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ABSTRACT

We substantially update the capabilities of the open-source software instrument Modules for Experiments in Stellar
Astrophysics (MESA). MESA can now simultaneously evolve an interacting pair of differentially rotating stars
undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary
evolution. New MESA capabilities in fully coupled calculation of nuclear networks with hundreds of isotopes now
allow MESA to accurately simulate the advanced burning stages needed to construct supernova progenitor models.
Implicit hydrodynamics with shocks can now be treated with MESA, enabling modeling of the entire massive star
lifecycle, from pre-main-sequence evolution to the onset of core collapse and nucleosynthesis from the resulting
explosion. Coupling of the GYRE non-adiabatic pulsation instrument with MESA allows for new explorations of the
instability strips for massive stars while also accelerating the astrophysical use of asteroseismology data. We
improve the treatment of mass accretion, giving more accurate and robust near-surface profiles. A new
MESA capability to calculate weak reaction rates “on-the-fly” from input nuclear data allows better simulation of
accretion induced collapse of massive white dwarfs and the fate of some massive stars. We discuss the ongoing
challenge of chemical diffusion in the strongly coupled plasma regime, and exhibit improvements in MESA that
now allow for the simulation of radiative levitation of heavy elements in hot stars. We close by noting that the
MESA software infrastructure provides bit-for-bit consistency for all results across all the supported platforms, a
profound enabling capability for accelerating MESAʼs development.

Key words: binaries: general – methods: numerical – nuclear reactions, nucleosynthesis, abundances –
shock waves – stars: evolution – stars: oscillations

1. INTRODUCTION

The development of a relatively complete and quantitative
picture of stellar evolution is one of the great drivers of
astrophysics. On the observational side of this impetus,
the Kepler (Borucki et al. 2010) and CoRoT (Baglin
et al. 2009) missions continuously monitored more than
100,000 stars in a 100 deg2 window with a dynamic range of
apparent stellar brightness of 106. Highlights include the
discoveries that nearly all γ Doradus and δ Scuti stars are
hybrid pulsators, and the detection of solar-like oscillations in a
large sample of red giants (Auvergne et al. 2009; De Ridder
et al. 2009; Bedding et al. 2010; Grigahcène et al. 2010;
Christensen-Dalsgaard & Thompson 2011; Chaplin &
Miglio 2013). The Dark Energy Survey is scanning
5000 deg2 of the southern sky in five optical filters every few
days to discover and study thousands of supernovae (e.g.,
Papadopoulos et al. 2015; Yuan et al. 2015). Building upon the
legacy of the Palomar Transient Factory (Law et al. 2009), the
intermediate Palomar Transient Factory conducts a fully
automated, wide-field survey that systematically explores the
transient sky with a 90 s to 5 days cadence (Vreeswijk et al.
2014). The forthcoming Zwicky Transient Facility will enable a
survey more than an order of magnitude faster at the same

depth as its predecessors. In its unique orbit, the Transiting
Exoplanet Survey Satellite will have an unobstructed view to
scrutinize the light curves of the brightest 100,000 stars with a
1 minute cadence (Ricker et al. 2015). The Gaia mission aims
to provide unprecedented distance and radial velocity measure-
ments with the accuracies needed to reveal the evolutionary
state, composition, and kinematics of about one billion stars in
our Galaxy (e.g., Creevey et al. 2015; Sacco et al. 2015). The
Large Synoptic Survey Telescope will image the entire southern
hemisphere deeply in multiple optical colors every week with
its three billion pixel digital camera, thus opening a new
window on transient objects such as interacting close binary
systems. (e.g., Oluseyi et al. 2012).
Interpreting these new observations and predicting new

stellar phenomena propels the theoretical side, in particular the
evolution of the community software instrument Modules for
Experiments in Stellar Astrophysics (MESA) for research and
education. We introduced MESA in Paxton et al. (2011,
hereafter Paper I) and expanded its range of capabilities in
Paxton et al. (2013, hereafter Paper II). This paper describes the
major new advances for MESAmodeling of binary systems,
shock hydrodynamics, explosions of massive stars and X-ray
bursts with large, in situ reaction networks. Moreover it details
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the coupling of MESAwith the non-adiabatic pulsation software
instrument GYRE (Townsend & Teitler 2013). We also describe
advances made to existing modules since Paper II, including
improved treatments of mass accretion, weak reaction rates,
and particle diffusion.

It has been a little more than 200 years since Herschel (1802)
announced, after 25 years of observation, that certain pairs of
stars displayed evidence of orbital motion around their
common center of mass. Binary systems allow the masses of
their component stars to be directly determined, which in turn
allows stellar radii to be indirectly estimated. This allows the
calibration of an empirical mass–luminosity relationship from
which the masses of single stars can be estimated (Torres et al.
2010). Recent surveys such as Raghavan et al. (2010) suggest
that 30%–50% of solar-like systems in the Galactic disk are
composed of binaries, where the binary fraction is higher for
more massive stars (Sana et al. 2012; Kobulnicky et al. 2014).
As argued by de Mink et al. (2013), the most rapidly rotating
massive stars are expected in binary systems as a consequence
of accretion-induced spin-up. Differential rotation has a major
impact on the evolution of massive stars (Heger et al. 2000,
2005; Maeder & Meynet 2000) and for single stars the
corresponding physics has been included in MESA as described
in Paper II. On the other hand, very few works that include the
physics of differential rotation in binaries have been published
(Petrovic et al. 2005; Cantiello et al. 2007). Our improvements
to MESA now allow for the calculation of differentially rotating
binary stars.

The rapid expansion of extra-solar planet research has led to
a revival of interest in the detailed properties of stars probed
through space-based brightness variability studies and radial
velocity measurements. Stellar properties can be derived from
measurements of the radial and non-radial oscillation modes of
a star, but this requires the accurate and efficient computations
of mode frequencies and their eigenfunctions enabled by the
coupling of GYREwith MESA.

There are many ways M 8 M  stars can end their lives
(e.g., Woosley et al. 2002; Smartt 2009; Meynet et al. 2009;
Langer 2012; Nomoto et al. 2013; Smith 2014). Some become
electron capture supernovae; others collapse with most of their
extended envelope intact and yield a Type II supernova; others
can lead to pair instability; and some have envelopes thin
enough to allow a jet to break through and appear as a long
gamma-ray burst (MacFadyen & Woosley 1999; Woosley &
Bloom 2006; Gehrels et al. 2009). There is a pressing need
throughout the stellar community to routinely explore this
entire mass range with new supernova progenitor and
explosion models. The observational facilities discussed above
have found explosions that indicate large amounts of mass are
lost within a few years of explosion (Smith 2014); some show
evidence of optically thick winds present at the moment of
explosion (Ofek et al. 2014), while others have yet to be
securely identified with a specific core collapse scenario. These
mysteries, coupled with the communityʼs call for new yields
from massive stars for galactic chemical evolution studies
motivate the development of implicit shock hydrodynamics and
explosions with large, in situ reactions networks in MESA.

The paper is outlined as follows. Section 2 describes the new
capability of MESA to evolve binary systems. Section 3
discusses the new non-adiabatic pulsation capabilities resulting
from fully coupling to the GYRE software instrument. Section 4
describes the improvements to accommodate implicit

Table 1
Variable Index

Name Description First Appears

a Orbital seperation 2.1
A Atomic mass number 5
α Fine structure constant 8.1
c Speed of light 2.2.1
e Specific thermal energy 4.4
η Wind mass loss coefficient 6.1
g Gravitational acceleration 5.3
G Gravitational constant 2.1
Γ Coulomb coupling parameter 9
I Moment of inertia 2.4
κ Opacity 1
L Luminosity 4.4
λ Reaction rate 5
m Lagrangian mass coordinate 4
M Stellar mass 2.1
M1 Donor mass 2.1
M2 Accretor mass 2.1
μ Mean molecular weight 2.3.1
N Neutron number 6.1
w Dimensionless eigenfrequency 3.1
Ω Angular frequency 2.4
Q Nuclear rest mass energy difference 8.1
P Pressure 2.3.1
q Fractional mass coordinate 7
q1 Mass ratio, M M1 2 2.3
q2 Mass ratio, M M2 1 2.3
r Radial coordinate 2.3.1
R Stellar radius 2.3
ρ Baryon mass density 2.3.1
s Specific entropy 7
s Oscillation eigenfrequency 3.1
t Time 2.4
T Temperature 2.3.1
τ Timescale 2.4
v Velocity 4.1
X Baryon mass fraction 5
Y Molar abundance 5
z Gravitational redshift 5.3
Z Atomic number 5

MLTa Mixing length parameter 3.1
CP Mass specific heat at constant pressure 7
cr Pln ln T( )r¶ ¶ 7

