that act to accelerate

or decelerate the plasma: pressure gradients, gravity, the centrifu-

gal force and radiative forces. Perhaps surprisingly, magnetic and

Coriolis forces play no direct role in the 1D flow problem, because

they are always directed perpendicular to the instantaneous velocity

vector v. (This vector is itself everywhere parallel to the field-line

tangent vector es ≡ B/B.) In fact, these forces act similarly to the

centripetal force of a circular orbit, furnishing a net acceleration

perpendicular to v that leads to curved plasma trajectories yet does

no work.

2.1 Euler equations

To elaborate on the foregoing discussion, we introduce the Euler

equations in conservation form for the 1D hydrodynamical problem

composing RFHD:

∂ρ

∂t
+ 1

A

∂

∂s
(Aρv) = 0, (1)

∂ρv

∂t
+ 1

A

∂

∂s
(Aρv2) + ∂p

∂s
= ρ(geff + grad) · es, (2)

∂ρe

∂t
+ 1

A

∂

∂s
[Av(ρe + p)] = ρv(geff + grad) · es + 	. (3)

Here, the independent variables are the arc distance s along the field

line (relative to some arbitrary zero-point) and time t, while the de-

pendent variables are density ρ, pressure p, velocity v ≡ |v| and total

energy per unit mass e. The term A(s) describes the spatially varying

cross-sectional area of the flow tube, and depends on the magnetic

topology; expressions for this term in the case of a dipole field are

derived in the following section. The acceleration vectors geff and

grad are due to the effective gravity and the radiative line force, re-

spectively, and are considered in greater detail in Sections 2.3 and

2.5. Interrelationships between ρ, p, v and e are determined from

equations of state and total energy, defined in Section 2.6. Finally,

the term 	 is the volumetric energy loss rate due to cooling pro-

cesses, and is discussed in Section 2.7. For reasons elaborated there,

we do not include the effects of thermal conduction in the energy

conservation equation (3).

By setting all velocities and time derivatives to zero, the momen-

tum conservation equation (2) reduces to the condition of magne-

tohydrostatic equilibrium, in which body forces are balanced by

pressure gradients. Because it furnishes the basis of the precursor

RRM model, we review this static limit in Appendix A.

2.2 Dipole field geometry

Although the RFHD approach is in principle applicable to arbitrary

magnetic topologies, the present study focuses on the simple case of

an oblique dipole field. Let (r, θ ,φ) be the spherical polar coordinates

in the reference frame aligned with the rotation axis; likewise, let

(r̃ , θ̃ , φ̃) be the corresponding coordinates in the frame aligned with

the dipole magnetic axis. (This is the same notation as adopted

in TO05.) As illustrated in Fig. 1, the magnetic axis is tilted with

respect to the rotation axis by the magnetic obliquity β.

In the magnetic reference frame, the magnetic flux vector is ex-

pressed as

B = B0

2(r̃/Rp)3

(
2 cos θ̃ er̃ + sin θ̃ eθ̃

)
, (4)
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Figure 1. An illustration of the oblique dipole geometry described in the

text. The star is shown as an oblate spheroid centred on the origin O, with

magnetic axis M and rotational axis R; the angle MOR is the obliquity

β. The surfaces Sx̃ z̃ and Sỹ z̃ are the x̃–z̃ and ỹ–z̃ planes of the magnetic

reference frame, corresponding to azimuths φ̃ = (0◦, 180◦) and (90◦, 270◦),

respectively. Two selected field lines, having φ̃ = 0◦ and 90◦, are shown by

dotted lines; on the φ̃ = 0◦ field line, E labels the magnetic equator, and P a

point on the field line. The line OE (measured by convention in units of the

rotational polar radius Rp) gives the magnetic shell parameter L; likewise,

EP defines the arc distance coordinate s of the point P. (In this case, s <

0, because P lies in the northern magnetic hemisphere.) OP is the radial

coordinate r̃ = r of P, and the angle MOP (ROP) gives the corresponding

colatitude θ̃ (θ ) in the magnetic (rotational) reference frame.

where B0 sets the overall field strength,1 Rp is the rotational po-

lar radius (a convenient normalizing length) and er̃ and eθ̃ are the

unit basis vectors in the magnetic radial and polar directions, re-

spectively. From this expression, the tangent vector es is obtained

as

es = B
B

= 1√
1 + 3 cos2 θ̃

(
2 cos θ̃ er̃ + sin θ̃ eθ̃

)
. (5)

This result also follows from the parametric equation for a dipole

field line:

r̃

Rp

= L sin2 θ̃ (6)

(e.g. Nakajima 1985; Babel & Montmerle 1997a), where the mag-

netic shell parameter L measures the maximal radius reached by the

field line, in units of Rp. To label a field line uniquely, it suffices

to specify L and the magnetic azimuthal coordinate φ̃ defining the

half-plane that contains the line.

The spatial variable s in the 1D hydrodynamical equations (1)–(3)

is the arc distance along each field line, and is found from the dipole

line element

ds2 = dr̃ 2 + r̃ 2 dθ̃ 2 = L2 R2
p sin2 θ̃

(
1 + 3 cos2 θ̃

)
dθ̃ 2. (7)

1 For an aligned dipole (β = 0), B0 corresponds to the polar field strength;

however, this does not generally hold when β > 0 due to the oblateness of

the star (Section 2.4).

Solving this differential equation for s, we obtain

s

Rp

= − L

2

[
sinh−1(

√
3 cos θ̃ )√
3

+ cos θ̃
√

1 + 3 cos2 θ̃

]
, (8)

where the constant of integration is chosen to place the origin s =
0 at the magnetic equator, θ̃ = 90◦. The negative sign on the right-

hand side arises from selecting the positive root of equation (7),

so that s increases in the same direction as θ̃ , and s is negative

(positive) in the northern (southern) magnetic hemisphere. Since

this equation is transcendental, calculation of the inverse function

θ̃ (s) must be undertaken numerically (Section 3.2).

The footpoints of the field line in the northern and southern mag-

netic hemispheres are denoted as sN and sS, respectively. For a spher-

ical star with radius R∗,

sN

R∗
= − sS

R∗
= − L

2

[
sinh−1

√
3 − 3/L√
3

+
√

1 − 1/L
√

4 − 3/L

]
. (9)

However, for an oblate star (cf. Section 2.4) calculation of sN and

sS once again must proceed numerically (Section 3.2).

The variation in the cross-sectional area of each flow tube is

determined by the requirement of magnetic flux conservation. If Aeq

is the area at the magnetic equator, then the area A at any colatitude

θ̃ must satisfy

A B = Aeq Beq, (10)

where

Beq = B0

2L3
(11)

is the field strength at the magnetic equator. Eliminating B with the

help of equations (4) and (6), we find that

A

Aeq

= sin6 θ̃√
1 + 3 cos2 θ̃

. (12)

Combined with the inverse function θ̃ (s), this expression is used to

construct the area function A(s) appearing in the Euler equations

(1)–(3).

In addition to the area function A, finite-volume hydrodynamical

codes such as VH-1 (cf. Section 3) require specification of the volume

function

V ≡
∫

A ds. (13)

To obtain V in the present case, we note from equations (7) and (12)

that

A ds = A
ds

dθ̃
dθ̃ = L Aeq Rp sin7 θ̃ dθ̃ . (14)

It therefore follows that

V

Aeq Rp

= L

[
− 7

320
(25 cos θ̃ − 5 cos 3θ̃ + cos 5θ̃ )

+ 1

448
cos 7θ̃

]
, (15)

and, as with A(s), the inverse function θ̃ (s) is used to find V (s).

2.3 Effective potential

The effective gravitational acceleration geff in equations (2) and (3)

combines the Newtonian gravity with the centrifugal force asso-

ciated with enforced corotation. Together, these forces are derived
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from a scalar effective potential �eff:

geff = −∇�eff. (16)

Within the Roche (point-mass) approximation, this effective poten-

tial is given by

�eff = − G M∗
r

− 1

2
2� 2. (17)

Here, M∗ is the stellar mass,  the angular rotation frequency and

� ≡ r sin θ is the distance from the rotation axis. Combining the

above two expressions, the effective gravity term in the momentum

and energy conservation equations (2) and (3) is found as

geff · es = − G M∗
r 2

er · es + 2� e� · es, (18)

where er and e� are the unit vectors in the r and � directions,

respectively. For a dipole field (Section 2.2),

er · es = er̃ · es = 2 cos θ̃√
1 + 3 cos2 θ̃

≡ cos χ (19)

gives the component of the local radial vector projected along the

field line. The angle χ introduced in this expression, being that

between the field line and the radial vector, also appears below in

the equations governing the radiative acceleration.

2.4 Stellar properties

In addition to generating the effective gravity, �eff determines the

shape and surface properties of the oblate, centrifugally distorted

star. In the Roche approximation (equation 17), the surface is an

equipotential whose radius r∗ varies with rotational colatitude θ as

r∗
Rp

= 3

w sin θ
cos

[
π + cos−1(w sin θ )

3

]
(20)

(e.g. Cranmer 1996). Here,

w ≡ 

√
27R3

p

8G M∗
(21)

is the normalized rotation angular frequency, with w = 1 corre-

sponding to critical rotation.

