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Abstract

We update the capabilities of the software instrument Modules for Experiments in Stellar Astrophysics (MESA) and
enhance its ease of use and availability. Our new approach to locating convective boundaries is consistent with the
physics of convection, and yields reliable values of the convective-core mass during both hydrogen- and helium-
burning phases. Stars with M 8 M<  become white dwarfs and cool to the point where the electrons are
degenerate and the ions are strongly coupled, a realm now available to study with MESA due to improved
treatments of element diffusion, latent heat release, and blending of equations of state. Studies of the final fates of
massive stars are extended in MESA by our addition of an approximate Riemann solver that captures shocks and
conserves energy to high accuracy during dynamic epochs. We also introduce a 1D capability for modeling the
effects of Rayleigh–Taylor instabilities that, in combination with the coupling to a public version of the STELLA
radiation transfer instrument, creates new avenues for exploring Type II supernova properties. These capabilities
are exhibited with exploratory models of pair-instability supernovae, pulsational pair-instability supernovae, and
the formation of stellar-mass black holes. The applicability of MESA is now widened by the capability to import
multidimensional hydrodynamic models into MESA. We close by introducing software modules for handling
floating point exceptions and stellar model optimization, as well as four new software tools—MESA Web- , MESA
-Docker, pyMESA, and mesastar.org—to enhance MESA’s education and research impact.
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1. Introduction

Over the next decade, multimessenger astronomy will probe
the rich stellar astrophysics of transient phenomena in the sky,
including gravitational waves from the mergers of neutron stars
and black holes, light curves and spectra from core-collapse
supernovae, and the oscillation modes of stars. On the
observational side of this new era, the Laser Interferometer
Gravitational-Wave Observatory (LIGO) has demonstrated the
existence of binary stellar-mass black hole systems (Abbott
et al. 2016a, 2016b, 2016c, 2017a, 2017b) and continues to
monitor the sky with broadband detectors for gravitational
waves from compact binary inspirals and asymmetrical
exploding massive stars (Fryer et al. 2002; Gossan et al.
2016; Abbott et al. 2017a, 2016d, 2016e, 2016f). The Gaia
Data Release1, containing about one billion stars, begins the
process of converting the spectrophotometric measurements to
distances, proper motions, luminosities, effective temperatures,
surface gravities, and elemental compositions (Gaia Collabora-
tion et al. 2016a, 2016b). This stellar census will provide the

observational data to tackle a range of questions related to the
origin, structure, and evolutionary history of stars in the Milky
Way (Creevey et al. 2015; Sacco et al. 2015; Lindegren et al.
2016; van Leeuwen et al. 2017). The Neutron star Interior
Composition Explorer (NICER) mission, delivered to the
International Space Station in 2017 June, will provide rotation-
resolved spectroscopy of the thermal and nonthermal emissions
of neutron stars in the soft X-ray band with over 15 million
seconds of exposures (Gendreau et al. 2012; Arzoumanian
et al. 2014; Gendreau et al. 2016), opening a new window into
the interior structure of and the dynamics that underlie neutron
stars (e.g., Miller 2016; Özel et al. 2016). With first light at
Palomar Observatory in 2017, the Zwicky Transient Facility
(Kulkarni 2016) will scan more than 3750 deg2 hr−1 to a depth
of about 20 mag to discover young supernovae less than 24 hr
after explosion each night, hunt for electromagnetic counter-
parts of gravitational-wave events (Ghosh et al. 2017), and
search for rare and exotic transients. Repeated imaging of the
northern sky, including the Galactic Plane, will produce a
photometric variability catalog with nearly 300 observations
each year (Laher et al. 2017) for detailed studies of variable
stars and binary systems. From its unique high Earth orbit, the
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Transiting Exoplanet Survey Satellite aims to survey about
200,000 nearby G-, K-, and M-type stars with apparent
magnitudes brighter than about 12 mag with a 1 minute
cadence across a 400 deg2 area of the sky (Ricker et al. 2016;
Sullivan et al. 2015, 2017) to open a new era of stellar
variability studies. The Large Synoptic Survey Telescope will
image the entire southern hemisphere deeply in multiple optical
colors every week with a 3.5 deg2, three billion pixel digital
camera (LSST Science Collaboration et al. 2017) to open new
perspectives on transient objects such as tidal disruption events
(Bade et al. 1996; Stern et al. 2004; Arcavi et al. 2014;
Komossa 2015) and interacting close binary systems (Oluseyi
et al. 2012; Korol et al. 2017). The Jiangmen Underground
Neutrino Observatory will usher in a new generation of
multipurpose neutrino detectors (Li 2014; Brugière 2017)
designed in part to open a new avenue into neutrinos from pre-
supernova massive stars (e.g., Odrzywolek 2009; Misch &
Fuller 2016; Patton et al. 2017a, 2017b) and core-collapse
supernova explosions (e.g., Hirata et al. 1987; Janka 2017).

This ongoing explosion of activity in multimessenger stellar
astronomy powers theoretical and computational develop-
ments, in particular the evolution of the community software
instrument Modules for Experiments in Stellar Astrophysics
(MESA), for research and education. We introduced MESA in
Paxton et al. (2011, hereafter Paper I) and significantly
expanded its range of capabilities in Paxton et al. (2013,
hereafter Paper II) and Paxton et al. (2015, hereafter Paper III).
These previously published papers, as well as this one, are
“instrument” papers that describe the capabilities and limita-
tions of MESA while also comparing to other available
numerical or analytic results. This paper describes the major
new advances in MESA for modeling convective boundaries,
element diffusion, implicit shock hydrodynamics, massive star
explosions and light curves, pulsational pair-instability super-
novae, and black hole formation. We do not fully explore these
results and their implications here. The scientific potential of
these new capabilities will be unlocked in future work through
the efforts of the MESA user community.

The convective regions of stars remain a rich site of
fascinating challenges, including the interplay among mixing,
composition gradients, and element diffusion. A convection
region transports energy through the vertical exchange of
matter. The location where the radial velocity of the bulk
motions goes to zero is a natural way to define the edge of a
convection region (Vitense 1953; Böhm-Vitense 1958). It is
necessary to ensure that convective boundaries are properly
positioned (e.g., Eggleton 1972; Gabriel et al. 2014), because
their exact placement can have a strong influence on the
evolution of the stellar model (Salaris & Cassisi 2017). An
important new addition to MESAis an improved treatment of
convective boundaries, allowing them to evolve toward a state
where the radiative gradient equals the adiabatic gradient on the
convective side of the boundary. As a consequence, the
Schwarzschild and Ledoux criteria now give the same position
for convective boundaries.

Gradients can drive changes in the composition profile of a
star. For example, if gradients occur in the concentrations of
chemical elements, then diffusion tends to smooth out the
differences. Temperature gradients can push heavier species
toward regions of higher temperature, while pressure gradients
can propel heavier species to diffuse toward regions of higher
pressure (Thoul et al. 1994; Hansen et al. 2004; Kippenhahn

et al. 2012; Michaud et al. 2015). Treatments of diffusion
typically assume that all diffusing species are ideal gases (e.g.,
Burgers 1969; Thoul et al. 1994). For white dwarf interiors and
neutron star envelopes, degenerate electrons violate this
assumption (Deloye & Bildsten 2002; Chang et al. 2010). In
addition, strong Coulomb coupling in plasmas requires
modifications to the binary scattering formalism to calculate
cross-sections used to obtain diffusion coefficients (Paquette
et al. 1986a; Daligault et al. 2016; Stanton & Murillo 2016;
Shaffer et al. 2017). MESA’s extensions of element diffusion for
degenerate and strongly coupled plasmas open a pathway into
the regime relevant to the sedimentation in the interiors of
white dwarfs (Iben & MacDonald 1985; Iben et al. 1992;
Koester 2009; Hollands et al. 2017) and the surfaces of neutron
stars (Chang & Bildsten 2003, 2004; Beznogov et al. 2016).
Massive (M 8 M ) stars explode when the energy from

the collapse of their core into a compact object emerges as an
outgoing shock wave into the outer parts of the star. The
outward propagation of this shock wave generates Rayleigh–
Taylor instabilities that can mix material behind the shock front
(Chevalier 1976; Chevalier & Klein 1978; Weaver & Woosley
1980; Benz & Thielemann 1990; Herant & Benz 1991;
Hammer et al. 2010; Wongwathanarat et al. 2015; Utrobin
et al. 2017). The resulting light curves of Type II supernovae
can be subdivided into multiple classes, but we focus here on
TypeIIP supernovae (e.g., Smartt 2009, 2015; Smith et al.
2016). Our improvements to MESA—implicit shock-capturing
hydrodynamics, Rayleigh–Taylor instability modeling in 1D
(Duffell 2016), and radiative transfer using the public version
of the STELLA instrument (Blinnikov & Sorokina 2004;
Baklanov et al. 2005; Blinnikov et al. 2006)—open up new
avenues for researching the diverse set of TypeII supernovae.
Pair instability leads to partial collapse, which in turn causes

runaway thermonuclear burning in the carbon–oxygen core
(Fowler & Hoyle 1964; Barkat et al. 1967; Rakavy & Shaviv
1967; Rakavy et al. 1967; Fraley 1968). A wide variety of
outcomes is possible depending on the star’s mass and rotation.
A single energetic burst from nuclear burning can disrupt the
entire star without leaving a black hole remnant behind to
produce a pair-instability supernova (Ober et al. 1983; Fryer
et al. 2001; Scannapieco et al. 2005; Kasen et al. 2011;
Chatzopoulos et al. 2013). Alternatively, a series of bursts can
trigger a cyclic pattern of nuclear burning, expansion, and
contraction, leading to a pulsational pair-instability supernova
that leaves a black hole remnant (Barkat et al. 1967; Woosley
et al. 2007a; Chatzopoulos & Wheeler 2012; Limongi 2017;
Woosley 2017). Many of these variations can now be explored
in MESA, as can lower-mass progenitors that do not pulse
before collapsing into a black hole.
MESAis a community-driven software instrument for stellar

astrophysics. New directions will be motivated by features
useful to the MESAuser community, advances in the physics
modules, algorithmic developments, and architectural evol-
ution. Potential examples for expanding MESA’s scientific,
computational, and educational capabilities include seamlessly
leveraging many-core architectures, an improved treatment of
the equation of state, Jupyter/Python notebooks for education,
and continued integration with software instruments useful to
the astronomy and astrophysics community. Examples include
ADIPLS (Christensen-Dalsgaard 2008; Christensen-Dalsgaard
& Thompson 2011), GYRE (Townsend & Teitler 2013), and
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STELLA (Blinnikov et al. 1998; Blinnikov & Sorokina 2004;
Baklanov et al. 2005; Blinnikov et al. 2006).

This paper is organized as follows. Section 2 introduces a
new treatment of convective boundaries. In Section 3, we
present an implementation of element diffusion that accounts
for electron degeneracy and strongly coupled interactions.
Section 4 describes the Riemann solver for shock capturing in
MESA’s new implicit hydrodynamics solver, and Section 5
presents a model for approximating the 3D effects of the
Rayleigh–Taylor instability. In Section 6, we introduce the
coupling of MESAand an implementation of the STELLA
radiative transfer instrument to explore the modeling of
TypeIIP supernova light curves from post-explosion to post-
plateau. In Section 7, we show advances in modeling pair-
instability supernovae, pulsation pair-instability supernovae,
and black hole formation. Section 8 discusses energy
accounting in stellar evolution.

Appendix A discusses improvements to estimating a model’s
absolute magnitude in a chosen color filter, Appendix B offers
guidance on importing multidimensional models into MESA,
and Appendix C details the implementation of element
diffusion in MESA. Appendix D introduces two new software
modules for handling floating point exceptions and stellar
model optimization, as well as four new software tools for
education and research: MESA Web- , MESA-Docker,
pyMESA, and mesastar.org.

Important symbols are defined in Table 1. Acronyms used
are denoted in Table 2. We denote components of MESA, such
as modules and routines, in typewriter font, e.g., colors .

2. Convective Boundaries

Gabriel et al. (2014) discuss the correct positioning of
convective boundaries in stellar evolution models. Following
earlier work (e.g., Roxburgh 1978), they argue that a
convective boundary should be defined as the point where
the convective velocity vanishes. Within local mixing length
theory (MLT), this condition is equivalent to the requirement

rad ad =  , where rad and ad are the radiative and adiabatic
temperature gradients, respectively. Critically, this equality
must be satisfied on the convective side of the boundary,
because the MLT convective velocity is only well-defined
there. Moreover, because the fluid on the convective side is
presumed to be well-mixed, the Ledoux temperature gradient

BL ad =  + (Equation (11) of Paper II) can play no part in
setting the location of the boundary.

If the chemical composition is continuous across the
convective boundary, then so too are rad and ad , and
requiring rad ad =  on the convective side of the boundary
results in the same equality on the radiative side. However, a
composition discontinuity produces a jump in density and
opacity, and in turn a discontinuity in rad and ad . Hence, it is
generally the case that rad ad ¹  on the radiative side of the
boundary.

In numerical codes based on discrete grids, the nuance of the
foregoing discussion is often overlooked in favor of a simple
approach for locating convective boundaries based on sign
changes in the discriminant y rad ad=  -  (or y rad L=  -  ,
if the Ledoux stability criterion is used). This approach works
well when the chemical composition remains continuous, but is
problematic when the composition—and hence y—is discon-
tinuous at the boundary; it typically leads to configurations
where rad ad >  on the convective side, which is unphysical

and ultimately retards the growth of the convective region.
Previous versions of MESA have taken this approach; the
outcome is evident in Figure15 of Paper II, which shows the

Table 1
Important Variables

Name Description First Appears

 Area of face 4.1
C Concentration 3.1
e Specific thermal energy 4.1
F Flux across cell face 4.1
γ Adiabatic index 4.4.1
Γ Plasma coupling parameter 8.5
K Resistance coefficient 3.1
λ Screening length 3.3
m Baryonic mass coordinate 2.2
M Stellar mass 2.2
μ Chemical potential 8.1
Φ Gravitational potential 8.3
q Specific heat 8.1
r Radial coordinate 3.1
s Specific entropy 8.1
 Wave speed 4.1
u Cell-centered velocity 4.1
w Diffusion velocity 3.1
z Resistance coefficient 3.1
Ā Average atomic number 8.1

MLTa Mixing length of MLT 6.7.1
cP Specific heat at constant pressure 8.2
cs Sound speed 4.1
cV Specific heat at constant volume 8.2
td Numerical time step 2.6
dm Mass of cell 4.1
dm Mass at cell face 4.1
D Rayleigh–Taylor decay coefficient 5.1
eion Specific ionization energy 8.4
Eblast Blast energy 4.4.1

extra Extra specific heating/cooling rate 4.1

grav Gravitational heating rate 8.1

n Neutrino energy loss rate 4.1

nuc Nuclear energy generation rate 4.1
fov Convective overshoot parameter 6.7.1

1G First adiabatic index 7

ad Adiabatic temperature gradient 2

L Ledoux temperature gradient 2.1

rad Radiative temperature gradient 2

T Temperature gradient from MLT 4.1
NB Number of baryons 8.1
Pgas Gas pressure 8.2

Prad Radiation pressure 8.2
P Pressure at cell face 4.1
qe Electric charge 3.2.2

er Charge density 3.1

T Temperature at cell face 4.1

Rost Rosseland optical depth 6.5

sobt Sobolev optical depth 6.5
cr ( Plog log T X,r¶ ¶ )∣ 8.2

Tc ( P Tlog log X,¶ ¶ r)∣ 8.2

Z̄ Average ion charge 8.1

Note. Single character symbols are listed first; symbols with modifiers are
listed second. Some symbols may be further subscripted by c (indicating a
central quantity), by a cell index k, or by an index that runs over species (i, j, s,
or t).
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convective-core mass as a function of age during the He-
burning evolution of a 3 M star. In the model with no
overshoot and the Schwarzschild stability criterion, the core
grows only modestly in mass before reaching a plateau.
Inspection of the model confirms that rad ad >  on the
convective side of the core boundary, signifying that core
growth is being impeded.

Gabriel et al. (2014) highlight a further issue with this simple
sign-change approach, whereby the location of a convective
boundary is not uniquely determined but rather depends on the
mixing history near the boundary. We have confirmed that this
issue is present in MESA when using the sign-change approach.
This manifests itself as a lack of convergence in some models
(e.g., the 3 M He-burning example) when the resolution is
increased and/or the time step shortened.

To resolve these issues, we implement a new “predictive
mixing” scheme in MESA. It is inspired both by the “maximal
overshoot” scheme introduced by Constantino et al. (2015) and
by the procedure described by Bossini et al. (2015). In the new
scheme, the extent of a convection region is allowed to expand
at each time step until the boundaries reach the point where

rad ad =  on their convective side. We describe the new
scheme in detail in the following section and then present the
results obtained with this scheme in four scenarios: a growing
convective core in a low-mass star on the main sequence (MS),
a retreating convective core in a high-mass star on the MS,
growing He-burning cores in intermediate- and low-mass stars,
and a surface convective region in a low-mass star on the MS.
In all cases, we assume an initial He mass fraction Y 0.28=
and an initial metal mass fraction Z 0.02= , and we ignore
rotation and mass loss.

2.1. Predictive Mixing

The MESA predictive mixing scheme initially proceeds in the
same manner as the simple sign-change approach, by finding
the cells where y 0> on one face (convective) and y 0< on
the other face (radiative). For each of these candidate boundary

cells, the algorithm considers how y would change if the cell
were completely mixed with the rest of the adjoining
convection region. This prediction involves re-evaluating the
opacities, densities, and other data throughout the mixed
region, under the assumption that the composition is com-
pletely uniform. If y become positive on both faces of the
candidate boundary cell, then the adjacent cell in the radiative
region becomes the new candidate boundary cell, and a new
round of predictive mixing begins. The process continues
iteratively until the candidate cell after the predictive mixing
still has a negative y on the radiative face. The code reverts to
the previous candidate, identifies it as the final convective
boundary cell, recalculates convective diffusivities and con-
vective velocities using MLT, and writes these into the model
for use in the composition solver (see Paper I, Section6.2). No
abundances are directly modified in the model during the
predictive iterations. Below, we demonstrate that this algorithm
leads MESA to a solution of the stellar structure equations in
which y0 ad  on the convective side of each bound-
ary cell.
The physical justification for our predictive mixing scheme

can be traced back to a narrative advanced by Castellani et al.
(1971). Focusing on He core burning, these authors argue that
any gentle mixing outside the core boundary irreversibly alters
the composition there, and the resulting increase in opacity
raises the local rad from sub-adiabatic to super-adiabatic. The
outcome is a “self-driving mechanism for the extension of
the convective region,” which continues until rad ad =  on the
convective side of the core boundary. Although Castellani et al.
(1971) invoked overshoot as the source of the mixing outside
the boundary, Michaud et al. (2007) showed that element
diffusion can play this role equally well and lead to the same
outcome. For MS stars with growing convective cores, the
extension of the core boundary cannot be driven in exactly the
same way as the He-burning case, because helium has a lower
opacity than hydrogen. However, gentle mixing outside the
core boundary erases any composition gradients there, and it is
the loss of these gradients—and their accompanying stabilizing
effect—that drives the extension of the convective region until

rad ad =  on the convective side of the core boundary.
The predictive mixing scheme does not specify the nature of

the gentle mixing beyond the convective boundaries, focusing
instead on its effects. Tied to this agnosticism is the
presumption that the mixing-driven expansion of convective
boundaries is so rapid that it can be approximated as
instantaneous. This is likely a reasonable approach during core
H and He burning; Castellani et al. (1971) argued that the
growth of the core boundary in the latter case should proceed
on a timescale that is much shorter than the burning lifetime.
However, there may be circumstances where the finite
timescale for boundary growth cannot be ignored.
Because uniform composition is assumed during the

predictive mixing iterations, there is no functional distinction
between the Schwarzschild and Ledoux criteria when evaluat-
ing the discriminant y. However, the preliminary search for
sign changes in y, before any predictions are made, does take
into account composition gradients when the Ledoux criterion
is used. As a result, the initial candidate boundary cells can
differ between the two criteria. In many cases, this difference is
unimportant, with the final location of the boundaries being
insensitive to the choice of criterion. The one exception is when
a region with ad rad L <  <  is bounded on both sides by

Table 2
Acronyms Used in This Paper

Acronym Description First Appears

AGB Asymptotic Giant Branch 8.4
BC Bolometric Correction A
BH Black Hole 7
CFL Courant–Friedrichs–Lewy 4.3
CHeB Core Helium Burning 2.4
CSM Circumstellar Material 6.2
EOS Equation of State 8
HLLC Harten–Lax–van Leer–Contact 4
HR Hertzsprung–Russell 2.4
IB Inner Boundary 6.1
LTE Local Thermal Equilibrium 8.1
MLT Mixing Length Theory 2
MS Main Sequence 2
PPISN Pulsational Pair-instability SN 7
PISN Pair-instability SN 7
RTI Rayleigh–Taylor Instability 5
SN Supernova 4.4.3
SPH Smoothed Particle Hydrodynamics B
TAMS Terminal Age Main Sequence 2.2
WD White Dwarf 8
ZAMS Zero Age Main Sequence 2.2
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radiative regions; then, it will be completely overlooked during
a preliminary search with the Ledoux criterion. As we shall
demonstrate later, such scenarios arise in our calculations
outside convective cores during MS evolution.

2.2. Evolution of a Growing Convective Core on the Main
Sequence

We evolve a 1.5 M star from the zero age main sequence
(ZAMS) to the terminal age main sequence (TAMS) using the
predictive mixing scheme at the convective-core boundary; this
is the same mass and evolutionary stage considered in
Section5.1.2 of Gabriel et al. (2014). Figure 1 plots the mass
coordinate of the convective-core boundary as a function of
MS age, showing results from separate runs using the
Schwarzschild and Ledoux criteria, and from additional runs
with the incremental inclusion of semi-convection (in just the
Ledoux case) and then element diffusion (in both cases). The
semi-convection is modeled using the Langer et al. (1985)
scheme with an efficiency parameter 0.1sca = (see Paper II for
a complete description of the semi-convection implementation
in MESA). For comparison, the figure also shows the outcome
of using the Ledoux criterion but no predictive mixing; in
contrast to the other cases, which broadly agree with one
another, core growth is inhibited and the H-burning lifetime
correspondingly truncated.