Tc P Tln ln( )¶ ¶ r 7

dm Mass of cell 4.1
dm mass associated with cell face 4.3
dq Fractional mass of cell 7

td Numerical timestep 2.2.3
MD Change of stellar mass in one step 7

ad Adiabatic temperature gradient T Pln ln ad( )¶ ¶ 7

T Stellar temperature gradient d T d Pln ln 7
EF Fermi energy 6.1

grav Gravitational heating rate 4.9

n Neutrino energy loss rate 4.9

nuc Nuclear energy generation rate 4.9

visc Viscous heating rate 4.4

visch Artificial dynamic viscosity coefficient 4.1

fov Convective overshoot parameter 3.1

gvisc Viscous acceleration 4.3

grad Radiative acceleration 9.1.3

1G First adiabatic exponent Pln ln ad( )r¶ ¶ 2.3.1
HP Pressure scale height 2.3
J̇ Rate of change of angular momentum 2.2
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hydrodynamics with shocks. New capabilities for advanced
burning and X-ray bursts with large, in situ reaction networks
are described in Section 5. In Section 6 we model the pre-
supernova evolution of massive stars and combine the implicit
hydrodynamics module and the new capabilities for advanced
burning to probe the nucleosynthesis and yields of core-
collapse supernovae. Section 7 discusses the improvements for
a more robust and efficient treatment of mass accretion.
Section 8 presents a new option for an on-the-fly calculation of
weak reaction rates and their application to the Urca process
and accretion-induced-collapse models. Section 9 presents
improvements in the physics implementation of particle
diffusion by including radiative levitation and pushing
diffusion methods into the strongly coupled, electron degen-
erate regime. In Section 10 we discuss improvements to the
MESA software infrastructure, highlighting bit-for-bit consis-
tency across operating systems and compilers. We conclude in
Section 11 by noting additional improvements to MESA are
likely to occur in the near future. Important symbols are defined
in Table 1. We denote components of MESA, such as modules
and routines, in Courier font, e.g., evolve_star.

2. BINARIES

MESAbinary is a MESA module that uses MESAstar to
evolve binary systems. It can be used to evolve a full stellar
model plus a point mass companion or to simultaneously
evolve the structure of two stars. It optionally allows the
modeling of systems including stellar rotation, assuming the
axis of rotation of each star to be perpendicular to the orbital
plane, accounting for the effects of tidal interaction and spin-up

through accretion. The implementation of MESAbinary
benefits from early contributions by Madhusudhan et al.
(2006) and Lin et al. (2011) who modeled mass transfer from
a star to a point mass.
Here we provide an overview of the modeled physical

processes for circular binary systems and describe the tests
against which we validate MESAbinary.

2.1. Initialization of a Circular Binary System

A binary system is initialized by specifying the components
and either the orbital period Porb or separation a. Each
component can be a point mass or a stellar model. The initial
model(s) are provided by a saved MESAmodel or a zero-age
main-sequence (ZAMS) specification. For stellar models
including rotation, the initial rotational velocities of each
component can be explicitly defined, or set such that the star is
synchronized to the orbit at the beginning of the evolution. The
orbital angular momentum of the system is

J M M
Ga

M M
, 1orb 1 2

1 2
( )=

+

where M1 and M2 are the stellar masses. Evolution of M1, M2,
and Jorb is used to update a using Equation (1). Masses can be
modified both by Roche lobe overflow (RLOF) and winds. The
total time derivatives of the component masses are given by

M M M M M f M, , 21 1,w RLOF 2 2,w mt RLOF˙ ˙ ˙ ˙ ˙ ˙ ( )= + = -

where M1 is the donor mass and M2 the accretor mass. The
stellar wind mass loss rates are M1,w˙ and M2,w˙ (see Paper I and
Paper II) and MRLOF˙ is the mass transfer rate from RLOF, all
defined as negative. The factor fmt represents the efficiency of
accretion and can be used to limit accretion to the Eddington
rate MEdd˙ .

2.2. Evolution of Orbital Angular Momentum

To compute the rate of change of orbital angular momentum,
we consider the contribution of gravitational waves, mass loss,
magnetic braking, and spin–orbit (LS) coupling

J J J J J , 3orb gr ml mb ls˙ ˙ ˙ ˙ ˙ ( )= + + +

from which the change in orbital angular momentum in one
step is calculated as J J torb orb˙ dD = , where td is the timestep.
Unless models with stellar rotation are being used, the Jls˙ term
is equal to zero, and the contribution of the individual spins of
each star is not directly considered. On the other hand, the Jmb˙
term implicitly assumes a strong tide that keeps the orbit
synchronized. The simultaneous usage of Jmb˙ with stellar
rotation is not consistent (see Section 2.2.4). We now describe
how these terms are computed.

2.2.1. Gravitational Wave Radiation

Very compact binaries can experience significant orbital
decay due to the emission of gravitational waves. Observations
of the Hulse–Taylor binary pulsar over three decades
(Weisberg & Taylor 2005) and of the double pulsar (Kramer
et al. 2006) have tested the predicted effect from general
relativity to a high precision. The angular momentum loss from

Table 1
(Continued)

Name Description First Appears

Jorb Orbital angular momentum 2.1
kB Boltzmann constant 2.3.1

ionl Mean inter-ion spacing 9
mp Proton mass 2.3.1

Macc Accreted mass accumulated, Mt˙ 7.2
Mc Mass of unmodeled inert core 7
Mign Macc at time of nova runaway 7.2

MEdd˙ Eddington accretion rate 2.1

em Electron chemical potential 8.1

nion Ion number density 9

oscn Linear oscillation frequency 3.1
Porb Orbital period 2.1
Qvisc Artificial viscosity energy 4.2
RRL Roche lobe radius 2.3
RD Debye radius 9.1.1

cr Central baryon mass density 6

t′ GR corrected time for observer at infinity 5.3
Tc Central temperature 6
Teff Effective temperature 2.3.1

acct Timescale to accrete outer star layer 7

MLTt Convective timescale 4.7

osct Oscillation e-folding time 3.1

synct Tidal synchronization timescale 2.4

tht Thermal timescale of outer star layer 7

MLTt Convection timescale 4.5
v̂ Time centered velocity 4.1
Ye Electrons per baryon 5

3
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gravitational waves is

J
c

G

P

M M

M M

32

5

2
. 4gr 5

orb

7 3
1 2

2

1 2
2 3

( )
( )

˙ ( )
⎛
⎝⎜

⎞
⎠⎟

p
= -

+

2.2.2. Mass Loss

We assume the mass lost in a stellar wind has the specific
orbital angular momentum of its star. For the case of inefficient
mass transfer, angular momentum loss follows Soberman et al.
(1997), where fixed fractions of the transferred mass are lost
either as a fast isotropic wind from each star or a circumbinary
toroid with a given radius:

J M M M

M M M
a

M M P

M G M M a

2

, 5

ml 1,w mt RLOF 1
2

2,w mt RLOF 2
2

2

1 2
2

orb

mt mt RLOF 1 2

( )
( ) ( )

( )

˙ ˙ ˙

˙ ˙

˙ ( )

⎡⎣
⎤⎦

a

b
p

g d

= +

+ +
+

+ +

where mta , mtb , and mtd are respectively the fractions of mass
transferred that is lost from the vicinity of the donor, accretor
and circumbinary toroid, and amt

2g is the radius of the toroid.
Ignoring winds, the efficiency of mass transfer is then given by
f 1mt mt mt mta b d= - - - . When accretion is limited to
MEdd˙ , efficiency of accretion is given by

f M Mmin 1 , , 6mt mt mt mt Edd RLOF( )˙ ˙ ( )a b d= - - -

and the additional mass being lost is added to the Mmt RLOF˙b
term in Equation (5), i.e., it is assumed to leave the system
carrying the specific orbital angular momentum of the accretor.

2.2.3. Spin–Orbit Coupling

Tidal interaction and mass transfer can significantly modify
the spin angular momentum of the stars in a binary system,
acting as both sources and sinks for orbital angular momentum.
The impact spin–orbit interactions have on orbital evolution
depends on the orbital separation and the mass ratio, with the
effect being greater for tighter orbits and uneven masses. The
corresponding contribution to Jorb˙ is computed by demanding
conservation of the total angular momentum, accounting for
losses due to the other Jorb˙ mechanisms and loss of stellar
angular momentum due to winds.

