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ABSTRACT

We examine the angular momentum loss and associated rotational spin-down for magnetic
hot stars with a line-driven stellar wind and a rotation-aligned dipole magnetic field. Our
analysis here is based on our previous two-dimensional numerical magnetohydrodynamics
simulation study that examines the interplay among wind, field and rotation as a function
of two dimensionless parameters: one characterizing the wind magnetic confinement (η∗ ≡
B2

eqR
2
∗/Ṁv∞) and the other the ratio (W ≡ V rot/Vorb) of stellar rotation to critical (orbital)

speed. We compare and contrast the two-dimensional, time-variable angular momentum loss of
this dipole model of a hot-star wind with the classical one-dimensional steady-state analysis
by Weber and Davis (WD), who used an idealized monopole field to model the angular
momentum loss in the solar wind. Despite the differences, we find that the total angular
momentum loss J̇ averaged over both solid angle and time closely follows the general WD
scaling J̇ = (2/3)Ṁ�R2

A, where Ṁ is the mass-loss rate, � is the stellar angular velocity and
RA is a characteristic Alfvén radius. However, a key distinction here is that for a dipole field,
this Alfvén radius has a strong-field scaling RA/R∗ ≈ η1/4

∗ , instead of the scaling RA/R∗ ∼ √
η∗

for a monopole field. This leads to a slower stellar spin-down time that in the dipole case scales
as τspin = τmass 1.5k/

√
η∗, where τmass ≡ M/Ṁ is the characteristic mass loss time and k is the

dimensionless factor for stellar moment of inertia. The full numerical scaling relation that we
cite gives typical spin-down times of the order of 1 Myr for several known magnetic massive
stars.

Key words: MHD – stars: early-type – stars: magnetic fields – stars: mass loss – stars: rotation
– stars: winds, outflows.

1 IN T RO D U C T I O N

In recent years, improvements in spectropolarimetry have made it
possible to detect moderate to strong (102–104 G) magnetic fields
in a growing number of hot, luminous, massive stars of spectral
type O and B (e.g. Donati et al. 2002). The high luminosity of such
stars drives a strong stellar wind through line scattering of the star’s
continuum radiation (Castor, Abbott & Klein 1975, hereafter CAK).
The first two papers in this series focus on developing numerical
magnetohydrodynamics (MHD) simulations of the confinement and
channelling of this stellar wind outflow by a dipole magnetic field
at the stellar surface. For models without rotation, Paper I (ud-
Doula & Owocki 2002) showed that the overall effect of the field
depends on a single ‘wind magnetic confinement parameter’ η∗
(defined in equation 3) that characterizes the ratio of magnetic to
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wind energy density near the stellar surface. Paper II (ud-Doula,
Owocki & Townsend 2008) extended this study to include field-
aligned rotation, examining a wide range of magnetic confinement
parameters (η∗ from near unity up to 1000) in stars with equatorial
speeds that are a substantial fraction (W = 1/4 and 1/2) of the
critical (orbital) speed. Paper II focused mainly on the formation
and disruption of the equatorial rigid-body discs. The present study
utilizes the same two-parameter MHD simulation study to examine
the angular momentum loss and associated stellar spin-down for
this case of wind outflow from a hot star with a rotation-aligned
dipole.

Most of the previous literature on magnetic wind spin-down has
focused on cool, solar-type stars, for which the wind is driven by the
high gas pressure of a corona heated to more than a million kelvins
[see e.g. reviews by Mestel (1968a,b, 1984); Mestel & Spruit (1987);
Tout & Pringle (1992)]. The mechanical energy to heat the corona
is thought to originate from the strong convection in the hydro-
gen recombination layers below the stellar surface. Moreover, the
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interaction of this convection with stellar rotation is understood to
drive a dynamo that generates a complex stellar magnetic field and
activity cycle. Much of the emphasis in studying cool-star spin-
down has thus focused on the feedback of faster rotation in gener-
ating both a stronger field and more mechanical heating to drive a
stronger coronal wind, which then act together to give a more abrupt
spin-down for younger, more rapidly rotating stars. For a middle-
age star like the Sun, which is roughly halfway through its expected
10 Byr main-sequence lifetime, the rotation speed is thus quite slow,
only about 2 km s−1 at the solar equator with an associated rotation
period of about 27 d.

For massive, hot, luminous stars with radiatively driven winds,
the direct study and modelling of wind magnetic spin-down are
more limited. This is partly due to a general expectation that the
absence of a hydrogen recombination convection zone means that
the hot stars should not have the magnetic dynamo activity cycles
of cooler stars. None the less, as noted above, spectropolarimetric
observations have directly detected large-scale fields in a grow-
ing number of O-type (currently three) and early-B-type (ca. two
dozen) stars, often characterized by a more or less constant dipole
that is tilted relative to the stellar rotation axis. This steady nature
and large-scale contrast with the active and complex magnetic ac-
tivity cycle of cool stars suggest a primordial fossil origin instead
of active dynamo generation. However, there have been models
based on an active generation in the convective core (MacGregor &
Charbonneau 1999; MacGregor & Cassinelli 2003) or envelope
(Mullan & MacDonald 2001, 2005).

All the directly detected, oblique dipoles with strong fields also
exhibit a clear periodic rotational modulation in circumstellar signa-
tures like X-ray emission and in wind signatures like the ultraviolet
P-Cygni line profiles. But weaker, as-yet undetected, smaller-scale
fields might also be one cause of less regular wind variations, such
as the episodic discrete absorption components commonly seen in
the absorption troughs of P-Cygni profiles.

Compared to cooler stars, the rotation in early-type stars is
quite fast with inferred periods typically of one to several days
and projected surface rotation speeds (V sin i) of the order of
1 or 200 km s−1. This has even been used to argue for a lack
of wind magnetic spin-down, and thus for a lack of a dynami-
cally significant magnetic field. Based on estimates by Friend &
MacGregor (1984, hereafter FM84) for the dependence of spin-
down time on hot-star mass-loss rate and magnetic field strength,
MacGregor, Friend & Gilliland (1992) argued that magnetic fields
in massive stars with still-rapid rotation must generally be less than
about 100 G.

In the context of this paper, a key issue for this FM84 analysis
of wind magnetic spin-down in hot stars is that it is based on the
idealization – first introduced in the seminal paper by Weber &
Davis (1967, hereafter WD67) on spin-down from the solar wind
– that the radial field at the stellar surface can be described as a
simple monopole. Although magnetic fields can never be actual
monopoles, this idealization greatly simplifies the analysis, making
tractable a quasi-analytic, one-dimensional formulation. Moreover,
for the Sun it is somewhat justified by the inference that, beyond
a few solar radii from the solar surface, the outwards expansion of
the solar wind pulls the Sun’s complex multipole field into an open
radial configuration, roughly characterized by a ‘split monopole’,
with opposite polarity on the Northern versus Southern sides of a
heliospheric current sheet.