Note that in Figure13 of Paper II, the results obtained with
the Ledoux criterion show a shrinking convective core; this
behavior was due to a separate problem arising from the
oversmoothing of the composition gradient (see Moore &
Garaud 2016) and has since been rectified in MESA. For
completeness, we include this case in Figure 1.

Figure 2 plots the profiles of rad , ad , L , and X , in the
inner part of the 1.5 M star nearing the halfway point of its
MS evolution (a core H mass fraction X 0.42c = ). In the upper
row, the left panel illustrates the run with the Ledoux criterion
plus predictive mixing (the dotted curve in Figure 1), while the
right panel shows the run with the Ledoux criterion but without
predictive mixing (the black curve, ibid.). Clearly, without
predictive mixing, rad remains significantly larger than ad on
the convective side of the boundary, which as discussed
previously is physically inconsistent. When using predictive
mixing, however, the profiles satisfy rad ad =  on the

convective side and closely match those seen in the left panel
of Figure6 of Gabriel et al. (2014). The small bump in rad just
above the boundary is Schwarzschild unstable but Ledoux
stable.
The middle panels of Figure 2 show the runs with the

Ledoux criterion and predictive mixing, and the incremental
addition of semi-convection (left) and then element diffusion
(right). Inside the core boundary, the profiles are almost
identical to those shown in the upper-left panel, but just outside
the boundary, semi-convection converts the composition
discontinuity into a steep gradient and flattens the bump in

rad into a neutral rad ad =  profile. Element diffusion further
softens the abundance profile, as shown in the middle-right
panel. Note that element diffusion has only a small effect on the
location of the convective boundary; this is barely noticeable in
Figure 2, but a slight extension of the boundary can be seen in
Figure 1 toward the later part of the MS, for the two cases
including diffusion.
The lower panels of Figure 2 show the runs using the

Schwarzschild criterion and predictive mixing, without (left)
and with (right) element diffusion. In the left panel, the
abundance profile shows a chaotic staircase-like profile, due to
mixing by transient convective shells that appear and disappear
from one time step to the next (two of these shells can be seen
in the figure). The shells do not appear in the Ledoux plots
(middle and upper panels) because the region outside the core
is stabilized in its entirety by the abundance gradient:

rad L <  . This serves as a good illustration of the earlier
discussion (Section 2.1) of how the Schwarzschild and Ledoux
criteria can sometimes lead to different outcomes. It is
important to note, however, that the location of the core
boundary is the same in all cases with predictive mixing; the
differences only appear in the inhomogeneous region beyond
the boundary, which arises from slow H burning outside
the core.
The lower-right panel of Figure 2 shows that adding element

diffusion removes the abundance discontinuities, replacing
them with a smooth gradient. The resulting profiles appear
almost identical to the Ledoux case shown in the middle-right
panel of the figure (compare also the curves with diffusion in
Figure 1).

2.3. Evolution of a Retreating Convective Core on the Main
Sequence

We now evolve a 16 M star from ZAMS to TAMS using
the new predictive mixing scheme at the convective-core
boundary; this is the same mass and evolutionary stage
considered in Section5.1.1 of Gabriel et al. (2014). Figure 3
plots the mass of the convective core as a function of MS age,
showing results from separate runs using the Schwarzschild
and Ledoux criteria, and with and without predictive mixing.
The agreement between these four cases is very close.
However, as was the case in the preceding section, there are
differences outside the convective core. These can be seen in
Figure 4, which plots the profiles of rad , ad , L , and X near
the end of the star’s MS evolution (X 0.15c = ), for the two runs
with predictive mixing.
Even though both runs exhibit the same core structure, with

rad ad =  at the convective side of the core boundary, the
inhomogeneous region left behind by the retreating core is very
different. The H abundance obtained with the Schwarzschild
criterion shows the same staircase-like profile seen in the

Figure 1. Mass coordinate mbdy of the convective-core boundary plotted as a
function of MS age, for the M1.5  stellar model discussed in Section 2.2.
Different line styles/colors show the separate runs described in the text.
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lower-left panel of Figure 2, again due to mixing by transient
convective shells. These shells are not present when the
Ledoux criterion is used, with the exception of a persistent
solitary shell at the top of the inhomogeneous region
(corresponding to where the core boundary was located at the
ZAMS); the behavior of this shell is discussed by Gabriel et al.
(2014, their Section5.5.1; compare also against their Figure4).
Between the shell and the core boundary, the abundance profile
from the Ledoux run remains relatively smooth. The different
abundance profiles in the two runs will have a direct influence

on the Brunt–Väisälä frequency profile, and therefore on the
oscillation frequencies of the stellar model.

2.4. Evolution of the Convective Core During Core He Burning

As reviewed by Salaris & Cassisi (2017), the modeling of
mixing in low- and intermediate-mass stars during core He
burning (CHeB) is particularly challenging. The correct
treatment of convective boundaries is complicated by the fact
that the rad profile within the core convection region develops

Figure 2. Profiles of rad , ad , L , and X as a function of mass coordinate, in the inner part of the M1.5  stellar model at X 0.42c = . The panels show the separate
runs described in the text. Gray shading indicates regions undergoing convection. Unless otherwise indicated, all models used predictive mixing.

6

The Astrophysical Journal Supplement Series, 234:34 (50pp), 2018 February Paxton et al.



a local minimum at some point during CHeB evolution (see the
middle and lower panels of Figure 6). This is a consequence of
the complex behavior of the physical quantities (opacity,
temperature, density, etc.) involved in the expression for rad .
With further outward propagation of the convective boundary,
the mixing of fresh He into the core can lower the radiative
gradient throughout the core to such an extent that rad ad = 
at the local minimum of rad . When this happens, the part of
the convection region interior to the minimum becomes
decoupled from the part exterior to the minimum: the
convection region has split. This phenomenon was first
discussed by Eggleton (1972), and a variety of ad hoc
approaches have been proposed to follow the subsequent
evolution, mostly focused around the narrative that the exterior
part undergoes partial mixing with the adjacent radiative region
until it reaches convective neutrality (see, e.g., Castellani
et al. 1985 and references therein).

Another problem appears near the end of CHeB. At that
point, even small amounts of He added to the core (which is
almost totally depleted in He) will enhance the rate of energy
production and thus the luminosity, resulting in an increase in

rad . This increase leads to a sudden growth in the core
boundary and a “breathing pulse.” The He is then quickly
burned in the core, and the star re-adjusts itself. The existence
of these breathing pulses remains controversial, and it is still
unclear whether they are numerical or physical (Caputo
et al. 1989; Cassisi et al. 2003; Farmer et al. 2016; Constantino
et al. 2017). All of these problems are clearly described and
illustrated in Salaris & Cassisi (2017). To manage these
complexities, the predictive mixing scheme must be modified.
When a convection region splits, it is no longer meaningful to
re-evaluate y using opacities and other data calculated on the
assumption of uniform composition throughout (Section 2.1),
because the radiative region appearing at the splitting point
prevents the free exchange of material between the adjacent
convection regions. Although in principle we could resort to
the partial mixing mentioned above, in practice it is not clear
how this might be implemented within a diffusive mixing
framework. Constantino et al. (2015) have developed an
overshoot-like prescription that appears useful for mimicking
the convective neutrality achieved by partial mixing (see their
Section2.3.3), but it involves a number of unconstrained

parameters. Therefore, on the grounds of simplicity and
pragmatism—and recognizing that better approaches may
become apparent in the future—we modify the predictive
scheme to prevent it from causing a convection region to split
in the first place. This involves a new control parameter,

_ _predictive superad thresh; if during the predictive
mixing iterations the super-adiabaticity 1rad ad  - drops
below this threshold anywhere in the mixed region, then the
code backs off the mixing by one cell and updates the model
convective diffusivities and convective velocities in the usual
manner.
Further functionality, controlled by a new parameter

_ _predictive avoid reversal, also helps to prevent
splitting and breathing pulses. When this parameter is set to
the name of a MESA isotope, the code then monitors how the
predictive mixing alters the abundance evolution of that isotope
in the convection region. If it would cause this evolution to
reverse (i.e., switch from decreasing to increasing, or
vice versa), then the code backs off the mixing by one cell
and updates the model as before. Thus, for instance, setting this
parameter to “he4” during CHeB ensures that the predictive
mixing scheme does not cause the core He abundance to
increase across a time step.
To illustrate the preceding discussion, we evolve a 1 M star

through CHeB; this is the same mass considered by Constantino
et al. (2015). Figure 5 plots the mass of the convective core as a
function of CHeB age (defined as the time elapsed since the central
Y drops below 0.98), showing results from separate runs with and
without predictive mixing, and using the Schwarzschild and
Ledoux criteria. For the cases with predictive mixing, we adopt a
value of 0.005 for the _ _predictive superad thresh
parameter and set _ _predictive avoid reversal to
“he4” to prevent any reversal in the core He abundance.
Figure 5 also shows the results from an additional Ledoux/
predictive mixing run where we allow the core to split by
not setting the _ _predictive avoid reversal and

_ _predictive superad thresh controls.
Figure 5 shows that without predictive mixing, the core is

prevented from growing and the CHeB lifetime is significantly
curtailed, irrespective of whether the Schwarzschild or Ledoux
criteria are used (see also Figure15 of Paper II). With
predictive mixing but no splitting allowed, however, the core
grows steadily until He is exhausted, and no breathing pulses
are seen. There is almost no difference between the Schwarzs-
child and Ledoux cases. When the core is allowed to split, the
evolution is much noisier. Starting at an age 25 Myr» , the core
undergoes episodes of splitting and rejoining that repeat on a
short timescale. Toward the end of the evolution, as the core He
abundance becomes very small, the timescale between
successive splittings becomes longer, until the core finally
splits without rejoining. The overall CHeB lifetime of the
model is shortened by 6 Myr» relative to the cases where
splitting is avoided.
Figure 6 plots the profiles of rad , ad , and Y for the 1 M

star at three points during its CHeB evolution, corresponding to
core He mass fractions Y 0.9c = , 0.6, and 0.3. The profiles are
all from the run with the Ledoux criterion and predictive
mixing. In the upper panel, a local minimum in rad has yet to
develop, and the core boundary satisfies the rad ad =  equality
on its convective side. In the middle and lower panels, the local
minimum in rad can clearly be seen; in these cases, predictive
mixing has extended the convection region as far as possible

Figure 3. Mass coordinate mbdy of the convective-core boundary as a function
of MS age, for the 16 M stellar model discussed in Section 2.3. Different line
styles/colors show the separate runs described in the text.
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without pushing the minimum rad below the threshold set by
the _ _predictive superad thresh control. MESA treats
the region between the rad minimum and the convective
boundary as fully convective. On the convective side of this
boundary, rad ad >  , which is physically inconsistent but
cannot be remedied with predictive mixing alone: any further
extension of the boundary would cause the convection region
to split. As discussed above, fixing this inconsistency requires
some way of modeling the partial mixing expected to occur in
the part of the convection region between the rad minimum
and the boundary. The abundance profiles plotted in Figure 6
show a sharp transition between the He-depleted core and the
He-rich radiative region above. Although not shown, the
carbon and oxygen abundance profiles exhibit corresponding
jumps at the core boundary. Similar results are obtained by
Constantino et al. (2015) with their “maximal overshoot”
scheme (cf., their Figure 2), and those authors also find a core
mass evolution during CHeB that closely resembles the
outcome from predictive mixing (cf., their Figure8 and our
Figure 5). These similarities are not coincidental; although the
predictive mixing and maximal overshoot schemes have

different narratives and implementations, both have the effect
of growing the core boundary during CHeB to the greatest
extent permitted without causing the convection region to split.
The larger cores that result from this growth appear to provide a
better match to Kepler asteroseismic period spacings, when
compared with other mixing schemes that produce smaller
cores (Constantino et al. 2015), and with certain assumptions
about the post-CHeB evolution, the larger cores can also
provide a satisfactory fit to observational cluster counts
(Constantino et al. 2016).
To explore whether the predictive mixing performs equally

well for a higher-mass star that has not passed through the He
flash, we also evolve a 3 M star through CHeB; this is the
same mass and evolutionary stage considered in Figure15 of
Paper II. Figure 7 plots the mass of the convective core as a
function of CHeB age, showing results from separate
runs with and without predictive mixing, and using the
Schwarzschild and Ledoux criteria. For the cases with
predictive mixing, we again adopt a value of 0.005 for the

_ _predictive superad thresh parameter and set
_ _predictive avoid reversal to “he4” to prevent

any reversal in the core He abundance. As before, we find
that predictive mixing allows the core to grow steadily and
that the Schwarzschild and Ledoux criteria give essentially
the same outcome. As a visual summary of how predictive
mixing influences a star’s evolution, Figure 8 plots evolu-
tionary tracks of the 3 M model in the Hertzsprung–Russell
(HR) diagram for the same combinations of mixing and
stability criteria considered in Figure 7. The left panel
focuses on the MS and red giant branch phases and the right
panel on the CHeB phase. In the left panel, the case with the
Ledoux criterion but without predictive mixing stands out
from the other three as having a slightly reduced luminosity.
This behavior arises because the boundary of the hydrogen-
burning convective core is incorrectly positioned during the
early MS evolution, retarding the growth of the core (the
same effect can be seen for the 1.5 M model in the upper
panels of Figure 2). During the subsequent CHeB phase, all
four tracks are similar until slightly after the luminosity
minimum, when the He-burning convective core starts to
grow; this growth is retarded in both cases without predictive
mixing, leading to reduced luminosities and the shorter

Figure 4. Profiles of rad , ad , L , and X as a function of mass coordinate, in the inner part of the16 M stellar model at X 0.15c » . The panels show the separate runs
described in the text. Gray shading indicates regions undergoing convection. Both models use predictive mixing at the convective-core boundary.

Figure 5. Mass coordinate mbdy of the convective-core boundary plotted as a
function of CHeB age, for the 1 M stellar model discussed in Section 2.4.
Different line styles/colors show the separate runs described in the text.
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CHeB lifetimes seen in Figure 7. For the cases with
predictive mixing, there is no difference between the
Schwarzschild and Ledoux criteria, either on the MS or after.

2.5. Evolution of the Bottom of the Surface Convective Region
in a Low-mass Star

We now evolve a1 M star from ZAMS to TAMS, using the
predictive mixing scheme to position the lower boundary of the
convective envelope. We include element diffusion in these
calculations; when it is excluded, the composition remains

completely uniform throughout the stellar envelope, and
predictive mixing makes no difference whatsoever to the
evolution. Figure 9 plots the mass coordinate of the convective
boundary as a function of MS age, showing the results from
separate runs with and without predictive mixing, and using the
Schwarzschild and Ledoux criteria.
The four runs are in agreement until an age of ≈6.5 Gyr;

after this point, the downward growth of the region boundary is
slower in the run that does not include predictive mixing with
the Ledoux criterion. Figure 10 plots the profiles of rad , ad ,

L , and X , in the outer part of the 1 M star at an age of
8.40 Gyr. The left panel illustrates the run with the Ledoux
criterion plus predictive mixing, while the right panel shows
the run with the Ledoux criterion but without predictive
mixing. The former shows that rad ad =  on the convective
(upper) side of the convective boundary, while the latter has

rad ad >  , consistent with the boundary growth being
retarded.

2.6. Effect of Time Steps and Mesh Size

We now demonstrate how limiting the maximum time step
tmaxd (set by the _ _ _max years for timestep control) and
changing the mesh resolution parameter Δ (set by the

_ _mesh delta coeff control; see SectionB.4 of Paper II
for further details) influence the results presented in the
previous sections. First, we consider the effects of changing
time step and resolution on the position of the convective
envelope boundary in the 1 M model considered in
Section 2.5, focusing specifically on the case with the Ledoux
criterion and predictive mixing. The results presented pre-
viously in Figure 9 are calculated using t 5 Myrmaxd = and

0.5D = . Figure 11 demonstrates that halving either tmaxd or Δ
has little effect on these results, confirming that the calculations
are converged. Such settings need to be applied when a
converged result is desired from MESA for this calculation.
Figures 12 and 13 repeat this exercise for the position of the
core convection boundary in the 1.5 M MS model and 1 M
CHeB model, respectively. The results presented previously are
clearly converged, and this exercise clarifies the MESA settings
that should be used for this calculation.

Figure 6. Profiles of rad , ad , and Y as a function of mass coordinate, for the
1 M stellar model. The panels correspond to different stages during CHeB:
Y 0.9c = (upper), Y 0.6c = (middle), and Y 0.3c = (lower). Gray shading
indicates regions undergoing convection.

Figure 7. Mass coordinate mbdy of the convective-core boundary plotted as a
function of CHeB age, for the 3 M stellar model discussed in Section 2.4.
Different line styles/colors show the separate runs described in the text.
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3. Element Diffusion

Section9 of Paper III describes in detail the old implemen-
tation of element diffusion in MESA. Section9.3.4 points out
limitations to those methods, namely: (1) electron degeneracy
was not properly accounted for in the diffusion equations and
(2) strong Coulomb interaction introduced theoretical uncer-
tainties for the diffusion coefficients. These two issues are
especially important when modeling diffusion in WDs. Here
we describe the impact of degeneracy and present new methods
to incorporate its effects. We also discuss recent updates to
diffusion coefficients and potential approaches for further
improvements.

3.1. Degeneracy and the Approach in PaperIII

The approach to diffusion presented in Section9 of Paper III
assumes all particles obey the ideal gas law. Electron

degeneracy pressure can significantly modify the EOS and
violate this assumption.
For a plasma species s (i.e., electrons and ions) with partial

pressure Ps, mass density sr , charge density esr , number density
ns, and temperature T, the Burgers (1969) equations for
diffusion are
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The resistance coefficients Kst, zst, zst¢ , and zst are defined in
Equation(86) of Paper III. With S representing the total
number of plasma species, we must solve for S2 2+
unknowns: S diffusion velocities (ws), S heat flow vectors
(rs), the electric field (E), and the gravitational acceleration (g).
The Burgers equations above for each species provide S2
equations, so we can close the system with two additional
constraints, which are no net flow of mass or electric current
due to diffusion,

w 0, 3
s

s så r = ( )

w 0. 4
s

es så r = ( )

This gives a total of S2 2+ equations.
When electrons are degenerate, Equation (1) is difficult

to apply since dP dre no longer takes a simple analytic

Figure 8. Evolution of the 3 M stellar model on the HR diagram, from ZAMS to the beginning of CHeB (left), and throughout the CHeB phase (right). Separate
tracks show the different cases considered in the text; in the left panel, the Schwarzschild track without predictive mixing lies beneath the tracks with predictive
mixing.

Figure 9. Mass coordinate mbdy of the lower boundary of the envelope
convection region plotted as a function of MS age, for the 1 M stellar model
discussed in Section 2.5. Different line styles/colors show the separate runs
described in the text.

10

The Astrophysical Journal Supplement Series, 234:34 (50pp), 2018 February Paxton et al.



form. Moreover, the temperature term appearing on
the left-hand side of Equation (2) clandestinely assumes
an ideal gas law. Burgers (1969) defines the temperature
for each species as T P n ks s s Bº and assumes thermal
equilibrium between all species so that T Tsº . The
quantities Ps and ns are defined in terms of moments of a
Maxwellian distribution function, but the Fermi–Dirac
distribution function for electrons no longer reduces to a
Maxwellian form when they are degenerate, and hence
T P n ke e e B¹ . If the electrons remain in thermal equilibrium
with their surroundings while failing to satisfy an ideal gas
relation for their temperature, the Burgers treatment assigns
an incorrect temperature to degenerate electrons for the
dT dr term in Equation (2).

Furthermore, the approach to diffusion described in Paper III
follows Thoul et al. (1994) in rearranging and rescaling all
equations into one matrix system with units convenient for

solving numerically,

P
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The sum on the left-hand side skips the electron index
because C 1e º by construction, and so we save resources
by not evaluating its gradient unnecessarily. Here, indices
i S1, 2,= ¼ encode the S equations given by Equation (1),
indices i S S S1, 2, , 2= + + ¼ encode the S equations given
by Equation (2), and indices i S S2 1, 2 2= + + encode the
two constraints of no current or mass flux. For the definitions of
the various coefficients and matrices in Equation (5), consult
Paper III and Thoul et al. (1994). We repeat a few particularly
relevant definitions here. First, let C n ns s e= denote the
species concentration, where ne is the electron number density.

Figure 10. Profiles of rad , ad , L , and X as a function of mass coordinate, in the outer envelope of the1 M stellar model at an age of 8.40 Gyr. The panels show the
separate runs described in the text. Gray shading indicates regions undergoing convection.

Figure 11. Mass coordinate mbdy of the lower boundary of the envelope
convection region plotted as a function of MS age, for the 1 M stellar model.
Different line styles/colors show the separate runs with alternative time step
( tmaxd ) and mesh resolution (Δ) choices. The choices adopted in Section 2.5 are
marked with an asterisk [*].

Figure 12. Mass coordinate mbdy of the convective-core boundary plotted as a
function of MS age, for the 1.5 M stellar model. Different line styles/colors
show the separate runs with alternative time step ( tmaxd ) and mesh resolution
(Δ) choices. The choices adopted in Section 2.2 are marked with an
asterisk [*].
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Second, define the total concentration as C Cs s= å . Then, the
quantity ia appearing in Equation (5) above is defined as

C C i S
i S S

1, 2, ,
0 1, 2 2.

6i
ia =

= ¼
= + ¼ +

⎧⎨⎩ ( )

The term d P drlnia in Equation (5) is meant to capture
contributions of the driving terms dP drs in Equation (1). But
this correspondence only holds if the ratio of the partial
pressure Ps for species s to the total pressure P is given by
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where n is the total number density. This holds as long as all
pressures are ideal gas. However, once electron degeneracy
modifies the equation of state, P does not scale linearly with n,
and so Equation (7) fails for all species in the plasma. This
means the ia term no longer accurately represents the
information in the Burgers equations for the diffusion velocity
of any species.

Moreover, the prefactor P K0 in Equation (5) also assumes
ideal gas for each species. The quantity K 1.1440 = ´

T n10 10 K40 7 3 2
e
2- -( ) simply scales out some of the informa-

tion common to all diffusion coefficients in the units used for
Equation (5). Thoul et al. (1994) assume an ideal gas to
simplify the prefactor in Equation (5) to
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where As is the mass of species s in atomic mass units. This
scaling was propagated into the MESA diffusion routine
described in Paper III. Since ideal gas pressure can be
significantly smaller than total pressure when electrons are
degenerate, this prefactor for Equation (5) is systematically too
small for degenerate plasmas. This can result in diffusion
velocities that are many orders of magnitude smaller than
obtained by a proper solution.