In a fully conservative system, the change in orbital angular
momentum in one timestep is J S Sorb 1 2d d d= - - , where S1d
and S2d are the changes in spin angular momenta. This needs to
be corrected if mass loss is included, as winds take away
angular momentum from the system. If S1,lost and S2,lost are the
amounts of spin angular momentum removed in a step from
each star due to mass loss (including winds and RLOF),

J
t

S S
M

M
S S

1
, 7ls 1 1,lost

1,w

1
2 2,lost˙ ˙

˙ ( )
⎛
⎝⎜

⎞
⎠⎟d

d d=
-

- + -

where the additional factor for the donor accounts for mass lost
from the system, ignoring mass loss due to mass transfer. In the
absence of RLOF this equation becomes symmetric between
both stars, as then M M 11,w 1˙ ˙ = .

The form of Equation (7) is independent of how tides and
angular momentum accretion work, as it is merely a statement

on angular momentum conservation. The details of how we
model these processes and their impact on the spin of each
component are described in Section 2.4.

2.2.4. Magnetic Braking

The rotational velocities of low mass stars are strongly
correlated with their ages (Skumanich 1972). This spin-down
arises from the coupling of the stellar wind to a magnetic field.
If the star is in a binary system and tidally coupled to the orbit,
magnetic braking can provide a very efficient sink for orbital
angular momentum (Mestel 1968; Verbunt & Zwaan 1981).
We implement this effect following Rappaport et al. (1983),
who assumed the star being braked is tidally synchronized:

J
M R d

P
6.82 10

M R

1
dyn cm , 8mb

34 1 1

orb

3mb

˙ [ ] ( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟= - ´

g

 

where in the simplest approximation mbg = 4 (Verbunt &
Zwaan 1981). A similar contribution from the accretor can be
included. As tidal synchronization is assumed, this formulation
is incompatible with the use of LS coupling.
It is normally assumed that once a star becomes fully

convective, the dynamo process that regenerates the field will
stop working or at least behave in a qualitatively different
manner. Similarly, magnetic fields in stars with radiative
envelopes are of a significantly different nature than those seen
in stars with convective envelopes, and there is no simple way
to predict even the presence of magnetism (Donati &
Landstreet 2009). By default, MESAbinary only accounts
for magnetic braking as long as the star being braked has a
convective envelope and a radiative core, though the process
might still operate outside of these conditions.

2.3. Mass Transfer from RLOF

Close binary stars are defined as systems tight enough to
interact through mass transfer, with the most important
mechanism being RLOF. This process is commonly modeled
in 1D by considering the spherical-equivalent Roche lobe
radius RRL of each object (Eggleton 1983)

R
q

q q
a

0.49

0.6 ln 1
, 9j

j

j j

RL,

2 3

2 3 1 3( ) ( )=
+ +

where j is the index identifying each star, q M M1 1 2= and
q M M2 2 1= . This fit is correct up to a few percent for the full
range of mass ratios, q0 j< < ¥. Mass transfer occurs then
when the radius of a star approaches or exceeds RRL.
Depending on several factors, once a star begins RLOF the
ensuing mass transfer phase can proceed on a nuclear, thermal,
or dynamical timescale.
The stability of mass transfer is normally understood in

terms of mass–radius relationships (e.g., Soberman et al. 1997;
Tout et al. 1997),

d R

d M

ln

ln
, 10eq

1

1 eq

( )
⎛
⎝⎜

⎞
⎠⎟z =

d R

d M

ln

ln
, 11ad

1

1 ad

( )
⎛
⎝⎜

⎞
⎠⎟z =

4
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d R

d M

ln

ln
. 12RL

RL,1

1
( )z =

Here, eqz gives the radial response of the donor to mass loss
when it happens slowly enough for the star to remain in thermal
equilibrium. When mass loss proceeds on a timescale much
shorter than the thermal timescale of the star, but still slow
enough for the star to retain hydrostatic equilibrium then the
radial response will be given by adz . The dependency of the
Roche lobe radius on mass transfer is encoded in RLz . In
general d R d Mln ln1 1z = is a function of MRLOF˙ , so
requiring RLz z= will determine the value of MRLOF˙ . If an
overflowing star satisfies eq RLz z> , then it can remain inside
its Roche lobe by transferring mass while retaining thermal
equilibrium. If on the contrary ad RL eqz z z> > , mass transfer
will proceed on a thermal timescale, while for the extreme case

RL adz z> the star will depart from hydrostatic equilibrium and
the process will be dynamical. MESA cannot model common
envelope or contact binaries.

MESAbinary provides both explicit and implicit meth-
ods to compute mass transfer rates. An explicit computation
sets the value of MRLOF˙ at the start of a step, while an
implicit one begins with a guess for MRLOF˙ and iterates
until the required tolerance is reached. The composition of
accreted material is set to that of the donor surface, and the
specific entropy of accreted material is the same as the
surface of the accretor. In models with rotation the specific
angular momentum of accreted material is described in
Section 2.4.

2.3.1. Explicit Methods

MESAbinary implements two mass transfer schemes: the
model of Ritter (1988) which we refer to as the Ritter scheme
and Kolb & Ritter (1990) which we refer to as the Kolb
scheme. We use the mass ratio q2 consistent with the Ritter
scheme.

Ritter scheme: Stars have extended atmospheres therefore
RLOF can take place through the L1 point even when
R R1 RL,1< . Ritter (1988) estimated the mass transfer rate for
this case as

M M
R R

H q
exp , 13RLOF 0

1 RL,1

P,1 2

˙ ˙
( )

( )
⎛
⎝⎜

⎞
⎠⎟g

= -
-

where HP,1 is the pressure scale height at the photosphere of the
donor and

M F q
R

GM

k T

m

2

exp 1 2
, 140 1 2

RL,1
3

1

B eff

p ph

3 2

ph
˙

( )
( ) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟p

m
r=

where mp is the proton mass, Teff is the effective temperature of
the donor, and phm and phr are the mean molecular weight and
density at its photosphere. The two fitting functions are

F q q q1.23 0.5 log , 0.5 10, 151 2 2 2( ) ( ) = +

and

q

q q

q q q

q

0.954 0.025 log 0.038 log ,

0.04 10.954 0.039 log 0.114 log ,

1 20. 16

2

2 2
2

2 2 2
2

2

( )
( )

( )

( )

⎧
⎨
⎪⎪

⎩
⎪⎪

 
 

g =

+ -

+ +

Outside the ranges of validity, F q1 2( ) and q2( )g are evaluated
using the value of q2 at the edge of their respective ranges.

Kolb scheme: Kolb & Ritter (1990) extended the Ritter
scheme in order to cover the case R R1 RL,1> according to

M M F q
R

GM

k T

m
dP

2

2

1
17

P

P

RLOF 0 1 2
RL,1
3

1

1
1 2

1

1 2 2
B

p

1 2

ph

RL
1 1

˙ ˙ ( )

( )

( ) ( )⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ò

p

m

=- -

´ G
G +

G+ G-

where 1G is the first adiabatic exponent, and Pph and PRL are,
respectively, the pressures at the photosphere and at the radius
for which r R1 RL,1= .

2.3.2. Implicit Methods

Explicit schemes exhibit large jumps in MRLOF˙ unless the
timestep is severely restricted. Therefore, if one needs accurate
values of MRLOF˙ and stellar radius, this requires use of an
implicit scheme. Implicit schemes also allow the calculation
these quantities when there is no general closed form formula
for MRLOF˙ .
These implicit methods use a bisection-based root solve to

satisfy f MRLOF∣ ( ˙ )∣ x< at the end of the step, where ξ is a given
tolerance. The implicit schemes are then defined by the choice
of the function f MRLOF( ˙ ). For the Ritter and the Kolb scheme
the function is chosen as

f M
M M

M
, 18RLOF

end RLOF

end
( )˙ ˙ ˙

˙ ( )=
-

with Mend˙ being the mass transfer rate computed at the end of
each iteration.
A different implicit method is also provided. In this case,

whenever the donor star overflows its Roche lobe the implicit
solver will adjust the mass transfer rate until R R1 RL,1= within
some tolerance (see, e.g., Whyte & Eggleton 1980; Rappaport
et al. 1982, 1983). In this case

f M
R R

R

2
, 19RLOF

1 RL,1

RL,1
( ) ( )˙ ( )x=

-
+

and if MRLOF˙ is below a certain threshold and f MRLOF( ˙ ) x< -
then the system is assumed to detach and MRLOF˙ is set to zero.