However, as noted above, the fields detected in the hot stars are
often inferred to be dominated by a large-scale dipole component.
For such cases, it is not clear how applicable the monopole-based

analysis of WD67 and FM84 should be for estimating spin-down
rates. Indeed, while some magnetic O stars have slow rotation pe-
riods [e.g. 15 d for θ1 Ori C and ca. 500 d for HD191612; Donati
et al. (2006)], several early-B stars with very strong (many kG) mag-
netic fields still retain a quite rapid rotation (e.g. period of 1.2 d for
σOri E; see Groote & Hunger 1982).

The central purpose of this paper is to use our previous MHD
simulation parameter study to examine the wind magnetic spin-
down of massive stars with a rotation-aligned dipole field. Com-
pared to the one-dimensional semi-analytic studies for an idealized
monopole field, the numerical simulations of dipole fields here
require a second spatial dimension (latitude), but the restriction to
field-aligned rotation allows us to retain a two-dimensional axisym-
metry in which the variations in azimuth are ignorable. However,
our ‘2.5-dimensional’ formulation still retains the crucial azimuthal
components of the flow velocity and magnetic field.

As discussed in detail in Section 3, this parameter study shows
that the loss of angular momentum for this dipole case is a highly
complex, time-variable process, characterized by a quasi-regular
cycle of buildup and release of angular momentum stored in the
circumstellar field and gas. But quite remarkably, the time- and
angle-averaged total angular momentum loss follows a simple scal-
ing rule that is quite analogous to that derived by WD67, with
however a key dipole modification in the scaling of the associ-
ated Alfvén radius relative to that applicable to the simple WD67
monopole model. As discussed in Section 4, this leads to a sub-
stantial general reduction in the spin-down rate for this dipole case
relative to that derived by FM84 for hot stars using a monopole
model. Section 5 summarizes the results and outlines directions
for future work. To lay the groundwork for interpreting the de-
tailed numerical simulation results, the next section gives some
essential background on the basic analytic scaling laws for angular
momentum loss in the WD67 monopole model and some minor
variants.

2 BAC K G RO U N D

2.1 The Weber and Davis monopole model for the solar wind

An outflowing wind carries away angular momentum and thus spins
down the stellar rotation. Winds with magnetic fields exert a braking
torque that is significantly larger than for non-magnetic cases due
to the larger lever arm of magnetic field lines that extend outwards
from the stellar surface.

A seminal analysis of this process was carried out by WD67,
who modelled the angular momentum loss of the solar wind for
the idealized case of a simple monopole magnetic field from the
solar surface. In terms of the surface angular velocity � and wind
mass-loss rate Ṁ , a key result is that the total angular momentum
loss rate scales as

J̇ = 2

3
Ṁ�R2

A, (1)

with RA as the Alfvén radius, defined by where the radial com-
ponents of the field and flow have equal energy density. This can
be intuitively interpreted as the angular momentum loss that would
occur if the gas were kept in a rigid-body rotation up to RA and then
effectively released. But, while helpful as a kind of mnemonic, it
is not literally the case, since in fact, as WD67 emphasized (and is
discussed further below), most of the angular momentum is actually
lost via Poynting stresses of the magnetic field and not by the gas
itself.
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For any radius r, the energy density ratio between radial field and
flow is given by

η(r) ≡ B2
r /8π

ρv2
r /2

=
(

VA

vr

)2

= M−2
A . (2)

The latter equalities emphasize that this energy ratio can also be cast
as the inverse square of the Alfvénic Mach number, MA ≡ vr/VA,
where the radial Alfvén speed VA ≡ Br/

√
4πρ, with ρ as the

wind mass density. The Alfvén radius is then defined implicitly by
η(RA) ≡ 1.

Using detailed flow solutions of the equations for a gas-pressure-
driven solar wind, together with in situ measurements of the radial
magnetic field near Earth’s orbit, WD67 estimated the solar wind
Alfvén radius to be RA ≈ 24.3 R	. With this extended moment arm,
even the quite low solar wind mass-loss rate implies a substantial
spin-down over the solar lifetime, providing a possible explanation
of the slow solar rotation. Applications to other solar-type stars
(e.g. Mestel 1968a,b; Mestel & Spruit 1987; Kawaler 1988; Tout
& Pringle 1992) have largely focused on the potential feedback of
rotation on the field strength and mass-loss rate.

But, in the present context of hot-star winds, for which the mass-
loss rate is set near the surface by the physics of radiative driving,
we can derive approximate explicit expressions in terms of fixed
values for the equatorial field strength Beq at the surface radius R∗
and for the wind mass-loss rate Ṁ and terminal flow speed v∞.
Specifically, following Papers I and II, if we define here a wind
magnetic confinement parameter,

η∗ ≡ B2
eq R2

∗
Ṁ v∞

, (3)

then we can write the energy density ratio in the form

η(r) = η∗

(
r

R∗

)2−2q
v∞

vr (r)
≈ η∗

(r/R∗)2(1 − R∗/r)β
, (4)

where q is the power-law exponent for radial decline of the assumed
magnetic field, and the latter equality assumes now a monopole field
(q = 2), together with a canonical ‘beta’ velocity law with index β

and terminal speed v∞.
For the monopole case and the velocity index of either β = 1 or

2, an explicit expression for the Alfvén radius can be found from
the solution of a simple quadratic equation, yielding

RA

R∗
= 1/2 +

√
η∗ + 1/4β = 1 (5)

and

RA

R∗
= 1 + √

η∗β = 2 . (6)

For weak confinement, η∗ 
 1, we find RA → R∗, while for strong
confinement, η∗ � 1, we obtain RA → √

η∗R∗. Application in
equation (1) then gives an explicit expression for the angular mo-
mentum loss rate.

Note that in the strong magnetic confinement limit η∗ � 1, the
scaling RA ∼ √

η∗ implies that the angular momentum loss for this
monopole model becomes independent of the mass-loss rate,

J̇ ≈ 2

3
Ṁ�R2

∗η∗ = 2

3

�R∗
v∞

B2
eqR

3
∗; η∗ � 1 . (7)

For a star of moment of inertia I = kMR2
∗ (with typically k ≈ 0.1),

the associated characteristic spin-down time for stellar rotation is

τspin ≡ J

J̇
≈ kM�R2

∗
2
3 Ṁ�R2

A

=
3
2 k

η∗
τmass =

3
2 kMv∞
B2

eqR
2∗

, (8)

where the third equality gives a scaling in terms of a characteristic
mass-loss time, τmass ≡ M/Ṁ , and the last equality gives the mass
loss-independent scaling. Note that although we derived this scal-
ing in the context of line-driven hot-star winds, we did not make
any explicit assumptions about the wind-driving mechanism. As
such, we can apply this even to gas-pressure-driven winds. In par-
ticular, for the solar wind, in situ measurements near 1 au give a
speed v∞ ≈ 400 km s−1 and a radial field strength of Bau ≈ 5 ×
10−5 G, translating to a monopole field strength Beq ≈
Bau(au/R	)2 ≈ 2.3 G at the solar surface. Using k = 0.059, equa-
tion (8) then gives a solar spin-down time of ca. 8.6 Byr, comparable
to the solar age of ca. 5 Byr.