Because of gravity darkening (von Zeipel 1924), the flux emitted

by a rotating, radiative stellar envelope varies in proportion to the

local effective gravity |geff|. However, in evaluating the radiative

acceleration (Section 2.5) and the rate of inverse Compton cooling

(Section 2.6), we choose for simplicity to treat the circumstellar

radiation field as originating from a spherically symmetric point

source of luminosity L∗. For consistency, we therefore neglect the

variation of the surface flux, setting it to the constant value

F∗ ≡ L∗
�0

. (22)

Here, �0 is the total surface area of the oblate star, which can be

approximated to within 2 per cent by the polynomial:

�0 = 4πR2
p(1 + 0.19444w2 + 0.28053w4 − 1.9014w6

+ 6.8298w8 − 9.5002w10 + 4.6631w12) (23)

(Cranmer 1996). From F∗ and the Stefan–Boltzmann law, a nominal

stellar surface temperature is defined as

T∗ =
(

F∗
σ

)1/4

. (24)

2.5 Radiative acceleration

To obtain an expression for the radiative acceleration grad we employ

the Castor, Abbott & Klein (1975, hereafter CAK) formalism for

line-driven stellar winds. For simplicity, the star is treated as a point

source of radiation, giving an acceleration

grad = 1

1 − α

κe L∗ Q̄

4πr 2c

( |δv|
ρcQ̄κe

)α

er (25)

(e.g. Owocki 2004). Here, α is the CAK power-law index, Q̄ is

the dimensionless line strength parameter introduced by Gayley

(1995), L∗ is the stellar luminosity (Section 2.4) and κe is the

electron-scattering opacity, ≈0.34 cm2 g−1 for a fully ionized solar-

composition plasma. The term δv , a measure of the local velocity

gradient that determines the Sobolev (1960) optical depth, is defined

as

δv ≡ er · ∇(er · v). (26)

From equation (19),

er · v = v cos χ, (27)

and thus

δv = er · ∇(v cos χ ) = cos χ er · ∇v. (28)

(The second equality follows because χ is a function of θ̃ alone,

and therefore commutes with the radial directional derivative er ·
∇.) Expanding out the gradient operator in the magnetic reference

frame, we obtain

δv = cos χ

(
∂v

∂r̃

)
θ̃

. (29)

To evaluate the radial derivative in this latter equation, it is nec-

essary to know the flow velocity on field lines adjacent to the one

under consideration. In order to avoid this complication, we make

the simplifying assumption that the polar velocity derivate vanishes,(
∂v

∂θ̃

)
r̃

≈ 0. (30)

As we demonstrate in Appendix B, this assumption implies that(
∂v

∂r̃

)
θ̃

=
(

∂v

∂s

)
L

sec χ. (31)

Substituting this expression back into equation (29) yields

δv =
(

∂v

∂s

)
L

, (32)

which in combination with equation (25) leads to the final expression

for the radiative acceleration,

grad = 1

1 − α

κe L∗ Q̄

4πr 2c

( |∂v/∂s|
ρcQ̄κe

)α

er . (33)

To conform with our earlier notation (cf. Section 2.1), here we have

dropped the ‘L’ subscript on the velocity gradient ∂v/∂s.

The central approximation here, equation (30), is equivalent to

assuming that v – which might more correctly be termed the flow

speed – depends only on r̃ , although of course the local flow di-

rection still depends on θ̃ since it follows the field-line orienta-

tion. Analysis based on 2D MHD simulations (cf. Owocki & ud-

Doula 2004) indicates that this approximation is well justified in

the regions of rapid wind acceleration near to the star. Moreover,

in the present work we have carried out a posteriori checks using

an ensemble of neighbouring 1D RFHD calculations, and find that

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 382, 139–157



A Rigid-Field Hydrodynamics approach 143

the error in grad arising from using equation (32) for δv instead of

the exact expression (29) is typically 10 per cent or less throughout

the radiatively driven regions of the magnetosphere.

We emphasize that the benefit from this approximation is signif-

icant. Because equation (33) depends only on the velocity gradient

along a field line, it allows the flow to be modelled completely inde-

pendently of other field lines. Not only is this advantageous in terms

of computational efficiency, it also simplifies the interpretation and

analysis of simulation results (Section 5).

2.6 Equations of state and energy

We assume an ideal gas, so that

p = ρkT

μu
, (34)

with T the temperature and u the atomic mass unit. The mean molec-

ular weight μ is determined from an expression appropriate to a fully

ionized mixture:

μ =
[

2X + 3

4
(1 − X − Z ) + Z

2

]−1

, (35)

where X and Z are the usual hydrogen and metal mass fractions. The

accompanying equation for the specific (per-unit-mass) total energy

is

e = 1

γ − 1

kT

μu
+ v2

2
, (36)

where γ is the ratio of specific heats.

2.7 Cooling and thermal conduction

The volumetric cooling rate 	 in the energy conservation equa-

tion (3) is evaluated as the sum of two terms,

	 = 	at + 	ic, (37)

representing contributions from atomic processes and inverse

Compton scattering by thermal electrons, respectively. The first term

is calculated from

	at = nenpL(T ), (38)

where

np = X

u
ρ (39)

and

ne = 1 + X

2u
ρ (40)

define the proton and electron number densities, respectively. The

temperature-dependent cooling coefficient L is obtained from the

curve published by MacDonald & Bailey (1981).

The inverse Compton term 	ic is evaluated with the aid of equa-

tion (4) of White & Chen (1995),

	ic = 4
κe

c
neUphkT . (41)

(Note that in their equation 5, these authors define the symbol 	ic

differently than above.) Here,

Uph = L∗
4πr 2c

(42)

is the energy density associated with the star’s radiation field,

evaluated in the same point-star limit as the radiative acceleration

(Section 2.5).

We have elected to neglect the effects of thermal conduction in

the energy conservation equation, because to include these properly

requires addressing a large number of issues that are beyond the

present scope. These centre on uncertainties both in the treatment

of departures from the classical Spitzer (1962) thermal conductiv-

ity (e.g. Levinson & Eichler 1992; Pistinner & Eichler 1998), and

in the incorporation of heat flux saturation near shocks and other

regions of steep temperature gradients (see Lacey 1988; Bandiera

& Chen 1994, and references therein). Moreover, apart from these

physical difficulties, proper inclusion of conduction in a hydrody-

namical code is a challenging task, particularly in the context of

accurately modelling the kind of strong shocks that occur in our

simulations (see e.g. Reale 1995). We thus defer consideration of

thermal conduction to future work.

3 T H E R F H D C O D E

As discussed in Section 2.5, the utility of the approximate expres-

sion (32) for the velocity gradient term δv lies in the fact that the flow

along each individual field line may be simulated completely inde-

pendently of other field lines. Thus, by performing many separate

1D simulations for differing field lines and piecing them together,

a 3D hydrodynamical metasimulation of a massive-star magneto-

sphere can be built up at a fraction of the computational cost of an

equivalent MHD calculation.

Each individual 1D simulation requires solution of the Euler equa-

tions (1)–(3), and for this we employ a customized version of the

VH-1 hydrodynamical code developed by J. Blondin and colleagues.

VH-1 is a finite volume code based on the Lagrangian version of the

piecewise parabolic method (PPM) devised by Colella & Woodward

(1984). The modifications to VH-1 primarily encompass incorpora-

tion of the dipole geometry (Section 2.2), acceleration terms (Sec-

tions 2.3 and 2.5) and cooling (Section 2.7) specific to the RFHD

problem. We do not discuss these modifications in detail, but in the

following sections we highlight specific issues that arose during the

code development phase.

3.1 Grid design

The Eulerian grid in VH-1 must be designed with care, to ensure

that regions of physical interest are properly resolved, and to avoid

the generation of spurious numerical instabilities. To this end, we

divide the grid into three domains. The two ‘surface’ domains are

each composed of a fixed number Ns of zones, extending from the

surface footpoints s = sN, sS (cf. Section 3.2) to somewhat above the

expected position of the sonic point |v| = a∗. (Here a∗ ≡ √
kT∗/μu

denotes the isothermal sound speed at the surface, with T∗ the stellar

surface temperature introduced in Section 2.4.) These zones are

non-uniform, with the size of each zone being 1.1 times that of

its neighbour closer to the stellar surface. With their high spatial

resolution, the surface domains are designed to resolve the smooth

transition of the wind from a subsonic, near-hydrostatic state to a

supersonic outflow.

The third, ‘magnetosphere’ domain spans the physically interest-

ing regions of the circumstellar environment, and is composed of

Nm zones of uniform size ds ≈ (sS − sN)/Ns, that bridge between

the two thin surface domains. In determining an appropriate value

for Nm, we are motivated by a desire to resolve the dense, corotating

disc predicted by the RRM model to accumulate at local minima of

the effective potential (see TO05; see also Appendix A). As demon-

strated in the appendix, the scaleheight of this disc is independent

of the magnetic shell parameter L when L becomes large. Thus, we
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vary Nm with L according to the simple formula

Nm = int(�d L + �∗L−1/2), (43)

where int() denotes the integer part. The first term in the paren-

theses ensures that the disc remains properly resolved at large L,

with a constant number of zones per asymptotic scaleheight h∞ (cf.

equation A9); while the second is an ad hoc addition that increases

the spatial resolution near the star. The parameters �d and �∗ are

adjusted to achieve the desired spatial resolution in the far- and

near-star limits.