We can verify that there are problems in the degenerate
regime by looking at the local gravitational acceleration gdiff ,
which is solved for simultaneously with the diffusion velocities
in the diffusion routine described in Paper III. MESA also
reports the gravitational acceleration independent of the
diffusion routine, g Gm rGauss

2= . For a MESA WD model,
layers below the surface quickly become degenerate, and the
difference between gdiff and gGauss is significant (Figure 14).
This reflects the fact that the solutions given by the diffusion
routine scale with a pressure that is far too small in the interior.

3.2. New Methods

We now describe new methods that have been introduced to
avoid the limitations discussed in Section 3.1.

3.2.1. Recasting the Burgers Equations

The problems with Equation (5) demonstrated in Figure 14
can be circumvented by solving the Burgers equations directly
as presented in Equations (1) and(2). When avoiding the
rescaling of the Burgers equations that was originally adopted
from Thoul et al. (1994), no limitations on the form of total
pressure are present.
To that end, we recast the diffusion solver into the form

given in Appendix C. This form closely follows the general
approach presented by Thoul et al. (1994) for arranging the full
set of equations into a single matrix equation, but enters the
Burgers equations into that matrix structure without rescaling
any quantities. We therefore avoid making any additional ideal
gas assumptions beyond those already present in the Burgers
equations.

3.2.2. Resolving the Degeneracy Problem

Electron degeneracy makes it difficult to evaluate the term
dP drs in Equation (1) in the case of electrons, but it is possible
to form a closed set of diffusion equations that makes no
explicit reference to this equation for the electrons. Even in
many applications involving WDs, each ion species can be
treated as approximately ideal, and hence Equation (1) remains
useful for ions. We are then left with just two problematic
equations out of the system of S2 2+ equations: Equations (1)
and(2) for the electrons.

Figure 13. Mass coordinate mbdy of the convective-core boundary plotted as a
function of CHeB age, for the 1 M stellar model. Different line styles/colors
show the separate runs with alternative time step ( tmaxd ) and mesh resolution
(Δ) choices. The choices adopted in Section 2.4 are marked with an
asterisk [*].

Figure 14. Gravitational acceleration reported by the diffusion routine
described in Paper III compared with g Gm rGauss

2= for a M0.6  MESA
WD model.
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For the S 1- species of ions in the system, we can write
S 1- Equations (1) in the form
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where Zs¯ is the average charge of species s obtained using
Paquette et al. (1986b). Taking this together with S
Equations (2) and the two constraints on the current and mass
flux, we have a total of S2 1+ equations. If we drop g as an
unknown and treat it as a fixed input to the diffusion routine in
MESA using g Gm r2= , we are left with S2 1+ unknowns.
This gives a closed system of diffusion equations with no
explicit reference to the problematic Equation (1) for electrons.
This is the form of diffusion equations described in
Appendix C.

The thermal diffusion terms (those including dT dr in
Equation (2)) still contain ideal gas assumptions as described in
Section 3.1. Fortunately, in WD cores where strong electron
degeneracy occurs, electron conduction leads to efficient
thermal transport, resulting in small temperature gradients.
With dT dr T H , where H P gr= is the local scale
height, the heat flow vectors (representing the kinetic energy
carried along a temperature gradient by diffusing particles)
become negligible: r ws t for all wt. Thus, for WD interiors,
the system of diffusion equations can be simplified by dropping
the S heat flow terms, removing the need for the S
Equations (2). Indeed, according to Iben & MacDonald
(1985) and Paquette et al. (1986b), thermal diffusion leads
only to small corrections to the diffusion velocities for
degenerate WD interiors.

Therefore, following Iben & MacDonald (1985), we provide
options for neglecting thermal diffusion in electron-degenerate
regions, setting rs=0 and dropping Equation (2) for each
species. Equation (9) then simplifies to the following S 1-
equations that no longer depend on rs for the ions:
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which matches Equation(10) from Iben & MacDonald (1985).
Together with the two constraints, this leaves a simplified set of
S 1+ equations for S 1+ unknowns: S diffusion velocities ws

and the electric field E.
Thermal diffusion terms tend to enhance gravitational

settling velocities (Iben et al. 1992). This can be seen in
Figure 15 for a 1.25 M star on the MS, where the solvers that
include thermal diffusion speed the sedimentation of O16 away
from the surface relative to the solver that ignores thermal
diffusion. MESA also provides options for smoothly transition-
ing between diffusion velocities obtained with and without
thermal diffusion (averaging between the two solutions in a
blending region as a function of the electron degeneracy
parameter). By default, this transition region occurs when the
electron chemical potential is near k Te Bm ~ , but it is left to the
user to decide on an appropriate range of electron degeneracy
over which thermal diffusion should be shut off, if at all. The
effect of blending between solvers with and without thermal

diffusion is to suppress the thermal enhancements to diffusion
velocities, smoothly pushing the enhancements to zero as
electrons reach a degeneracy threshold. The implementation for
the simplified set of diffusion Equations (10) and the smooth
turnoff of thermal diffusion terms as a function of degeneracy
are described in Appendix C.
In order to confirm that we recover the correct behavior on

the MS, we compare results obtained with different diffusion
routines for a1.25 M star in Figure 15. Here, the results based
on Thoul et al. (1994) are valid, since no significant departures
from ideal gas behavior are present near the surface. The results
obtained with the new scheme are in agreement.

3.2.3. Diffusive Equilibrium

Papers II and III show abundance profiles for WDs that have
reached diffusive equilibrium in their outer layers. Figure23 of
Paper II compares the diffusive tails of H and He to an analytic
expression from Althaus et al. (2003) and finds good
agreement. However, Althaus et al. (2003) note that their
analytic expression for diffusive equilibrium follows Arcoragi
& Fontaine (1980) in assuming an ideal gas, and the
equilibrium abundance profiles from their evolutionary models
deviate from the analytic expression due to the inclusion of
electron degeneracy. Similarly, the He layer of the WD model
shown in Figure43 of Paper III is partially degenerate, and
hence the driving forces for diffusion should be modified in this
region.
For a fully ionized isothermal ideal gas, the electric field that

serves as one of the driving forces for diffusion in Equation (9)
takes the form q E A Z m g1e p= +[ ( )] . By contrast, in the
limit of strong electron degeneracy, the electric field
approaches q E A Z m ge p= ( ) . When He is the background
material, the electric-to-gravitational force ratio q E m ge p
increases from 4/3 to 2. In this limit, any trace isotopes with
A Z 2= see no net sedimentation force (Zq E Am g 0e p- = ),
while H with A Z 1= sees a significant upward sedimentation
force (Zq E Am g 0e p- > ). This extra buoyant force on H in a
degenerate He background pushes the diffusive tail further
toward the surface relative to the ideal gas case, as shown in
Figure 16. With the proper handling of electron degeneracy
described in Section 3.2, our MESA models now agree with the

Figure 15. Surface O16 mass fraction of a M1.25  star over its MS lifetime. It
first decreases as diffusion causes sedimentation. Then, it increases after the
small surface convection zone begins to grow, catching the receding O16 and
mixing it back toward the surface.
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time-dependent diffusion models shown in Figure18 of
Althaus et al. (2003).

3.2.4. Radiative Levitation

Radiative levitation is included as an optional extra term.
The Burgers equations are modified with an extra forcing term
by taking g g gs s srad,r r -( ), as shown in Equation(99) of
Paper III. Our implementation continues to follow Hu et al.
(2011) but no longer employs their matrix structure for the
Burgers equations; details of how the g srad, terms are handled
with the updated diffusion schemes can be found in
Appendix C.

3.3. Updated Diffusion Coefficients

The Paquette et al. (1986a) diffusion coefficients have served
as the standard for stellar diffusion problems. The scattering
cross-sections for these coefficients are calculated using a
screened Coulomb potential,

V r
Z Z q

r
rexp , 1112

1 2 e
2

l= -( )
¯ ¯

( ) ( )

with the screening length chosen to be amax ,D il l= ( ¯ ), where
Dl is the Debye length, a n3 4i i

1 3p=¯ ( ) is the average
interionic distance, and ni is the ion density. This choice is a
crude but effective way to handle the strongly coupled regime;
as shown in Paper III, this yields reasonable agreement with the
diffusion coefficients calculated from molecular dynamics.

Stanton & Murillo (2016) provide updated calculations of
collision integrals for screened Coulomb interactions and

suggest improvements to the treatment of screening length.
They provide fitting functions and tables that can be used with
any choice of screening length. In MESA, we follow their
suggested screening prescription. The electron screening length
is given by a Thomas–Fermi approximation that accounts for
non-relativistic degeneracy:
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e p= ( ) is the electron Fermi energy.
The direct inclusion of degeneracy increases el . The ion-
screening lengths are the Debye lengths for each species,
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To prevent ions from screening below the inter-ionic spacing,
Stanton & Murillo (2016) introduce an approximate ion sphere
for each species a Z n3 4i i e

1 3pº ( ¯ ) , and define an ion-sphere
coupling parameter
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This construction enforces a minimum on the screening
length at approximately the ion-sphere radius ai for each
species, similar to the strict minimum at ai¯ set by Paquette et al.
(1986a). Stanton & Murillo (2016) point out that this
adjustment to the ion-screening length is physically motivated
by the ion pair distribution functions in a strongly coupled
plasma, where the occupation probability within the ion-sphere
radius is negligible, and hence no ions are present to provide
screening beneath that cutoff. The proper handling of
degeneracy in the electron screening length makes it unneces-
sary to impose any particular minimum there, so there is no
longer any ad hoc appeal to a universal minimum screening
length.
For repulsive Coulomb potentials of the form given in

Equation (11), Stanton & Murillo (2016) provide fits and tables
of collision integrals and coefficients that we now use to
calculate the resistance coefficients Kst for inclusion in the
Burgers equations in MESA. They do not provide fits for
attractive potentials, and Paquette et al. (1986a) note that
interactions with these potentials behave significantly differ-
ently from those with repulsive potentials when screened.
Hence, MESA continues to use the Paquette et al. (1986a)
coefficients for electron–ion terms, and adopts Stanton &
Murillo (2016) for all ion–ion coefficients. In any case, it is
evident from Equation(94) in Paper III that the resistance
coefficients approximately follow Kst st

1 2mµ , where stm is the
reduced mass of particles s and t; so, electron–ion resistance
coefficients are generally negligible compared to the ion–ion
terms.
The calculations of Paquette et al. (1986a) overestimate the

electron–ion resistance coefficients in the case where electrons

Figure 16. Abundance profiles in 0.6 M MESA WD models at Teff =5000 K
after evolving for 4 Gyr to approach diffusive equilibrium in the outer layers.
The old equations assume an ideal gas; the new equations include the effects of
electron degeneracy.
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are degenerate. This is because diffusion and resistance
coefficients are generally calculated assuming that the velocity
distributions of all particles are Maxwellian, and the coeffi-
cients roughly scale as K v vst s t

2 2µ - - . When the electrons
become degenerate, their characteristic kinetic energies are of
order E k TF B , and so their velocity distribution skews
toward larger velocities. This results in smaller resistance
coefficients Kst, overestimating the impact of the electron–ion
drag. However, the overestimate results in coefficients that
remain negligible compared to ion–ion terms, and no attempt is
made to correct it in MESA.

For repulsive potentials, the coefficients from Stanton &
Murillo (2016) generally agree with those of Paquette et al.
(1986a) to within a few percent. In strongly coupled WD
interiors, the Stanton & Murillo (2016) coefficients lead to

10%~ shorter diffusion timescales due to a screening length
that is allowed to be somewhat smaller than the minimum value
imposed by Paquette et al. (1986a): aeff il < ¯ . Future prospects
for further improvements to diffusion coefficients include the
recent progress on effective potential methods from Daligault
et al. (2016) and Shaffer et al. (2017).

3.4. Diffusion-induced Flashes on He WDs

Diffusion-induced H shell flashes on low-mass
(M 0.4 M ) He WDs are known to alter their cooling times
(Althaus & Benvenuto 2000; Althaus et al. 2001) and seismic
properties (Althaus et al. 2013). Istrate et al. (2016a, 2016b) use
MESA to model this process, generating tables of cooling
timescales and comparing MESA models with those of Althaus
et al. (2013).

Figure 17 shows an exploration of the H shell flash domain
for a large grid of Z 0.02= MESA models over a range of He-
core and H-envelope masses. Here, the envelope mass is
defined as the total mass of H-rich material (X 0.01> ) at the
surface at the beginning of the WD cooling track. Lines show
the minimum envelope masses for which H shell flashes occur
given various diffusion prescriptions.

For a given core mass, there is a range of envelope masses
that exhibit shell flashes only if diffusion is included, but this
range depends on the diffusion prescription. The two lower
lines for models including diffusion in Figure 17 differ only in

the handling of electron degeneracy in the diffusion scheme.
This illustrates the importance of properly handling degeneracy
as described in Section 3.2, since the diffusion-induced flashes
are typically ignited by CNO burning in the diffusive tail of H
that reaches into the partially degenerate He layers. WDs in this
mass range often experience cycles of many H flashes,
depleting H incrementally until insufficient H remains to ignite
another flash. The disagreement between diffusion prescrip-
tions on the minimum envelope mass for flashes is therefore
significant, as this will determine the total number of flashes
and final H mass that sets the ultimate cooling timescale for an
object.
To explore the full range of parameters presented in

Figure 17, our WD models were built by artificially stripping
the H envelope down to a specific mass coordinate above the
He core of a 1.0 M model ascending the RGB. For a
discussion of MESA models including proto-WD formation and
the resulting H envelope masses, see Istrate et al. (2016b).

3.5. Heating from Ne22 Settling

In the strongly degenerate limit, q E m g 2e p » for C/O
WD cores. For an isotope where A Z 2¹ , the electric
and gravitational fields result in a net force that drives
diffusion. For Ne22 in cooling WD interiors, this force is
F Zq E Am g m g2e p p= - » - , causing Ne22 to sediment
toward the center and deposit energy as it moves deeper into
the gravitational potential (Bildsten & Hall 2001; Deloye &
Bildsten 2002; García-Berro et al. 2008, 2010). This heating
can prolong the WD cooling timescale, especially at late times
when the WD is very dim and radiates away the energy slowly.
This effect may be especially important for explaining WD
luminosity functions in old and metal-rich open clusters such as
NGC6791, where abundant Ne22 is available in WD interiors
to provide heating.
MESA now offers an option to include this heating term in

the energy equation (see Section 8.7) when diffusion is
enabled. The specific rate at which energy is deposited is

F v

Am X
m g q E

X v

m
22 10

22
. 1622
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p 22
p e

22 22

p
 = = -

∣ ∣
( )

( ) ( )

The Ne22 diffusion velocity (v22) and electric field are
calculated in the diffusion routine and then used to evaluate
the above heating term. Note that the updates to diffusion
described in Section 3.2 are essential for correctly calculating
both the diffusion velocity and magnitude of the driving force
in the degenerate interior of the WD.
Figure 18 shows the delay in WD cooling from introducing

22 into the 0.6 M models. These models turn off diffusion for
175G > , so 22 is only active in material for which crystal-

lization has not yet occurred. The time delays shown in
Figure 18 are in good agreement with those shown by Deloye
& Bildsten (2002) and García-Berro et al. (2008) for
comparable cases.

4. Implicit Hydrodynamics

In Paper III, we describe implicit shock-capturing hydro-
dynamics capabilities based on the use of an artificial viscosity.
We now add an option for using an approximate Riemann
solver, the HLLC (Harten–Lax–van Leer–Contact) solver
introduced by Toro et al. (1994). (See also Batten et al. 1997
for an early implicit implementation of HLLC.) The HLLC

Figure 17. Minimum envelope mass Menv for which a H shell flash occurs on a
He WD core mass Mcore for Z 0.02= MESA models with and without
diffusion. The regime for the phenomenon of diffusion-induced flashes lies
between the boundaries for models with and without diffusion.
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method provides improved shock capturing and energy
conservation by avoiding the need for artificial viscosity.
However, the methods presented in Paper III are still included
in MESA so that users may continue to apply them.

4.1. Implementation of HLLC

Accurate shock-capturing methods evaluate the flux of
hydrodynamical conserved quantities by extrapolating the
solution on each interface between zones over the course of
the time step. The different methods for projecting the solution
into the future are known as different “Riemann solvers.”
HLLC is designed to accurately capture the evolution of
contact discontinuities. When implemented on a Lagrangian
grid, HLLC is able to evolve purely advective flows without
any contact smearing (Cheng & Shu 2007; Duffell &
MacFadyen 2011; Cheng et al. 2012; Cheng & Shu 2014).

Paper I and Paper III discussed the evolution of a velocity
variable v, defined at cell faces. When using HLLC, MESA
instead evolves a cell-centered velocity u.

We solve a Riemann problem at the cell face with index k.
The cell to the left (toward the center) is the cell with index k;
the cell to the right (toward the surface) is the cell with index
k 1- . The cell face radius is rk. The mass contained within an
individual cell is dmk. The mass enclosed from the center of the
star to the cell face is mk. For convenience, we define the face
area as r4k k

2 p= . Thermodynamic variables (e.g., Pk, kr ) are
defined at cell centers by mass. Figure 19 shows the layout of
the cells.

The calculation begins by making estimates for the density
and velocity at the left and right of the face. Explicit codes
sometimes use multipoint polynomial interpolation based on
values in neighboring cells to improve the reconstruction of the
values at the face. However, for an implicit code such as MESA,
that would introduce dependencies in the partial derivatives for
the Jacobian that would violate the necessary block tridiagonal
structure (see AppendixB in Paper II). To avoid this problem,
we use the cell center density and velocity alone to estimate the
values at the edges of that cell. The variables for the left and
right values are named relative to the edge rather than the cell,

that is,

u u u u . 17
k k

k k
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r r r r= =
= =
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This choice limits the solution to be first-order accurate in
space.
Using an approach similar to Käppeli & Mishra (2014), we

reconstruct the pressure at the faces assuming hydrostatic
equilibrium. The pressure derivative implied by hydrostatic
equilibrium at the face is
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and we reconstruct the pressure to the left and right of the face,
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This choice improves the timescale over which hydrostatic
equilibrium can be maintained when using HLLC and
facilitates the process of switching from a hydrostatic model
to one in which a velocity variable is evolved.
The 1D Lagrangian context makes the implementation of

HLLC straightforward. In a Lagrangian code like MESA, there
is no mass flux across cell faces. In hydrodynamics, there is no
mass flux across a contact discontinuity. HLLC includes the
contact wave, so we simply associate the contact wave with
the cell face.14 As given by Toro (2009), the HLLC estimate of
the contact wave speed is

u u u u P P

u u
,
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Figure 18. Extra cooling time required to reach a given luminosity for 0.6 M
WD models including heating from Ne22 settling, relative to models ignoring
this heating. For comparison, we also show a result from García-Berro et al.
(2008) for a 0.6 M WD with an oxygen-dominated core composition.
Figure 57 shows the same quantity including other physical processes such as
crystallization for the same Z 0.02= WD model shown here.

Figure 19. Cell and face variables relevant for hydrodynamics in MESA when
using HLLC.

14 In Section 5, where we consider the effects of mass diffusion, we will need
to slightly revise this association.
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and hence uface *= . Likewise, the pressure at the cell face is
the pressure at the contact wave, P Pface *= , where

P u u P
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and L and R are the fastest wave speeds moving to the left
and right, respectively. To evaluate these, we assume the
simple and most conservative bounds on the signal velocities,

u c u c
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where cs,L and cs,R are the sound speeds on the left and right
sides of the cell boundary, respectively. Having obtained values
for uface and Pface, we now formulate the versions of the
equations used when HLLC is enabled.

In the Lagrangian picture, the cell boundaries move with the
fluid velocity, such that the net fluxes for mass, momentum,
and energy from cell k to cell k 1- are extremely simple
(Cheng & Shu 2014) and given by
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The Lk term in the energy flux does not come from the solution
of the Riemann problem, but from the fact that MESAalso
evolves a luminosity variable that reflects the radiative or
convective transport of energy.

The finite volume form of the mass conservation equation
remains the same as that given in Paper I,
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However, the equation for the radius (Equation(29) in
Paper III) has changed. The new equation for the radius is

r r u t, 25k k kstart, face, d= + ( )

where td is the time step. For numerical precision, we rewrite
this as

r r
u t
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where this recasting allows the use of the crlibm (de
Dinechin et al. 2007; see also Paper III) function expm to
evaluate the function xexp 1-( ) to machine precision (as
indicated by the underbrace).

The local radial momentum equation for cell k is
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On the right-hand side, the first term is gravitational, the second
is a geometric source term that arises from putting the equation

in conservation-law form, and the final term is the momentum
flux in and out of the cell found by HLLC.
The local total energy conservation equation for cell k is
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(See Section 8.3 for a discussion of how this energy accounting
is related to that typically used in stellar evolution calculations.)
We define the cell center quantities mC and rC to be r and m at
the center of mass of the cell. The terms on the left split the
local total energy into internal, kinetic, and potential compo-
nents. The right side gives the energy in and out of the cell and
the energy sources and sinks in the cell. Energy loss from
neutrinos due to nuclear reactions is already subtracted from
the nuclear burning term, nuc , so only the neutrino energy loss
rate from thermal processes, n , is explicitly accounted for in
Equation (28). Other processes are accounted for via extra .
As in Paper I, the temperature differences of interior cells Tk

are set by the energy transport across boundaries,
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where T k, is provided by the MESA module mlt (see
Section5.1 in Paper I), and the overbars indicate quantities at
the cell faces (see Figure 19). This equation relates the
temperatures of neighboring cells; the actual temperature in
each cell is then fixed by a surface boundary condition.
MESA’s HLLC includes the effects of rotation in the shellular

approximation (see Paper II, Section6.1) and can also include
a post-Newtonian correction to the gravitational force. (For an
example application to neutron star envelopes, see Paper III,
Section5.3). These capabilities require modifications to the
momentum equation. In both cases, they can be treated as a
rescaling of the local gravitational constant G fG . In the
case of rotation, the rescaling factor is fP (Paper II,
Equation(23)). In the post-Newtonian case, it is

Gm rc1 2 2 1 2- -( ( )) . Therefore, when either of these is used
with the hydrodynamics capabilities described in this section,
the rescaling is applied to the G in pressure reconstruction
(Equation (18)) and separately to each G (for cell k and k 1+ )
in the momentum equation (Equation (27)).