2.2 Angular momentum loss from gas versus magnetic field

Let us next consider general expressions for angular momentum
loss, comparing the contribution due to the gas versus the magnetic
field. For spherical coordinates representing radius r, colatitude θ

and azimuth φ, let subscripts denote associated components of the
vector velocity (vr , vθ , vφ) or magnetic field (Br , Bθ , Bφ). We are
interested in the angular momentum about the rotation axis.

For the gas, the associated angular momentum per unit mass is
given by the azimuthal speed times the distance to the rotation axis,
vφ r sin θ . Multiplying this by the mass flux density ρvr then gives
the angular momentum flux within an element of area r2 dφ dμ

(defining μ ≡ cos θ ). Upon integration over azimuth (assuming
axisymmetry), we obtain the latitudinal distribution of gas angular
momentum loss at any radius and colatitude,

dJ̇ gas

dμ
= ṁvφr

sin θ

2
, (9)

where ṁ ≡ 4πρvrr
2 gives the local mass-loss rate (which in general

could vary in latitude, radius or time).
For the magnetic field, the angular momentum loss is proportional

to the r, φ component of the Maxwell stress tensor,

Trφ = −BrBφ

4π
, (10)

which represents the radial flux density of azimuthal momentum.
As before, multiplying by the axial distance r sin θ converts this
into an associated angular momentum flux, which upon azimuthal
integration gives the latitudinal distribution of magnetic angular
momentum loss,

dJ̇ mag

dμ
= −r2BrBφr

sin θ

2
. (11)

2.3 J̇gas versus J̇mag in the Weber–Davis model

These expressions for loss of rotational angular momentum ap-
ply for any general magnetic field, including the rotation-aligned
dipole model discussed in detail in Section 3. But to illustrate some
characteristic properties, let us first examine them for the simple
WD67 monopole field model. In this case, both vφ and Bφ scale in
proportion to sin θ , giving an overall latitudinal dependence with
sin2 θ = 1 − μ2. For a slow rotation case like the Sun, Br , vr , ρ

and ṁ are otherwise largely independent of latitude.1 As such, lat-
itudinal integration (from μ = −1 to +1) gives an overall angular
momentum loss that is just a factor of 2/3 smaller than computed

1 However, in monopole’s winds with more rapid rotation, the field and
outflow both tend to become deflected towards the rotation pole; see Suess
& Nerney (1975) and Washimi & Shibata (1993).
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from the WD67 equatorial analysis,

J̇ = 2

3
J̇ eq = 2

3

(
ṁvφr − r2BrBφr

)
eq

. (12)

Since under the ‘frozen-flux’ condition (applicable to ideal
MHD), the local velocity vector is parallel to the local field, we
can relate the equatorial Bφ and vφ through

Bφ

Br

= �r − vφ

vr

. (13)

Defining then an equatorial specific angular momentum jeq ≡
J̇ eq/ṁ, we find that combining equations (12) and (13) gives for the
gas specific angular momentum,

jgas ≡ rvφ = jeq M2
A − �r2

M2
A − 1

. (14)

At the Alfvén radius RA, where the Alfvénic Mach number MA =
1, the denominator vanishes, ensuring continuity thus requires that
the numerator also must vanish at this point, which implies jeq =
�RA

2. This thus provides the basis for the key WD67 scaling cited
in equation (1).

The fraction of angular momentum carried by the gas at any
radius is then given by

jgas

jeq
= rvφ

�RA
2 = 1 − vrA/vr

1 − vrARA
2 / vrr2

, (15)

where vrA ≡ vr (RA). In the spherical expansion of the WD67 model,
a similar 2/3 latitudinal correction applies to both the gas and total
angular momentum, and so equation (15) also gives the spheri-
cally averaged gas angular momentum fraction, J̇ gas/J̇ = jgas/jeq.
In particular, at large radii, note that this gas fraction of angular
momentum becomes(

J̇ gas

J̇

)
∞

= 1 − vrA

v∞
. (16)

The remaining fraction is carried by the magnetic field, J̇ mag/J̇ =
vrA/v∞. Since typically vrA/v∞ � 1, the WD67 monopole field
model thus predicts that most of the angular momentum is lost
via the magnetic field, not the gas. In their analysis of the solar
wind, WD67 obtained an asymptotic ratio of about 3:1 for angular
momentum of field to gas.

In the somewhat broader context of a monopole field in a wind
with velocity parametrized by a standard ‘beta’ law, v(r)/v∞ =
(1 − R∗/r)β , we find for β = 1(

J̇ gas

J̇

)
∞

= R∗
RA

= 1√
η∗ + 1/4 + 1/2

. (17)

Analogous, but more complicated expressions can be derived for
other values of the index β. At the Alfvén radius, application of
L’Hopital’s rule in equation (15) gives for general β(

J̇ gas

J̇ tot

)
A

= β

β + 2(RA/R∗ − 1)
. (18)

For example, note that for strong fields in the β = 1 case, the gas
fraction of angular momentum at RA is just half the asymptotic
value.

3 A N G U L A R M O M E N T U M L O S S F O R

A ROTATION - A LIGNED D IPOLE

3.1 Magnetohydrodynamics simulation parameter study

While the above simple monopole model is convenient for analytic
study, actual magnetic fields on the Sun and other stars can be far

more complex, often represented by many higher order multipoles.
As a first step in extending the above spin-down analysis to a more
physically realistic magnetic configuration, let us consider now the
case of a dipole field with axis aligned with that of the stellar
rotation. Relative to a monopole, such an aligned dipole implies
variations in a second spatial dimension, namely colatitude θ as
well as radius r, but still retains the axisymmetry that allows neglect
of variations in azimuth φ. None the less, as shown in Papers I
and II, the competition between wind outflow and closed magnetic
loops now leads generally to an inherently complex, time-dependent
behaviour that is not amenable to direct analytic study, but instead
requires numerical simulation through the solution of the equations
of MHD.

The MHD simulations in Papers I and II have specifically ex-
amined the effect of dipole fields in hot, luminous, massive stars
with radiatively driven stellar winds. Paper II presented a detailed
parameter study of the competition among wind, field and rota-
tion as a function of two dimensionless parameters, namely the
wind magnetic confinement parameter η∗ defined in equation (3)
and a rotation parameter W ≡ V rot/Vorb, representing the ratio of
the equatorial surface rotation speed to the equatorial orbital speed
Vorb = √

GM/R∗. The analysis in Paper II focused particularly
on the accumulation of wind material into a dense equatorial disc,
confined in nearly rigid rotation between the Kepler’s corotation
radius RK ≡ W−2/3R∗ and the Alfvén radius RA.