3.2 Field-line coordinates

To determine the arc distance coordinates (sN, sS) of the field-line

footpoints, required in setting up the Eulerian grid (Section 3.1), we

solve the equation

r∗ = L Rp sin2 θ̃ (44)

to find the magnetic colatitudes (θ̃N, θ̃S) associated with each foot-

point. (The footpoints are not mirror symmetric about the magnetic

equator unless w = 0 or β = 0◦.) The corresponding values of s then

follow from equation (8). In the above equation, r∗ is a function of

the rotational colatitude θ (cf. equation 20); thus, it depends implic-

itly on θ̃ and φ̃ via the coordinate transformation between magnetic

and rotational reference frames (see Fig. 1). To solve this equation,

we use Brent’s algorithm (Press et al. 1992).

Once the Eulerian grid is established, we calculate θ̃ at each zone

boundary from the corresponding s values, by inverting equation (8).

For this, we use a Newton–Raphson iteration operating on cos θ̃ ,

starting from the initial guess

cos θ̃ = −s

[
L Rp

(
sinh−1

√
3

2
√

3
+ 1

)]−1

. (45)

After each Lagrangian step of the PPM algorithm, the advection

of zone boundaries means that the θ̃ values must be updated. The

Newton–Raphson iteration is in this case too slow to be useful, so we

instead evaluate θ̃ by cubic-spline interpolation (Press et al. 1992)

from the stored Eulerian-grid values.

3.3 Initial state

The initial, t = 0, state for simulations is based on an spherically

symmetric, accelerating wind. The velocity is obtained by projecting

a canonical velocity law on to field lines:

v = v∞
[

1 − r∗
r

]1/2

cos χ. (46)

Here, v∞ is the terminal velocity obtained from a non-rotating,

point-star CAK model:

v∞ =
√

α

1 − α

2G M∗
Rp

. (47)

The density is likewise obtained from the condition of steady spher-

ical outflow:

ρ = Ṁ

4πr 2v
, (48)

where now

Ṁ = L∗
c2

α

α − 1

[
Q̄�e

1 − �e

](1−α)/α

(49)

is the CAK mass-loss rate, with

�e ≡ κe L∗
4πG M∗c

, (50)

the Eddington parameter associated with electron scattering. By

assuming an isothermal initial flow, with T = T∗, the pressure p is

obtained from the equation of state (34).

3.4 Boundary conditions

Boundary conditions are implemented in VH-1 by setting dependent

variables (ρ, p, v, e) in ghost zones at both ends of the grid. To allow

for the possibility of outflow and inflow, we fix only the density and

pressure in the ghost zones, as ρ = ρ∗ and p = p∗. The stellar density

ρ∗ can be chosen with some degree of latitude, so long as it remains

appreciably above the wind density

ρs = Ṁ

4πr 2∗ a∗
(51)

at the sonic point; we find that a choice ρ∗ = 10 ρs gives a smooth

and steady wind outflow. The corresponding stellar pressure p∗ is

obtained from the equation of state (34), with ρ = ρ∗ and T = T∗.

The velocity in the ghost zones is linearly extrapolated from the first

pair of computational zones (subject to the constraint that |v| does

not exceed a∗), and the total energy per unit mass is evaluated using

equation (36).

3.5 Cooling

Cooling in the customized VH-1 is time-split from the rest of the

PPM algorithm. Across each time-step dt, a new temperature T†
j

in the jth zone is calculated from the current temperature T j and

density ρ j via

T †
j = Tj + (γ − 1)μu

k

	(T †
j , ρ j ) + 	(Tj , ρ j )

2ρ j
dt, (52)

where 	(T , ρ) is the cooling rate discussed in Section 2.7. Since this

equation is implicit, the code uses three-step iteration to converge

toward an approximate value for T†
j . In zones where the temperature

would drop below the stellar surface temperature T∗, it is reset to

T∗; this reflects the tendency for the photospheric radiation field to

keep circumstellar plasma warm. The resulting T†
j values are used

to update the pressure in each zone, through the equation of state

(34).

4 C A L C U L AT I O N S

As an initial test of the code discussed in the preceding sections,

and to explore the RFHD approach in general, we develop a model

for the magnetosphere of an oblique-dipole star whose parameters

(Table 1) loosely coincide with those of σ Ori E. (We stress that we

are not attempting to fine tune a model for σ Ori E; however, it makes

sense to begin our qualitative investigations in the same approximate

region of parameter space as this archetypal star.) The mass, radius

and surface temperature of the star are taken from the recent study

by Krtička, Kubát & Groote (2006), with the luminosity calculated

from equations (22) and (24). The wind parameters Q̄ and α are

assigned values typical to hot stars (e.g. Gayley 1995), resulting in

a CAK mass-loss rate (equation 49) of 3.7 × 10−9 M� yr−1. The

rotation period Prot is based on the photometric period measured by

Hesser, Ugarte & Moreno (1977), and leads to a normalized rotation
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Table 1. Parameters for the RFHD simulation described in Section 4.

M∗ Rp T∗ L∗ β X Z
(M�) (R�) (K) (L�) (◦)

8.9 5.3 22 500 7420 55 0.7 0.02

Prot α γ Ns �d �∗
(d)

1.2 500 0.6 5/3 25 100 100

frequency w = 0.73. The dipole obliquity β is adopted from the

RRM model presented by Townsend et al. (2005).

To piece together a 3D model for the magnetosphere, we use VH-1

to simulate the flow along a total of 1140 field lines, arranged on a

grid of 60 magnetic shell parameters L and 19 magnetic azimuths

φ̃. The azimuth values span the 0◦ � φ̃ � 90◦ quadrant in 5◦

increments; symmetry is used to replicate the simulation results

over the remaining 90◦ � φ̃ � 360◦ interval, effectively leading

to 72 azimuthal points. The 60 values of the shell parameter are

distributed according to the formula

ln L = ln 1.2 + ln(11.2/1.2)
� − 1

59
(� = 1 . . . 60). (53)

This logarithmic distribution provides higher resolution close to

the star, where we expect magnetospheric structure to depend

more sensitively on L. The innermost, � = 1 field lines have

L = 1.2; by comparison, the stellar equatorial radius for the adopted

parameters is Req = 1.11 Rp. These field lines are composed of

Ns = 25 grid zones in each of the two surface domains and – with

the choices �d and �∗ listed in Table 1 – Nm = 211 zones in the

intervening magnetosphere domain. The outermost, � = 60 field

lines have L = 11.2, and therefore extend out to just over six times

the Kepler corotation radius rK = 1.86 Rp (cf. equation A8). These

field lines again have Ns = 25, but now the magnetosphere domain

has Nm = 1149 zones, ensuring a zone size ds = 0.027 Rp that is

less than half the asymptotic scaleheight h∞ = 0.064 Rp defined by

equation (A9).

Each 1D simulation runs for 200 stellar rotation cycles (∼21 Ms).

This is significantly longer than typical flow times ∼20 ks, to en-

sure that radiative relaxation from the initial state is obtained, and

to follow the long-term evolution of the magnetosphere. Since the

simulations for each field line are independent, they can be dis-

tributed across different processors, computers or even clusters. In

the present case, the 1140 individual simulations were run on a

cluster of eight 2.0 GHz dual-core AMD Opteron nodes (for a to-

tal of 16 processors). On average, each simulation took ∼200 min

(although there was a significant spread about this mean), giving a

total computation time of ∼10 d.

5 R E S U LT S

The complete 3D magnetospheric model we describe above, com-

posed of 1140 1D simulations, occupies ∼36 GB of storage. Pre-

senting this significant data set in an informative manner poses quite

a challenge. Fortunately, the independence of the individual simu-

lations is once again of benefit, since the flow can be analysed first

in one dimension, along an individual field line (Section 5.1), then

in two dimensions, along field lines lying in the same meridional

plane (Section 5.2) and then in three dimensions (Section 5.3), for

the complete model.

5.1 1D, along individual field line

In this section, we focus exclusively on the flow along the field line

having a magnetic shell index � = 20 (cf. equation 53), correspond-

ing to L = 2.45, and an azimuth φ̃ = 90◦. With these parameters,

the field line extends out beyond the Kepler radius rK = 1.86 Rp,

and passes through the intersection between magnetic and rotational

equators. According to the RRM model (cf. TO05), these properties

should be favourable to the steady accumulation of cooled plasma

at the field-line summit. This expectation is amply confirmed by

Fig. 2, which shows the time evolution of ρ, T and v along the field

line for the first 3 Ms of the simulation. (The dynamics during the re-

mainder of the simulation are not significantly different from those

seen toward the end of this initial time-span.) The figure should be

interpreted with the aid of Fig. 3, which plots snapshots of the flow

variables at four epochs of interest.