4.2. Mesh Refinement

During a typical stellar evolution run, MESA controls its
meshing using “mesh functions” that limit the maximum
allowed change of various quantities between adjacent cells
(see Section6.5 in Paper I and SectionB.4 in Paper II). With
HLLC, the criteria to split or merge cells are written solely in
terms of the radial coordinate in order to simplify the
adjustments to the mesh in response to large changes in
density before and after a shock. Cells split when they
decompress enough that their radial extent becomes too large,
and they merge with a neighbor when they compress enough
that their radial extent becomes too small.
The refinement criteria can use either linear (x=r) or

logarithmic (x rln= ) radius. The user selects a target number
of cells, Ntarget. MESA translates this into a target cell size,
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dx x x Ntarget surface center target= -( ) . A cell is considered too
large if dx dx fk target long> , and a cell is considered too small if
dx dx fktarget short> .15 The refinement then proceeds iteratively.
At each iteration, MESA selects the smallest and largest cells. If
the largest cell is too large, it is split. If the smallest cell is too
small, it is merged unless the magnitude of the difference
between its velocity and that of either neighbor is a significant
fraction of the local sound speed: this prevents merging in the
immediate vicinity of the shock where there are sharp jumps in
velocity. The refinement proceeds up to some maximum
number of iterations, though in practice the procedure typically
stops before then because no more cells satisfy the criteria to be
split or merged.

A cell merges with its smaller neighbor, unless they have a
different most-abundant chemical species, in which case the
cell merges with the other neighbor instead. When a cell is
split, differences in quantities such as density and chemical
abundances between the two child cells are determined by
interpolation from the neighboring cells.

4.3. Time Resolution

Since the hydrodynamics equations are being solved
implicitly, MESAis not subject to the Courant–Friedrichs–
Lewy (CFL) time step condition for numerical stability. The
size of the MESA time step is instead limited by the restrictions
on the allowed changes in the structure of the star. The usual
time step controls continue to apply.

Although numerical stability does not require the restrictive
CFL time step condition, the choice of time step does affect the
accuracy of the solution. A CFL-like limit is often also applied
because it can be a convenient additional way to restrict time
steps along with the other options. Such a restriction allows for
well-converged solutions. The time step can be limited by the
requirement that
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where ft is a user parameter. Unlike in an explicit code where a
similar minimum must be evaluated over all cells, in MESA the
minimum is taken only over cells for which
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where cs,max is the maximum evaluated over nearby cells, and fu
is a user parameter.16 This means that only regions near the
shock front limit the time step. The option for additional
limitations on where this condition is evaluated (e.g., in mass)
is provided.

4.4. Hydrodynamic Test Problems

In order to test the HLLC implementation, comparisons are
now made to problems with known solutions.

4.4.1. Sedov Blast Wave

In the Sedov blast wave problem, an energy Eblast is
deposited at the origin at time zero in a domain with a non-
uniform density profile r0r r= w- , where 0r and ω are
constants. We assume an ideal gas EOS with a constant
adiabatic index γ, that is, P e1g r= -( ) .
The generation of numerical Sedov solutions is discussed in

Kamm & Timmes (2007). A constant initial density profile,
ω=0, is frequently used in verification tests (e.g., Gehmeyr &
Mihalas 1994; Fryxell et al. 2000). Although a power-law
initial density profile is more challenging for verification
studies, we explore such a profile because density gradients are
prevalent in astrophysics.
To model a shock propagating down a linear density gradient

in spherical geometry, we set ω=1, γ=7/5, ρ0=1 g cm−3,
and P0=0 erg cm−3 in the analytic solution, while we set
P0=10−6ergcm−3 in MESA as a stable numerical approx-
imation to zero pressure. The initial blast energy,
E 1.464 ergblast = , is determined by choosing r 1 cmshock = at
t=1 s and then calculating the Sedov energy integral.
Figure 20 shows the evolution of the density, pressure, and
velocity. As the shock propagates outward from the origin,
these quantities monotonically decrease as mass is swept up by
the shock. The spherical Sedov problem admits a similarity
solution. Figure 21 demonstrates that MESA maintains the
analytic self-similar profiles at different times.

Figure 20. Sedov blast wave density, pressure, and velocity profiles at the
labeled times. The analytic (black) and MESA (colored) curves show solutions
for a shock propagating down a r0

1r r= - density profile with an adiabatic
index γ=7/5. Deviations from the analytic solutions are 2%.

15 By default, N 1000target = , f 4.0short = , and f 1.5long = , but these
parameters are configurable at runtime.
16 The value of ft is similar to the values of a CFL parameter in an explicit
code, while fu in the examples is typically a small value like 10−2. The
description of these limits is schematic, and the reader is referred to the source
code for the precise implementation details.
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4.4.2. Noh Problem

Noh (1987) describes a standard verification problem that
tests the ability to transform kinetic energy into internal energy,
and the ability to follow supersonic flows. A sphere of cold gas
with an ideal gas EOS and constant adiabatic index γ, that is,
P e1g r= -( ) , is initialized with a uniform, radially inward
speed of 1 cm s−1. A shock forms at the origin and propagates
outward as the gas stagnates. For an initial gas density
ρ0=1 g cm−3, the analytic solution in spherical geometry for
γ=5/3 predicts a density of 64 g cm−3 in the stagnated gas.

Figure 22 shows the analytic and MESAprofiles for the
density, pressure, and material speed at t=0.3 s. Most
implementations, including MESA’s, produce anomalous
“wall-heating” near the origin (although see Gehmeyr et al.
1997). As the shock forms at the origin, the momentum
equation tries to establish the correct pressure level. However,
numerical dissipation generates additional entropy. The density
near the origin drops below the correct value to compensate for
the excess internal energy (e.g., Noh 1987; Rider 2000). Thus,
the density profile is altered near the origin while the pressure
profile remains at the correct constant level in the post-shock
region.

Figure 22 shows the analytic solution and MESAsolution for
a fixed time step of δt=5×10−6 s and 10,000 cells.
Deviations from the analytic solutions are 1%, except for
the density near the origin and the shock front. A convergence
exercise with different fixed time steps and spatial resolutions
suggests that spatial resolution is relatively more important than
temporal resolution in the MESA solutions for the Noh problem.

4.4.3. Supernova Shock

The problem of a supernova (SN) shock moving through a
stellar envelope has been extensively studied. For a radiation-
dominated strong shock, a simple analytic expression for the

shock velocity is provided by Matzner & McKee (1999),
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where we adopt 0.736a = as suggested by Tan et al. (2001).
The explosion has an energy E. The mass that enters into this
expression is the mass entrained by the shock and so differs
from the Lagrangian mass coordinate (m) by the mass of the
remnant (Mcenter). Since the material in the shocked envelope
has an adiabatic index of 4/3, the Matzner & McKee (1999)
prediction for the post-shock velocity is v v6 7MM sh= .
MESA defines the shock location to be the outermost point

where the fluid Mach number exceeds1, as measured in the
rest frame of the star. Since the primary application of these
capabilities are blast waves propagating into approximately
static stellar envelopes, this shock detection criterion suffices.
Figure 23 compares the velocity in a MESA model (the 19M
model of SN 1999em; see Section 6) with vMM. We show
explosions with two different energies, E 0.9 10 erg51= ´
and E 2.7 10 erg51= ´ . Both cases have M 1.5 Mcenter = .
Typical differences are at the few percent level.

4.4.4. Weak Shock Propagation

We now explore weak shocks with Mach numbers
1.2 2.2 = – propagating outward in the hot stellar envelope

of a classical nova progenitor. The model is a 0.8 M WD.
The H/He envelope extends from r 7.1 10 cm8= ´ to
r 7.85 10 cm8= ´ with densities ρ=10–100 g cm−3 and
temperatures T 10 K7» .
After excising the core, we run the model with HLLC

enabled for 100 s, corresponding to ≈50 sound crossing
times in the outer envelope, to allow the envelope to
settle. Afterwards, the envelope has a total energy of

9.16 10 erg45- ´ , with 9.38 10 erg45- ´ in potential energy,
2.22 10 erg44´ in thermal energy, and a negligible kinetic
energy1.2 10 erg29´ . We turn off convective energy transport
to study the properties of weak shocks. To create weak shocks,
we inject 0.5%–5% of the total thermal energy into a single cell
with mass dm 1.6 10 g25= ´ at r 7.3475 10 cm8= ´ over

Figure 21. Sedov blast wave self-similarity of the analytic (black curves) and
MESA (colored symbols) solutions. Scaled velocity v vshock, pressure P Pshock ,
and density shockr r profiles for a shock propagating down a r0

1r r= - density
profile at the three different times are overlaid. Symbols for each epoch mark
cell locations. Deviations from the analytic self-similar solutions are 2%.

Figure 22. Analytic (colored solid) and MESA (black dashed) solutions for the
density, pressure, and velocity at t=0.3 s in the Noh problem. Disagreements
near the center are due to wall-heating, as discussed in the text.

19

The Astrophysical Journal Supplement Series, 234:34 (50pp), 2018 February Paxton et al.



10−4 s. Figure 24 shows the resulting upward and downward
propagating shocks. We restrict our region of study to the
region where the upward and downward shocks are well-
separated, in the radius range of r 7.4 7.65 10 cm8= - ´
(denoted with thin gray lines in Figure 24). We do not study the
properties of the downward shock and its artificial reflection
from the “floor” of our model.
We define u dr dt0 peak= as the shock velocity, where rpeak

is defined as the radial location with maximum fluid velocity.
We compare the properties of the shock to analytic expecta-
tions for cases where γ is identical in the pre- and post-shock
material. Pre-shocked quantities carry a 0 subscript, and
shocked quantities carry a 1, and we use the sound speeds,
cs, and pressures, P, on either side of the discontinuity.
Following Zel’dovich & Raizer (1967), in the rest frame of the
shock front, the pre-shock gas travels into the shock front at
velocity
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The post-shock velocity u1 has magnitude u u u1 0 peak= -∣ ∣ ∣ ∣,
where upeak denotes the fluid velocity u at rpeak. The analytic
expression is

u

c

P P1 1

2
. 341

s,1

2
0 1g g

g
=

- + +⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( )

Local shocked quantities are evaluated at the cell with the
maximum Lagrangian fluid velocity, while pre-shocked
quantities are evaluated at the cell in the initial MESA profile
(before the shock has propagated) with the same mass
coordinate as the shock front when it reaches rpeak. The thin
black lines in the upper and lower panels of Figure 25 are the
right-hand side of Equations (33) and (34), respectively, for
shocks produced by different amounts of injected energy.

Figure 23. Comparison of MESA with the analytic results of Matzner & McKee
(1999) and Tan et al. (2001). This started as a 19 M model at ZAMS;
at explosion it is 17.79 M with M 1.5 Mcenter = . The upper panel shows
an explosion with E 0.9 10 erg51= ´ ; the lower panel shows E 2.7= ´
10 erg51 . The gray dashed curve shows the analytic prediction for the post-
shock fluid velocity given the density profile of the initial model. The solid
curves show the velocity profiles from the MESA calculation at specific times.
The unfilled diamonds indicate where on the dashed curve the two should be
compared.

Figure 24. Velocity at different times in the envelope after 6×1042 erg has
been injected. One shock front travels upward and grows as it enters the outer
atmosphere, and another pulse travels downward and reflects off of the inner
boundary. The thin gray lines denote the region of study.

Figure 25. Comparison of the MESA calculation (colored lines) with analytic
expressions (thin black lines) for u c0 s,0

2( ) (upper) and u c1 s,1
2( ) (lower) for

different energies injected.
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Colored lines show the left-hand side of each equation as
calculated from the MESA model.

We now compare the temperatures T0 and T1 of the pre- and
post-shock gas. We expect
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The thin black lines in the upper panel of Figure 26 show the
right-hand side of Equation (36), and the solid colored lines
correspond to quantities calculated by MESA. The colored
dotted lines in the top plot show the temperature change for an
adiabatic compression,
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making it clear that for the weakest shocks, the temperature
jump is that expected from an adiabatic compression. However,
for stronger shocks, the temperature is higher due to the
entropy increase associated with the shock. For a gas with
specific heat capacity cV, this entropy jump is
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shown by the thin black lines in the bottom plot of Figure 26.
The colored lines correspond to quantities calculated by
MESA. The agreement is excellent for large entropy jumps,
but becomes noisy at lower injection energies because
extracting small changes from the background is then
challenging. For the weakest shock, the entropy changes are
orders of magnitude smaller than the background entropy,
1.2–1.6×109 erg g−1 K−1 in the region of interest.

5. Rayleigh–Taylor Instabilities

The outward moving shock in a core-collapse SN explosion
encounters multiple composition boundaries. Across these
boundaries, the density gradient is steep, especially at the H/He
boundary. Post-shock, these regions become unstable to the
Rayleigh–Taylor instability (RTI). Early analytics and 2D
simulations (Chevalier 1976; Chevalier & Klein 1978; Weaver
& Woosley 1980; Benz & Thielemann 1990; Herant & Benz
1991) and modern 3D calculations (Hammer et al. 2010;
Wongwathanarat et al. 2015; Utrobin et al. 2017) show
significant impact on the density, velocity, and composition
structure of the ejecta.
It has been known for decades that the resulting composi-

tional mixing can significantly alter the photometry of the SN.
This effect has been roughly included in 1D modeling of Type
IIP light curves resulting from explosions deep within a red
supergiant (Eastman & Pinto 1993; Utrobin 2007; Dessart &
Hillier 2010, 2011). The mass densities and energy densities
are also smeared out by the mixing from the RTI (see Bersten
et al. 2011 for an early discussion raising this concern). In their
recent modeling of the Type IIP SN 1999em, Utrobin et al.
(2017) capture the impact of the RTI using a 3D model pre-
breakout and connect it to observable SN properties with a 1D
post-breakout radiation calculation.
To approximate the 3D effects of the RTI, we implement a

scheme by Duffell (2016) that modifies the 1D spherical
hydrodynamics equations. This scheme has been recently
applied to the specific case of core-collapse SNe by P.Duffell
et al.(2018, in preparation) and is now implemented in MESA
for use along with the HLLC scheme. In this section, we
describe the MESAimplementation and compare it to the 3D
calculations of Wongwathanarat et al. (2015). The use of the
resulting RTI-mixed ejecta for SN light curves and velocities
will be discussed in Section 6.

5.1. Implementation of the Duffell RTI

The Duffell (2016) scheme evolves an additional scalar
quantity a representing the relative strength of turbulent
fluctuations.17 The evolution equation for a is an advection–
diffusion equation with source terms. In Eulerian form, this is
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The source and sink terms Sa
+ and Sa

- represent the growth and
decay of the turbulence, respectively. These terms along with a
diffusion coefficient h are determined via scaling arguments.
The dimensionless coefficients in front of these quantities
(growth coefficients A, B, diffusion coefficient C, and
decay coefficient D) are determined by calibrating a suite of

Figure 26. Comparison of the MESA calculation (colored lines) to the
expectations of shock theory (thin black lines) for the temperature increase
(upper) and entropy increase (lower) for different energies injected. Colored
dotted lines in the upper plot indicate the temperature change for a purely
adiabatic compression.

17 The quantity a is denoted by κ in Duffell (2016) and alpha_RTI
within MESA.

21

The Astrophysical Journal Supplement Series, 234:34 (50pp), 2018 February Paxton et al.



1D models against 3D hydrodynamics simulations. The
original model of Duffell (2016) calibrates against 2D
simulations; see P.Duffell et al.(2018, in preparation) for
the re-calibration of these constants to 3D simulations. The
values of the constants found by that 3D calibration are
A 10 3
 = - , B 2.5 = , C 0.2 = , and D 2.0 = . In MESA,

these constants are adjustable so that the user may explore the
effect of varying them. For example, we show later the effect of
D 2.0, 3.0, and 4.0 = on the mass fractions in massive star
SN models at shock breakout.

Additionally, a diffusive term (with diffusivity h ) appears
in each of the mass, momentum, and energy equations. For the
sake of exploration in MESA, we allow each diffusivity to be
scaled by an independent factor. With the diffusive term, the
mass flux becomes (cf., Equation (23))

F u r
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and the choice u r= ˙ (i.e., uface *= ) no longer causes this
quantity to vanish. If no correction were applied, MESA would
no longer preserve the mass coordinates of zone faces. In order
to preserve the Lagrangian nature of the equations, we allow
for an additional velocity between the cell face and the fluid.
The advective flux introduced by the relative motion of the face
will then exactly cancel this diffusive flux, restoring the
Lagrangian nature of the scheme. Assuming r u ud= +˙ , the
no mass flux condition can be rewritten as

u
r m

dm

dr

1 1
. 41 d h

r
r

h
r

r
=

¶
¶

=
¶
¶

⎛
⎝⎜

⎞
⎠⎟ ( )

The term in parentheses is equal to. In the finite volume form
evolved by MESA, evaluating this condition at the cell face
gives

u
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Therefore, we modify the HLLC equation uface *= to

u u, 43face * d= + ( )

and proceed as in Section 4.1 (see Equation (20) and the
surrounding discussion). Usually u *d ∣ ∣ , so in practice this
is a small modification and the HLLC scheme still works well.

For a scalar quantity f, the flux is the sum of the diffusive
flux plus the advective flux f u, , , r d( ) created by the
velocity shift ud , that is,
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Rewriting the spatial derivative as a mass derivative gives
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To evaluate the fluxes for a cell k, we define
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The finite volume version of Equation (38) evolved by
MESA is
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We evaluate the product of the P and ρ spatial derivatives as
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which is numerically preferable to a subtraction of radial
coordinates. At sharp jumps in density and pressure, these
source terms can diverge, and therefore options to smooth P

r r

r¶
¶

¶
¶

are available, though they are off by default. In practice,
smoothing does not appear to be necessary in the cases we have
explored, as HLLC typically smears out these sharp jumps over
several cells in the model at the shock, and RTI mixing then
smooths out the jumps more post-shock.

5.2. Comparing a Munich 3D Model to MESA with the
Duffell RTI

We now develop a MESA analogue to a specific 3D
simulation of Wongwathanarat et al. (2015). This provides a
comparison of the predictions from the MESA implementation
of the RTI mixing described in the previous subsection (which
we refer to as the Duffell RTI) with those obtained in a 3D
simulation. The Wongwathanarat et al. (2015) progenitor
model we use, L15-1-cw, has a mass of 15 M based on
Limongi et al. (2000). We refer to this as the Munich L15
model. Note, as made clear in Wongwathanarat et al. (2015),
most prior studies simulating RTI in SN envelopes disregard
early-time asymmetries, relying on explosions that are initiated
assuming spherical symmetry. Since those explosion asymme-
tries appear to have significant consequences, it is important to
start from a 3D model like L15-1-cw when evaluating the use
of MESA for supernovae.
To compare with the Munich L15 model, we construct a

MESA starting model with similar parameters. Future studies of
a variety of 3D models will be necessary to assess the impact
on our 1D results of a variety of 3D asymmetries in the initial
explosion. Just as the Duffell RTI allows 1D simulations to
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capture many of the effects of the 3D RTI, it may be possible to
extend 1D codes in the future to include relevant effects of
explosion asymmetries in a self-consistent manner rather than
by expediencies such as those we describe below for
initializing the 56Ni abundance.

We now compare the 3D shell averages of Wongwathanarat
et al. (2015) to MESA with the Duffell RTI enabled. The left
panel of Figure 27 shows the resulting abundances when the
shock is at 4.8 M, with the thin lines from MESA with D 3 =
and the thick lines the 3D averages from the Munich L15
model. For H, He, and O, the MESA lines agree with the
Munich model. If nothing is done to take into account the
initial asymmetry of the explosion, the radial extent of the 56Ni
in the Munich model far exceeds what can be achieved in
MESA by the Duffell RTI mixing. Hence, at this moment in
the model evolution, we use the Munich L15 results to fix the
extent of the MESA distribution of 56Ni. Later mixing in the
MESA run is done by the Duffell RTI. The right panel of
Figure 27 shows the comparison with the Munich model
just before shock breakout. For this case, we show three
simulations with D 2, 3 = and 4.

In Figure 28, we show the MESA profiles of density (upper
panel) and velocity (lower panel) at the moment when the
shock is at 14.7 M. The solid lines are with Duffell RTI
enabled, while the dotted lines are with it turned off. As shown
by Wongwathanarat et al. (2015), Utrobin et al. (2017), and
P.Duffell et al.(2018, in preparation),the operation of the RTI
removes the unphysical density feature produced in 1D
simulations without it. Such features can be seen in Figures2
of Eastman et al. (1994) and Dessart & Hillier (2011) and in the
dotted black line in the upper panel of Figure 28. The Duffell
RTI also alters the velocity structure of the material near the
H/He boundary, as we will discuss more in Section 6.6. The
thick gray lines in both plots show the 1D shell averages of the
3D Munich L15 model. The fainter gray lines show the density
and velocity profiles for a variety of angles in the Munich
model. The asymmetries of the shock in the Munich model lead
to its location varying between mass coordinates 10.5 M and
14.5 M. This variation with angle leads to 1D shell averages
that do not show a sharp shock feature but instead have more

rounded shapes. Since the 1D MESA results have the shock at a
single mass coordinate, they are similar to the Munich profiles
at a particular angle. This difference must be considered when
comparing results from MESA to shell averages from the
Munich model. It also shows that the time of shock breakout,
which is well-defined in the 1D model, varies with angle in the
3D model.

6. Light Curve and Velocity Evolution of Core-collapse
Supernovae

We now present MESA modeling of the ejecta evolution
triggered by core collapse in massive stars (roughly

Figure 27. Comparison of abundances in MESA models (thin lines) with 3D shell averages from the Munich L15 model (thick lines). This is a comparison of
analogous models at similar times, so the goal is to illustrate qualitative agreement. Left panel: for D 3 = , the time when the forward shock is at 4.8 M and the
reverse shock at about 4.0 M. The MESA

56Ni curve is the result of artificially inserting 56Ni in the model at this time. Right panel: the time the forward shock is at
14.7 M, so near breakout, and for D 2, 3 = and 4.