2.4. Effect of Tides and Accretion on Stellar Spin

To model tidal interaction we adjusted the model of Hut
(1981) to include the case of differentially rotating stars. The
time evolution of the angular frequency for each component is

d

dt q r
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where j 1, 2= is the index of each star, i j,W is the angular
frequency at the face of cell i toward the surface,
r I M Rj j j jg,

2 2( )= is the radius of gyration (with Ij being the
moment of inertia of each star), and the ratio of the apsidal
motion constant to the viscous dissipation timescale, k T jc,( ) ,
is computed as in Hurley et al. (2002). Similarly to Detmers
et al. (2008), we assume constant jsync,t and orbW through a step
and therefore t1 expi j j i j, sync, orb ,[ ( )]( )d tDW = - - W - W .
This extension of Hutʼs work to differentially rotating stars is
not formally derived but merely applies his result for solid body
rotators independently to each shell. The formulation of Hut
(1981) can be recovered from Equation (20), by forcing solid
body rotation with a large diffusion coefficient for angular
momentum throughout the star. In reality tides would act
mostly on the outer layers, and whether the core synchronizes
or not depends on the coupling between the core and the
envelope.

To compute the specific angular momentum carried by
accreted material, we consider the possibility of both ballistic
and Keplerian disk mass transfer (e.g., Marsh et al. 2004; de
Mink et al. 2013). To distinguish which occurs, we compare
the minimum distance of approach of the accretion stream
(Lubow & Shu 1975; Ulrich & Burger 1976)11

R a q q q0.0425 , 0.0667 15 21min 2 2
2 1 4

2( ) ( ) = +

to the radius of the accreting star. When outside the range of
validity, Rmin is computed using the value of q2 at the
respective edge. Accretion is assumed to be ballistic whenever
R R2 min> and the specific angular momentum is

GM R1.7 2 min
1 2( ) . When R R2 min< the specific angular

momentum is taken as that of a Keplerian orbit at the surface
GM R2 2

1 2( ) .

2.5. Treatment of Thermohaline Mixing in Accreting Models

In stars with radiative envelopes accreted material with a
high mean molecular weight is expected to mix inwards due to
thermohaline mixing, a process that is very sensitive to the μ-
gradient (see e.g., Kippenhahn et al. 1980; Cantiello &
Langer 2010). Thermohaline mixing is included in MESA (see
Paper I). However, as mass with homogeneous composition is
added during the accretion process, a jump is produced at the
boundary between new and old material. MESAstar computes
mixing coefficients explicitly at the start of each step, so this
results in thermohaline mixing only operating near this
boundary, leading to unphysical compositional staircases. To
avoid this issue, we artificially soften the composition gradient
in the outer q large( )D fraction of the star by mass. We do this
starting at the surface and homogeneously mixing inwards a
region of size q small( )D . Then, moving toward the center, the
process is repeated at each cell while linearly (with respect to
mass) reducing the size of the small mixed region such that it is
zero after going q large( )D inwards. All the binary models where
the accretor is not a point mass are calculated using

q 0.05large( )D = and q 0.03small( )D = .

2.6. Numerical Tests

Here we describe tests designed to validate the implementa-
tion of the physics described in Section 2.2. We check orbital
evolution in the presence of gravitational waves and mass loss
by comparing to analytical solutions. We also verify total
angular momentum conservation in calculations that include
the physics of tides and spinup by accretion. To test for the
thermal response of stellar models undergoing mass transfer,
we compare MESAbinary results to those from the STARS
code (Eggleton 1971; Pols et al. 1995; Stancliffe &
Eldridge 2009).

2.6.1. Gravitational Wave Radiation

If gravitational waves are the only source of angular
momentum loss and the masses of each component remain
constant, Equation (3) can be integrated to obtain the time
evolution of orbital separation (Peters 1964). We model a
system consisting of a 0.5 M star and a 0.8 M point mass
with a 2 R= . We ignore all effects on the evolution of orbital
angular momentum except its loss due to gravitational waves.
In 3.5 Gyr the orbital separation of this system reduces to
a 1.3 R= , at which point the 0.5 M star begins mass
transfer. We terminate the run at the onset of RLOF. The
maximum error in a is 0.35% relative to the analytical result.

2.6.2. Inefficient Mass Transfer

An analytical expression for the evolution of orbital
separation can be derived if inefficient mass transfer is the
only contribution to the angular momentum evolution (Tauris
& van den Heuvel 2006, p. 623). We model a 2.5 M main
sequence (MS) star together with a 1.4 M point mass with an
initial orbital separation of 10 R. We choose 0.03mta = ,

0.95mtb = , 0.01mtd = and 2mt
2g = , which give a low mass

transfer efficiency of f 0.01mt = . Such a system is representa-
tive of the evolution of an intermediate mass X-ray binary
(IMXB). The model initiates mass transfer just after the end of
the MS, interrupting the evolution of the star through the
Hertzsprung gap and producing a low mass white dwarf (WD;
M 0.289 MHe = ) with a small amount of hydrogen on its
surface. As the WD evolves to the cooling track, it experiences
several hydrogen flashes, one of them strong enough to
produce an additional phase of RLOF (see Figure 1).
Figure 2 shows that MESAbinary computes the orbital

evolution to a precision of a few parts in 104. We run this
system using both the Ritter and the Kolb implicit schemes to
display that under some circumstances the precise choice of
mass transfer scheme does not play a big role in the evolution.

2.6.3. Spin–Orbit Coupling

We now test angular momentum conservation by ignoring
all the mechanisms that remove angular momentum from the
binary system. For this purpose we model an 8 M 6 M+ 
binary with rotating components and an initial orbital period of
1.5 days. Due to the short orbital separation we assume the
initial spin periods of the two stars are equal to the orbital
period. The primary undergoes RLOF during the MS, initiating
a phase of mass transfer on a thermal timescale. After
transferring just 0.3 M the accretor also fills its Roche lobe,
producing a contact system. At this point we terminate the
evolution.

11 Note that there is a small typo in the fit given by Ulrich & Burger (1976).
The corrected fit given here fits the results of Lubow & Shu (1975) to the 4%
accuracy claimed by Ulrich & Burger (1976).
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Figure 3 shows that spin angular momentum in both
components increases during the pre-interaction phase, which
is due to both stars expanding on the MS while remaining
tidally locked. During RLOF, the secondary is rapidly spun-up,
reaching nearly 80% of critical rotation before contact. The
calculation of total angular momentum requires the summation
of different contributions (orbital angular momentum and spin

of both components). Therefore the maximum accuracy to
which we can conserve angular momentum is limited by
rounding errors. Figure 3 shows that conservation of angular
momentum in the run is very close to machine precision.

2.6.4. Thermal Response to Mass Loss

The fate of binary systems depends largely on the precise
value of Ṁ during an interaction phase, which depends on the
thermal response of the donor star to mass loss. For WDs there
is a limited range of accretion rates for stable hydrogen burning
(Nomoto et al. 2007; Shen & Bildsten 2007). In MS binaries
the evolution of the accretor radius depends on the mass
transfer rate, and expansion during the interaction phase can
lead to contact or even a merger (Wellstein et al. 2001).
We calculated an 8 M 6.5 M+  binary system with an

initial orbital period of 1.5 days using both MESAbinary and
STARS. To minimize the modeling differences and focus on
the thermal response of both components, we use an extremely
simplified model that ignores internal mixing (including
convective mixing). Under these conditions, the more massive
star quickly depletes its central hydrogen and begins shell
hydrogen burning, reaching RLOF and undergoing a phase of
mass transfer on the thermal timescale. The resulting mass
transfer rates are shown in Figure 4. The agreement is very
good, despite mass transfer rates being computed in slightly
different ways. Masses at detachment show a small difference,
with the MESAbinary model terminating mass transfer when
M 0.952 M1 =  while the STARS calculation when
M 0.935 M1 = . The figure also shows the change in radius
of the accreting star, with two prominent peaks at
R R 4.84, 5.342 = for MESAbinary and 4.82, 5.28 for
STARS. The larger radius of the MESAbinary model is likely
associated to the slightly higher mass transfer rates.

Figure 1. Evolution in the Hertzsprung-Russell (HR) diagram for a 2.5 M star
transferring mass to a 1.4 M point mass, assuming a mass transfer efficiency
of 1%. Symbols are shown at zero-age main sequence (ZAMS) and terminal-
age main sequence (TAMS), together with parts of the track where RLOF is
occurring. The inset shows evolution from ZAMS up to the beginning of the
first phase of mass transfer.

Figure 2. Evolution of mass transfer rate from a M2.5  to a 1.4 M point
mass, assuming a mass transfer efficiency of 1%. The upper panel shows the
difference between the computed orbital separation and the analytical solution
while the bottom one displays the evolution of the mass transfer rate, using two
different schemes.