The first, ‘A’ snapshot shows the initial configuration described in

Section 3.3. Because the velocity in both hemispheres is supersonic,

reverse shocks quickly form at the magnetic equator s = 0, and then

proceed to propagate back down the field line toward each footpoint.

As wind plasma flows through these shocks it experiences an abrupt

reduction in velocity, matched by corresponding discontinuous in-

creases in density and temperature. The temperature jump, from T
= T∗ to T ≈ 2 × 107 K, mean that the post-shock plasma cools

initially with photon energies kT ≈ 2 keV in the X-ray range.

The downward propagation of the shocks halts when the ram

pressure of the pre-shock plasma matches the gas pressure in the

post-shock regions. The resulting quasi-steady state, composed of

standing shocks at s = ±1.6 Rp that enclose hot, post-shock cooling

regions, is shown in snapshot ‘B’. Situated at the centre of these

regions is the cooled plasma predicted by the RRM model. This

plasma accumulates at a local minimum of the effective potential

�eff (as sampled along field lines), where it is supported in stable

magnetohydrostatic equilibrium by the centrifugal force (see TO05;

see also Appendix A). As we discuss further in Section 5.3, the locus

formed by such potential minima resembles an azimuthally warped

disc.

To characterize the behaviour of the cool disc plasma, we briefly

digress to introduce the three moments:

σd = 1

Aeq

∫
ρ A ds, (54)

sd = 1

Aeqσd

∫
ρs A ds (55)

and

hd =
[

2

Aeqσd

∫
ρ(s − sd)2 A ds

]1/2

, (56)

where the integrals extend over the disc regions having T = T∗.

These moments represent, respectively, the disc surface density (pro-

jected into the magnetic equatorial plane), the disc centroid and the

disc scaleheight. When applied to the 1D simulations, the above

expressions are evaluated via finite-volume equivalents:

σd = 1

Aeq

∑
ρ j dVj , (57)

sd = 1

Aeqσd

∑
ρ j s j dVj (58)

and

hd =
[

2

Aeqσd

∑
ρ j (s j − sd)2 dVj

]1/2

, (59)
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Figure 2. The time evolution of the flow along the (L, φ̃) = (2.45, 90◦) field line, showing the density ρ, temperature T and velocity v as a function of arc

distance s and time t. The magnetic equator is situated at s = 0, and the two footpoints at s = (sN, sS) = (−2.28, 2.28)Rp. The horizontal dotted lines, labelled

alphabetically, show the locations of the snapshots plotted in Fig. 3; the ‘A’ line is situated at t = 0 s.

Figure 3. Snapshots of the flow along the (L, φ̃) = (2.45, 90◦) field line, plotting the density ρ, temperature T and velocity v as a function of arc distance s.

The times of the snapshots are indicated in Fig. 2.

where dV j is the volume of the jth zone, and sj the arc distance of

the zone’s centre. As before, the summations extend over disc zones

having T j = T∗.

Fig. 4 plots the moments (57–59) for the (L, φ̃) = (2.45, 90◦)

field line. The rightmost panel indicates that during the early stages

of the simulation, the disc thickness is substantially smaller than the

value h0 = 0.09 Rp predicted by the RRM model (cf. equation A6).

Indeed, up until t = 0.6 Ms hd is identically zero, indicating that the

disc extends over only a single zone. The reason for this confine-

ment is that the internal pressure of the cool disc is insufficient to

support it against the relatively high pressure of the hot plasma in the

surrounding post-shock regions; thus, the disc becomes compressed

into the smallest volume resolvable by VH-1.

This situation changes once the steady accumulation of plasma

(Fig. 4, leftmost panel) raises the internal pressure to a point where

the disc suddenly grows to encompass a greater number of zones.

Three of these expansion events are apparent in Fig. 2, at t = 0.6,

1.6 and 2.1 Ms. After each event, the disc plasma undergoes oscil-

lations back and forth about its equilibrium position s = 0; these

are most readily seen in the centre panel of Fig. 4 for t > 2.1 Ms.
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Figure 4. The surface density σ d, centroid sd and scaleheight hd of the disc for the (L, φ̃) = (2.45, 90◦) field line, plotted as a function of time t. The dotted

lines show the corresponding predictions of the RRM model.

The oscillations are accompanied by variability of the post-shock

cooling regions, involving the abrupt movement of the shock fronts

toward s = 0, followed by a rebuilding of the cooling regions via

wind feeding. Snapshot ‘C’ in Fig. 3 shows the state of the flow

immediately after an ingress of the Northern hemisphere (s < 0)

shock; observe how this shock is 0.45 Rp closer to the disc than in

snapshot ‘B’. Because the density jump across a strong shock scales

proportionally to the pre-shock density, this movement of the shock

front translates into a reduction in the post-shock density. Thus,

ρ ≈ 1.3 × 10−15 g cm−3 just downstream of the northern shock in

snapshot ‘B’, but ρ ≈ 0.4 × 10−15 g cm−3 downstream of the shock

in snapshot ‘C’.

The disc oscillations after the first expansion event are damped,

dying out over a time-scale ∼0.5 Ms. The damping is even stronger

for the very weak oscillations seen after the second event. Following

the third event at t = 2.1 Ms, however, the oscillations persist at a

relatively high amplitude all the way to the end of the simulation.

Snapshot ‘D’ in Fig. 3 illustrates the flow when the oscillating disc

plasma is undergoing a southward displacement (sd = 0.02 Rp).

To explore the nature of the oscillations, Appendix C develops a

linear analysis of the response of the disc plasma to small-amplitude

departures from stationary equilibrium. For perturbations that con-

serve σ d, the analysis reveals a spectrum of normal modes having

periods

Pm = 2π

ωm
= π

√
2

m

h0

a∗
(m = 1, 2, 3, . . .). (60)

The oscillations seen in Figs 2–4 are wholly consistent with the

excitation of the dipole (m = 1) mode. In particular, the period

P1 = 85.5 ks predicted by the expression above is in good agreement

with the value P = 79.2 ks measured from the strongest peak in the

Fourier transform of the sd data for t > 2.1 Ms.

What excites the dipole oscillations? In the simulations, the coin-

cidence between the expansion events and the onset of oscillations

reveals that these events impart an initial ‘kick’ to the disc plasma.

(The kick originates because the perturbation introduced by an ex-

pansion event is usually asymmetric.) However, some other process

is clearly responsible for maintaining and even amplifying the os-

cillations, as seen after the third expansion event at t = 2.1 Ms. A

likely candidate for this process is the cooling instability discussed

by Chevalier & Imamura (1982). These authors show that radiative

cooling of thermal plasma in the temperature range ∼105–107 K is

linearly overstable due to the negative temperature exponent of the

cooling coefficient L. For the parameters of the cooling regions of

the (L, φ̃) = (2.45, 90◦) field line, the periods of the fundamental

and first-overtone unstable cooling modes are P ≈ 160 and ≈ 40 ks,

respectively,2 bracketing the disc oscillation period P = 79.2 ks.

This lends support to the hypothesis that a coupling between the

disc modes and the cooling modes results in a global overstability,

driving the disc oscillations until non-linearity leads to saturation.

We intend to investigate this hypothesis further in a future paper.

To bring the present section to a close, we compare the RFHD

simulation for the (L, φ̃) = (2.45, 90◦) field line against the predic-

tions of the RRM model. For the parameters specified in Table 1, the

RRM model3 predicts a rate of change σ̇d = 1.38×10−8 g cm−2 s−1

for the disc surface density. Given the approximations employed in

developing the model, this value is in remarkably good agreement

with the empirical value σ̇d = 1.31 × 10−8 g cm−2 s−1 derived from

a linear least-squares fit to the σ d simulation data.

To compare the distribution of disc plasma, Fig. 5 plots the density

as a function of s for both model and simulation, at a time t ≈ 20.2 Ms

near the end of the simulation chosen so that the disc displacement sd

is close to zero. Once again, there is encouraging agreement between

the RRM prediction and the simulation result. The only significant

difference is that the wings of the Gaussian density distribution (cf.

equation A5) are truncated in the simulation due to the pressure of

the hot plasma in the adjacent post-shock regions.

5.2 2D, in meridional planes

We now extend the analysis to two dimensions, by considering 1D

RFHD simulations all lying in the same meridional plane. Fig. 6

shows 2D images of the state of the flow at the end of the simulations,

for the φ̃ = 90◦ meridional plane. (The figure also shows images for

the φ̃ = 0◦ plane, but we defer discussion of these data until later.)