The remainder of this paper now uses this same parameter study
to analyse the angular momentum loss in this case of a radiation-
driven wind from massive star with a rotation-aligned dipole field at
the stellar surface. The reader is referred to Paper II for full details
of the numerical method, spatial grid and assumed stellar and wind
parameters. However, for the convenience of the reader we briefly
summarize these below.

For all our calculations, we use the ZEUS-3D (Stone &
Norman 1992) numerical MHD code. Our implementation here
adopts spherical polar coordinates with 300 grid points in radius
r spaced logarithmically and 100 grid points in colatitude θ with
higher concentration of points near the magnetic equator. We also
assume symmetry in the azimuth φ direction. To maintain this 2.5-
dimensional axisymmetry, we assume the stellar magnetic field to
be a pure dipole with polar axis aligned with the rotation axis of the
star.

As in Paper I and II, we consider only the radial component of
radiative force with assumed flow strictly isothermal. To avoid the
effects of oblateness and gravity darkening, we limit ourselves to
moderate rotation rates applied to a model with stellar parameters
characteristic of ζ Pup (see table 1 in Paper I).

3.2 J̇ for dipole scaling of Alfvén radius

A key result of Paper II (see equation 9 therein) was that in this
case of a dipole field, the equatorial Alfvén radius follows the
approximate scaling,

RA

R∗
≈ 0.29 + (η∗ + 0.25)1/4 , (19)

which represents an approximate solution of the quartic equa-
tion that arises from requiring η(RA) ≡ 1 in a dipole (q = 3) model
with a β = 1 velocity law (cf. equation 4).

Note in particular that, in the strong confinement limit η∗ � 1,
the Alfvén radius in this dipole case now has the scaling RA/R∗ ≈
η1/4

∗ , instead of the scaling RA/R∗ ≈ η1/2∗, of the monopole model.
As we show below, this modified scaling of the Alfvén radius in a
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dipole model has important implications for the associated scaling
of angular momentum loss.

To proceed, let us introduce a basic ansatz that the overall angular
momentum loss of this rotation-aligned dipole case can still be
described in terms of the simple WD67 expression of equation (1), if
one just uses the dipole-modified scaling (19) for the Alfvén radius.
Specifically, let us define a ‘dipole-WD’ (for ‘dipole Weber–Davis’)
angular momentum loss as

J̇ dWD = 2

3
Ṁ�R2

A = 2

3
Ṁ�R2

∗
[
0.29 + (η∗ + 0.25)1/4

]2
. (20)

Here, the mass-loss rate Ṁ and wind terminal speed v∞ used to
compute the magnetic confinement parameter η∗ are those that the
star would have without a magnetic field, e.g. as set by the physics
of radiative driving. Even without a field, there is, however, a mod-
est dependence of the mass-loss rate on rotation found here from
numerical simulations of non-magnetic cases (see fig. 8 of Paper II)
to give about a 10 per cent increase in going from the W = 1/4 to
1/2 rotation case. With these mass-loss rates, we use this simple
analytic form (20) to scale the numerical MHD simulation results
presented below.

3.3 Standard model case: η∗ = 100 and W = 1/2

As in Paper II, let us focus first on a standard case with moderately
strong magnetic confinement, η∗ = 100, and with rotation at half the
critical rate, W = 1/2. At any time snapshot of the time-dependent
simulation, we can use equations (9) and (11) to compute, at each
colatitude θ and radius r, the latitudinal distribution of angular
momentum loss associated with the gas and field, with their sum
thus giving the associated total loss, dJ̇ /dμ.

3.3.1 Spatial distribution and time variation of dJ̇ /dμ

For each of the same six time snapshots shown in figs 2 and 3 of
Paper II, Fig. 1 here presents plots of dJ̇ /dμ, with the colour bar
normalized in units of the predicted dipole-WD scaling of equa-
tion (20). The changes among the panels emphasize the intrinsic
time variability of the model, with intervals of nearly stationary
confinement (upper row) punctuated by episodes of sudden mag-
netic breakout (lower row).

None the less, particularly during the confinement intervals, there
is a clear characteristic pattern for the overall distribution of angu-
lar momentum loss. Near the surface, dJ̇ /dμ is essentially zero
within the close-field equatorial loops, but this is compensated by a
concentration of angular momentum loss in the open-field regions
at mid-latitudes that, as we show below, is contributed mainly by
the magnetic component. Moreover, further from the star, there is
a broad latitudinal distribution from the magnetic component com-
bined with an equatorial concentration from the gas component.

The colour-scale in Fig. 2 illustrates this latitudinal distribution
and time variation of the gas, magnetic and total (gas + magnetic)
angular momentum loss dJ̇ /dμ along both the inner and outer
boundaries for this standard model case. For the inner boundary,
the broad white region at low latitudes emphasizes quite clearly
now that the closed magnetic loops above the equatorial surface
represent a kind of ‘dead zone’ with little or no angular momentum
loss. Instead, the mid-to-high latitudes of open field carry a strong
concentration of the surface angular momentum loss. In contrast,
at the outer boundary, there is a broad latitudinal distribution of
angular momentum loss from the field, together with an equatorial
concentration from the gas. Both the inner and outer boundary

distributions of angular momentum also show a clear time variation
associated with the ca. 1 msec cycle of confinement, buildup and
release of material trapped in closed magnetic loops.

3.3.2 Time variability of latitudinally integrated J̇

The line plots in Fig. 3 compare the time dependence of the lati-
tudinally integrated angular momentum loss, J̇ , for the gas, field
and total components, again evaluated at the inner (red curves) and
the outer boundaries (blue curves). At the inner boundary, the gas
component is negligible, with most of the angular momentum as-
sociated with the field. At the outer boundary, the gas component
is highly variable, but still generally small compared to the field.
The total angular momentum loss shows a nearly periodic varia-
tion, characterized by a gradual ramping up that ends in a sudden
drop, with however a slight relative lag in the outer versus inner
variation. This lag reflects a cycle of storage and release of angular
momentum within both the circumstellar field and gas.

The colour-scale plots in Fig. 4 also show the full radius and time
variation for the gas, magnetic and total angular momentum loss,
with the colour bar again normalized in the units of the predicted
dipole-WD scaling of equation (20). The results quite vividly show
the intrinsic time variability, particularly for the gas component,
which varies from intervals of little or no angular momentum loss to
a series of radially ejected streams, punctuated by a strong interval
of loss during the magnetic breakout. The generally pale colour
reflects the fact that the overall level of gas angular momentum loss
is a small fraction of the total expected from the dipole-WD scaling,
particularly near the stellar surface. By comparison, the magnetic
component is stronger and less variable. Overall, we see that the
total angular momentum loss varies by about 50 per cent above and
below the predicted dipole-WD value from equation (20).

3.3.3 Spatial variation of time-averaged J̇ for gas versus
magnetic component

To show more clearly the overall spatial variation, Fig. 5 plots the
radial dependence of the time-averaged angular momentum loss for
both the gas (blue curve) and magnetic field (red curve), along with
the total loss (black curve). Note that this time-averaged total loss is
nearly constant in radius, at a value that is remarkably close – about
90 per cent – to the simple analytic dipole-WD predicted scaling!