Figure 3. Angular momentum evolution in an 8 M 6 M+  binary with an
initial orbital period of 1.5 days. Left panels show the evolution before the
onset of RLOF, while right panels display evolution from the beginning of
RLOF until contact, when both components fill their Roche lobe. The fractional
error in the total angular momentum is plotted in the bottom panel and is of
order machine-precision.
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2.7. Period Gap of Cataclysmic Variables (CVs)

Although CVs span a wide range of periods, observations
show a lack of systems in the range P2 hr 3 hrorb< < (see, for
instance, Gänsicke et al. 2009). Such a feature is commonly
explained by having an angular momentum loss mechanism
“turn off” or become inefficient at some point. The most
popular model for such a mechanism is magnetic braking
(Rappaport et al. 1983), as the magnetic field of the donor is
assumed to change quickly when the star loses enough mass to
become fully convective.

We now compare to the results of Howell et al. (2001), who
performed a population synthesis study to explore in detail the
standard scenario involving magnetic braking. In Figure 5 we
show the evolution of mass transfer rates and orbital periods for
a set of CV models with different component masses and
orbital periods. We run all models using 1mtb = and 3mbg =
and magnetic braking is turned off when the donor star
becomes fully convective. As an example the system with a
0.9 M donor (left panel in Figure 5) experiences a first phase
of mass transfer induced by magnetic braking between107.1 and
10 years8.3 , a non-interacting phase (the gap) between 108.3 and
10 years8.8 , and a subsequent phase of mass transfer dominated
by gravitational wave radiation, reaching a minimum orbital
period of about 1 hr at 10 years9.6 . As a comparison, for the
same model Howell et al. (2001) obtain a first phase of mass
transfer between 107.3 and 10 years8.4 , the gap occurs between
108.4 and 10 years8.8 and a period minimum is reached at
10 years9.4 . Figure 5 shows that our CV models spend most
time away from the observed period gap.

2.8. Evolution of Massive Binaries

In massive stars, binary interactions have dramatic effects on
the evolution of both components. Kippenhahn & Weigert
(1967) introduced the term “case A” to refer to a mass transfer
phase occurring in systems tight enough such that RLOF starts
during the MS. This results in a large amount of mass being
transferred on a thermal timescale, followed by a phase of mass
transfer that proceeds on the nuclear timescale until the end of
core H-burning. An additional phase of thermal-timescale mass
transfer then follows (the so-called “case AB”), which strips the
donor and produces an almost-naked helium star.

Here we show that MESAbinary can calculate the evolu-
tion of massive interacting binaries. We reproduce one of the
models from Wellstein et al. (2001), a 16 M 14 M+  system
with an initial period of 3 days, using the same semiconvection

efficiency of 0.01sca = . As shown in Figures 6 and 7 this
system experiences case A and AB mass transfer, and the
accretor becomes a blue supergiant after core hydrogen
depletion. The accretor depletes carbon before its donor.

Figure 4. Mass transfer rate and accretor radius as computed by MESA and
STARS for an 8 M 6.5 M+  binary with an initial orbital period of 3 days.
All internal mixing processes (including convective mixing) are turned off in
the calculations.

Figure 5. Evolution of CV models under the effect of magnetic braking and
gravitational wave radiation. For each track the label gives the donor mass, the
WD mass, and the initial orbital period respectively. The gray band shows the
observed period gap for CVs. These results reproduce Figure 1 in Howell
et al. (2001).

Figure 6. Evolution of a 16 M 14 M+  system with a 3 day initial orbital
period. MESAbinary models are compared to the results of Wellstein et al.
(2001), which were calculated using the STERN code. The terms primary and
secondary are used throughout the evolution to describe the initially more
massive and the less massive components, respectively. For each component in
the MESAbinary model, squares mark the ZAMS and the depletion of the
indicated nuclear fuel in the core.
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Figure 7 illustrates the prevalence of both thermohaline
mixing and semiconvection in the accreting star. Newly
accreted material is efficiently mixed inwards by thermohaline
mixing. On the other hand the μ-gradient formed before
interaction prevents the convective core from growing, with the
efficiency of semiconvection controlling whether or not the star
rejuvenates. Due to the choice of inefficient semiconvection,
the core remains small, preventing the star from becoming a red
supergiant. The star accretes a large amount of CNO-processed
and helium-rich material. After being mixed through the
envelope this material results in the surface being nitrogen rich
and carbon depleted, with a slight enhancement in helium.

2.9. Rotating Binaries and the Efficiency of Mass Transfer

The efficiency of mass transfer plays a key role in close
binary systems, but the processes by which material is lost from
the system are not well-understood. In particular, whenever an
accreting star approaches 1critW W = , it is uncertain whether
accretion can continue, one option being the development of a
strong wind that prevents accretion (e.g., Petrovic et al. 2005;
Cantiello et al. 2007). Whenever critW W approaches one, we
use an implicit method to iteratively reduce M2˙ until this ratio
falls below a threshold.

Tides counteract the effect of spin-up from accretion.
Whether or not an accreting object reaches critical rotation
depends on the efficiency of tidal coupling. Here we model a
16 M 15 M+  binary system including differential stellar
rotation, with an initial orbital period of 3 days and assuming
initial orbital synchronization. Langer et al. (2003) argue that
turbulent processes in the radiative envelope can significantly
enhance tidal strength. They model the same system using
the simple estimate for the synchronization timescale for a star
with a convective envelope given by Zahn (1977),

q a R1 yearj jsync,
2 6( )t = ´ . For our implicit modeling of

stellar winds we use a threshold of 0.99crit( )W W = .
Figure 8 shows that MESAbinarymodels using both the

Zahn (1977) and Hurley et al. (2002) timescales for tidal
coupling. These models experience highly non-conservative
phases of mass transfer, corresponding to the accreting star
evolving very close to critical rotation. In particular during case
AB mass transfer the accretor needs to switch from mass
accretion to mass loss in order to remain sub-critical. As
expected, the system with the tidal timescale from Zahn (1977)
has a significantly higher mass transfer efficiency, and during
the first phase of RLOF it only experiences a brief period in
which the accretor reaches critical rotation. This is in broad
agreement with the model by Langer et al. (2003).

2.10. Description of a Binary Run

MESAbinary performs each evolution step by indepen-
dently solving the structure of each component and the orbital
parameters, using the same timestep td for each. This approach
differs from STARS, which simultaneously solves for the
structure of both stars and the orbit in a single Newton–
Raphson solver. Our choice to solve for each star separately
gives a significant amount of flexibility and simplicity, as the
examples in this paper demonstrate.
The top-level algorithm for evolving a star is described in

Appendix B1 of Paper II. We modified this algorithm to

Figure 7. Kippenhahn diagram for the evolution of a 16 M 14 M+  system
with a 3 day initial orbital period. Most of the pre-interaction phase is not
shown in this figure. The upper plot shows the evolution of the donor, while the
lower plot displays that of the accretor.

Figure 8. Efficiency of mass transfer in a 16 M 15 M+  binary system
including differential rotation. The system is modeled with tides as described
by Hurley et al. (2002) for radiative envelopes, and also with the simple tidal
timescale given by Zahn (1977). The upper panel shows the efficiency of mass
transfer, the middle panel the angular frequency of each star in terms of its
critical value, while the lower panel shows the evolution of Ṁ for both
components.
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support the new implementation of binary interactions, which
is described in detail in the MESA documentation. Additional
timestep limits are imposed in MESAbinary that consider
relative changes between the radius and Roche lobe radius of
both components, the total orbital angular momentum, the
orbital separation, and the envelope mass in the donor.

3. PULSATIONS

The study of stellar pulsations (also termed oscillations)
offers unique insights into the interiors of stars (Aerts
et al. 2010). In some classes of star (e.g., solar-type, red
giant), the stochastic excitation of hundreds of oscillation
modes, typically by convective motions, allows remarkably
detailed measurements to be made of the interior, including
nuclear burning state (Bedding et al. 2011) and internal rotation
(Beck et al. 2012). In other classes (e.g., classical Cepheid, β
Cephei, δ Scuti, and γ Doradus pulsators), modes are instead
excited by linear instabilities, most often linked to opacity
variations in the envelope (the κ mechanism). In these latter
objects, typically too few modes are excited for detailed
asteroseismic analysis to be feasible; nevertheless, mapping out
the regions of the theoretical HR diagram where the
instabilities are expected to operate, and then comparing these
instability strips against observational surveys, can often lead to
new science.

Paper II introduced the astero extension to MESAstar,
which permits on-the-fly refinement of stellar model parameters
in order to fit a set of observed oscillation frequencies and
spectroscopic constraints. Subsequent improvements to the
astero capabilities include frequency correction recipes from
Ball & Gizon (2014); implementation of the downhill simplex
(Nelder & Mead 1965) and NEWYUO (Powell 2004)
algorithms for 2c minimization; parameter optimization using
only spectroscopic constraints (e.g., Teff and surface gravity);
and coupling to the GYRE oscillation code, as an alternative to
the ADIPLS code (Christensen-Dalsgaard 2008) used in the
original implementation.