The cool disc of accumulated plasma is clearly seen along the ỹ
axis in the φ̃ = 90◦ plane, surrounded by hot (T ∼ 107–108 K) post-

shock cooling regions. The disc does not extend all the way to the

star, but is instead truncated at a radius r = 1.8 Rp. Inside this radius,

the centrifugal force is not strong enough to support plasma against

the inward pull of gravity, and no accumulation occurs. Although

2 These values are obtained from the α = −1 eigenfrequencies tabulated by

Chevalier & Imamura (1982), with uin = 900 km s−1 and xs0 = −1.6 Rp.
3 See TO05, their equation (34); in evaluating the stellar-surface field tilt μ∗
appearing in this equation (and in other expressions from the RRM formal-

ism), we take into account the stellar oblateness due to rotation, which for

simplicity was neglected in the TO05 treatment.
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Figure 5. The density ρ in the vicinity of the cool disc, plotted as a function

of arc coordinate s for the (L, φ̃) = (2.45, 90◦) field line. The solid line

indicates the result from the RFHD simulation at a time t ≈ 20.2 Ms, while

the dotted curve shows the prediction of the RRM model at the same t.

dense knots of plasma are formed close to the star by compression

between opposing wind streams, these knots quickly slide down the

magnetic field toward one or the other of the footpoints.

Fig. 7 illustrates this fallback process in a sequence of density

snapshots, showing the evolution of the inner parts of the mag-

netosphere shortly before the end of the simulations. The white

arrow in the leftmost panel indicates a knot that has formed at

(ỹ, z̃) = (1.6, 0.1) Rp. In the centre panel, the knot has migrated

further into the northern magnetic hemisphere, and in the right-

most panel begun its descent to the stellar surface. This figure is

reminiscent of the infalling plasma seen in the MHD simulations

Figure 6. The state of the flow at the end of the simulations, showing the density ρ, temperature T and velocity v in the φ̃ = 90◦ (upper row) and φ̃ = 0◦
(lower row) meridional planes. (See Fig. 1 for a recapitulation of the geometry of these planes.) The oblate star is indicated in grey at the left-hand side of each

image. Outside the regions threaded by simulation field lines (i.e. for L < 1.2 and L > 11.2), the images are left blank. The dotted rectangle in the upper left

image indicates the region shown in detail in Fig. 7.

by ud-Doula & Owocki (2002, their fig. 4); in fact, the only phe-

nomenological difference lies in the scale of the knots. Cross-field

coupling in the MHD simulations allows coherence between the

flow on adjacent field lines. However, this coupling is absent in the

RFHD simulations (due to the neglect of the polar velocity deriva-

tive when calculating the radiative acceleration; see Section 2.5),

and the scale of the knots is set therefore by the L grid spacing (cf.

equation 53).

The absence of cross-field coupling is also ultimately responsible

for the significant amount of structure seen in the post-shock cooling

regions. If disc oscillations are excited on one particular field line,

but are absent from an adjacent field line, then discontinuities in

the cross-field direction appear in the flow properties, resembling a

reversed letter ‘C’. Thus, for instance, the (L, φ̃) = (3.88, 90◦) field

line in Fig. 6 has a significantly lower density than its neighbours

because disc oscillations are excited on this field line, but not on the

adjacent ones. As with the fallback, we expect in reality that cross-

field coupling will tend to smear out such sharp discontinuities. One

possible approach to including this coupling in RFHD simulations

is discussed in Section 6.3.1.

Turning now to the temperature data in Fig. 6, a gradient can be

seen across the post-shock regions, with the outer parts being up to

an order of magnitude hotter (T ∼ 108 K) than those near the star

(T ∼107 K). This gradient arises from two distinct effects. First, field

lines having larger magnetic shell parameter L undergo a greater

area divergence, and are therefore characterized by lower plasma

densities and faster flow velocities (see Owocki & ud-Doula 2004,

for a more in-depth discussion of this effect). This naturally leads

to a tendency for larger L field lines to experience hotter post-shock

temperatures.
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Figure 7. Snapshots of the density ρ in the inner parts of the φ̃ = 90◦ meridional plane (see the dotted rectangle in Fig. 6), at a time t ≈ 20.4 Ms near the end

of the simulations (left), and then at increments of one quarter (centre) and one half (right) of a rotation cycle later. The white arrows indicate the location of

the dense knot discussed in the text. As in Fig. 6, the star is indicated in grey at the left-hand side of each image.

Second, in a process first conjectured by Babel & Montmerle

(1997a), the post-shock plasma can be pushed to even higher tem-

peratures by the action of the centrifugal force. To accumulate on

to the cool disc, the plasma must first descend to the bottom of

the effective potential well (Section 5.1). The consequent release

of centrifugal potential energy heats the plasma, by an amount that

ultimately depends on the distance from the rotation axis. In the

φ̃ = 90◦ data shown in Fig. 6 this effect raises the plasma temper-

ature on the outer, L = 11.2 field line from T = 1.1 × 108 K at the

shocks to T = 1.8 × 108 K adjacent to the disc.

The centrifugal heating in the post-shock regions competes

against cooling by atomic and inverse Compton processes (cf.

Section 3.5). Initially, the centrifugal effect dominates because

plasma densities are so low that atomic cooling (a ρ2 process; see

equation 38) is exceedingly inefficient. However, this situation is

subsequently reversed; as plasma moves downstream of the shocks,

the density eventually becomes high enough for atomic processes

to cool it rapidly, in thin layers on either side of the disc (see

Section 5.3). During this process, inverse Compton cooling is rela-

tively unimportant; at low densities it is more efficient than atomic

cooling, but it never becomes the dominant term on the right-hand

side of the energy conservation equation (3).

Although the foregoing discussion focuses on the flow in the

φ̃ = 90◦ meridional plane, it generally applies to other meridional

planes. However, one significant exception concerns the location

of the cool disc. The φ̃ = 0◦ images in Fig. 6 reveal that the disc

is not symmetric about the magnetic axis, as one might presume

from considering the φ̃ = 90◦ images on their own. Rather, the

disc is warped in the azimuthal direction. To explain this notion,

let θ̃d denote the centroid magnetic colatitude of the disc, obtained

by setting s = sd in equation (8) and solving for θ̃ . Then, in a

given meridional plane the disc lies approximately along a straight

ray emanating from the origin, with θ̃d remaining constant as L
is varied. However, θ̃d changes from plane to plane, resulting in

azimuthal warping; for instance, θ̃d ≈ 70◦ in the φ̃ = 0◦ meridional

plane, whereas θ̃d ≈ 90◦ for the φ̃ = 90◦ case. This warping is one

of the key predictions of the RRM model, and its origin is discussed

in greater detail by TO05.

In addition to revealing the disc warping, the φ̃ = 0◦ images in

Fig. 6 also illustrate a novel flow phenomenon. On a number of the

innermost (L � 1.8) field lines, the northern reverse shock propa-

gates back down to the stellar surface. This leads to a siphon config-

uration, in which plasma flows unidirectionally from the southern

magnetic footpoint to the corresponding northern footpoint. (The

direction of the flow is set by the relative location of the rotation

axis; in the φ̃ = 180◦ meridional plane, north-to-south siphon flows

occur.) Because the southern reverse shock remains intact, part of

the siphon flow is composed of shock-heated plasma at T ≈ 5 ×
106 K; this plasma is relatively dense due to its proximity to the

star, and therefore makes a significant contribution to the soft X-ray

emission from the magnetosphere (see Section 5.3).

As with the 1D analysis in Section 5.1, we bring the present

section to a close by comparing the RFHD simulation results against

the predictions of the corresponding RRM model. Fig. 8 plots the

disc surface density σ d in the φ̃ = 90◦ meridional plane, at the end of

the simulations and for the model. The agreement between the two

is once again very encouraging, especially in the innermost regions

of the disc. In the outer regions, the simulations predict a rather

smaller surface density (∼10–25 per cent) than the RRM model.

This modest discrepancy appears correlated with the observation

that, for field lines having L � 6, the disc remains confined to a

single zone – no expansion events occur on these field lines over the

duration of the simulations.

5.3 Full 3D model

Having examined the results of the RFHD simulations for an indi-

vidual field line, and for field lines lying in meridional planes, we

now turn to the complete, 3D picture. Fig. 9 shows images of the

proton column density Np at the end of the simulations, viewed

from six equally spaced rotational azimuths spanning the range

0◦ � φ � 180◦ (the remaining interval 180◦ � φ � 360◦ is mir-

ror symmetric through the vertical axis). Following Townsend et al.

(2005), a viewing inclination i = 75◦ with respect to the rotation

axis is adopted. The column density is calculated from ray integrals
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Figure 8. The disc surface density σ d in the φ̃ = 90◦ meridional plane,

plotted as a function of magnetic shell parameter L. The solid line shows the

final state at the end of the RFHD simulations, while the dotted line indicates

the corresponding prediction of the RRM model.

of the form

Np =
∫

np dzi, (61)

where zi is the perpendicular distance to the image plane, and the

proton number density np was defined in equation (39). The mass

densityρ appearing in this latter equation is calculated using trilinear

interpolation from the (s, L, φ̃) field-line coordinate system on to

the (xi, yi, zi) Cartesian image coordinate system. Along rays that

intersect the star, the integral is truncated at the stellar surface.

The figure clearly illustrates the 3D structure of the dense, coro-

tating disc discussed in previous sections. (The plasma in the wind

and post-shock regions is effectively invisible, since it is orders-of-

magnitude less dense than that composing the disc.) This disc pos-

sesses three important characteristics predicted by the RRM model.