Moreover, much as found in the WD67 monopole model, the
angular momentum loss by the gas increases with radius, but still
remains everywhere relatively small compared to the magnetic com-
ponent. Indeed, the dashed curves compare the corresponding WD
scalings given by equation (15), using the Alfvén radius RA from
the dipole equation (19), and assuming a β = 1 velocity law and
η∗ = 100.

The good general agreement shows that, despite the complex
time variation of the dipole case, the overall time-averaged scaling
of angular momentum loss can be quite well modelled through the
simple monopole scalings of WD, as long as one just accounts
for the different scaling of the Alfvén radius with the magnetic
confinement parameter η∗.

3.4 Dependence on magnetic confinement and rotation

parameters, η∗ and W

To build on this success in using the dipole WD scaling to charac-
terize angular momentum loss in this standard case of moderately
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Figure 1. For the standard case of η∗ = 100 and W = 0.5 at the same time snapshots as in figs 2 and 3 of Paper II, plots of the spatial variation of dJ̇ /dμ, with
the colour bar normalized in units of the predicted dipole-WD scaling of equation (20) with an estimated Alfvèn radius RA = 3.45R∗.

strong confinement and rotation, let us now examine how well
this simple scaling agrees with the numerical simulation results
for variations of magnetic confinement parameter η∗ and rotation
parameter W.

For the rotation cases W = 1/4 and 1/2, the lower and upper
panels of Fig. 6 compare the variation of total, time-averaged angu-
lar momentum loss rate versus η∗ (on a log–log scale) for both the
numerical simulations (triangles) and analytic form (20) (squares).
The overall agreement is remarkably good for both the rotation
cases, confirming that, quite independent of the rotation parameter
W, this very simplified form (20) provides a good description of
the scaling of the average angular momentum loss in this case of
aligned dipoles.

Note that the ordinate axes in Fig. 6 are labelled in CGS units
computed for the specific stellar model used in the simulations.
But, these specific values are essentially arbitrary. For any star
of interest, the appropriate physical values can be readily derived

from the dipole-WD scalings in equation (20). Indeed, the plot can
likewise be characterized as giving the inverse of the spin-down
time, which in the dipole-WD model has the specific scaling

τspin

τmass
≈

3
2 k[

0.29 + (η∗ + 0.25)1/4
]2 . (21)

Fig. 7 shows the fraction of the gas and magnetic components
of angular momentum loss at the outer boundary for each model,
plotted versus magnetic confinement parameter η∗ (again on a log
scale), for both the W = 1/4 (left-hand panel) and W = 1/2 (middle
panel) rotation cases. For comparison, the right-hand panel plots the
corresponding large-radius scalings for the pure monopole model
with a β = 1 velocity law, as given by equation (17). For low and
moderate magnetic confinement, η∗ � 30, there is good general
agreement between the analytic scalings and the numerical simu-
lation results; but for stronger confinement, the numerical results
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Figure 2. Plot of the latitude and time dependence of the gas and field components of dJ̇ /dμ through the inner boundary (r = R∗; bottom panels) and the
outer boundary (r = 15R∗; top panels), for the standard model case. The colour bar is again normalized by the dipole-WD scaling of equation (20).

Figure 3. Time dependence of latitudinally integrated angular momentum loss J̇ through both the inner and outer boundary, computed for the gas (left-hand
panel), field (middle panel) and the total for gas + field (right-hand panel), in the standard model case.

show the gas fraction reaching a minimum and then increasing with
increasing η∗.

The reasons for this increase are not entirely clear, but could
likely be the result of the channelling and confinement of the wind
gas into the equatorial, nearly rigid-body disc discussed in Paper II.
The magnetic torquing that spins this material up into a rigid disc
represents a transfer of angular momentum from field to gas that
has no parallel in the pure-outflow, monopole models of WD. Once
sufficient material accumulates in this disc, the outwards centrifugal
force overwhelms the inwards confinement of magnetic tension,
leading to a breakout of this material that now carries a strong gas
component of angular-momentum loss outwards.

4 D ISCUSSION

4.1 Role of mass-loss ‘dead zone’

A principal result of the above parameter study is that the overall
level of angular momentum loss from an early-type star with a
rotation-aligned dipole can be well described by the simple dipole-
modified WD scaling given in equation (20). In this formulation,
the mass-loss rate and wind terminal speed used to compute the
magnetic confinement parameter η∗ and associated spin-down are
those that the star would have without a magnetic field, as set by the
physics of radiative driving.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS



8 A. ud-Doula, S. P. Owocki and R. H. D. Townsend

Figure 4. Plots of the full radius and time variation of J̇ , again computed for gas, magnetic and total components in the standard model, with the colour bar
normalized in units of the predicted dipole-WD scaling of equation (20).

Figure 5. Radial variation of gas, field and total angular momentum loss,
again scaled by the total loss in the dipole-WD model. The solid curves
show the time averages from the standard numerical simulation model,
while the dashed curves compare the corresponding WD scalings implied
by equation (15), using the Alfvén radius RA from the dipole equation (19)
assuming a β = 1 velocity law and η∗ = 100.

As shown in fig. 8 of Paper II, the actual net mass-loss rates
in this parameter study of dipole winds show a significant decline
with increasing confinement parameter η∗, fit roughly by the scaling
relation (given in equation 24 of Paper II),

ṀB

ṀB=0
≈ 1 −

√
1 − R∗/Rc + 1 −

√
1 − 0.5 ∗ R∗/RK , (22)

where Rc ≈ R∗ + 0.7 (RA − R∗) is a maximum ‘closure’ radius of
magnetic loops and RK = R∗/W2/3 is the Kepler corotation radius.
The former accounts for the effect of the mass-loss ‘dead zone’ of
the closed magnetic loops, while the latter corrects for the eventual
centrifugal breakout that can occur from some initially closed loops
above the Kepler radius.

In previous discussions of rotational spin-down of magnetic
winds, this dead zone has generally been presumed (e.g. Mestel
1968a; Donati et al. 2006) to lead to a downward modification in
the net angular momentum loss that would otherwise occur, based
on the notion that the mass trapped in these closed loops does not

Figure 6. Time-averaged angular momentum loss for all the models (trian-
gles), plotted versus η∗ (on a log–log scale), for both the W = 1/4 (left-hand
panel) and W = 1/2 rotation cases. The squares compare the scalings pre-
dicted by the dipole-WD approximation (20).

(at least for loops closing below the Kepler radius) escape from the
star, and thus should not contribute to the angular momentum loss.

This notion seems partly based on the perception that the gas
itself is the principal direct carrier of the angular momentum loss.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS



Angular momentum loss and rotational spin-down 9

Figure 7. Fraction of the gas and magnetic components of angular momentum loss, plotted versus magnetic confinement parameter η∗ (on a log scale), for
both the W = 1/4 (left-hand panel) and W = 1/2 (middle panel) rotation cases. The right-hand panel shows analytic scalings for the pure monopole model
with a β = 1 velocity law, as given by equation (17).