GYRE calculates the normal-mode eigenfrequencies s of a
stellar model by solving the system of linearized equations and
boundary conditions governing small periodic perturbations
( i texp[ ]sµ ) to the equilibrium state. It is based on a novel
Magnus Multiple Shooting (MMS) numerical scheme which is
robust and accurate, and makes full use of all available
processors on multicore computer architectures. The MMS
scheme and the initial release of the code, which focuses on
adiabatic pulsations, is described in Townsend & Teitler
(2013); extensions to the code to support non-adiabatic
pulsations are described in J. Goldstein & R. H. D. Townsend
(2015, in preparation).

MESAstar couples to GYRE via two mechanisms. Loose
coupling is achieved simply by MESAstarwriting models out
to disk, and GYRE subsequently reading these models in; we
use this process below to map out massive-star instability
strips. Tight coupling removes the intermediate disk usage, by
handling all communication between MESAstar and GYRE in-
memory; this permits fully closed-loop calculations, where the
changes in the oscillation eigenfrequencies of an evolving
stellar model are used to guide the further evolution of the
model. Tight coupling allows GYRE to function as an
alternative to ADIPLS in the astero extension, and opens
up the possibility of other kinds of novel calculations, such as
the automated location of instability-strip boundaries.

3.1. Massive-star Instability Strips

As an illustration of a large-scale calculation using
MESAstar and GYRE loosely coupled, Figure 9 plots the
instability strips for massive stars on and near the upper MS,
for oscillation modes with harmonic degrees ℓ 0 3–= . These
strips are based on a set of 182 evolutionary tracks, each
extending from the ZAMS across to a red limit at

Tlog K 3.75eff( ) = , with 101 tracks spanning the initial mass
range M2.5 M 25 M   in uniform logarithmic incre-
ments, and the remaining 81 tracks spanning the mass range

M6 M 10 M   in uniform linear increments (the latter
set is designed to adequately resolve the “fingers” discussed
below). OPAL opacity tables are used with the proto-solar
abundances from Asplund et al. (2009), and for simplicity we
neglect any rotation or mass loss. Convection is modeled with a
mixing-length parameter MLTa = 1.5 and an exponential
overshoot parameter f 0.024ov = , and the Schwarzschild
stability criterion is assumed.
We select points i i i i, , ,1 2 3= ¼ along each of the 182 tracks

(where i is the timestep index; see Section 6.4 of Paper I),
chosen so that i1 corresponds to the ZAMS,
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across the i i,1 2( ) pair, and similarly for subsequent pairs. Here,
TD and LD are dimensionless weights which control the

spacing of points in effective temperature and luminosity; we
adopt the values 0.004 and 0.011, respectively, for these
weights. At the selected points, GYRE searches for unstable
oscillation modes with the harmonic degrees considered. First,
GYRE solves the adiabatic oscillation equations to find
eigenfrequencies ads falling in the range extending from the
asymptotic frequency of the gravity (g) mode with radial order
n = 400, up to the asymptotic frequency of the pressure (p)
mode with radial order n = 10. Each ads is then used as an
initial guess in finding a corresponding eigenfrequency s of the
full non-adiabatic oscillation equations. The real and imaginary
parts of s give the linear frequency oscn and the growth e-
folding time osct of a mode:
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If osct is negative, the mode is damped.
Separate strips are shown in Figure 9 for regions exhibiting

unstable modes with Re 1( )w > and Re 1( )w < , where

R

GM
24

3
( )w s=

is the dimensionless eigenfrequency; these correspond, respec-
tively, to the β Cephei and slowly pulsating B-type (SPB)
classes of pulsating stars. In β Cephei stars during the MS
phase, p and g modes with periods of a few hours and radial
orders n 1 3–» are excited by a κ mechanism operating on the
iron opacity bump situated in the outer envelope at

Tlog K 5.3( ) » (Cox et al. 1992; Dziembowski & Pamiat-
nykh 1993). In SPB stars during the MS phase, g modes with
periods of a few days and radial orders n 20 50–» are excited

10

The Astrophysical Journal Supplement Series, 220:15 (44pp), 2015 September Paxton et al.



by the same mechanism (Dziembowski et al. 1993). For masses
M 9 M  the strips for both classes of stars extend into the
post-MS domain. During this phase, unstable modes couple
with g modes trapped near the boundary of the inert helium
core. In the case of the SPB stars this leads to very high overall
radial orders, n 100 , and ultimately limits our ability to
follow the instability strips all the way to the red edge (our
calculations are restricted to n 400 for computational
efficiency reasons). Hence, in Figure 9 we plot the red edges
of the post-MS SPB strips with dotted lines, to highlight that
these are not the true red edges.

Allowing for differences in adopted abundances and other
modeling parameters, the instability strips plotted in Figure 9

are in general agreement with those published in the literature
(e.g., Pamyatnykh 1999; Zdravkov & Pamyatnykh 2008; Saio
2011). The notable difference is the presence of fingers in the
lower boundaries of our β Cephei strips for ℓ 1 . Their
appearance here is due to the unprecedented resolution in HR-
diagram space of our stability calculations. To elucidate their
origin, Figure 10 plots part of the ℓ 1= frequency spectrum of
an 8.5 M stellar model as it evolves from the ZAMS to the red
edge of the main sequence (REMS), showing which modes are
stable and which are unstable. The p1 mode is unstable over the
effective temperature range T4.358 log K 4.317eff( )  , and
the g1 mode over the cooler but overlapping range

T4.341 log K 4.301eff( )  . The star then passes through a

Figure 9. Instability strips for ℓ 0 3–= oscillation modes in the upper part of HR diagram. Separate strips are shown for the β Cephei (w > 1) and slowly pulsating
B-type (SPB; w < 1) classes of pulsating stars. The ZAMS and red edge of the main sequence (REMS) are shown for reference, as are evolutionary tracks for models
with selected masses (labeled in solar units along the ZAMS). The red edges of the post-MS SPB strips are drawn with a dotted line, indicating that the positioning of
these edges is an artifact of our numerical procedure.
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phase with no unstable modes, before the instability reappears
in the range T4.288 log K 4.278eff( )  for the g2 mode.

This alternation between instability and stability, seen as
fingers in Figure 9, stems from the fact that the κ mechanism
only excites modes whose eigenfrequencies fall in a narrow
range ,lo hi[ ]s s . At frequencies Re hi( )s s> , the pulsation
period becomes comparable to the local thermal timescale in
the envelope region above the iron opacity peak, and this
region behaves as a damping zone, stabilizing the modes.
Conversely, at frequencies Re lo( )s s< , modes couple with
gravity waves trapped in the μ-gradient zone developing at the
core boundary, and are likewise damped. The intermediate
stable phase in Figure 10, between Tlog K 4.301eff( ) = and

Tlog K 4.288eff( ) = occurs when there are no modes in the
,lo hi[ ]s s range. As the star evolves, the unstable range narrows:

his decreases due to lower Teff , while los increases due to the
growth of the μ-gradient zone.

Figure 11 shows a version of the ℓ 1= panel calculated
using OP opacity tables rather than OPAL tables. There is an
overall shift of the instability strips toward higher luminosities,
an effect already noted by Pamyatnykh (1999). The fingers
persist with much the same structure, supporting the fact that
they are physical effects rather than numerical artifacts.

Returning now to Figure 9, the post-MS extension of the
SPB strips has been attributed in the literature to features in the
Brunt–Väisälä frequency which reflect gravity waves at the
boundary of the helium core, preventing them from penetrating
into the core and being dissipated by strong radiative damping.
Saio et al. (2006) and Godart et al. (2009) argue that the
necessary feature is an intermediate convection zone (ICZ)
associated with the hydrogen-burning shell, but more recently
Daszyńska-Daszkiewicz et al. (2013) have shown that even a
local minimum in the Brunt–Väisälä frequency is sufficient to
reflect modes. In the present case, the empirical mass threshold
M 9 M  required for formation of an ICZ coincides with the

lower boundaries of the SPB strip extensions. In the lowest-
mass models above this threshold, the ICZ vanishes shortly
after its appearance, but it leaves behind a narrow region with a
steep molecular weight gradient. This gradient causes a spike in
the Brunt–Väisälä frequency, which serves in a similar manner
to prevent gravity waves from entering into the core and being
dissipated.
The corresponding post-MS extension of the β Cephei strips

was first noted by Dziembowski & Pamiatnykh (1993), but has
not received much attention in the literature. Figure 9 shows
that this extension has a well defined lower boundary, much
like the SPB stars although situated at slightly higher masses,
M 10.5 M . We have determined that the extension is also a
consequence of ICZ formation; the shift to higher masses arises
because it appears that multiple convection zones, rather than a
single one, are necessary to reflect waves at the core boundary
in the case of β Cephei pulsators.