First, it has an average inclination that lies somewhere between

the magnetic and rotational equatorial planes. Second, it exhibits a

hole at its centre. Third, the surface density across the disc is non-

uniform, with the plasma concentrated into two elongated ‘clouds’

situated at the intersection between magnetic and rotational equa-

tors. These clouds are best seen in the φ = 180◦ panel of the figure.

In the case of σ Ori E, the existence of such clouds has been inferred

from Hα measurements (e.g. Groote & Hunger 1982; Bolton et al.

1987), and Townsend et al. (2005) have demonstrated how the clouds

are simultaneously responsible for the distinctive spectroscopic and

photometric variability exhibited by the star.

To explore further the degree of correspondence with the RRM

model, Fig. 10 plots the quantities

R(σd) = σd,RFHD

σd,RRM

(62)

and

�(θ̃d) = θ̃d,RFHD − θ̃d,RRM (63)

in the x̃–ỹ magnetic equatorial plane, where the subscripts RFHD and

RRM denote values obtained from the RFHD simulations and the

RRM model, respectively. These quantities represent the ratio of disc

surface densities σ d, as defined by equation (54), and the difference

in the disc centroid colatitudes θ̃d introduced in Section 5.2.

The figure reveals that once again the agreement between simula-

tions and model is good. The maximum differences in surface den-

sity are below the 25 per cent level, and – as already discussed – are

strongly correlated with those disc regions that have not undergone

any expansion events. The differences in centroid colatitude angle

do not rise above a few degrees; they tend to be most positive around

φ̃ = 0◦, and most negative around φ̃ = 180◦, so the RFHD disc is

slightly closer to the magnetic equatorial plane than the RRM disc.

Based on these findings, we can conclude that the disc plasma distri-

bution predicted by the RRM model furnishes a close approximation

to the distribution determined via the physically more sophisticated

(yet computationally more expensive) RFHD approach.

Of course, the significant caveat here is that the RRM model is

limited to consideration only of the cool plasma in the disc. Whereas,

the RFHD simulations also encompass the hot post-shock plasma

responsible, for instance, for magnetospheric X-ray emission. To

illustrate the spatial and thermal distribution of this plasma, we

introduce a two-temperature emission measure density (EMD):

E(T1, T2) =
∫ T2

T1

[∫
nenpδ(T − T ′) dzi

]
dT ′, (64)

where δ() is the Dirac delta function, and ne is the electron number

density (cf. equation 11). The EMD characterizes the radiative re-

combination emission by plasma in the temperature range T1 < T <

T2. Fig. 11 shows images of E at the end of the simulations, for the

‘face on’ (φ = 0◦, 180◦) and ‘edge-on’ (φ = 108◦) viewing aspects,

and for temperature ranges that correspond to thermal emission at

optical/UV (T < 105 K), extreme UV (105 < T < 106 K), soft X-ray

(106 < T < 107 K) and hard X-ray (T > 107 K) energies.

The optical/UV images confirm the concentration of Hα-emitting

plasma into two clouds. However, at higher temperatures a differ-

ent distribution emerges. In the EUV range, the plasma is situated

primarily in thin cooling layers on either side of the disc. Because

the cooling from 106 to 105 K is so efficient (on account of the large

number of metal lines available), these layers are underresolved in

the simulations, and appear fragmented into many small islands of

emission. Similarly fragmented cooling layers are seen in the outer

parts of the soft X-ray EMD images, but the preponderance of the

emission in this 106 < T < 107 K range comes from a toroidal belt

surrounding the star. This belt is primarily composed of the hot,

dense plasma associated with the siphon flows discussed in Sec-

tion 5.2 (and also see Fig. 6).

The soft X-ray belt is enclosed by a torus of hard X-ray emission,

seen in the T > 107 K images to extend out to about 4 Rp. Beyond

this radius, an asymmetry develops on either side of the disc, with

those field lines that pass near the rotational poles showing much

weaker emission than those that avoid the poles. This asymmetry

is most evident in the φ = 108◦ (edge-on) panel; observe how the

emission is strongest in the northern magnetic hemisphere on the

left-hand side of the image, but vice versa on the right-hand side.

The origin of the asymmetry can be seen in the φ̃ = 0◦ images of

Fig. 6; note the significant difference in the density of the post-shock

regions on either side of the disc, which translates directly into the

E asymmetry. The density difference itself arises as a result of the

positioning of the shock fronts; the disc in the φ̃ = 0◦ meridional

plane is situated in the northern magnetic hemisphere, and the shock

fronts in this hemisphere are closer to the stellar surface, implying

a higher density in the post-shock region.

To complete our discussion of the magnetospheric emission, we

consider the differential emission measure (DEM) distribution:

D(T ) = d

d ln T

[∫ ∫
E(0, T ) dxi dyi

]
. (65)

Fig. 12 plots D as a function of temperature, for the φ = 0◦ case

shown in Fig. 11. The figure reveals an essentially bimodal DEM

distribution, with a narrow peak at T = 22 500 K = T∗ corresponding
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Figure 9. The proton column density Np at the end of the simulations, viewed from six different rotational azimuths φ. The oblate star is shown in grey at

the centre of each panel, arrows indicate the magnetic and rotation axes (the latter being the vertical, fixed one) and the curved arcs show field lines having

magnetic shell parameters L = 5, 10 and magnetic azimuths φ̃ = 0◦, 60◦, 120◦, . . . , 300◦.

to the cool disc plasma, and a broad peak centred at T ≈ 4 × 107 K

associated with the extended regions of hard X-ray emission seen in

the topmost images of Fig. 11. These regions are not subject to any

appreciable occultation by the star, and as a consequence there is

almost no change to the X-ray peak seen in Fig. 12 as the rotational

azimuth φ is varied.

6 D I S C U S S I O N

The analysis in preceding sections is largely directed toward com-

paring the results from the RFHD simulations against the cor-

responding predictions of the RRM formalism. This comparison

confirms that the two complementary frameworks for modelling
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Figure 10. The surface density ratio (left) and centroid colatitude difference (right) between the RFHD simulations and the RRM model, across the magnetic

equatorial (x̃–ỹ) plane.

massive-star magnetospheres are in good agreement. However, the

RFHD approach has a far broader scope than the RRM model, and

we have only begun to explore its potential applications. Our pre-

liminary investigation of a σ Ori E-like star has already revealed a

variety of novel phenomena, such as disc oscillations and centrifu-

gal heating. In Section 6.2 we discuss the prospects for the next

logical step of comparing RFHD simulations against observations

of magnetic stars. In Section 6.3, we review the limitations of the

RFHD approach, and suggest how these might be overcome in fu-

ture studies. First, however, we examine the relationship between

RFHD and previous work.

6.1 Relation to previous work

The RFHD approach presented in this paper has allowed (to our

knowledge) the first ever time-dependent, 3D simulation of a

massive-star magnetosphere. In developing the new approach, we

have drawn extensively on previous investigations of stellar magne-

tospheres. From the perspective of disc accumulation, these include

the RRM model (TO05), and the earlier rigid-field models advanced

by Michel & Sturrock (1974) and Nakajima (1985). From the per-

spective of wind dynamics, the key narrative has been the MCWS

paradigm of Babel & Montmerle (1997a).

Indeed, the modelling strategy employed by Babel & Montmerle

(1997a) directly foreshadows the RFHD approach, and a comparison

between the two is appropriate. These authors also adopt a rigid-

field ansatz, and likewise cast the flow in terms of independent 1D

hydrodynamical problems that include the effects of rotation and

radiative cooling. However, they restrict their analysis to the 2D

axisymmetric case of an aligned dipole (β = 0◦), and instead of

constructing global solutions they treat the wind, post-shock and

disc regions separately, combining them in a post hoc step based on

matching conditions. Moreover, rather than using a hydrodynami-

cal code they treat the flow in the wind and post-shock regions by

stationary integration of the time-independent momentum equation.

This rules out any possibility of simulating dynamical phenomena

such as disc oscillations or the fallback of material close to the star.

For these reasons, we regard the RFHD approach as a signifi-

cant advance beyond the MCWS model that augured it. What of

other treatments? As discussed in the Introduction, MHD simula-

tions (e.g. ud-Doula & Owocki 2002) tend to be impractical when

field lines become almost rigid. Therefore, the direct overlap be-

tween MHD and RFHD is naturally limited – although this may

change if the RFHD approach can successfully be extended to open

field topologies, as is discussed in Section 6.3.3. Even for stars ac-

cessible to MHD simulation, the RFHD approach will retain some

advantage due to its relatively low computational costs.

6.2 Comparison with observations

In presenting the results from the 3D magnetosphere model

(Section 5), we avoid any specific comparison with observations.

This reflects the focus of the paper toward introducing the RFHD

approach and exploring the physical processes at work in massive-

star magnetospheres. Here, we outline those specific areas where

we believe a confrontation between models and observations will

prove most fruitful. However, apart from brief remarks on the cor-

respondence of our results to recent and historical observations, we

defer the detailed quantitative modelling to subsequent papers.