But, both the WD67 analysis and the simulations here show that the
dominant effect of the gas is indirect, inducing an azimuthal field
component that then carries the bulk of the angular momentum
loss, particularly near the stellar surface. Fig. 2 shows that, even
for this magnetic component, the closed loops at low latitudes do
indeed represent a dead zone for loss of angular momentum, as
well as of mass. The net effect, however, seems merely to shunt a
fixed total amount of angular momentum towards the mid-latitudes,
carried by the azimuthal twisting of the open magnetic field. As the
wind expansion opens up the field beyond the Alfvén radius, this
transport of angular momentum spreads to cover all latitudes (cf.
right- versus left-hand panels of Fig. 2), and includes an increasing
(but generally still minor) component for the gas (see Figs 3, 4, 5
and 7).

So, an important lesson of the above parameter study is that this
additional dead-zone reduction in the net J̇ does not apply to the
dipole-modified WD scaling form (20). In a sense, it is already
incorporated in the reduction associated with the change from the
monopole scaling J̇ ∼ Ṁη∗ to the dipole scaling J̇ ∼ Ṁ

√
η∗. To

see this, note that, if we ignore the minor rotational correction of
the Kepler term, the net mass-loss reduction given by equation (22)
has the strong-confinement (η∗ � 1) scaling

ṀB

ṀB=0
≈ 1 −

(
1 − R∗

2Rc

)
≈ R∗

1.4 RA
; RA � R∗ . (23)

If we now use this to apply a ‘dipole dead-zone’ correction to the
standard monopole scaling for angular momentum loss, we then
find

J̇ ∼ ṀBR2
A ∼ ṀB=0RA ∼ ṀB=0

√
η∗ , (24)

which thus reproduces the dipole scaling using the non-magnetic
value for the mass-loss rate!

The upshot then is that the dipole-modified scaling (20) using the
non-magnetic mass-loss rate effectively already accounts for the
dead-zone reduction of the actual mass loss.

4.2 Spin-down time

From the above, the overall stellar spin-down time is predicted to
follow the scaling in equation (21). In the strong-confinement limit,

this gives

τspin ≈ τmass

3
2 k√
η∗

≈
3
2 kM

BeqR∗

√
v∞
Ṁ

≈ 1.1 × 108 yr
k

Bp/kG

M/R∗
M	/R	

√
V8

Ṁ−9
. (25)

Comparison with the monopole scaling (8) shows that the spin-
down is no longer independent of the mass-loss rate, but now varies
with its inverse square root. In addition, the dependencies on surface
field and radius are now inverse linear instead of inverse square.

In practice, application of this scaling relation requires observa-
tional and/or theoretical inference of the various parameters. The
last equality in (25) gives characteristic B2-star scalings for the
mass loss, Ṁ−9 ≡ Ṁ/(10−9 M	 yr−1), and wind speed, v8 =
v∞/(108 cm s−1). Note that the magnetic field is now quoted as
a surface value at the pole, Bp, and is scaled in kG. This is a typical
value for known magnetic massive stars, as inferred from Stokes V
measurement of photospheric lines with circular polarization by the
Zeeman effect (see e.g. Donati et al. 2002).

The mass-to-radius ratio (M/R∗) can best be estimated from at-
mosphere models for the given spectral type, but generally for mas-
sive main-sequence stars this should be just somewhat above the
solar ratio. The moment of inertia constant k can be estimated from
stellar structure models, and should be typically k ≈ 0.1, perhaps
somewhat higher near the zero-age main sequence (ZAMS), and
then decreasing by up to 50 per cent with age (Claret 2004).2

Perhaps the most difficult parameters to infer are those for the
stellar wind. Fortunately, these enter only in proportion to the
square root of the ratio of wind speed to mass-loss rate. But be-
cause the actual values for both of these are likely to be strongly
affected by the magnetic field, it may generally be better not to
infer them from direct observations for the actual star in question,
but rather to use the inferred spectral type to apply observational
or theoretical scaling laws for the values in similar non-magnetic
stars.

2 Note that this presumes solid-body rotation; if the stellar envelope should
decouple from the core, the effective k could be much lower (to account
for the lower envelope mass). But a strong internal magnetic field should
generally be effective in enforcing near-rigid rotation in the interior.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS



10 A. ud-Doula, S. P. Owocki and R. H. D. Townsend

Table 1. Estimated spin-down time for selected known magnetic stars.

Stara M/M	 R∗/R	 P (d) k Ṁ (10−9 M	 yr−1) v∞(1000 km s−1) Bp (kG) η∗ τ spin (Myr)

θ1 Ori C1 40 8 15.4 0.28 400 2.5 1.1 15.7 8
HD1916122 40 18 538 0.17 6100 2.5 1.6 7.6 0.4

ζ Cas3 8 5.9 5.37 0.1 0.3 0.8 0.34 3200 65.2
σ Ori E4 8.9 5.3 1.2 0.1 2.4 1.46 9.6 1.4 ×105 1.4
ρ Leo5 22 35 7-47 0.12 630 1.1 0.24 20 1.1

aReferences:1Donati et al. (2002); 2Donati et al. (2006); 3Neiner et al. (2003) and Smith & Bohlender (2007); 4Krtička, Kubát & Groote (2006) and 5Kholtygin
et al. (2007).

Table 1 lists spin-down times based on estimated parameters for a
sample of known magnetic hot stars. The first two known magnetic
O stars, θ 1 Ori C (Donati et al. 2002) and HD 191612 (Donati et al.
2006), are both slow rotators, with periods of, respectively, 15 and
538 d. θ1 Ori C is thought to be quite young, less than 0.2 Myr, and so
still on the ZAMS, while HD 191612 is thought to be more evolved,
with an age of 2–3 Myr. Using parameters quoted in Donati et al.
(2006), we infer corresponding spin-down times of, respectively,
∼8 and ∼0.4 Myr. This implies that magnetic wind braking seems
unlikely to explain the slow rotation of θ 1 Ori C, but it does seem
potentially relevant for HD 191612. Alternatively, magnetic effects
during star formation could have led to an initial slow rotation.

For He-strong stars, a key object is the B2V star σ Ori E. This
has an estimated polar field strength of BkG ≈ 9.6, and with re-
maining parameters as in Table 1, we estimate a spin-down time of
∼1.4 Myr. As a main-sequence B2 star, its age is likely comparable
to this. The rotation period, 1.2 d, is still quite short, about twice
that for critical rotation, implying only a moderate net spin-down
since formation.

4.3 Extension to non-aligned dipoles and higher multipoles

However, note that, as is typical of magnetic massive stars, most of
the above cases exhibit dipole fields with a significant tilt angle to
the rotation axis. MHD simulation of such a tilted dipole requires
accounting for three-dimensional, non-axisymmetric outflow as the
polar field sweeps around in azimuth. This remains a challenge for
future studies. Without such simulations, we can only offer some
general speculations on how such a tilt might affect the spin-down.
Generally, it seems that angular momentum loss should be modestly
enhanced, because of the factor of 2 stronger polar field.