Figure 28. Comparison of density (upper panel) and velocity (lower panel)
profiles. The solid black line shows the MESA model using the Duffell RTI
capabilities documented here with D 3; = the dotted black line shows the
same model run without the effects of the RTI. The thick gray lines show
the 1D shell averages of the Munich model, while the fainter gray lines show
the Munich model densities and velocities at different angles.
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M 8 M> ). The new MESAcapabilities enable self-consistent
calculations of the photometric evolution of core-collapse
supernovae (SNe) using the STELLA code (Blinnikov
et al. 1998; Blinnikov & Sorokina 2004; Baklanov
et al. 2005; Blinnikov et al. 2006). A public version of
STELLA is now included with the MESA distribution, and the
interface from MESA to STELLA has been customized for ease
of use.18

Our main emphasis in this section is on the commonly
observed Type IIP “plateau” SNe that originate from energy
deposited deep in the core of an M 8 20 M» – red supergiant
(Smartt 2009). We also exhibit how these new capabilities
enable simulations of core-collapse events that occur after the
star has lost the majority of its outer hydrogen envelope, the
Type IIb and Ib SNe.

The new capabilities we present are provided by a powerful
combination of MESA and STELLA. Post-core-collapse evol-
ution proceeds in two distinct phases. First, we use MESA to
evolve models from a few seconds after the central explosion
triggered by core collapse to a time just before the outgoing
shock reaches the stellar surface. These calculations make use
of HLLC (Section 4) and Duffell RTI (Section 5). Subse-
quently, we use STELLA to evolve models through shock
breakout and beyond the end of the plateau, generating light
curves and velocities of the material at the photosphere and
above.

Simulations using 3D models from the core-collapse event
to shock breakout are computationally expensive but are now
feasible (Wongwathanarat et al. 2015; Utrobin et al. 2017),
and it will be a significant contribution to have more of them
available in the future. To explore the subsequent 100 days
of photometric and spectroscopic evolution, 1D approxima-
tions are common. The new capabilities with MESA and
STELLA also use a 1D approximation for both the pre- and
post-breakout evolution. This provides a less computation-
ally costly alternative for the initial exploration of the
parameter space for potential progenitors prior to or instead
of doing a more realistic but more computationally costly 3D
simulation. The pair MESA and STELLA can produce useful
results in a few hours running on a modern multicore desktop
workstation (see Section 6.7), while the 3D pre-breakout
evolution and post-breakout spectral analysis can take weeks
running on a supercomputer. MESA and STELLAare not a
replacement for the more computationally expensive codes
but will be useful in conjunction with them.

Throughout this section, we present models that we
characterize as “similar to” observed SNe. We list the
properties and parameters of these models in Table 3. As we
discuss in Section 6.8, where we describe the procedure by
which these models were generated, they are not “best-fit”
models. Rather, they simply serve as illustrative cases of these
new capabilities.

6.1. From Core Collapse to Near Breakout with MESA

Models of massive stars can be evolved in MESA up to the
onset of the rapid infall of the iron core (see Paper I, Paper II,
and Paper III). However, MESA cannot model the core-collapse
event itself. Hence, to transition from the onset of core infall to

the explosion phase, we rely on a a variety of approximate
procedures (Paper III).
For the current efforts, our approach is as follows. We

remove the center section of the model at the location where
the entropy per baryon is 4 kB, excising the portion of the
model that will have collapsed to form a proto-neutron star.
This corresponds approximately to the iron core, typically at
about 1.5 M. We allow the model to continue infall until its
inner boundary (IB) reaches 200 km, near the location of the
stalled shock (thanks to H.-T. Janka 2017, private commu-
nication, for suggesting this scheme). After the first few
seconds, we account for further fallback by removing
negative velocity material at the IB. We are not seeking a
numerical model of realistic fallback since that depends on
3D details of the explosion that are beyond what MESA can
simulate.
The stellar explosion is induced by injecting energy in a thin

layer of approximately 0.01 M at the IB for 5 ms, at a rate
sufficient to raise the total energy of the model to a user-
specified value. In the subsequent evolution, nuclear reactions
are allowed to change abundances but not to generate energy.
This choice is suitable because we are not seeking accurate
nucleosynthetic yields. The explosion energy spent to photo-
disintegrate the core into a mix of protons, neutrons, and alpha
particles is soon after roughly repaid by the energy released as
those particles recombine to form products such as 56Ni.
Getting an accurate accounting of the energy balance of that
complex process is beyond the scope of this paper and is not
attempted in the following examples. Our choice to exclude
nuclear energy generation can be seen as a simplifying
assumption that the cost of photodisintegration is balanced by
the return from later recombination. For users wishing to refine
this, any excess change in energy from nuclear reactions can be
included in the specification of the post-explosion total energy
of the model.
The conservation of total energy throughout the run is

estimated by summing the per-step errors from post-
explosion to near breakout. At each time step, we compare
the actual change in total energy between the initial and final
models for the step to the change expected from surface
luminosity and neutrino losses over the duration of the step.
The runs for the models reported below typically show
relative cumulative errors in the conservation of total energy
of less than 1%, with most of that error happening in the first
few minutes post-explosion when the shock is most extreme.
For later stages, the cumulative relative error is orders of
magnitude smaller.
The post-explosion evolution of the MESA model is

determined by the shock traversal through the star and the
resulting Duffell RTI. Figure 29 illustrates the difference
between models with and without the effects of the RTI by
showing density and pressure profiles. They are shown
when the forward shock is about halfway through the star
and when the reverse shock originating at the H/He
boundary has reached 4 M»  on its way to the center. The
reverse shock is primarily responsible for the large RTI
effects evident in the plots. The online animated figure
shows the time evolution of these and many other quantities
of interest from seconds after explosion to near shock
breakout.

18 When using these capabilities, one should cite this instrument paper and the
following papers describing STELLA: Blinnikov & Sorokina (2004), Baklanov
et al. (2005), and Blinnikov et al. (2006).
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Table 3
Key Properties and Parameters Associated with the Core-collapse SN Models

Progenitor Parameters Stellar Properties at the Time of Explosion Explosion Parameters and Properties

MZAMS Mexp Teff Rexp log MHe Mc,i Eexp Mc,f Mej MNi MCSM˙
Case M[ ] Z v vc ZAMS( ) windh fov MLT,Ha M[ ] K[ ] R[ ] L Lexp ( ) M[ ] M[ ] 10 erg51[ ] M[ ] M[ ] M[ ] e, h h boxcar t yCSM [ ] M yr 1-

[ ] v km sCSM
1-[ ]

std_16 16.0 0.02 0.2 0.4 0.01 3.0 14.5 3960 759 5.11 5.58 1.58 0.65 1.58 12.9 0.04 1.0 0 0.0 0.0 0.0
99em_16 16.0 0.02 0.2 0.4 0.01 3.0 14.5 3960 759 5.11 5.58 1.58 0.60 1.58 12.9 0.042 2.0 3 1.0 0.25 10
99em_19 19.0 0.02 0.2 0.4 0.00 3.0 17.8 4490 603 5.13 6.58 1.50 0.78 1.50 16.3 0.042 1.0 3 1.2 0.30 12
05cs 13.0 0.006 0.0 0.1 0.01 3.0 12.9 4280 537 4.95 4.37 1.57 0.16 2.51 10.4 0.009 7.0 1 1.0 0.30 10
09N 13.0 0.006 0.0 1.0 0.01 3.0 11.6 4290 549 4.96 4.34 1.67 0.36 1.67 9.9 0.028 30.0 3 1.4 0.30 10
12A 11.8 0.02 0.2 0.1 0.002 3.0 11.6 4300 525 4.94 4.08 1.49 0.28 1.49 10.1 0.009 3.0 2 0.9 0.30 10
13bvn 11.0 0.02 0.0 0.0 0.01 2.0 3.4 26520 7.24 4.37 3.40 1.57 0.95 1.57 1.8 0.110 1.0 5 0.0 0.0 0
stripped 17.0 0.02 0.3 0.0 0.01 3.0 K K K K K K 0.63 K K 0.037 1.0 20 0.0 0.0 0

Note. The column “Case” identifies the model. The “Progenitor Parameters” subtable lists input parameters used during the MESA evolution of the models to core infall: initial mass (MZAMS), initial metallicity (Z ), initial
rotation ( v vc ZAMS( ) ), overshooting parameter ( fov), wind scaling factor ( windh ), and the mixing length for MLT in the H envelope MLT,Ha( ). The “Stellar Properties at the Time of Explosion” subtable lists the physical
quantities evaluated in the MESA model at the time the Fe core begins to infall: mass (Mexp), effective temperature (Teff ), radius (Rexp), luminosity (Lexp), mass of the He core (MHe), and initial mass of the Fe core that will
be excised (Mc,i). The “Explosion Properties and Parameters” subtable lists input parameters like the total energy after explosion Eexp and the 56Ni mass MNi as well as properties of the model including the final core
mass after fallback (Mc,f ) and the total ejecta mass (Mej). This subtable also lists input parameters used in the MESA plus STELLA modeling such as the RTI parameter ( e,h ) and the number of boxcar smoothing passes
(“Boxcar”). Parameters controlling the extent of the CSM are also needed; for a wind profile, this includes the wind duration (tCSM), mass loss rate (MCSM˙ ), and velocity (vCSM). Many properties are omitted for the
stripped case because this is an ensemble of models with a range of envelope stripping (see Section 6.9).
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6.2. From Near Breakout through the Plateau:
Introducing STELLA

To follow the evolution of the model through shock breakout
and beyond, we use a multigroup (i.e., frequency-dependent)
radiation hydrodynamics code.19 When the shock is near
breakout, we hand the MESA model off to STELLA in an
appropriate form, which involves interpolating to the desired
grid and optionally adding circumstellar material (CSM)
according to user specifications. With that done, MESA is
finished, and STELLA takes over (see Section 6.3 for a
discussion of how we select when to hand off).

STELLA (Blinnikov et al. 1998; Blinnikov & Sorokina 2004;
Baklanov et al. 2005; Blinnikov et al. 2006) is able to model
SN evolution at early times, before the expansion is
homologous. It can also handle shock breakout and interaction
with CSM outside the conventional stellar photosphere.
STELLA is an implicitly differenced hydrodynamics code that
incorporates multigroup radiative transfer. The time-dependent
equations are solved implicitly for the angular moments of
intensity averaged over fixed frequency bands. STELLA takes
about the same amount of time for near-breakout to post-
plateau evolution as MESA takes to simulate from explosion to
near breakout: about an hour on current workstations.

STELLA solves the radiative transfer equations in the
intensity momentum approximation in each frequency bin.
We use 40 to 200 frequency groups, enough to produce
bolometric luminosities and broadband colors, but not
sufficient to produce spectra. Better broadband light curves
can be produced with a larger number of frequency groups, but
40 is sufficient for a bolometric light curve and gives faster
runtimes since each group must be represented by a variable
and an equation at each zone. The opacity is computed based
on over 153,000 spectral lines from Kurucz & Bell (1995) and
Verner et al. (1996). The expansion opacity formalism from
Eastman & Pinto (1993) is used for line opacities taking high
velocity gradients into account. The opacity also includes
photoionization, free–free absorption, and electron scattering.
LTE is assumed in the plasma, which allows the use of the
Boltzmann–Saha distribution for ionization and level

populations. STELLA does not include a nuclear reaction
network except for the radioactive decay chain initiated from
56Ni. To calculate the overall opacity, the code uses 16 species:
H, He, C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, a sum of stable
Fe and radioactive 56Co, and stable Ni and radioactive 56Ni.
Energy from nickel and cobalt radioactive decay is deposited as
positrons and gamma-rays and is treated in a one-group
transport approximation according to Swartz et al. (1995).
STELLA solves the conservation equations for mass,

momentum, and total energy on a Lagrangian comoving grid.
It employs artificial viscosity based on the standard von
Neumann artificial viscous pressure used for stabilizing
solutions (Von Neumann & Richtmyer 1950) and a cold
artificial viscosity used to smear shocks (Blinnikov et al. 1998;
Moriya et al. 2013). The coupled equations of radiation
hydrodynamics are solved through an implicit high-order
predictor–corrector procedure based on the methods of Gear
(1971) and Brayton et al. (1972); see Blinnikov & Panov
(1996) and Stabrowski (1997) for details.
We explore the sensitivity of the bolometric light curves

(Lbol) reported by STELLA to the number of frequency bins,
spatial zoning, and error tolerances. The result of our sensitivity
study is that 40 frequency bins, 300 spatial zones, and an error
tolerance of 0.001 for the Gear–Brayton method typically give
a converged model. In our experience using MESA and
STELLA for Type IIP SNe, we have not found cases that
require different values for the number of frequency bins and
error tolerance. Some cases may need a larger number of zones
in order to minimize numerical artifacts producing spurious
oscillations in the light curve. This problem can often be fixed
by a relatively small increase in the number of zones; this is
shown for a case similar to SN 2012A in Figure 30.

6.3. Handing Off from MESA to STELLA

A time must be chosen to hand off the MESA model to
STELLA. This choice is driven by a compromise between two
considerations. First, RTI modeling ceases once STELLA is
running even though the effects of RTI may not be complete at
that time. Therefore, one wants the model to remain in MESA as
long as possible. But second, STELLA more accurately handles
shock breakout and the outermost layers, especially if any
matter is placed above the photosphere or if significant

Figure 29. Density (left y-axis, orange curves) and pressure (right y-axis, blue curves) for MESA models with the Duffell RTI (left panel) and without any RTI effects
(right panel) at a time when the forward shock is approximately halfway through the star. The animated figure shows the time evolution of these and other quantities
for each case.

19 MESA can be run through shock breakout and beyond, but we do not view
gray opacity light curves as sufficient for quantitative comparisons to
observed SNe.
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radiation is free-streaming from just below the photosphere
prior to shock breakout. Moreover, the sophisticated multi-
group radiation transfer of STELLA will do a much better job
than (gray) MESA at later times post-breakout. Hence, for
longer-term light curve evolution, this motivates the default
choice to perform this handoff just before breakout.

In order to illustrate the effects of this choice, Figure 31
shows bolometric light curves for cases where the handoffs are
done at different times. Note that this plot shows MESA being
forced to run post-breakout even though that is not recom-
mended. The deviation of the light curves for later handoff is
primarily the result of STELLA doing a better job because of its
multigroup radiation transfer rather than any late-stage RTI
effects being captured by MESA that are missed by STELLA.
That is because, for this case, the H envelope is of normal
thickness and the reverse shock from the H/He boundary has
time to reach the center, completing essentially all of the RTI
effects before breakout.

In the runs presented in the remainder of this section, we
choose to do the MESA-to-STELLA handoff shortly before
breakout, as determined by the outgoing shock front reaching a
location 0.11 M below the surface of the model (this location
is a user-defined parameter). Again, we note that in some cases
the reverse shock is still far from the center at this moment, and
not all of the RTI mixing has completed. In particular, this is
true for models with a partially stripped envelope (see
Section 6.9). For now, this remains a caveat for the user; a
solution would be to have the post-breakout radiation
hydrodynamics code include a treatment of the effects of
RTI. When presenting the results, we define t=0 as the time
of shock breakout—which we identify using the peak of the
bolometric luminosity—and not the (earlier) time of the MESA-
to-STELLAhandoff.

Because of STELLA’s treatment of radiation hydrody-
namics, we have not had to take the progress of the model
toward homologous expansion into consideration in selecting a
time to hand off from MESA. However, this is a consideration
for doing a handoff to radiative transfer codes that assume
homology. More accurate spectral and light curve modeling
with full radiative transfer, such as EDDINGTON (Eastman &
Pinto 1993), SEDONA (Kasen et al. 2006), and CMFGEN

(Dessart & Hillier 2010), assume homologous expansion in
their current applications to SNe, and this should be considered
when deciding the time to hand off from another simulation.
Indeed, Eastman et al. (1994) and Dessart & Hillier (2011)
discuss this challenge, especially for the innermost material that
has not reached a homologous stage and can still have a reverse
shock running through it. Approximations made in mapping to
a thereafter homologous code can impact the late-time
photospheric velocity evolution and the nebular line width
predictions associated with the innermost ejecta.
In contrast, STELLA does not assume homologous expan-

sion, so early handoffs are fine; it can handle the effects of the

Figure 30. Effect of number of STELLA zones on a model (12A) similar to SN
2012A. The inset zooms in on the region of the plateau that exhibits numerical
oscillations. A small increase in the number of zones significantly reduces this
artifact, and doubling the number of zones almost completely removes it.

Figure 31. Bolometric light curves for Type IIP SNe obtained where the
transition between MESA and STELLA has been done at different times relative
to shock breakout. Performing the handoff just before breakout (blue curve,
day 0) is the recommended choice.

Figure 32. Profile of v/r throughout the model, normalized to the values at the
surface, at a number of epochs. In homologous expansion, the profiles would
be constant and equal to unity. The models are still significantly non-
homologous at 20 days. The bottom panel shows the 56Ni mass fraction for this
model at the MESA-to-STELLA handoff (near shock breakout). The extended
56Ni profile (total nickel mass 0.04 M» ) indicates that it has been mixed by
RTI effects out to near the surface. However, as illustrated by the dotted lines in
the upper panel, the decay energy does not have a significant effect on the
approach to homology.
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remaining pressure gradients as the model moves toward
homologous expansion. This is important, as the time it takes to
reach homology in these models can be quite long. Figure 32
shows velocity evolution results for a model similar to SN
1999em (see discussion in Section 6.8). Homologous expan-
sion would imply that v/r is flat, whereas a 20% variation from
simple homology is evident at 20 days. An additional way in
which homology can be violated long after shock breakout is
from 56Ni decay, especially in Type Ia SNe (Woosley et al.
2007b). As is evident in Figure 32, the much smaller mass
fractions of 56Ni in Type IIP SNe do not cause such a problem.
The contrasting light curves with and without 56Ni are shown
in Figure 33, exhibiting the prolonging of the plateau due to
radioactive decay (Kasen & Woosley 2009; Sukhbold
et al. 2016).

6.4. Connecting to Observations: Photospheric Properties
from STELLA

To set the stage for the rest of this section, we describe a
particular model in detail. Figure 34 shows the evolution of a
model we have constructed to be similar to the Type IIP SN
1999em (99em_19 in Table 3). The quantities shown are those
generated during the STELLA phase of the evolution. Panel(a)
is the bolometric luminosity, while panel(b) shows the velocity
at the location of the photosphere (where 2 3Rost = ), and
panels(c) and(d) show the mass and radius coordinate of this
location. This illustrates the familiar result that the photosphere
only reaches the deeper parts of the ejecta after about day 50.
The radiation and gas temperatures at the photosphere are
shown in panel(e), as is an effective temperature defined by
the bolometric luminosity leaving the photosphere. Panel(f)
shows the optical depth to the IB, highlighting the fact that the
radiative diffusion approximation is excellent (since 1IBt  )
until day 120, at which point the plateau ends and the IB
temperature (panel (g)) approaches that of the photosphere.

Figure 33. Light curves and velocities for a model similar to SN 1999em with
0.04 M» 

56Ni and without 56Ni. The main effect of the radioactive decay is to
prolong the plateau.

Figure 34. Photosphere and IB properties of a model (99em_19 in Table 3)
similar to the Type IIP SN 1999em, as a function of time. From top to bottom,
the figure shows the bolometric luminosity, velocity, mass coordinate, and
radius coordinate of the photosphere; three temperatures (gas, radiation, and
“effective”) at the photosphere; the optical depth to the IB; and the IB
temperature. The gray line in panel (c) shows the Lagrangian mass coordinate
of the IB.

Figure 35. Comparison of model 99em_19 with the multicolor light curve of
SN 1999em, showing colors from STELLA and blackbody colors from MESA.
Circles indicate observational data. This demonstrates the effect of the number
of STELLAfrequency bins on the predicted colors.
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(Curves showing photospheric quantities stop once 3IBt < .)
Meanwhile, the photospheric radius (panel (d)) stays remark-
ably constant throughout the plateau.

Our emphasis is on bolometric luminosities, where 40
STELLA frequency bins are adequate. However, broadband
light curves are also reported by STELLA. Figure 35 shows
how the STELLA colors change as one goes from 40 to 200
frequency bins in a model approximately matching the
bolometric luminosity of SN 1999em (99em_19 in Table 3).
This reflects the fact that a given band is spanned by only a
small number of frequency bins. The non-public research
version of STELLA can opt to use many more frequency bins
to address under-resolution issues. There are no current plans to
include that capability in MESA. We also show what a
blackbody would predict using the MESAcolorsmodule (see
Appendix A). This makes it clear that the line-blanketing in the
U band is well handled by STELLA. We do not include colors
in our subsequent discussions, but we expect they may be
useful to users who have access to observations in one or two
bands, but not enough data to produce a bolometric light curve
from observations.

6.5. Connecting to Observations: Fe II Line Velocities

It is important to be able to interpret the ejecta velocities
measured by observers, which are often inferred from the
absorption minimum in the Fe II 5169Å line. Modeling these
absorption features requires more detailed radiative transfer
than available in STELLA. However, rather than assume that
the photospheric velocity reported by STELLA is identical to
that of the Fe II 5169Å line, we have added the capability of
finding the location (and hence the velocity) of the material
above the photosphere where the Sobolev optical depth in the
Fe II 5169Å line is a specified value.20 This will prove to be
most important after day 30 or so, when the photosphere has
started to move inward in mass coordinate into ejecta with a
shallow density profile.

The strength of a line in a homologously expanding
atmosphere is quantified by the Sobolev optical depth (Sobolev
1960; Castor 1970; Mihalas 1978; Kasen et al. 2006), which
for the Fe II line at any position is

q

m c
n ft , 53

e
iSob

e
2

Fe exp 0t
p

h l= ( )

where 51690l = Å is the line center wavelength for the Fe II
line, f=0.023 is its oscillator strength, nFe is the number
density of iron atoms, and texp is the time since breakout. The
quantity ih is the fraction of iron atoms that are in the lower
level of the transition of interest and depends on the properties
of the gas. D.Kasen (2017, private communication) provided
an T,ih r( ) table for post-processing to produce the Fe II line
velocities, calculated under the assumption of LTE and
covering log g cm 163r = --( ) to −8 and Tlog K 3.3=( )
to 4.3.