Townsend et al. (2005) have already found that the RRM model

furnishes a good agreement to the Hα and photometric variability of

σ Ori E. Since the RFHD simulations predict a disc plasma distribu-

tion similar to the RRM model (cf. Section 5.3), the improvements

brought by the simulations – at optical wavelengths – are likely to be

incremental. Nevertheless, the radiative transfer treatment adopted

by Townsend et al. (2005) is at the simplest possible level, and lacks
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Figure 11. The EMD E(T1, T2), viewed from three different rotational azimuths φ, and for four temperature ranges (T1, T2) corresponding (top-to-bottom) to

hard X-ray, soft X-ray, EUV and optical/UV emission. The star, axes and field lines are the same as in Fig. 9.

a realistic treatment of atomic physics. Thus, there is ample room

for progress in this area.

The scope for progress is greater at other wavelengths, however.

In their Chandra survey of M17, Broos et al. (2007) uncovered a

population of B0-B3 stars characterized by hard (up to ∼5 keV)

X-ray emission. The DEM distributions presented in Section 5.3

are generally consistent with this level of hardness, suggesting a

magnetic wind-shock origin for the B stars’ X-rays. To test this

hypothesis at a qualitative level, the RFHD simulations can be com-

bined with standard emission codes such as APEC (Smith et al. 2001)

to synthesize spectra for direct comparison against the observations.

Such modelling should also help to understand the X-ray emis-

sion of known-magnetic Bp stars. Some of these are notable on

account of the absence of any significant X-ray detections (see
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Figure 12. The DEM distribution D, plotted as a function of temperature

T for the φ = 0◦ case shown in Fig. 11. The ordinate scale is chosen to

emphasize the emission at EUV and X-ray energies; the truncated peak at

low temperatures extends up to ≈2 × 1060 cm−3.

e.g. Drake et al. 1994; Czesla & Schmitt 2007). In the case of

σ Ori E X-rays are seen, but they show an ambiguous charac-

ter: a two-temperature fit to Chandra measurements gives kT ≈
0.7, 2.2–3.8 keV (Skinner et al. 2004), whereas a corresponding

fit to XMM–Newton data finds kT ≈ 0.3, 1.1 keV (Sanz-Forcada,

Franciosini & Pallavicini 2004). The RFHD simulations based

loosely on the parameters of σ Ori E predict a non-varying and

rather harder spectrum, with a DEM distribution peaking around kT
≈ 3.5 keV (cf. Fig. 12). This harder-than-observed spectrum could

be a consequence of our neglect of thermal conduction (cf. Sec-

tion 2.7). Alternatively, it could be that the mass-loss rate adopted

in the simulations is too high. (A larger Ṁ leads to a higher density

wind, which in turn pushes the shocks further from the star where

the flow velocity is higher.) In this respect, we note that there is

mounting evidence from a number of independent diagnostics that

mass-loss rates of OB stars have historically been overestimated

(see e.g. Smith & Owocki 2006, and references therein).

At radio wavelengths, the emission properties of magnetic Bp

stars are rather more consistent than for X-rays. However, the

physical mechanisms responsible remain somewhat controversial

(e.g. Drake 1998). In a recent paper, Trigilio et al. (2004) advance

a 3D model incorporating gyrosynchrotron emission from mildly

relativistic electrons accelerated in an equatorial current sheet. This

current sheet lies outside the inner, rigid-field regions of the magne-

tosphere, and cannot be modelled directly using the RFHD approach

(although see Section 6.3.3). However, Trigilio et al. (2004) suggest

that the thermal plasma trapped in the post-shock cooling regions

of the inner magnetosphere plays an important role in modulating

(via free–free absorption) the radio emission. The RFHD approach

will prove useful in testing this idea.

At UV wavelengths, there is good potential for headway to be

made. A number of magnetic massive stars were observed exten-

sively by International Ultraviolet Explorer (IUE; see Smith &

Groote 2001, and references therein), leading to empirical mod-

els for equatorially focused wind streams (e.g. Shore & Brown

1990) that prefigured the MCWS model. In the case of σ Ori E

and similar He-strong stars, Smith & Groote (2001) find that the

strengths of UV lines are consistent with absorbing column densities

of 1022–1023 cm−2. Allowing for the fact that these authors assumed

a covering factor of 100 per cent (whereas magnetospheric discs are

in fact closer to 10 per cent), such values are consistent with the

Np ≈ 3 × 1023 cm−2 column densities found in the RFHD simu-

lations. The task now is to investigate whether the simulations can

reproduce the detailed absorption profiles measured by IUE.

On a more speculative note, the RFHD approach may be able

to shed some light on particle acceleration processes around mas-

sive stars. Bell (1978a,b) and Blandford & Ostriker (1978) indepen-

dently suggested that Fermi acceleration of particles in astrophysi-

cal shocks could explain the cosmic-ray energy spectrum up to the

‘knee’ at ∼106–107 GeV. Typically, supernova remnants are consid-

ered the most likely locations for this to occur (Stanev 2004). How-

ever, it seems possible that the circumstellar environments of strong-

field massive stars could also be sites for particle acceleration. Babel

& Montmerle (1997a) suggest that the highly sub-Alfvénic nature

of the magnetically channelled wind shocks (due to the near-rigid

field) means that the second-order Fermi process should be effec-

tive. They claim that relativistic electrons produced in this manner

can explain the radio emission from magnetic massive stars, without

the need for the current sheets invoked by Trigilio et al. (2004).

We conjecture that the same mechanism operating on protons

and/or ions (which are far less sensitive to inverse Compton losses

than electrons) might ultimately lead to the production of ener-

getic γ -rays. With recent advent of high-sensitivity ground-based

Cherenkov telescopes such as HESS (High Energy Stereoscopic

System; Hinton 2004) and VERITAS (Very Energetic Radiation

Imaging Telescope Array System; Holder 2006), which have the

sensitivity and angular resolution to detect these γ -rays, theoretical

progress on this issue would be particularly timely.

6.3 Limitations

To bring the discussion to a close, we briefly review the present

limitations of the RFHD approach, and (where possible) suggest

how these limitations might be overcome in future extensions to the

basic approach.

6.3.1 Cross-field coupling

In deriving the adopted expression (33) for the radiative acceleration

grad, the polar velocity derivative (∂v/∂θ̃ )r̃ is neglected. Although

the approximation is generally quite reasonable, it necessarily sup-

presses any coupling between the flow on adjacent field lines that

may be important in setting the scale of knots and cross-field dis-

continuities (Section 5.2).

To include this coupling, we contemplate an extension to the basic

RFHD approach that involves conducting the 1D simulations lying

in the same meridional plane in parallel. By this, we mean that each

numerical time-step advances the flow data of all coplanar field lines

together. This way, the necessary velocity data to calculate (∂v/∂r̃ )θ̃
are available throughout the simulation, and it is not necessary to

make the approximation (30). The additional computational costs

of performing the 1D simulations in parallel are quite reasonable;

beyond the additional memory overhead, the only significant issue

is that the numerical time-step is limited by the Courant criterion as

applied to all field lines together. This means that the simulations

advance at the rate of the ‘slowest’ (shortest Courant time) field

line.

6.3.2 Rigid-field ansatz

A key ingredient of the RFHD approach is the ansatz that field

lines remain rigid. This applies as long as the magnetic Lorentz

force can balance any competing forces acting perpendicular to field
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lines with only minimal distortion from the assumed unstressed

configuration, taken here to be a dipole. In the wind outflow regions,

the relevant competition can be characterized in terms of the global

wind magnetic confinement parameter, η∗, defined by ud-Doula &

Owocki (2002). These authors’ MHD simulations show that the

Alfvén radius – where closed field lines become opened into a radial

configuration by the wind – scales as rA ≈ η1/4
∗ R∗.

The parameters adopted for the RFHD simulations (cf. Table 1),

together with a polar field strength ∼104 G corresponding to the

value inferred for σ Ori E (Landstreet & Borra 1978), imply a global

confinement parameter η∗ ≈ 107. The conclusion is therefore that the

wind should substantially distort field lines only for radii r � rA ≈
50R∗ – significantly further out than the maximum shell parameter L
= 11.2 considered in our simulations. Although this simple analysis

does not account for the presence of shocks, or for the effects of

the Coriolis force, these additional processes can be expected to

incur modest (order-unity) modifications to the total flow energy.

Hence, their inclusion should not appreciably modify the basic η∗-

based analysis for the overall competition between field and flow in

regions outside the disc.

However, the radial increase of the centrifugal force makes it a

potentially important limiting factor in a rigid-field approach, partic-

ularly for the secularly accumulating plasma in the outer regions of

the disc. In fact, as discussed in the appendix of TO05, the centrifu-

gal force acting on this plasma should eventually become stronger

than the available magnetic tension, leading to the kind of centrifu-

gally driven breakout seen in the MHD simulations of ud-Doula,

Townsend & Owocki (2006). The time-scale for breakout decreases

sharply with local disc radius, asymptotically as r−4; moreover, the

overall normalization of this time-scale scales with a disc confine-

ment parameter that is quite analogous to, and has a similar magni-

tude to, the wind parameter η∗ (see e.g. TO05, their equations A7

and A8).