3.2. Asteroseismic Optimization

To illustrate the updated asteroseismic capabilities of MESA,
Figure 12 plots the echelle diagram for the subgiant star
HD 49385, showing both the frequencies of ℓ 0 2–= modes
measured by Deheuvels et al. (2010), and the corresponding
frequencies of the best-fit model determined using the astero
extension. The calculations follow the same procedure detailed
in Section 3.2 of Paper II; the only significant differences are
that the initial mass, helium abundance, metal abundance and
mixing length parameter are refined using the downhill simplex
algorithm rather than the Hooke–Jeeves algorithm; oscillation
frequencies are calculated using GYRE rather than ADIPLS;
and the surface corrections to frequencies are evaluated using
Equation (4) of Ball & Gizon (2014) rather than with the
Kjeldsen et al. (2008) scheme.
Comparing Figure 12 against Figure 8 of Paper II reveals

only small differences between the two. The 2c of the best-fit

Figure 10. The ℓ = 1 dimensionless frequency spectrum of an 8.5 M stellar
model as it evolves from the ZAMS to the REMS. Blue (orange) dots indicate
which modes are stable (unstable); selected modes are labeled along the left/
bottom edge using their classification.

Figure 11. Instability strips for dipole (ℓ 1= ) oscillation modes in the upper
part of the HR diagram, but calculated using OP rather than OPAL opacities
(cf. Figure 9).
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models reported by astero is 2.3 in the former case,
compared to 2.4 in the latter (cf. Table 2 of Paper II).

3.3. Automated Strip Location

The instability strips presented above involved the examina-
tion of ∼11 million modes of ∼40,000 stellar models. To
partially automate the process, we can leverage tight coupling
between GYRE and MESAstar. This is achieved by making
small modifications to the extras_check_model callback
routine in MESAstar (see Appendix B.1 of Paper II), so that
GYRE is run after each timestep to determine the set of
eigenfrequencies { }s of a user-specified group of modes. When
Im( )s changes sign from one timestep to the next for any of
these modes, indicating that an instability-strip boundary has
been crossed, a search is performed to find Im(s)» 0.

Figure 13 presents an application of the tight coupling to the
fundamental and first-overtone radial modes of the 8.5M
model considered in Section 3.1, showing how the growth
timescales osct and oscillation periods Posc = 1/ oscn of the modes
change as the star evolves from the ZAMS into the post-MS.
The second-overtone radial mode remains stable, 0osct < , over
the range plotted. The vertical lines show where osct changes
sign. The blue and red edges of the (ℓ 0= ) β Cephei instability
strip can be seen in the upper panel of Figure 13 at

Tlog K 4.36eff( ) = and Tlog K 4.30eff( ) = , respectively. The
blue edge12 of the classical instability strip can likewise be seen
in both panels at Tlog K 3.75eff( ) = . The corresponding red
edge is not found because GYRE does not include a treatment of
the pulsation–convection interaction—a necessary ingredient

for modeling the classical red edge (see, e.g., Section 3.7.3 of
Aerts et al. 2010, and references therein).
As a further demonstration of automated instability strip

location, Figure 14 plots the blue edges of the classical
instability strip in the HR diagram, for fundamental and first-
overtone radial modes. The edges are calculated for 51
evolutionary tracks spanning the initial mass range

M1.25 M 12.5 M   in uniform logarithmic increments.
At luminosities Llog L 2.5( )☉  corresponding to classical
Cepheid pulsators, these edges show good agreement with the
set B results published by Smolec & Moskalik (2008, their
Figure 1). At luminosities Llog L 1.6( )☉  corresponding to δ
Scuti stars, the edges are somewhat cooler than results
published in the literature; however, this is because we
consider only fundamental and first-overtone modes, whereas
the blue edge is typically set by higher overtones which are
displaced toward hotter Teff (e.g., Dupret et al. 2004, their
Figure 1).
Ideally, the same automated approach could be used to locate

the boundaries of the non-radial (ℓ 0> ) instability strips
plotted in Figure 9. In practice it is very challenging to devise a
robust algorithm that can unambiguously interpret the eigen-
frequencies produced by GYRE. Sometimes, acoustic glitches

Figure 12. Echelle diagram for the subgiant star HD 49385. Observed
frequencies are shown as filled circles (ℓ 0= ), triangles (ℓ = 1) and squares
(ℓ = 2); black horizontal lines indicate the 1σ error bars. Calculated frequencies
of the best-fit model are overplotted as the corresponding open symbols.

Figure 13. Growth timescale osct (left axis) and oscillation period Posc (right
axis) of the fundamental and first-overtone radial modes of a 8.5 M model,
plotted as a function of Teff as the star evolves away from the ZAMS. The
vertical dashed lines, determined automatically, show the points where the
modes switch from stable ( 0osct < ) to unstable ( 0osct > ), and vice versa.

12 For classical (δ) Cepheid pulsators, the observational blue edge of the
classical instability strip is in fact established by stars evolving to higher Teff on
their first blue loop, rather than stars on their first crossing of the Hertzsprung
gap. However, the purpose of the present section is to demonstrate the
capability of tightly coupling, and in this context the distinction between the
blue edges from multiple crossings is unimportant.
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in a model can trap modes in surface layers, where they are
strongly excited; however, these modes are very sensitive to
model parameters, and it is unclear whether they are physically
meaningful or not.

4. IMPLICIT HYDRODYNAMICS

Shocks happen in stars, such as after a massive star
collapses, or cyclically in the outer envelopes of stars pulsating
at sufficiently large amplitude. Previous versions of
MESAstar allowed large velocities such as those encountered
in the last few seconds leading to a core collapse
( 1000 km s 1» - ), but there was no provision for large jumps
in velocities leading to shocks. In this section we describe the
changes that have been made to support an implicit treatment of
hydrodynamic shocks that includes careful attention to
conservation of energy. We demonstrate that the revised
equations are intrinsically conservative in the sense that
deviations from exact energy balance can only arise from
residual numerical errors in the approximate solutions rather
than from the form of the equations themselves. Following the
description of the changes, we show a series of envelope
shocks as a test of the implementation. The form of the
equations and the demonstration of intrinsic conservation
closely follow Fraley (1968) and Grott et al. (2005). The
treatment of artificial viscosity is based on Weaver
et al. (1978).

4.1. Mass Continuity

The specific volume of cell k is

r r

dm

1 4

3
, 25

k

k k

k

3
1

3

( )
⎛
⎝⎜

⎞
⎠⎟r

p
=

- +

where rk is the outer face radius, rk 1+ is the inner face radius,
dmk is the cell mass, and kr is the cell average density (see

Figure 15 for the layout of cells in MESAstar).We create an
initial algebraic form of the continuity differential equation by
dividing the change in the specific volume in a step by the
length of time td , using step start and end values for rk, rk 1+ ,
and kr and the value dmk which is constant during the step:

t

dm

r r r r

t

1 1

4

3
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3
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Next, we rewrite the right-hand side introducing variables for
the time centered velocity v̂ and the effective area A to get the
final form of the mass continuity equation as used in
MESAstar:

t dm
A v A v

1 1 1
, 27k k

k
k k k k

start,
1 1( )ˆ ˆ ( )

r r

d

-
= - + +

where

v v v 2 28k k kstart,ˆ ( ) ( )= +

and rk is evaluated as

r r v t. 29k k kstart, ˆ ( )d= +

Algebraic simplification then shows that

A r r r r
4

3
. 30k k k k k

2
start, start,

2( ) ( )p
= + +

To be consistent with the mass continuity equation, we use
these expressions for effective area and time centered velocity
in the following momentum and energy equations. It will be
shown below that to get intrinsic energy conservation, we must
time center the velocity and use special combinations of
starting and ending radius in a couple of places, but all other
terms in the equations can remain fully implicit to avoid
degrading the numerical stability as would happen in a
uniformly time-centered scheme.

Figure 14. Calculated blue edge of the classical instability strip, for
fundamental and first-overtone radial modes. The corresponding dashed lines
show the predictions from set B of Smolec & Moskalik (2008, their Figure 1).