But another factor might be the open nature of this polar field.
One might expect this to lead to a larger magnetic moment arm,
perhaps even following the stronger monopole scaling, J̇ ∼ η∗,
rather than the dipole form J̇ ∼ √

η∗. But, the analysis in the
Appendix suggests that such magnetic polar-axis fields in an oblique
rotation case should actually follow a weaker spin-down scaling,
J̇ ∼ η1/3

∗ . This implies that, much as in the aligned-dipole case, the
overall spherically averaged loss rate for an oblique-dipole wind
should still be dominated by the regions surrounding closed loops,
with a net scaling that thus is similar to the aligned case.

In some magnetic hot stars, the inferred field is manifestly non-
dipole. For example, the B2IVp He-strong star HD 37776 (V901
Ori) has been inferred to have quadrupole field that dominates any
dipole component, with peak strength of ∼10 kG (Thompson &
Landstreet 1985). The luminosity class IV would normally imply an
evolved, main-sequence star, but the still moderately short rotation
period of 1.5387 d seems to suggest little spin-down. If we assume
a somewhat larger radius and higher mass-loss rate than σ Ori E,

so that the non-magnetic parameters in (25) may be near unity,
then applying the inferred field of 10 kG gives a spin-down time of
∼1.1 Myr.

Moreover, although detailed predictions must await three-
dimensional MHD simulations of such a quadrupole (or higher
multipole) case, one might infer that the steeper radial decline of
the quadrupole field should lead to a weaker spin-down. For a gen-
eral field scaling with r−q , with q = 3 for a dipole and q = 4 for
a quadrupole, the ratio of magnetic to wind energy should decline
as r2−2q , implying an Alfvén radius that scales as RA ∼ η1/(2q−2)∗
or RA ∼ η1/6

∗ for a quadrupole. In the strong-confinement limit, the
expected spin-down scaling should thus become

τspin,quad

τmass
≈

3
2 k

η
1/3
∗

. (26)

Compared to a dipole of the same surface strength, the spin-down
time for a quadrupole would thus be about a factor of η1/6

∗ longer.
This might seem like a weak correction, but for He-strong stars of
spectral type B2, the low mass loss means that a surface field of
10 kG gives a confinement parameter of η∗ ≈ 107, thus implying
a factor of ∼10 times longer spin-down for a quadrupole versus
a dipole of same surface strength. In this context, the expected
spin-down time for HD 37776 becomes of the order of ∼10 Myr.

On the other hand, the presence of a more complex field might
make it easier for the wind to break open the magnetic flux asso-
ciated with the large-scale dipole component, and so allow a more
extended magnetic moment arm. In principle, this could even lead
to a stronger spin-down effect. Mikulášek et al. (2008) have recently
reported a direct measurement of rotational spin-down in HD 37776.
They infer a 17.7 ± 0.7 s increase in the 1.5387 d period over a
span of 31 yr, translating to a spin-down time of just 0.23 Myr! This
is substantially shorter than the above dipole estimate from wind
torquing. Indeed, the luminosity class IV would normally imply an
evolved, main-sequence star, but the still moderately rapid rotation
together with the very rapid spin-down seems to require a very
young age.

Overall, the study of angular momentum loss in these more non-
aligned dipole or higher-order multipole cases must await further
three-dimensional MHD simulation studies.

4.4 No sudden spin-down during breakout events

In a few magnetic stars, there appears to be evidence for sudden
change in the rotation period. For the rapidly rotating Ap star CU
Virginis (HD 124224), Trigilio et al. (2008) cite radio observations
indicating changes in the rotational phase over 20 years, identified
with two discrete periods increases of 2.18 s in 1984 and about
1 s in 1999. In terms of the still-rapid rotation period 0.52 d, the
associated average spin-down time-scale over this 15 yr time-span
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is quite short, only about 300 000 yr. These sudden period changes
could be associated with the changes in the star’s internal structure
(Stȩpień 1998); but Trigilio et al. (2008) suggest they might also be
the result of a sudden emptying of mass accumulated in the star’s
magnetosphere.

The simulations here do indeed show repeated episodes of sub-
stantial emptying, but careful examination indicates that these do
not lead to sudden jumps in the angular momentum of the star it-
self. Both figs 2 and 3 show, for example, that angular momentum
loss through the stellar surface varies smoothly through the cycle of
magnetosphere build-up and release, and if anything is actually less
during the sudden breakouts that characterize magnetospheric emp-
tying. In terms of stellar rotation, the outwards transfer of angular
momentum to the magnetosphere occurs gradually, as the magne-
tosphere fills up, effectively increasing the moment of inertia of the
star + magnetosphere system. As such, when the emptying does
occur, it merely represents the final escape for angular momentum
that had already been lost to the star. Moreover, most of the angular
momentum is not even contained in the trapped gas, but rather in the
stressed magnetic field, which Fig. 3b shows varies quite smoothly
from the stellar surface.

Thus, even apart from the questions of the magnitude of angular
momentum loss needed to explain the average spin-down inferred
for CU Vir, magnetospheric emptying does not seem well suited for
explaining the claimed suddenness of rotation changes in this star.

4.5 Comparison with previous spin-down analyses

Past studies of wind magnetic spin-down have primarily focused on
cool, low-mass, solar-type stars. The main analysis aimed specifi-
cally at spin-down for hotter, higher mass star; the main analysis was
by FM84, who derived one-dimensional steady-state solutions for
the equatorial flow of a CAK-type line-driven wind from a rotating
hot star with a WD style monopole magnetic field. To ensure that
their steady solutions passed smoothly through the various flow
critical points (i.e. those associated with Alfvén, slow-mode and
fast-mode MHD waves, as well as the usual CAK critical point),
they had to use a quite elaborate numerical iteration scheme; as
such, they do not quote any simple scaling forms for the Alfvén
radius and associated spin-down rate.

Instead, their table 1 lists numerical results for a set of 16 models
with various rotation rates and field strengths, assuming fixed stellar
and wind parameters for a typical O supergiant. We find here that
these results can be generally well fit (within ca. 10–15 per cent) by
the simple general monopole scaling for RA (equation 5).

However, FM84 quote spin-down times as low as 60 000 yr, i.e.
for their case 4, with field strength of 1600 G and mass-loss rate
of 5.32 × 10−6 M	 yr−1. The associated confinement parameter
is η∗ ≈ 80. Since the angular momentum loss rate for an aligned
dipole is a factor of

√
η∗ lower than that for a monopole, we see

that a dipole with a similar surface field strength (1600 G) as FM84
model 4 would have about a factor of 9 longer spin-down time, or
now about 0.5 Myr. In contrast, their weaker-field model, e.g. case
1 with only 200 G, has a confinement parameter η∗ ≈ 1.7, implying
only about a 30 per cent dipole increase above the 2 Myr spin-down
time quoted for this case by the FM84 monopole analysis. Overall,
the dipole modifications in spin-down rate found here suggest that
the upper limits on surfaced field strength inferred by MacGregor
et al. (1992) for rotating hot stars are likely to be too low.