In the RFHD simulations, and again adopting the inferred field

strength for σ Ori E, the outermost, L = 11.2 field line has a disc

breakout time of ≈2 Ms, roughly an order of magnitude shorter than

the simulation duration. Indeed, over this duration all field lines

having L � 6 should undergo one or more breakout episodes, thus

formally violating the rigid-field ansatz when applying the RFHD

simulations of these outer regions to σ Ori E. However, in practice

these regions make only a minor contribution to the disc emission

(cf. the lower images of Fig. 11), implying that the model should

still be applicable for interpreting optical line diagnostics like Hα.

Moreover, once field lines reconnect after a breakout event, the

wind shocks should quickly reform to nearly their characteristic

asymptotic strength, meaning that the associated X-ray emission

signatures are also likely to be only weakly affected. While further

direct MHD simulations would be helpful in testing these expec-

tations, it seems that models based on the rigid-field ansatz here

still provide good approximate predictions of key observational

diagnostics.

6.3.3 Open field topologies

Recall that the general RFHD approach is not necessarily limited to

any particular magnetic topology, such as the dipole form adopted

here. It merely requires that this topology be pre-specified and in-

dependent of the actual flow. For example, the basic approach could

even be applied to a topology in which a dipole field is opened into

a radial configuration in the region outside the Alfvén radius. Phys-

ically such opening occurs because of the stresses of wind outflow,

but phenomenologically it can be pre-specified by invoking current

sheets (e.g. Connerney, Acuna & Ness 1981; Tsyganenko 1989; Tsy-

ganenko & Peredo 1994) and/or source surfaces (e.g. Altschuler &

Newkirk 1969) for regions above rA. In models of the solar wind,

the recent investigation by Riley et al. (2006) confirms that such

source-surface methods lead to global field topologies that are in

good agreement with full MHD solutions.

In the context of massive stars, corresponding open-field RFHD

simulations could provide a first attempt toward a 3D model for the

effects of the field on open regions of wind outflow. Although not

contributing appreciably to optical or X-ray emission, the inclusion

of such outflow regions in an RFHD model could prove a good

initial basis for synthesizing phase-dependent UV wind absorption

profiles, for comparison against archival IUE spectra.

7 S U M M A RY

We have presented a new RFHD approach to modelling massive-star

magnetospheres. Within the rigid-field ansatz, the flow along each

field line is treated as an independent 1D hydrodynamical problem.

Using the VH-1 code, we performed many separate 1D simulations

of differing field lines, and pieced them together to build up 3D

model of a σ Ori E-like star.

These results from these simulations showcase the potential of

the RFHD approach, both by confirming the findings of previous

studies (e.g. wind collision shocks, disc accumulation) and by re-

vealing new phenomena (e.g. disc oscillations, siphon flows, cen-

trifugal heating). Hence, we anticipate that the new approach will

prove a powerful tool in future investigations of massive-star mag-

netospheres.
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A P P E N D I X A : T H E M AG N E TO H Y D RO S TAT I C
L I M I T

The RRM model is based on the magnetohydrostatic limit, where all

velocities and time derivatives in the Euler equations (1)–(3) vanish.

In this limit, the momentum equation becomes

dp

ds
= ρgeff · es (A1)

(the grad term is not present because the radiative acceleration scales

with the velocity gradient; see Section 2.5). With the effective grav-

ity expressed in terms of a scalar effective potential (cf. equation 16),

we recover an equation describing magnetohydrostatic equilibrium

along the field line:

dp

ds
= −ρ

d�eff

ds
. (A2)

Assuming that the stationary plasma has cooled to the stellar surface

temperature T∗, the equation of state (34) is used to derive the density

distribution

ρ = C e−�eff/a2∗ , (A3)

where C is a constant of integration, and a∗ is the isothermal sound

speed introduced in Section 3.1.

In the vicinity of a local minimum (as sampled along a field line),

the effective potential can be approximated by the second-order

Taylor expansion:

�eff(s) ≈ �0 + (s − s0)2

2
�′′

0, (A4)

where s0 is the arc distance coordinate of the minimum. Here, primes

are used to denote differentiation with respect to s, while a subscript

0 indicates evaluation at the minimum s = s0. (The �′
0 term in the

expansion is by definition zero.) Substituting this expression into

equation (A3) reveals a Gaussian density distribution,

ρ = ρ0 e−(s−s0)2/h2
0 , (A5)

with ρ0 a constant based on C, and

h0 ≡
√

2a2∗
�′′

0

, (A6)

the characteristic scaleheight.

In the case of a dipole field aligned with the rotation axis (i.e.

β = 0), the effective potential minima are situated at the field-line

summits, and thus s0 = 0. It can then be shown that

�′′
0 ≈ 3G M∗

r 3
K

(A7)

in the limit L  rK/Rp (see TO05, their equation 18), where

rK =
(

G M∗
2

)1/3

= 3Rp

2w2/3
(A8)

is the Kepler corotation radius where the rotation velocity coincides

with the orbital velocity. In the same limit, the disc scaleheight is

approximated by

h0 ≈ h∞ ≡ 3a∗
2w

√
R3

p

G M∗
, (A9)

which depends only on the rotation rate and the stellar parameters.
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A P P E N D I X B : T H E R A D I A L V E L O C I T Y
D E R I VAT I V E

To evaluate the radial velocity derivative in equation (29), we first

expand it as(
∂v

∂r̃

)
θ̃

=
(

∂v

∂s

)
L

(
∂s

∂r̃

)
θ̃

+
(

∂v

∂L

)
s

(
∂L

∂r̃

)
θ̃

. (B1)

The right-hand side of this expression includes the velocity gradients

both along and across the field. To eliminate the cross-field gradient

(∂v/∂L)s , we similarly expand the polar velocity derivative as(
∂v

∂θ̃

)
r̃

=
(

∂v

∂s

)
L

(
∂s

∂θ̃

)
r̃

+
(

∂v

∂L

)
s

(
∂L

∂θ̃

)
r̃

. (B2)

Combining these two expressions, and after some straightforward

algebra, we obtain(
∂v

∂r̃

)
θ̃

=
(

∂v

∂s

)
L

(
∂s

∂r̃

)
L

−
(

∂v

∂θ̃

)
r̃

(
∂θ̃

∂r̃

)
L

. (B3)

This equation is exact; however, under the assumption (30) that the

polar velocity derivative can be neglected, the second term on the

right-hand side vanishes, so that(
∂v

∂r̃

)
θ̃

=
(

∂v

∂s

)
L

(
∂s

∂r̃

)
L

=
(

∂v

∂s

)
L

sec χ. (B4)

Here, the second equality follows from equations (6) and (7) and

gives the final form (31) for the radial velocity derivative.

A P P E N D I X C : L I N E A R P E RT U R BAT I O N
A NA LY S I S

To investigate small-amplitude departures from the magnetohydro-

static equilibrium discussed in Appendix A, we employ a linear

analysis. Equations (1) and (2) are subjected to small-amplitude

disturbances; discarding terms of quadratic or higher order in the

perturbation amplitude leads to the system of equations:

∂ρp

∂t
+ 1

A

∂

∂s
(Aρvp) = 0, (C1)

∂ρvp

∂t
+ ∂pp

∂s
= −ρp

d�eff

ds
. (C2)

Here, the subscript p denotes Eulerian (fixed-position) perturba-

tions, while quantities without subscripts refer to the equilibrium

state. As before, the grad term has been dropped, and the geff term is

expressed in terms of the effective potential �eff; no term containing

the unperturbed velocity v appears, because the equilibrium state is

taken to be at rest.

To solve these equations, we make the approximations that (i) all

perturbations share a time dependence of the form eiωt ; (ii) the Taylor

expansion (A4) may be used to model the spatial variation of �eff;

(iii) the derivative dA/ds can be neglected and (iv) the perturbations

are isothermal, with the temperature remaining at T∗. With these

approximations, the governing equations for the spatial dependence

of ρp in the vicinity of a potential minimum s = s0 can be reduced

to the single second-order equation:

h2
0 ρ ′′

p + 2(s − s0) ρ ′
p +

(
ω2h2

0

a2∗
+ 2

)
ρp = 0. (C3)

As before, primes denote differentiation with respect to s, and h0

was defined in equation (A6). Subject to the boundary conditions

that ρp → 0 for (s − s0) → ±∞, the eigensolutions are readily

found as

ρp(s) = am e−(s−s0)2/h2
0 Hm[(s − s0)/h0], (C4)

where am is a constant setting the amplitude of the perturbations, and

Hm is the Hermite polynomial of integer degree m � 0. These normal

modes have eigenfrequencies set by the characteristic equation

ω = ωm ≡
√

2m
a∗
h0

. (C5)

The fundamental (m = 0) mode has a zero frequency, and corre-

sponds not to an oscillation, but to the addition of more mass to

the disc. Higher order modes all conserve disc surface density [i.e.

(σ d)p = 0], because∫ ∞

−∞
e−x2

Hm(x) dx =
∫ ∞

∞
e−x2

Hm(x)H0(x) dx = 0 (C6)

for m = 1, 2, 3, . . .; the first equality is because H0(x) = 1, while the

second follows from the orthogonality of the Hermite polynomials

with respect to the weighting function e−x2
(see Abramowitz &

Stegun 1972).
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