We use Equation (53) after the STELLA run to provide the
velocity of material that satisfies a chosen value of Sobt . This
yields a velocity that can be compared to the measured Fe II
line velocities. Figure 36 shows the resulting comparisons for
various choices of Sobt for a model similar to the Type IIP SN

2012A found solely by matching the bolometric luminosity
(upper panel). The lower panel displays the Fe II 5169Å data
and the velocities derived from the photosphere and for a range
of values of Sobt . At early times, there is little difference
between the photospheric velocity and that of the Fe line.
However, as the photosphere moves deeper into the ejecta, the
two velocities substantially diverge. The velocity inferred from
the Sobolev argument gives a much better match to observa-
tions than the photospheric velocity. Motivated by this
comparison, we choose 1Sobt = for our later plots, a parameter
that the user is free to adjust.

6.6. The Impact of Pre-breakout RTI Mixing

We have previously outlined the inclusion of a method for
RTI mixing in MESA (the Duffell scheme; Section 5), the use of
MESAto evolve models pre-breakout (Section 6.1), and the use
of STELLA to evolve models post-breakout (Section 6.2),
and described how to connect the models to observations
(Sections 6.4 and 6.5).
In this way, MESA plus STELLA allows users to explore the

impact of RTI mixing on Type IIP light curves and velocities.
Prior work in this direction (Eastman et al. 1994; Utrobin 2007;
Dessart & Hillier 2010, 2011; Morozova et al. 2015) focused
on the impact of compositional mixing, often with averaging
approaches to achieve various levels of mixing. Only the recent
work of Utrobin et al. (2017) incorporated compositional
mixing from a 3D model and also included the modified
density and velocity structures, also seen in the 1D RTI mixing
(P.Duffell et al.2018, in preparation).
Figure 37 shows the light curves and velocities of model

99em_19. The luminosity without RTI mixing has a distinctive
rise just before the plateau as shown by Eastman et al. (1994)

Figure 36. Comparison of different definitions of velocity for a model (12A)
similar to SN 2012A. The upper panel shows the data and the model for the
bolometric luminosity. The lower panel shows the velocity of a few different
locations depending on the Sobolev optical depth in the Fe II line.

20 This approach arose through the efforts of Dan Kasen, who also provided
important data needed to complete the calculation.
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and Utrobin (2007). As the RTI causes many associated
changes in composition, density, velocity, and energy density
for the innermost material, we cannot specifically identify the
immediate cause of the lengthening of the plateau phase when
the RTI is incorporated without further experiments. These are
now possible using MESA and STELLAbut are beyond the
scope of this paper. The lower panel shows the photospheric
and Fe II line velocities with and without RTI mixing. The most
evident change is at the end of the plateau, when the material
that was near the H/He boundary in the red supergiant is
approaching the SN photosphere. That material is strongly
affected by RTI mixing, as shown in Figure 28 and discussed in
P.Duffell et al.(2018, in preparation).

To enable the exploration of the impact of various
components of the RTI mixing, we explicitly allow for the
diffusion coefficients for density, momentum, energy, and
composition to be scaled by independent constant factors
relative to the value h given in Equation (47). We show in
Figure 38 the impact of varying the coefficient in the internal
energy flux in Equation (48), which we refer to as e,h . These
plots show the energy density and density of the ejecta just
before shock breakout in one of our models (99em_19) in
Table 3. The blue line is for the fiducial value, whereas the red
line is for an extreme increase of a factor of 100. The only
locations that are sensitive to these changes are the innermost
mass coordinates where the RTI was most active, the same
regions where the light curve and velocities seem to be
sensitive to changes related to RTI mixing. The variable e,h
was found to be a useful “knob” to vary for the modeling of
specific SNe.

6.7. Exploring the Explosive Landscape

A strength of the new MESA plus STELLA capabilities is
their ease of use. This enables detailed quantitative studies of
large numbers of core-collapse SNe. The open source nature of
MESA, the inclusion of STELLA in the MESA distribution, and

the repository of examples contained within the MESAstar
test suite allow a user to obtain models that can be compared
directly to observations. Indeed, with minimal manual inter-
vention, a user can take a star from the pre-MS to the SN light
curve within a few hours of computer runtime. To emphasize
this point, we describe here how this might be done
(Section 6.7.1). To demonstrate how parameter choices affect
light curves, we show a large sample of variations of a standard
case for “high–middle–low” settings of some of the main
parameters (Section 6.7.2). In Section 6.8, we will exhibit a few
specific models created to be roughly similar to known Type
IIP SNe. The potential is clear for an extensive database of such
SNe models created using MESA and STELLA; its actualization
is beyond the scope of this paper.

6.7.1. Generating Models with MESA plus STELLA

The first step in generating a core-collapse SN light curve is
to use MESA to make a pre-SN stellar model that is undergoing
core collapse. The test case _ _ _example make pre ccsn can
serve as a useful template. As part of the required inlists, the
user must select values for the main variables: initial mass
(MZAMS), initial metallicity (Z ), initial rotation ( v vc ZAMS( ) ),
overshooting parameter ( fov), wind scaling factor ( windh ), and
the mixing length for MLT in the H envelope MLT,Ha( ). Of
course, the user may tune other MESA parameters of interest.
The run from pre-MS to Fe core infall runs automatically given
these parameters and, depending on the case, takes roughly an
hour on a modern multicore desktop workstation. Users
interested in details of pre-SN models may require settings
that lead to significant additional runtime (e.g., Farmer
et al. 2016; Renzo et al. 2017).
The second step loads the model at core infall into MESA,

emulates the core-collapse explosion by excising the core
and injecting energy and Ni (as described in Section 6.1),
and evolves until near shock breakout. The test case

_ _example ccsn IIp can serve as a useful template. Again,

Figure 37. Effect of the Duffell RTI on the light curves (upper panel) and
velocities (lower panel) of a Type IIP SN model (99em_19) similar to SN
1999em. The inset shows the time near day 120 where the altered density
structure causes a significant difference in the Fe II line velocities.

Figure 38. Structural effect of the RTI energy diffusion coefficient e,h . Other
parameters are the same as in model 99em_19. The profiles are shown just
before shock breakout. The effects on the light curve are shown in Figure 40.
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the user must set the value of the various “knobs” controlling
the properties of the explosion such as the total energy E
and the 56Ni mass MNi. Early (t 20< days) light curves of
core-collapse SNe are better fit when large amounts of CSM are
placed outside the conventional photosphere (Morozova
et al. 2016; Dessart et al. 2017; Morozova et al. 2017a,
2017b). We provide an option to include CSM. We also
provide the option for “boxcar” smoothing of the model
abundances before the handoff from MESA to STELLA (Kasen
& Woosley 2009; Dessart et al. 2013; Morozova et al. 2015).
The end result of this step is a model suitable for input into
STELLA, so one must also indicate the number of STELLA
zones to be used. This MESAphase from after explosion to near
breakout typically takes about 30 minutes on a modern
multicore desktop workstation.

The final step uses the results produced in the previous
step as input to STELLA and evolves the model
through shock breakout to the post-plateau phase. A script
to execute STELLA is provided. This stage takes about an
additional 30 minutes on a modern multicore desktop
workstation for typical cases. When STELLA finishes, a
post-processing step produces data for comparison to
observational results.

6.7.2. Sensitivity to Variations in Key Parameters

Figure 39 exhibits the std_16 model light curves as
progenitor parameters are varied. Many variations behave as
expected from previous analytical and numerical scalings
(Popov 1993; Kasen & Woosley 2009; Sukhbold et al. 2016).
For example, the decrease in the plateau duration with lower
ZAMS masses or higher mass loss (increased windh ) is as
expected. The increase in plateau luminosity with decreasing

MLT,Ha is because those stars with lower MLT,Ha have a larger
stellar radius at the time of explosion. However, other
variations in these figures are not as easily diagnosed.

Figure 40 exhibits model light curves as explosion
parameters are varied. Again, many cases lead to the expected
outcomes, such as the increase in the plateau luminosity with
increasing explosion energy and the increased duration of the
plateau with increasing nickel mass. The changes caused by
varying the RTI parameters are slight for the compositional
mixing and boxcars, though, as we discussed in Section 6.6,
modifying the diffusion of energy density during RTI does
impact the shape at the end of the plateau. The impact of the
CSM is similar to that shown by Morozova et al. (2017b) and
Dessart et al. (2017).

With experience in the effects of varying the parameters
(knobs) shown in Figures 39 and 40, it is sometimes possible to
get a rough match between the model and observations after a
dozen or so attempts. That is about the amount of effort we
undertook to get the models similar to the various observed
SNe presented in Section 6.8. Of course, the effects of the
various knobs do not combine in any simple manner, so it can
be a nontrivial challenge to find a combination that gives a
good match for both velocities and light curve. Our experience
suggests that it is a good strategy to match velocities before
light curves since there are few ways available to shift
velocities and many ways to change light curves. It is
important to include velocities in judging potential matches
because of the multiple degeneracies, as will be seen below
where we show two models similar to SN 1999em with quite

different ejecta masses and explosion energies. Even when
using both velocities and light curves, it remains a challenge to
find a unique “best” match.

Figure 39. Effect of single-parameter variations of the progenitor std_16. The
upper three panels vary initial properties of the star; the lower three vary
modeling assumptions during evolution to core collapse.
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6.8. Applications to a Few Type IIP Supernovae

To show examples of what can be accomplished with these
new capabilities, we have modeled four Type IIP SNe:

1999em, 2005cs, 2009N, and 2012A. These cover a range of
luminosities, plateau durations, and nickel masses, and have
readily available data (Pejcha & Prieto 2015a, 2015b) for
bolometric luminosities and Fe II velocities.21 We follow the
steps described in Section 6.7, iterating to reach the matches
shown. The models are not intended to demonstrate the best
matches that can be achieved using MESA and STELLA. An
investment of more effort could produce better matches but is
beyond the scope of this paper. The parameters we chose are
shown in Table 3.
We note a few general insights gained from our modeling.

We found that the radii of red supergiant models from MESA
were too large for these Type IIP SNe models unless we set

3MLT,Ha = . All models benefited at early times by having
some CSM present. Figure 41 shows how the early 1999em
model predictions change as CSM is added to the value shown
in Table 3. The luminosity at early times is a far better match,
as are the earliest velocity data. As expected, by day 50 and
beyond, there is no impact of the CSM on the model
predictions. Comparisons of how the luminosity collapsed at
the end of the plateau drove us to prefer an enhancement in e,h
in several cases.
To exhibit some of the possible degeneracies, we constructed

two distinct models for 1999em. As shown in Figure 42, they
are both reasonable models for the bolometric luminosity and
Fe II velocities. However, their ejected masses and radii differ
significantly—one has 12.9 M and 770 R, whereas the other
has 15.9 M and R600 . Utrobin (2007) gave an ejected mass
of 19.0 1.2 M , a radius of R500 , and an explosion energy
of 1.3 10 erg51´ . Bersten et al. (2011) gave an ejecta mass
of 17.6 M, radius of R800 , and explosion energy of
1.25 10 erg51´ . Utrobin et al. (2017) model this event with
a 3D simulation from explosion to shock breakout, similar to
the Munich L15 model we discuss in Section 5, but with an
explosion energy of about 0.5 10 erg51´ . For comparison, the
MESA models for 1999em have total energies after explosion of

Figure 40. Effect of single-parameter variations associated with the SN
explosion. Unvaried parameters have the values of the model listed in the
upper-right corner of that panel.

Figure 41. Effect of CSM on a model (99em_19) similar to SN 1999em. The
influence is particularly apparent in the early-time light curves and velocities.

21 We especially thank Ondrěj Pejcha and Stefano Valenti for providing the
necessary data.
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0.60 10 erg51´ for the case with 12.9 M ejected mass, and
0.78 10 erg51´ for the case with 16.3 M ejected mass.

We previously showed 2012A in Figure 36. Our model had
an ejected mass of 10.1 M, compared with 7.8 M from
Morozova et al. (2017a),12.5 M from Tomasella et al. (2013),
and 13.1 0.7 M  from Utrobin & Chugai (2015). Tomasella
et al. (2013) also reported a progenitor luminosity of

Llog L 4.73 0.13= ( ) , just a bit fainter than our model’s
value. Figure 43 shows our model for 2005cs. Our model has
an ejected mass of 10.4 M, slightly higher than the 9.5 M
reported by Spiro et al. (2014) and the 7.8 M reported by
Morozova et al. (2017a). Figure 44 shows our model for
2009N, which has an ejected mass of 9.9 M, whereas
Morozova et al. (2017a) found 9.3 M and Takáts et al.
(2014) found 11.5 M.

6.9. Partially Stripped Core-collapse Supernovae

There is a well-defined class of core-collapse SNe where
either much (Type IIb) or nearly all (Type Ib and Ic) of the H
envelope was lost prior to the core-collapse event. Dessart et al.
(2015) performed detailed radiative transfer models for a large
set of progenitors from binary evolution, while Morozova et al.
(2015) carried out diffusive calculations with varying amounts
of mass loss. Yoon et al. (2017) explored MESA models
constructed from binary transfer scenarios and applied them to
a set of well-observed Type IIb events. We have not yet been
able to deal successfully with Ic models because of numerical
problems related to the extreme ejecta velocities that occur at
shock breakout. However, it is possible to do both IIb and Ib
models as shown here.

In Figure 45, we show the MESA plus STELLApredictions
for luminosities and photospheric velocities for a range of
models with varying amounts of mass stripped from a 17 M
ZAMS model, ranging from the entire initial H envelope still
remaining down to only 0.1 M of the H envelope left at the
time of explosion. Similar to Figure7 of Morozova et al.
(2015), the plateau period becomes shorter as the residual H
shell mass declines. Our smallest mass model has a H envelope

mass comparable to typical models of TypeIIb SNe and
generates a light curve comparable to observed TypeIIb SNe
(Ergon et al. 2015). Figure 46 shows the interior properties of
these same models near the moment of shock breakout. For
models that have been stripped, the reverse shock has not
reached the IB at the time the forward shock reaches the
surface. Since RTI mixing does not occur in STELLA, these
models would incompletely include the effects of the RTI.
Cao et al. (2013) discovered the fully stripped Type Ib SN

iPTF13bvn in the nearby spiral galaxy NGC 5806 with the
intermediate Palomar Transient Factory (Law et al. 2009). This
is one of only a few stripped SNe with a progenitor detection.
Using data from Cao et al. (2013) and Fremling et al. (2014),
we show in Figure 47 our model that approximately matches

Figure 42. Two models similar to SN 1999em (99em_16 and 99em_19) with
significantly different ejecta masses and total energies.

Figure 43. Model (05cs) similar to the low-luminosity example SN 2005cs.

Figure 44. Model (09N) similar to SN 2009N. Further experiments might
produce a model with a better match to the drop at the end of the plateau.
Alternatively, this model might be a useful start when looking for a match to an
observed light curve with a slow decline from the plateau.
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the iPTF13bvn light curve. The model is derived from an
11 M ZAMS model and has a remaining mass of only 3.4 M
at the time of explosion with total energy after explosion of
0.95 10 ergs51´ and a 56Ni mass of 0.11 M distributed

throughout the remaining star (ejecta mass 1.8M). Fremling
et al. (2014) also modeled this light curve, finding the total
energy to be 0.85 10 ergs0.4

0.5 51´-
+ , with a 56Ni mass of

0.049 M0.012
0.02

-
+

 and total ejecta mass of 1.94 M0.58
0.50

-
+

.
Our parameters are similar, falling within the range of the
quoted uncertainties, except for the 56Ni mass.

7. Black Hole Formation

Compact objects are a natural product of the evolution of
massive stars. A broad consensus on which massive stars
produce black holes (BHs) has not yet been reached (Timmes
et al. 1996; Fryer & Kalogera 2001; Heger et al. 2003; Eldridge
& Tout 2004; Zhang et al. 2008; Ugliano et al. 2012; Clausen
et al. 2015; Müller et al. 2016; Sukhbold et al. 2016;
Limongi 2017).
The lack of consensus is due to a variety of differences in the

modeling, including stellar wind treatments during the pre-SN
stage (Renzo et al. 2017); shellular rotation prescriptions (e.g.,
Limongi 2017); sensitivity to the initial metallicity (e.g.,
O’Connor & Ott 2011), number of isotopes in the reaction
network (Farmer et al. 2016), adopted values of critical reaction
rates (deBoer et al. 2017; Fields et al. 2018), and ignition
of core carbon burning (Farmer et al. 2015; Cristini et al. 2018;
I. Petermann et al. 2018, in preparation); variations from spatial
and temporal resolution (Farmer et al. 2016); convection during
core collapse (e.g., Couch et al. 2015); and effects from binary
partners (e.g., Marchant et al. 2016; Batta et al. 2017). In
addition, current estimates of the neutron star and BH initial
mass function chiefly rely on parameterized explosion models
and not on first principles calculations.
This section explores MESA models that can produce BHs.

First, we consider MZAMS�60 M models that can form a BH
without encountering dynamical instability due to e e+ - pair
production. Second, we survey MZAMS�60 M models that
encounter dynamical instability, either entering the 4 31 G
regime once to produce a pair-instability SN (PISN; Fowler &
Hoyle 1964; Barkat et al. 1967; Rakavy & Shaviv 1967;
Rakavy et al. 1967; Fraley 1968; Ober et al. 1983; Fryer
et al. 2001; Scannapieco et al. 2005; Kasen et al. 2011;
Chatzopoulos et al. 2013), or multiple times to produce a
pulsational pair-instability SN (PPISN) and a BH remnant

Figure 45. Models of partially stripped SNe. These M M17ZAMS =  models
have a range of H envelope masses giving rise to a range of plateau durations.
The upper panel shows the bolometric luminosity while the lower panel shows
the velocity. All models have the same total energy post-explosion of
0.65 10 erg51´ and a 56Ni mass of 0.037 M. Other model parameters are
indicated in Table 3 (case “stripped”). The lowest mass case has about 0.1 M
of the H envelope remaining, similar to that of a TypeIIb SN (Ergon
et al. 2015).

Figure 46. Models of M M17ZAMS =  stars (case “stripped”) that have
experienced a range of stripping. The density, velocity, and pressure profiles
are shown at the time of handoff from MESA to STELLA, very close to shock
breakout. The gray band shows the range of locations of the H/He boundary at
the time of explosion.

Figure 47. Comparison of a model (13bvn) similar to the stripped Type Ib SN
iPTF13bvn with the observed bolometric light curve.
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(Barkat et al. 1967; Woosley et al. 2007a; Chatzopoulos &
Wheeler 2012; Woosley 2017).

7.1. Progenitors that Do Not Pulse

The upper panel of Figure 48 shows the He core mass from
Z 0.02= M 30ZAMS = , 45, and 60 M models. The lower
panel shows the mass location where the binding energy is
10 erg48 . Each ZAMS mass uses an exponential convective
overshoot parameter f 0.004ov = applied at all convective
boundaries, a mixing length 1.5MLTa = , MLT++ enabled
(see Paper II), and is run to the onset of core-collapse (infall
velocity �1000 km s−1). We illustrate the variation in the He
core mass and mass location where the binding energy is
10 erg48 owing to the effects of rotation, wind strength, and the
wind schemes of Nieuwenhuijzen & de Jager (1990), van Loon
et al. (2005), and de Jager et al. (1988).

To estimate a BH mass from the structure at core collapse,
we use the mass location where the binding energy integrated
from the surface exceeds 1048 erg. This is motivated by

neutrinos removing ≈1053 erg during core collapse, reducing
the gravitational mass of the core by ≈0.3M. The outer part
of the star responds to the sudden decrease in the gravitational
field by driving a sound wave that steepens into a shock that
unbinds some of the outer envelope (Coughlin et al. 2017).
Mass with binding energy 1047 erg is likely to be ejected
(Nadezhin 1980; Lovegrove & Woosley 2013) while mass that
is not ejected will likely become part of the BH. Figure 48
suggests that BH masses estimated in this simple way can be
significantly larger than the final He core mass and more
sensitive to the assumed model parameters. For example, there
is a wide variation in the expected BH mass for the 60M
progenitor depending on the choice of wind scheme and scaling
factor, whereas modest rotation has a smaller effect.

7.2. Pulsational Pair-instability Supernovae

Stars with M 60 MZAMS   are expected to become
dynamically unstable before core O depletion as e e+ - pair
production leads to regions where the adiabatic index 4 31 G
(Fowler & Hoyle 1964; Rakavy & Shaviv 1967). The ensuing
collapse results in explosive O burning, with a variety of
possible outcomes. Stars can produce PISNe where the energy
injected from explosive O burning completely unbinds the star
without leaving a compact remnant. Alternatively, stars can
undergo a cyclic pattern of entering the pair-instability region,
contracting, burning, and expanding, leading to PPISNe.
Individual pulses in a PPISN can remove a large fraction of

the mass of the star at velocities of several thousand km s−1,
with the remaining material settling down into hydrostatic
equilibrium at a lower central temperature than before the
pulse. The star then contracts as it loses energy due to radiation
and neutrino emission until it undergoes an additional pulse or
collapses to form a BH. Depending on its initial mass, the time
between pulses varies from a fraction of a year to millennia,
with the outer ejected layers expanding to very low densities
and becoming optically thin.
MESA currently cannot simultaneously follow the long-term

evolution of the bound core and the ejecta, making it necessary
to remove the unbound layers from the stellar model. To do
this, we model individual pulses using both the Riemann solver
hydrodynamics (Section 4) and the 1D treatment of the RTI
(Section 5) until the star is approximately in hydrostatic
equilibrium. We then relax a new stellar model using the
methods described in Appendix B, such that it has the same
mass, entropy, and composition profiles as the layers that
remained bound in the hydrodynamical model. This model is
then evolved assuming hydrostatic equilibrium until the onset
of another pulse or the final core collapse to a BH.
As an example, we compute models at a metallicity

Z 0.001= , using similar parameters to those in Section 7.1.
The van Loon scheme is used for low-temperature winds with
a scaling factor of 0.4. In addition, convection is modeled as a
time-dependent process by limiting changes in convective
velocities as in Arnett (1969) and Wood (1974).
Figure 49 shows the evolution in the Tc cr – plane during late

burning stages for a 90 M model undergoing a PPISN, a
50 M model experiencing iron-core collapse, and a 140 M
model producing a PISN. Although the center of the 90 M star
does not evolve into the region where 4 31G < , the outer
layers of the CO core do. Coupled with enhanced neutrino
losses from pair annihilation, this causes the star to collapse
and undergo four distinct pulses before finally collapsing into a

Figure 48. He core mass (upper panel) and mass location where the
gravitational binding energy is equal to 10 erg48 (lower panel) for ZAMS
masses of 30, 45, and 60 M. Three stellar wind treatments, two wind scaling
factors, and two rotation rates are shown for each ZAMS mass. The variation,
illustrated by the tan band, induced by these modeling choices increases with
ZAMS masses. Also shown are models from the literature (Woosley et al.
2002; Limongi & Chieffi 2003, 2006; Sukhbold & Woosley 2014; Farmer et al.
2016; Renzo et al. 2017), although each adopts different modeling choices and
definitions of the He core mass.
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BH. At the onset of the first pulse, the star has a mass of
87.1 M, with a He core of 45.6 M and a CO core of
41.1 M. As shown in Figure 50, the first two pulses happen
within two days of each other, and they remove the entire H
envelope. The remaining two pulses remove almost the entire
He envelope, resulting in a final mass of 41.2 M when the star
collapses into a BH.