For cooler, solar-type stars with coronal-type pressure-driven
winds, the literature on wind magnetic spin-down is more extensive,
and includes both semi-analytic studies (Okamoto 1974; Mestel

1984; Tout & Pringle 1992) and numerical iterations or simulations
(Sakurai 1985; Washimi & Shibata 1993; Keppens & Goedbloed
2000; Matt & Balick 2004). In addition to spin-down by a magne-
tized coronal wind during the star’s main-sequence phase, there has
been extensive study of angular momentum loss during pre-main-
sequence accretion through a magnetized disc during a T-Tauri star
(TTS) phase. Most recently, Matt & Pudritz (2008) report on two-
dimensional MHD simulations of spin-down by an aligned dipole
field in a coronal wind during the TTS phase. With some transla-
tion for differences in notation and parameter definition, many of
their results seem quite analogous to those reported here for hot-star
winds. In particular, their equation (14) for the Alfvén radius is quite
similar to the dipole scaling in equation (19) here, just replacing v∞
with the (numerically comparable) surface escape speed vesc, with
their numerical best-fitting exponent m = 0.223 very similar to our
1/4 = 0.25.

5 SU M M A RY A N D F U T U R E O U T L O O K

This paper analyses the nature of angular momentum loss by ra-
diatively driven winds from hot stars with a dipole magnetic field
aligned to the stellar rotation axis. It applies our previous MHD
simulation study from Paper II, which consisted of a two-parameter
series of models, dependent on the critical rotation ratio W and on
the magnetic confinement parameter η∗. Key results can be summa-
rized as follows.

(i) As shown in Fig. 6, for both slow (W = 1/4) and moderate
rotation (W = 1/2), the time-averaged, total angular momentum
loss rate, J̇ , closely follows a dipole-modified version of the WD
scaling of equation (1).

(ii) Specifically, in the dipole case, the Alfvén radius has a weaker
dependence on magnetic confinement parameter, with a strong con-
finement scaling as RA ∼ η1/4

∗ versus RA ∼ √
η∗ for the monopole

(cf. equations 5 and 19).
(iii) This leads to a dipole scaling for J̇ , given by equation (20),

that is weaker than for a monopole, by a factor of 1/
√

η∗ in the
strong-confinement limit. It also implies a correspondingly longer
spin-down time.

(iv) As in the WD67 monopole case, the total angular momentum
loss is generally dominated by the magnetic component. However,
in the strongest confinement models, there is a trend towards in-
creasing contribution by the gas, apparently a consequence of the
eventual breakout of equatorially trapped material.

(v) The dipole nature of the field gives the angular momentum
transport a complex variation in radius, latitude and time, consist-
ing of long intervals of gradual buildup, punctuated by episodic
breakouts of material trapped in an equatorial disc.

(vi) However, the gradual buildup and storage of angular mo-
mentum in the circumstellar field and gas imply that the stellar
spin-down rate is likewise gradual, with no sudden jumps during
intervals of breakout. As such, ‘magnetospheric emptying’ does
not seem like a likely explanation for sudden jumps in rotation rate
claimed in some magnetic hot stars.

(vii) The ‘dead zone’ of closed loops surrounding the equator
does inhibit the equatorial loss of angular momentum from near
the stellar surface, but the net effect is merely to shunt the angular
momentum flux to a magnetic component at mid-latitudes. The
upshot is that the overall dipole scaling for total J̇ effectively already
accounts for any dead-zone reduction.

The two-dimensional, time-dependent models here for rotation-
aligned dipole thus provide a much richer physical picture for
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angular momentum loss than inferred in the one-dimensional,
steady models for the WD67 idealization of a monopole field. How-
ever, proper interpretation for the broad population of hot stars in-
ferred to have tilted dipoles or even multipole fields will require
even more challenging three-dimensional MHD simulation models
that explicitly allow for variations in azimuth as well as in latitude
and radius. Developing such fully three-dimensional MHD simu-
lations for these cases is thus a major focus of our planned future
research.
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A P P E N D I X A : A N G U L A R M O M E N T U M F L U X

FROM MAGNETI C POLE FOR O BLI QUE

ROTATO R

To gain insight into the relative effectiveness of angular momentum
loss for the case of non-aligned dipole, let us extend the WD67
monopole analysis to the one-dimensional flow directly along the
magnetic pole of an oblique dipole, i.e. with axis now perpendicular
to the rotation. This flow tube has a radial orientation, but its areal
expansion is some factor of h(r) faster than r2, so that both radial
mass flux and radial field strength now vary as ρvr ∼ Br ∼ 1/hr2.
Following equation (20) of Owocki & ud-Doula (2004), we can
approximate this expansion factor by

h(r) = r

R∗

R∗ + RA

r + RA
, (A1)

where we take their ‘confinement radius’ Rc = RA.
The analysis then proceeds analogously to the WD monopole

case summarized in Section 2.3, leading again to an equation of the
form (14), except that now the quantities ṁ ≡ 4πρvr2, and thus
jeq ≡ J̇ eq/ṁ, are no longer constant in radius. Instead, in terms of
the constant mass-loss rate Ṁ , we have ṁ(r) = Ṁ/h(r). Continuity
at the Alfvén critical point again requires jeq = �R2

A, but this now
implies an angular momentum loss that scales as

J̇ eq = Ṁ
�R2

A

hA
, (A2)

where hA ≡ h(RA) = (1 + RA/R∗)/2.
Since ρvr ∼ Br ∼ 1/hr2 along this dipole-axis flow, the ratio of

magnetic to flow energy follows the scaling

η(r) ≡ B2

4πρv2
r

= 4η∗R2
∗

h(r)r2(1 − R∗/r)β
, (A3)

where the factor of 4 accounts for the fact that η∗ is defined in
terms of B2

eq = B2
p/4. Ignoring for simplicity, the radial variation of

velocity (effectively using β = 0), the Alfvén condition η(RA) ≡ 1
thus implies that (RA/R∗)2 = 4η∗/hA, and so

J̇ eq = Ṁ �R2
∗

4η∗
h2

A

= Ṁ �R2
∗

16η∗
(1 + RA/R∗)2 . (A4)

In the strong confinement limit η∗ � 1, we find RA/R∗ ≈ 2η1/3
∗ ,

which gives

J̇ eq ≈ Ṁ �R2
∗4η1/3

∗ , η∗ � 1 . (A5)

Comparing this to the monopole scaling J̇ ∼ η∗ and the aligned-
dipole scaling J̇ ∼ √

η∗, we see that this oblique dipole axis has
an angular momentum loss rate that is weaker than either of them,
scaling only as J̇ ∼ η1/3

∗ .
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