Figure 51 shows the key masses on a grid encompassing
ZAMS masses for which PPISNe occur under our model
assumptions. Our PPISN progenitors have He core masses in
the range of 28 M 67 M – , and no BHs with masses above

50 M are formed. These results are in broad agreement with
those of Woosley (2017). However, Figure 51 shows that the
range of ZAMS masses that result in a PPISN is significantly
different from the one computed by Woosley (2017). This can
be attributed to a different choice of input physics, such as core
overshooting, as well as a different initial metallicity.

8. Energy Accounting in Stellar Evolution

Paper I describes the stellar structure equations and their
implementation in MESA. In order to provide physically and
numerically accurate solutions of these equations, it is often
necessary to evaluate them in different ways depending on
the details of the star being simulated. In particular, there are
a number of different ways to formulate and evaluate the
equations solved by MESA that encode local and global
energy conservation. The goal of this section is to clarify the
available options, discuss when and why they are used, and
describe how various forms of energy are tracked and
accounted for in stellar evolution. While in places this section
reads like a tutorial, it is in fact the first time we have
presented a detailed description of a complex and critical
aspect of how MESA works, information that is important for
the intelligent use of this software tool.
In Section 8.1, we describe the fundamental equations we are

solving, and in Section 8.2, we describe the choices associated
with their numerical implementation. In Section 8.3, we
describe the connection between the form of the energy
equation typically used in stellar evolution calculations and the
version used when the hydrodynamics options discussed in
Section 4 are enabled. In Section 8.4, we clarify how the
energy associated with ionization is included in MESA. In
Section 8.5, we describe the numerical approach necessary to
ensure that the latent heat associated with crystallization in a
white dwarf (WD) is included in MESA. In Section 8.6, we
discuss the difficulties introduced by the necessity to blend
different equations of state (EOSs) as the thermodynamic
conditions in the stellar interior change, and how MESA
minimizes artifacts associated with these blends. In Section 8.7,
we discuss the energy associated with gravitational settling.

Figure 49. Central temperature and density for models with metallicity
Z 0.001= undergoing core collapse (50 M), PPISN (90 M), and
PISN (140 M).

Figure 50. Late-time evolution of an M 90 MZAMS =  star with metallicity
Z 0.001= undergoing a PPISN. (Upper panel) Evolution of the central
temperature showing a zoomed-in region, covering 2.2 days, which contains
the first two pulses, as well as an additional zoomed-in region covering 1.8 hr,
which shows the first pulse and its ring-down into hydrostatic equilibrium.
(Lower panel) Total mass of the star below the escape velocity, He core mass,
and CO core mass during pulsations. The animated figure shows the time
evolution of these quantities and the interior structure of the star.

Figure 51. Total mass, He core mass, and CO core mass at carbon depletion for
single stars at a metallicity Z 0.001= . The 50 M model undergoes iron-core
collapse, while the 140 M model experiences complete disruption through a
PISN. All other models experience PISNe. For comparison, the models with no
mass loss from Woosley (2017) at a metallicity Z 0.0016= are also shown.
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8.1. Fundamental Equations

In the stellar structure equations (e.g., Cox & Giuli 1968;
Kippenhahn et al. 2012), energy conservation is typically
formulated by considering the energy flow in and out of a fluid
parcel. In this Lagrangian picture, to understand how the
energy of a fluid parcel is changing, we account for the specific
(i.e., per unit mass) rate of energy injection into the parcel, ò,
and the specific rate of energy flow through the boundaries
( mL ;¶ ¶ L(m) is the luminosity profile and m the Lagrangian
mass coordinate). The specific heating rate (Dq Dt) for the
parcel must then satisfy

Dq

Dt m

L
, 54= -

¶
¶

( )

where D Dt is the Lagrangian time derivative. Except in the
case of hydrodynamics described in Section 4 (where a total
energy equation is solved; see Section 8.3), the basic equation
to be solved is always some form of Equation (54). By
tradition, the negative of the left-hand side of Equation (54) is
called grav .

Thermodynamics relates the heating of material to the
changes in its properties. The first law of thermodynamics
states that the total heat added Qd to a parcel is

Q dE PdV , 55d º + ( )

where E is the internal energy, P is the pressure, and V is the
volume. Let Ni be the number of particles of species i in the
parcel. Then, expanding E in terms of the independent
thermodynamic basis variables S V N, , i( ) yields the following
thermodynamic identity:

dE PdV TdS dN , 56
i

i iå m+ = + ( )

where S is the entropy and T is the temperature. The sum runs
over all species present, and

E

N
57i

i S V,

m º
¶
¶

⎛
⎝⎜

⎞
⎠⎟ ( )

is the chemical potential for species i.
The number abundance of every species is defined with

reference to the total number of baryons Nb as Y N Ni i bº .
Denoting Avogadro’s number by na, the atomic mass unit is
m N1 gamu a= . The specific (i.e., per unit mass) form of
Equation (56) is then given by multiplying by the invariant
N NA B to find

q de Pd Tds
e

Y
dY

1
. 58

i i s
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,
åd

r
º + = +

¶
¶ r

⎛
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⎞
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⎛
⎝⎜

⎞
⎠⎟ ( )

The total baryonic mass density is ρ, so that 1 r is the specific
volume, and e and s are the specific energy and entropy,
respectively. Local thermodynamic equilibrium (LTE) deter-
mines a unique solution for the ionization state of each isotope.
Thus, the composition is completely specified by a set of
number abundances Yi{ } for all nuclear isotopes.

Equation (58) is relativistically correct when the rest mass is
included in the energy and the chemical potentials. Therefore,
in principle, changes in nuclear rest masses due to nuclear
reactions could be accounted for via this equation. However, in
MESA, the energetic effects associated with composition

changes due to nuclear reactions are not included in grav .
Instead, these important terms are accounted for via nuc (the
specific energy generation rate of nuclear reactions), which is
evaluated separately and included as part of the local source
term ò in Equation (54) (see Paper I).
It is often convenient to specify compositions in terms of the

baryonic mass fractions Xi{ } via the relation X A Yi i i= , where
Ai is the mass number for isotope i. Since the rest mass changes
due to nuclear reactions are handled separately from grav , ρ and
Xi{ } can be treated as independent basis variables without
introducing any ambiguity into the chemical potential term in
Equation (58). Some EOS options express the composition
dependence in terms of aggregate quantities; examples include
hydrogen abundance X , helium abundance Y , metallicity Z ,
average mass number Ā, and average atomic number Z̄ .
The value for grav can be computed beginning from either

the left- or right-hand side of the equal sign in Equation (58).
Usually, some form of the left-hand side is used, but in
Section 8.5 we will describe a case where it is more convenient
to use the right-hand side.

8.2. Implementation

Basic variables are those quantities directly calculated by
MESAstar’s solver. Examples include velocity, radius, and
the thermodynamic variables. MESA offers options for selecting

T X, , ir( { }) or P T X, , igas( { }) as the thermodynamic variables.
The EOS routines calculate other thermodynamic quantities as
a function of the chosen variables, e.g.,e e T X, , ir= ( { }).
MESA solves the stellar structure equations implicitly, thus it is
possible to approximate total time derivatives of any quantity
calculated in the stellar model simply by differencing its value
at the start and end of a time step. Therefore, one way to
evaluate grav would be to directly calculate the time derivatives
in Equation (58). Two possible versions of grav would then be

T
Ds

Dt

e

Y

DY

Dt
59

i i

i
grav å- = +

¶
¶

( )

and

De

Dt
P

D

Dt

1
. 60grav

r
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⎞
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Although simple to construct, the finite differences necessary to
calculate these equations are often numerically problematic.
To see the potential numerical issues, consider the

implementation of Equation (54) using Equation (60) in cellk
with massdmk over a time step td . The derivative of a quantity
Dy Dt is typically constructed as a finite difference of y over
the time step, so after integrating over the mass of zone k, we
have

e e

t

P
t

dm

0

1 1
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The implicit solver scheme in MESA attempts to reduce the
residual from evaluating the right-hand side of this equation
below some tolerance.
Although the implicit scheme in MESA may sometimes find

acceptable results for an equation such as Equation (61), finite
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numerical precision can result in troublesome behavior for the
time derivatives involving subtractions. In particular, over a
small time step where the change in ek or kr is small compared
to the overall magnitude of these quantities, floating point
arithmetic can suffer significant loss of precision. When energy
scales arising from these types of finite difference derivatives
are comparable to k , the implicit solver may be unable to
converge to an acceptable solution.

To avoid these problems, the equations can be cast in terms
of derivatives that are not evaluated using subtractions. Such
derivatives are available only for the basic variables, since the
Jacobian matrix for an evolution step satisfying the equations
of stellar structure in MESA is written in terms of the basic
variables and their derivatives (see Paper I, Section6.2, and
Paper II, AppendixB.2 and Figure47). For MESA, ρ and T
serve as default variables.

Modifying Equation (60) to take advantage of ρ as a basic
variable yields

De

Dt

P D

Dt

ln
, 62grav

r
r

- = - ( )

but the change in e is still evaluated using subtraction. Another
related form, obtained by application of mass continuity, is

De

Dt
P

m
v , 63grav - = +

¶
¶

( ) ( )

where v is the cell velocity and  is the area of the cell face.
This is the form used in the artificial-viscosity-based hydro-
dynamics options described in Paper III.

Expanding the total derivative of energy and thus eliminating
the subtraction motivates the following alternative forms.
Expanding e in terms of its dependence on the basic variables ρ
and T, and dropping the dependence on composition gives

c T
D T

Dt

e P D
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, 64V
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where c q T e TV º ¶ ¶ = ¶ ¶r r( ) ( ) . One can also choose to
expand e in terms of its dependence on P and T (dropping
composition dependence) and then convert to a form given in
terms of ρ instead of P to obtain

c T
D T

Dt

D

Dt
1

ln ln
, 65P Tgrav ad ad c c
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⎤
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where c q TP Pº ¶ ¶( ) and T Pln ln sad º ¶ ¶( ) . The deriva-
tion for this expression in terms of P and T is given in
Chapter4 of Kippenhahn et al. (2012), from which it
is straightforward to obtain Equation (65) using Tc º

P Tln ln¶ ¶ r( ) and Pln ln Tc rº ¶ ¶r ( ) .
Since ρ and T are basic variables, the time derivatives

appearing in Equations (64) or(65) involve no subtractions.
Hence, solving Equation (54) with grav as defined by those two
equations will not be susceptible to the same losses of
numerical precision as other forms, at the cost of dropping
the composition terms. Similarly, Equation(4.47) of Kippen-
hahn et al. (2012) will yield the same stability when P and T are
used as the basic variables. When Pgas and T are selected as the
basic variables, the identification P P aT 3gas

4= + allows us

to write
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Section4.5 in Kippenhahn et al. (2012) also shows how this
local energy treatment of grav results in global energy
conservation, including total gravitational potential energy
from which the name grav is derived.
The superior numerical stability of Equations (64)–(66)

comes at the cost of using derivative quantities such as cV and
cr. The Jacobian matrix of an implicit method thus requires the
partial derivatives of cV and cr. An EOS must therefore be
capable of returning the state functions P, e, and s along with
their first derivatives (e.g., cV and cr) and second derivatives
(e.g., c TV¶ ¶ ).
As noted above, Equations (64)–(66) drop the composition

terms, which is justifiable if the derivatives e X DX Dti i¶ ¶( )( )
are negligible for each Xi. Dropping composition terms is often
justified in stellar evolution scenarios where the timescales for
these changes are very slow or their associated energies are
negligible, such as MS burning where energy release from
nuclear burning dominates any small change in the internal
energy due to composition evolution over a single step
(Kippenhahn et al. 1965; García-Berro et al. 2008). Making
this assumption, MESA also offers an option for calculating grav
in terms of a simplified form of Equation (59),

T
Ds

Dt
, 67grav- = ( )

which drops composition dependence to offer an expression
that is more convenient to evaluate.
However, even after composition dependence related to

nuclear burning is accounted for with a separate nuc term as
discussed in Section 8.1, other processes that change
abundances (e.g., mixing) may be important. In cases where
dropping these terms is not justifiable, it may be necessary to
add a compensating local source term ò in Equation (54).
In summary, MESA currently offers options for solving

Equation (54) with grav defined in any of the ways given in
Equations (60)–(67). Figure 52 schematically summarizes the
relationships between these equations, and Table 4 shows the
inlist commands necessary for invoking each of these options.
Usually, the superior numerical stability gained by using
Equation (65) is preferred, and hence it is the MESA default, but
users should be aware of the possibility that other forms may be
necessary to capture important physics. One such case for
Equation (67) is described in Section 8.5. Another is the
artificial-viscosity-based implicit hydrodynamics described in
Paper III (see Section 4, Equation (41)), where choosing
Equation (63) helps ensure intrinsic energy conservation.

8.3. Relationship to the Riemann Solver-based Hydrodynamics
Implementation

When using the Riemann solver-based hydrodynamics
capabilities described in Section 4, MESA does not cast the
stellar structure equations in terms of local heating as in
Equation (54). Instead, it combines Equation (54) with the
constraint of fluid momentum conservation to form a local total
energy equation.
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We begin with the mass continuity equation,
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and the momentum equation,
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written in Lagrangian form and assuming spherical symmetry.
The variable u is the radial velocity and Φ is the gravitational
potential. The Lagrangian derivative operator is D Dt =

t u r¶ ¶ + ¶ ¶ .
Multiplying Equation (69) by u gives
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The gravitational potential does not explicitly depend on time
( t 0¶F ¶ = ), so D Dt u rF = ¶F ¶ . This implies
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Using Equations (54) and (60), we have
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Adding Equations (71) and (72) gives
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Using mass continuity (Equation (68)), this becomes
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In spherical coordinates,
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where r4 2 p= . Thus, we arrive at the equation that MESA
solves,
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8.4. Ionization

The internal energy reported by the EOS should include the
energy associated with ionization22 and molecular dissociation.
The assumption of LTE specifies the ionization state given

T X, , ir( { }). Since MESA does not regard a change in
ionization as a change in composition, it is not necessary to
include separate composition derivatives in grav in order to
account for the energetic effects of changes in the ionization
state.
To demonstrate a specific scenario where MESA accounts for

ionization energy, we evolve a 1 M pre-MS model composed
of pure H. We compare quantities calculated by MESAwith
other, simpler estimates. We calculate the thermal energy
assuming a monatomic ideal gas,

e
N k T3

2
. 77thermal

A B

m
= ( )

Figure 52. Schematic showing the relationships in Equations (59)–(65).

Table 4
Summary of grav Options

Inlist Option grav

_ _ _ _ _use PdVdt form for eps grav Equation (60)
_ _ _ _ _ _use dlnd dt form for eps grav Equation (62)
_ _ _ _ _use dedt form of energy eqn Equation (63)
_ _ _ _ _use dEdRho form for eps grav Equation (64)

MESA default (all other inlist options . .false ) Equation (65)
_lnPgas flag (and other inlist options . .false ) Equation (66)

_ _ _ _use lnS for eps grav Equation (67)

22 Since this energy is released upon recombination, it is also often referred to
as “recombination energy.”
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We calculate the ionization energy for pure H as

e f N E
N E

1
2

, 78ion H A H
A H2= - +( ) ( )

where we assume the ionization fraction of H is given by the
Saha equation. The variable fH represents the neutral fraction
of H. The H ionization energy is E 13.6 eVH = , and
Equation (78) also includes the dissociation energy of molecular
H (E 4.52 eVH2 = ) assuming that no H is in the molecular state.

During the evolution, we record the grav calculated by MESA
using Equation (65). We also evaluate the quantity

D
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e P
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that separates out the thermal and ionization energies. In
Figure 53, we compare these two approaches, making it clear
that all three terms in the above expression play an important
role. Their sum agrees with the MESA grav , indicating that each
of these terms is accounted for in the MESA calculation.

Figure 54 shows the history of the material at the Lagrangian
coordinate mM M 10 5- = -

( ) . We plot the e reported by
the MESA EOS along with ethermal and eion (calculated in the
same manner as above). At this location, the specific internal
energy is dominated by the ionization energy. The lower panel
of this figure shows the neutral fraction of H; toward the left of
the plot, the H is fully neutral. In this region, the ionization
energy plateaus at the dissociation energy of molecular H (see
Equation (78)).

For a star in hydrostatic equilibrium, the virial theorem states
that

Gm

r
dm

P
dm

1

2

3

2
0. 79

0

M

0

M

ò ò r
- + = ( )

The integrand of the right term, P3 2r( ), is the specific
thermal energy of an ideal monatomic ideal gas. Figure 55
shows the total internal energy and gravitational potential
energy reported by MESA for the pure-H pre-MS model. On
the same scale, we show half the total potential energy plus
the internal energy. This quantity is not zero; rather, by the

virial theorem, it should sum to the nonthermal and non-ideal
internal energy (e.g., the ionization energy). This value,
recorded from the MESAmodel, agrees well with our estimate
of the ionization energy. Also note that at early times, the total
energy of the star (internal + potential, not shown) is positive.
The phenomenon of positive total energy when ionization
energy is included also occurs for envelopes of stars on the
asymptotic giant branch (AGB; Paczyński & Ziółkowski
1968). Figure 56 shows the total energy in the envelope of a
1.0 M MESA model on the AGB. This confirms that the
ionization energy is included when MESA reports the total
energy of a model.

Figure 53. Value of grav in the pure-H pre-MS model, evaluated over a region
near the stellar surface that includes an ionization zone (where 0ion ¹ ). The
solid colored lines indicate the individual energy terms. Their sum (dotted
black line) agrees with the value calculated by MESA (solid gray line).

Figure 54. Specific internal energy at a fixed Lagrangian coordinate in the pre-
MS model (upper panel). The solid colored curves indicate the individual
energy terms. The internal energy reported by MESA(solid gray curve) exceeds
the thermal energy because of the ionization energy. The lower panel shows the
neutral fraction of the H.

Figure 55. Total potential and internal energy in the pure-H pre-MS model.
The sum of half the total potential energy plus the internal energy (solid gray
curve), which by the virial theorem should be the nonthermal internal energy,
agrees well with our estimate of the ionization energy (dashed black curve).
The deviation at 10 yr5 is caused by non-ideal gas effects.
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8.5. Latent Heat

Paper II discusses the inclusion of the latent heat of
crystallization for long-term WD cooling. Crystallization is a
first-order phase transition that manifests in the PC EOS
(Potekhin & Chabrier 2010) as an entropy discontinuity at a
plasma coupling parameter of 175G = , and can be captured in
stellar evolution with grav in the form of Equation (67). Since
the publication of Paper II, controls have been added to MESA
to allow smoothing out the injection of latent heat in grav over a
user-specified range of Γ. By default, the range for crystal-
lization is softened to 150 175 G to avoid numerical
difficulties with the sudden energy injection associated with a
sharp transition at 175G = . The controls allow for this range to
be tightened for more precise timing on the occurrence of
crystallization if necessary. Figure 57 shows the small impact
on cooling time for a 0.6 M WD from spreading the latent
heat over this broader range of Γ relative to a tighter phase
transition for 174 176 G .

The spreading of the phase transition is accomplished by
calculating both the liquid and solid solutions within the PC
EOS and linearly blending the entropy s and internal energy e
over the specified range of Γ. With grav expressed in the form
of Equation (67), the energy of the phase transition is captured
as fluid elements smoothly traverse from the liquid phase to the
solid phase. By default, MESA automatically switches to using
grav in the form of Equation (67) for 150G > . This choice
ensures the capture of latent heat release.

Theoretical and observational works have suggested that
crystallization in C/O mixtures may occur at higher Γ than the
classical one-component plasma value of 175G = (Horowitz
et al. 2007; Winget et al. 2009; Medin & Cumming 2010;
Althaus et al. 2012). Our updated crystallization controls allow
for the effect on stellar evolution of the crystallization at

240G » to be investigated. Figure 57 shows the potential
effects on WD cooling times of varying the Γ for crystal-
lization. Because the heating from crystallization is released
very late in the WD evolution, its effects on cooling times are
on the order of a gigayear, and variations in crystallization

treatment can lead to changes that are a significant fraction of
this timescale.
The composition terms in Equation (59) that were dropped to

form Equation (67) are negligible as long as there is no mixing
in the crystallization region. Phase separation may violate this
assumption and require a modified treatment, but we do not
consider this process here. Detailed phase diagrams for
crystallization and the possible associated phase-separation
effects are not currently supported in MESA, so our invest-
igation here is limited to the effects of crystallization as a
function of a fixed Γ range.

8.6. EOS Blending

As shown in Figure1 of Paper I, MESA employs a
patchwork of several EOSs to provide coverage of a maximal
amount of Tr - space. When blending from one EOS region
into another, care is required to avoid introducing spurious
contributions to grav . At high density, MESA blends from the
Helmholtz EOS (HELM; Timmes & Swesty 2000) for 10G <
to the PC EOS (Potekhin & Chabrier 2010) for 20G > by
default. This default has been changed from the original default
of 40 80 G given in Paper I due to the optimal agreement
between relevant quantities shown in Figure 59, as explained
below. Overall, the two EOSs agree well on thermodynamic
quantities in the blending region ( 1%~ for e and s), but
Figure 58 shows that the absolute magnitude of the disagree-
ment can still be large enough to influence the grav for a
cooling WD when grav is expressed in the form of
Equations (59)–(63).
The left panel of Figure 58 indicates that, typically, the

internal energy difference is e 10 erg g15 1D ~ - , while
c T 10 10 erg gP

14 15 1~ - - in the region of the blend. As a
WD model cools, most of its 10 g33~ of mass must eventually
pass through this transition. If the energy equation is being
solved in the form of Equation (61), 10 erg48~ of spurious
energy would be introduced into the model by EOS blending.
Since much of this blending happens after the WD model has
cooled to a luminosity of L 0.1 L , this extra energy
corresponds to t 100 MyrD of extra WD cooling time.
The default form of grav given in Equation (65) does not

suffer from this spurious heating, since it is expressed in terms
of thermodynamic derivatives from the EOS rather than e and
s. For this form of grav , the differences between e or s do not
directly enter the equations. Instead, changes in e with
D Dtln r and D T Dtln are tracked with quantities such as
cP and Tc , and Figure 59 shows that these agree well for the
EOS blend region. Since the implementation of Equation (65)
does not involve any derivatives constructed as finite
differences, the fact that quantities such as cP agree to within
a few percent guarantees that grav will be consistent across the
blend, with no significant spurious energy injected due to
blending. Crucially, the release of latent heat described in
Section 8.5 requires switching to grav in the form of
Equation (67) only for zones with Γ>150, so both EOS
blending and crystallization simultaneously receive appropriate
treatments with different forms of grav in different stellar
regions.

8.7. Gravitational Settling

Equation (65) for grav ignores changes in the internal energy
e due to composition changes. García-Berro et al. (2008) point

Figure 56. Specific (red) and cumulative (black) total energy (IE + PE)
in the envelope of an AGB model (M 1.0 M= , L 4.97 10 L3= ´ ,
Teff =2,920 K, R 276 R= ). This energy is positive in the envelope due to
the inclusion of ionization energy in the internal energy reported by MESA.
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out that a self-consistent evolutionary approach to WD cooling
including the effects of Ne22 settling requires an grav that
accounts for the composition changes due to element diffusion.
They adopt pure C12 or O16 core compositions with trace Ne22

and no other isotopes. Although this approach is useful for a
rigorous study of self-consistent WD evolution with diffusion
fully coupled to evolution, it is not well-suited for a general
treatment of realistic mixed core compositions.

MESA splits element diffusion into a separate step before the
main structural solve, and hence diffusive effects are not
included in grav . We ensure that the energy associated with

Ne22 settling is not included in grav by using Equation (65),
and we compensate by including an extra heating term 22 in
Equation (54). This term is calculated using velocities saved
from the element diffusion step as described in Section 3.5. Our
results for the effects of Ne22 settling on WD cooling agree
well with those of García-Berro et al. (2008) and Deloye &
Bildsten (2002), who adopt a heating term similar to our
approach.

9. Summary

We explain the significant new capabilities and improve-
ments implemented in MESAsince the publication of Paper I,
Paper II, and Paper III. Progress in the treatment of convective
boundaries (Section 2) and element diffusion (Section 3 and
Appendix C) will improve studies of their impact on stellar
evolution. Advances to MESA in implicit hydrodynamics
(Section 4), approximation of 3D RTI effects (Section 5), and
coupling with a public version of the STELLAradiative
transfer instrument will enhance the modeling of Type
IIP SN light curves from post-explosion to post-plateau
(Section 6). We integrate these improvements with an
exploration of PPISN and black hole formation models
(Section 7). We describe energy conservation in MESA and
demonstrate improvements relevant to WD cooling (Section 8).
Upgrades to estimating the absolute magnitude of a model in a
chosen passband (Appendix A), guidance on importing multi-
dimensional models into MESA(Appendix B), and new MESA-
based software tools (Section D) will strengthen research and
education. Input files and related materials for all of the figures
are available at http://mesastar.org.
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Appendix A
Colors

We describe MESA’s implementation of bolometric correc-
tions (BCs) for use in estimating the absolute magnitude of a
model in a user-chosen filter system. Note this is different from
the colors reported by STELLA (Section 6), as the colors
module uses pre-computed tables of BCs while STELLA solves
the radiative transfer equations on the fly (Blinnikov
et al. 1998).

The absolute bolometric magnitude (Mbol) of a star is
defined, with reference to the solar absolute bolometric
magnitude, as (Torres 2010)

M LM 2.5 log L , 80bol bol, 10= - ( ) ( )

where Mbol,☉ is the absolute bolometric magnitude of the Sun,
taken as 4.74 (2015 IAU Resolution B2). This can be

transformed into the passband-dependent absolute magnitude,
MX, for a nominal pass band X via

M M BC , 81X Xbol= - ( )

where BCX is the BC for passband X and accounts for the flux
emitted outside of the wavelength range of the filter system.
The derivation of a BC requires an atmospheric model of a
star such that a stellar spectrum can be computed over all
wavelengths, a computationally costly process. To prevent the
requirement of actually having to generate a spectra at each
time step, we make use of pre-computed BC tables. These
define the BC as a function of the stellar photosphere; Teff/K,

glog cm s 2-( ), and the metallicity M H[ ] are derived from
pre-computed grids of stellar atmosphere models (see, e.g.,
Kurucz 1970; Husser et al. 2013). Given the parameters at the
stellar photosphere, we interpolate each set of BCs over

Tlog Keff( ), glog cm s 2-( ), and M H[ ] using linear interpola-
tion over nearest neighbors and without extrapolation for points
outside of the table range.
We provide two sets of pre-processed tables of BCs, though

a user may provide their own. From Lejeune et al. (1998), we
provide the Johnson–Cousins–Class bandsUBVR I JHKLL Mc c ¢ .
This table provides the BCs over the parameter range
2000 � T Keff � 50,000, g1.02 log cm s 5.02 - -( ) ,
and 5.0 M H 1.0 - [ ] , with a variable sampling rate.
Figure 60 shows the time evolution of the absolute magnitude
of a 1M star with the passbands defined in Lejeune et al.
(1998). We also provide a set of blackbody BCs for the
passbandsUBVR Ic c, over the range T100 Keff �50,000, in
steps of 100 K. As these are blackbody corrections, there is no
g or M H[ ] dependence.
There are many other possibilities for other passbands or

classes of objects (Fukugita et al. 1996; Girardi et al. 2002;
Bessell 2011; Bessell & Murphy 2012). Thus, the tables we
provide are not a definitive set, but merely a reasonable starting
point for modeling stellar objects. Other astrophysical objects
like WDs, exoplanets, or SN light curves require calculating
specialized tables. Users may provide BC tables defined in
terms of Teff/K, glog cm s 2-( ), and M H[ ].

Figure 58. Magnitude of the energy differences between the HELM and PC EOS for specific internal energy e (left) and entropy s (right) in a 50/50 C/O mixture.
Dashed lines show the EOS blending boundaries for 10 20 G , and the solid black lines show representative profiles for a 1.0 M WD cooling from
Teff =26,000 K to Teff =17,000 K.

43

The Astrophysical Journal Supplement Series, 234:34 (50pp), 2018 February Paxton et al.

http://cococubed.asu.edu/research_pages/sedov.shtml
http://cococubed.asu.edu/research_pages/sedov.shtml
https://jalombar.github.io/starsmasher/
http://python.org
http://mesa-web.asu.edu
http://mesa-web.asu.edu
https://doi.org/10.5281/zenodo.1002851
https://doi.org/10.5281/zenodo.1002851
https://doi.org/10.5281/zenodo.846305


Appendix B
Model Relaxation

To simplify the process of importing a model into MESA, we
have developed simple relaxation routines that allow the
construction of a starting model in hydrostatic equilibrium with
specified profiles for composition, angular momentum, and
entropy. Examples that motivate importing a model into MESA
include multidimensional simulations of stellar mergers,
common envelope evolution, and the effects of SN explosions
on nearby companions.

The relaxation process inputs include 1D profiles of the
composition and angular momentum. The process also requires
either an entropy profile or the profiles of pairs of values T,r( ),
P T,gas( ), or e,r( ), from which MESA extracts the entropy using
the eos module. Note that in the case where the entropy is not
provided directly, the relaxed model will match the entropy
computed by the eos module, but not neccesarily the input

T,r( ), P T,gas( ), or e,r( ) profiles. A good match for the input
profiles depends on the input data corresponding to a model in

hydrostatic equilibrium computed with an EOS that is
consistent with MESAʼs.
Relaxation is done via pseudo-evolution of a stellar model

for which mixing, angular momentum transport, and changes in
composition from nuclear burning are suppressed, while a
quantity of interest is incrementally altered until it reaches the
desired value up to a pre-defined tolerance. Throughout this
relaxation process, hydrostatic equilibrium is enforced. The
starting stellar model can be any MESA model with the required
mass, and for most cases a ZAMS star at Z 0.02= works well.
The first two steps in the relaxation of a model fix the
composition and angular momentum profiles. This is done by
directly adjusting the variables for the composition and angular
momentum of each cell until the desired values are reached.
Since the entropy is a derived quantity in MESA, the third step
relaxes the entropy indirectly via the energy equation. This is
achieved by adding a heating term that injects energy in regions
where the entropy is below the target value and removes energy
in regions where the entropy is above the target value. This
specific heating rate is

m
s m

s m

e m
1 , 82relax

target


t
= -

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
( ) ( )

where e(m), s(m), and s mtarget ( ) are the specific internal energy,
current entropy, and target entropy, respectively, at the mass
coordinate m. The timescale for the relaxation process is
specified by τ. The value τ should be chosen to be small
enough that energy transport is negligible during the pseudo-
evolution. In practice, τ can be chosen to be orders of
magnitude smaller than the dynamical timescale of the system.
We verified that using the entropy, composition, and angular

momentum profiles of a model computed with MESA as input,
the relaxation procedure can reproduce the original model to
within 0.1%. An example is provided in the test suite under the
name _ _ _relax composition j entropy.
We tested these relaxation routines using the outcome of a

stellar merger computed with the STARSMASHER23 SPH code
(Gaburov et al. 2010; Lombardi et al. 2011), configured to use

Figure 59. Percent difference between HELM and PC EOS for cP (left) and Tc (right). Dashed lines show the EOS blending boundaries for 10 20 G , and the
hatched region in the right panel shows the previous default blending range 40 80 G . In the new blending region, the EOSs disagree by only a few percent for
these quantities.

Figure 60. Evolution of the absolute magnitude of a 1 M star for the
bolometric magnitude and magnitude in the filter bands UBVR I JHKLL Mc c ¢ .

23 The STARSMASHER code is open source and freely available athttps://
jalombar.github.io/starsmasher/.
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the MESA EOS. Two co-eval non-rotating MESA models with
ZAMS masses of 20 M and 15 M are evolved until the
20 M star reaches X 0.34c = . These models are then
imported into STARSMASHER to simulate a head-on
collision, such that the relative velocity of the two stars at
infinity is zero. We find that 2.18 M of material is lost from
the system due to the collision.

We compute spherical mass-weighted averages of the
composition, ρ, and e. These profiles are input into the MESA
relaxation process, along with a zero angular momentum
profile since the model is a head-on collision of non-rotating
stars. Figure 61 shows that the relaxed model closely follows
the input smoothed particle hydrodynamic (SPH) merger
model in the central regions, though densities are 10%»
larger throughout the inner 25 M. Density differences of
more than an order of magnitude are present in the outer
layers. This is a consequence of these layers not being in
hydrostatic equilibrium in the input SPH simulation. The
MESA relaxation process matches the entropy rather than the
density profile of the SPH model assuming hydrostatic
equilibrium as discussed above. The relaxed model corre-
sponds to the final configuration if it contracts adiabatically,
which is a good approximation as velocities in the
SPH model are well below the local sound speed (Pan
et al. 2013).

Appendix C
Element Diffusion Implementation Details

This appendix provides the implementation details not
contained in Section 3. Equations (2)–(4) and (9) give the
full set of diffusion equations that must be solved to obtain
diffusion velocities. For S total species in the plasma
(including electrons), Equation (9) provides S 1- equations
(one for each ion species), Equation (2) provides S equations
(one for each species including electrons), and Equations (3)
and(4) each provide one additional equation, for a total of
S2 1+ independent equations. The S2 1+ unknowns are S
diffusion velocities ws, S heat flow vectors rs, and the electric
field E.

The inputs provided by the MESA model are the number
densities ns, temperature T, gradients of each of these quantities
d n drln s and d T drln , species mass in atomic units As,
species mean charge as an average ionization state Zs¯ , and
resistance coefficients Kst, zst, zst¢ , and zst (defined in
Equation(86) of Paper III). The coefficients are calculated as
described in Section 3.3. Together with the mean ionization
states, these are the key pieces of input physics that determine
the diffusion of all ions. Extra acceleration terms g srad, for
radiative levitation are either set to zero by default or calculated
as in Hu et al. (2011) when the option to include radiative
levitation is enabled.
In the spirit of Thoul et al. (1994), Equations (2)–(4) and (9)

are grouped into a single matrix equation:

m g k T
d T
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The vectors capturing the driving terms are
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The vector containing the unknowns is
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For i S1, , 1= ¼ - , the right-hand side matrix of
Equation (83) is

89
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For i S S, , 2 1= ¼ - , the matrix terms are

Figure 61. Mass-weighted spherical averages of radial velocity and density
from the STARSMASHER simulation of a head-on collision between non-
rotating 20 M and 15 M stars. The dashed line shows the resulting density
profile of a MESA model relaxed to the entropy and composition profile of the
simulation.
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For i S2= ,

n A j S

j S S

1, , ,

0 1, , 2 1.
91ij

j jD =
= ¼
= + ¼ +

⎧⎨⎩ ( )

For i S2 1= + ,

n Z j S

j S S

1, , ,

0 1, , 2 1.
92ij

j jD =
= ¼
= + ¼ +
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¯

( )

Indices i S1 1= ¼ - capture the S 1- Equations (9) for the
ions. Indices i S S2 1= ¼ - capture the S Equations (2).
Indices i S S2 , 2 1= + capture the two constraints in
Equations (3) and(4).

For a generic driving term that takes the form of an extra
force fs on ions of species s, a term n fs s- appears on the left-
hand side of Equation (9). This can be accounted for in the
matrix setup by adding another vector f i,b to the left-hand side
of Equation (83) with the form

n f i S

S S

1, , 1,

0 , , 2 1.
93f i

i i
,b =

- = ¼ -
¼ +

⎧⎨⎩ ( )

One such extra driving force that may be explored with MESA
in the future is Coulomb separation in dense matter arising
from non-ideal corrections for the ions (Chang et al. 2010;
Beznogov & Yakovlev 2013; Diaw & Murillo 2016).

The diffusion velocities are separated into two terms
capturing the distinct effects of gravitational settling and
ordinary diffusion in the tradition of Equation(11) of Iben &
MacDonald (1985):

w w
d C

dr

ln
, 94i i

g

j
ij

jå s= - ( )

where C n nj j eº following the notation of Thoul et al. (1994).
These separate terms are constructed by inverting the matrix ijD
and then solving Equation (83) for just one of α, β, ν, and j,*

g
at a time on the left-hand side. These results can then be
linearly combined to construct wi

g and ijs such that the the full
sum in Equation (94) gives a solution that satisfies the complete
set represented by Equation (83).

When electrons become degenerate, we drop all S
Equations (2) and set the S heat flow vectors to r 0s = .

Equation (83) then represents a system of just S 1+ equations
and the vectors and matrices simplify considerably, dropping
all entries for indices i S S2 1= ¼ - or j S S1 2= + ¼ in
the definitions given in Equations (84)–(92). To avoid
discontinuities, we employ a blend that smoothly transitions
between the diffusion velocity solutions over a range in

k Te Bh mº , where em is the electron chemical potential. By
default, the blend is centered around 1h » , with user controls
available to adjust the range of this blending region.

Appendix D
Software Infrastructure

Software is an integral enabler of observation, theory, and
computation and a primary modality for realizing the
discoveries and innovations expressed, for example, in the
astronomy and astrophysics decadal surveys (e.g., National
Research Council 1991, 2001, 2011). In this appendix, we
describe new software stacks at a variety of scales that enhance
the research and education infrastructure.

D.1. Not A Number

Not a Number (NaN) is a numeric data type representing an
undefined or unrepresentable value (e.g., Goldberg 1991; Hauser
1996). Examples include 0/0 and 1- in real arithmetic. In
the IEEE 754 floating-point standard (IEEE 2008), there are
two types of NaNs: quiet (qNaN) and signaling (sNaN). A
qNaN propagates errors resulting from invalid operations or
values without triggering a floating-point exception. An sNaN
precipitates an invalid operation exception whenever an attempt
is made to use one as an arithmetic operand. The IEEE 754
standard requires qNaN as the default, while an sNaN can be
used to support features such as filling uninitialized memory or
other extensions to floating-point arithmetic.
NaN and infinity (INF) setting and testing routines are

provided within the _ .utils nan f90 file. A consistent set of
interfaces allows for initializing scalars/arrays to NaN values,
and testing for qNaN, sNaN, or INF values. Interface
overloading allows single, double, or quad precision scalars
or arrays of rank between 1 and 4 to be handled. This module
provides four generic interfaces. The logical function

_ ,is nan x signal( ) returns true if x contains NaNs and
false otherwise. The optional logical argument signal
determines whether qNaN, sNaN, or both are tested for. The
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logical function _is inf x( ) returns true if x contains INFs and
false otherwise. The logical function _is bad x( ) returns true if
x contains NaN or INF values and false otherwise. The routine

_ ,set nan x signal( ) sets a scalar or array x to NaN values.
The optional logical argument signal determines whether a
qNaN or sNaN is set.

The library framework of MESAis designed to be interoper-
able within other software ecosystems. For example, these NaN
and INF interfaces are of potential interest to users of MESA or
developers of similar software instruments.

D.2. MESA Web-

Stellar evolution software instruments can be complicated to
install and use, especially when the aim is primarily
pedagogical (e.g., high-school or undergraduate courses).
Motivated by the community’s expressed need for a lower
barrier to entry for education, a Web-based interface to MESA
was developed, MESA Web- , athttp://mesa-web.asu.edu.
MESA Web- currently allows choices for the initial mass,
metallicity, rotation, mass loss, nuclear reaction network,
custom nuclear reactions rates, spatial and temporal resolution,
and model output rate.
MESA Web- sends the user an email message that contains

a URL of a zip file to download when their job has completed.
The unzipped output directory contains a MESAhistory data
file holding the time evolution of 57 quantities as well as a
series of MESAprofile data files containing information on 56
quantities in each zone of the stellar model at discrete model
numbers. Also included in the output is an MP4 formatted
video containing a plot dashboard of the abundance profiles,
Kippenhahn diagram, Hertzsprung–Russell diagram, rotational
profile, and temperature, density, and pressure profiles.
MESA Web- is currently hosted on a four-core server at

Arizona State University and allows jobs to run on a single core
for 4 hr of walltime or until the model reaches iron core
collapse. Launched in June 2015, MESA Web- has currently
served more than 3000 models to over 600 different users
at over 40 academic institutions. Efforts to expand
MESA Web- ’s capabilities include porting the service to a
host with enhanced compute resources, simulating core-
collapse SN explosions (see Paper III) and light curves (see
Section 6), and binary star evolution (see Paper III).

D.3. MESA-Docker

Docker is a software technology designed to deploy and run
applications by using “containers.” Containers provide much of
the virtualization power of traditional virtual machines while
requiring far less resource overhead. This allows the efficient
packaging of an entire operating environment, with all of the
necessary libraries and other dependencies for a large software
tool such as MESA. The MESA-Dockerpackage (Bauer &
Farmer 2017) provides a solution that simplifies the require-
ments for locally running a full MESA installation with all
capabilities available, with only minor overhead associated
with running in a container. MESA-Docker will be useful for
new users, students with educational projects, and Windows
operating system users.

D.4. pyMESA

pyMESA (Farmer 2017) allows MESA modules to be
embedded into Python projects. pyMESA currently supports

using the equation of state (eos), nuclear reaction (rates),
neutrino (neu), atmosphere (atm), and opacity (kap)
packages. This software infrastructure will be useful for users
who want to use parts of MESA in their own Python software
projects. As an example of these capabilities, Figures 58 and 59
were produced using the pyMESA eos interface to make direct
calls to the MESA EOS routines.

D.5. MESAstar Model Optimization

The MESAstar test suite contains a sample case that shows
how to use the simplex optimization algorithm (Nelder & Mead
1965) to find stellar models that minimize a specified 2c by
automatically adjusting a variety of control parameters.24 The

2c to be minimized can contain both pre-supplied and user-
defined terms. Pre-supplied terms include Teff , L, R, g, surface
Z , surface Y , and age. An easy-to-use framework allows the
user to define other terms to include in the 2c . Control
parameters include M, Z/X , Y , MLTa , and fov. Other stellar
evolution parameters can be easily added from the extensive set
of controls in MESA. We provide a MESA test suite case using
this new capability to calibrate a solar model. This can serve as
a template for users wishing to use this method to search for
models that match the observed properties of specific stars.

D.6. http://mesastar.org

Reproducibility is the bedrock of scientific research.
Provenance, as the term relates to software instruments (Van
den Bussche & Vianu 2001; Carata et al. 2014), is the ability to
record the full history of a result. Scientific research is
generally held to be of good provenance when it is documented
in sufficient detail to allow reproducibility. The MESAproject
facilitates provenance by the research community in four ways.
One, by curating public releases of the source code, makefiles,
test suite, and how the source code was compiled—GNU
compilers are redistributed in the MESASoftware Development
Kit (see Paper II)—athttp://mesa.sourceforge.net. Two, by
providing bit-for-bit consistency for all results across all the
supported platforms (see Paper III). Three, by supporting a user
mailing list to openly share knowledge (see the Manifesto in
Paper I). Currently, over 12,000 messages are archived and
searchable. Four, by hosting a Web portal at http://mesastar.
org to share MESA-oriented software contributions and reposit
the MESAfiles ( inlist, _ _ .run star extra f, etc.) that
specify all the ingredients needed to reproduce a scientific
result. Currently,http://mesastar.org offers over 120 MESA-
oriented software contributions and inlist repositories.
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