Figure 15. Schematic of relevant cell and face variables relevant for
hydrodynamics in MESAstar.
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4.2. Artificial Viscosity

In MESAstar, the artificial dynamic viscosity coefficient
visch (which has the dimensions g cm s1 1- - )

, 31k k kvisc, visc,linear, visc,quad, ( )h h h= +

where the linear term is

l r c
3

4
32k k k kvisc,linear, 1 mid, s, ( )h r=

and the quadratic term is

l
r

dm
r v r v

3

4

4
max 0, ,

33

k
k k

k
k k k kvisc,quad, 2

2
2

mid,
2

1
2

1
2( )ˆ ˆ

( )

h
r p

= -+ +

with r r r 2k k kmid, 1( )= ++ , c ks, the sound speed in cell k, and
l1 (l2) is a dimensionless coefficient for the linear (quadratic)
term. The linear term is rarely used; it provides for a general
damping of pulsations. The quadratic term is only nonzero in
regions of compression and is the primary control for the
strength of artificial viscosity. Assuming the usual case of
l1 = 0, the shock front is spread over a distance l rk2~ . We
follow Dorfi (1998) in opting for a shock spread proportional to
the local radius r rather than the local cell width. This choice is
dictated by the fact that step-by-step adjustments to the mesh
resolution lead to dynamically changing, non-monotonic
variations in cell widths of up to a factor of 2 or more between
neighboring cells. Making the shock spread directly dependent
on the local cell widths would produce numerically intolerable
dynamically changing, non-monotonic variations in cell-to-cell
values for the shock spread. Use of a local running average cell
width is also ruled out by the need to keep algebraic equations
dependent only on nearest neighbors to allow a block
tridiagonal matrix solution. The use of a small fraction of the
local radius gives a smoothly varying shock spread that avoids
the numerical problems associated with using the cell width.

We define the quantity Q kvisc, (having dimensions of energy),
in cell k as

Q
r

dm

v
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The momentum equation uses Qvisc in an expression that
defines an artificial acceleration analogous to the pressure
gradient term, and the energy equation uses it to define an
artificial viscous heating analogous to the mechanical
work term.

4.3. Specific Linear Momentum Equation

The local linear momentum conservation equation at face k
between inner cell k and outer cell k 1- is

v v

t

Gm
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where dm dm dm 2k k k 1( )= + - is the mass associated with
face k, and the viscous acceleration term at face k is

g
r

Q Q

dm

4
. 36k

k

k k

k
visc,

visc, 1 visc, ( )
⎛
⎝⎜

⎞
⎠⎟

p
=

--

The use of the product r rk kstart, in the denominator of the
gravitation term is necessary for intrinsic energy conservation
as will be shown below.

4.4. Specific Energy Equation

The local energy conservation equation for cell k between
outer face k and inner face k 1+ is

e e

t

L L
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where ek is the specific thermal energy for cell k. The viscous
heating rate for cell k is

Q

dm

v

r

v

r

4
. 38k

k

k

k

k

k

k
visc,

visc, 1

1

ˆ ˆ ( )
⎛
⎝⎜

⎞
⎠⎟

p
= - +

+

Energy loss from weak reaction neutrinos is already subtracted
from the nuclear burning term, knuc, , so only the neutrino
energy loss rate from thermal processes, k,n , is explicitly
accounted for in Equation (37). An example of kextra, is the
artificial injection of energy to trigger a shock.
An alternative form of the energy equation equates the model

dL dm to the expected value

L L

dm
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Using Equation (27), the expression for grav can be rewritten

e e

t
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42k
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thereby avoiding the use of velocities and thus be appropriate
for hydrostatic cases.

4.5. Intrinsic Energy Conservation

The summed kinetic, potential, internal energies are

dm vKE
1

2
, 43

k
k k

2 ( )å=

Gm dm

r
PE , 44

k

k k

k
( )å= -

e dmIE , 45
k

k k ( )å=

and thus the total energy of the star is E KE PE IE= + + .
We now explicitly demonstrate that the equations we solve are
formulated in such a way that the rate of change of total energy
exactly equals the combined energy sources and sinks.
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Multiplying Equation (35) by v dmk kˆ gives an equation with
units of luminosity:
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v v
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Using Equation (29) to eliminate vkˆ in the first term on the
right,
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shows that this term is the negative of the rate of change of
potential energy, a result that is made possible by the use of the
Gm r rk k kstart, in Equation (35) instead of an alternative such as
Gm rk k

2. Thus, Equation (46) can be written as
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Similarly, multiplying Equation (37) by dmk also yields an
equation with units of luminosity:
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Adding Equations (48) and (49) and summing over the grid
index k gives
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The sum over the pressure terms is

P A v P A v

PAv PAv

L L , 51

k k k k k k k1 1 1

surface center

acoustic,surface acoustic,center)

( )
( ) ( )

(

ˆ ˆ

ˆ ˆ

( )

⎡⎣ ⎤⎦
å -

= - -

= - -

+ + -

which cancels term by term except at the boundaries. We define
Lacoustic,surface as the work done by the model on the atmosphere
at the surface and Lacoustic,center as the work done on the model
at the center, for example, by an artificial piston. The sum over
the artificial viscosity terms leads to a similar expression, but
because Qvisc vanishes at the surface and the center, the sum
equals zero. That is, the energy added by artificial viscous
heating in the energy equation exactly balances the loss of
kinetic energy by artificial viscous acceleration in the
momentum equation.
The terms on the left-hand side of Equation (50) are the

difference in the total energy between the start and end of a step
divided by the length of the step, in other words, the average
rate of change of the total energy of the model. Therefore
Equation (50) can be written as

E E t L L
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This equation embodies conservation of energy in MESAstar:
the rate of change of total energy equals the combined energy
sources and sinks. This demonstrates that in the given form, the
algebraic equations intrinsically conserve energy in the sense
that failure to get energy balance can only arise from the
residual numerical errors that are inherent in using approximate
solutions to the equations. This in turn means that to control
energy balance errors, we can focus on reducing residuals
either by changes in the Newton solver or by timestep
reductions.

4.6. Controlling the Accuracy of Energy Conservation

The Newton solver considers both the sizes of incremental
changes to the variables and the sizes of residual errors for the
equations. For the energy equation, the residual used by the
solver is defined to be the timestep td times the difference
between the left and right sides of Equation (37) divided by
e kstart, ; in other words, the residual is the error as a fraction of
the specific energy at the start of the step. By adjusting
tolerances for the average and maximum size of residuals, we
force the Newton solver to take extra iterations to reduce the
residuals which will in turn reduce the total error in energy
conservation.
A second and related way to control energy conservation

errors is to use the average and maximum energy residuals to
adjust the timesteps. For example, if the maximum magnitude
for an energy residual exceeds a specified hard limit, then the
proposed solution is rejected and the step is retried with a
smaller timestep. If the maximum is smaller than the hard limit
but exceeds another specified limit, then there is no forced retry
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for this step, but the next timestep is reduced by the ratio of the
limit divided by the maximum magnitude. If the maximum is
smaller than both limits, then other factors determine the next
timestep. Later in this section, we will show that these
approaches in combination with the intrinsic conservation form
of the equations yield a solution for a shock in an envelope that
evolves with reasonably large timesteps while conserving
energy to a high degree of accuracy.

4.7. Limiting Acceleration of Convective Velocity

When using hydrodynamics, we often require timesteps
that are so small that we need to limit the increase in
convective velocities as calculated in the standard instanta-
neous mixing length theory (MLT) so that they do not
assume unphysically large accelerations. If convection
velocities are allowed to adjust instantaneously, then our
methods for artificially creating shocks will fail since
however rapidly we inject energy over a limited region,
convection will be able to transport the energy away. To be
able to simulate shocks we need to have a way to limit
convection velocity acceleration.

The primary scheme we use for this is derived from Arnett
(1969) and Wood (1974). The MLT implementation in
MESA has been extended to take as additional arguments the
timestep and the previous convection velocity at the same mass
location (vc,prev). It calculates a provisional convection velocity
(vc0) using the standard instantaneous MLT, then defines a
convective timescale ( MLTt ) as the local pressure scale height
(H) divided by the sum of the provisional plus previous
velocities. If td is less than MLTt , then the next convection
velocity (vc) is only incremented from the previous one by the
difference of the provisional minus the previous velocities
times the ratio of the timestep divided by the timescale

v v
t

v vmin 1, , 53c c,prev
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d
t
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v v
. 54MLT

c0 c,prev( ) ( )t =
+

As an alternative scheme for limiting convection acceleration,
we also allow the maximum rate of change of convection
velocity to be set as a fraction, gq, of the local gravitational
acceleration. If v vc0 c,prev> , then

v v v t g gmin , . 55c c0 c,prev( ) ( )d= + q

The final vc is used to recalculate the convection efficiency,
which is used to calculate the MLT temperature gradient.

These methods for limiting the acceleration of convective
velocities reduce the energy transport rate as well as the rate of
compositional mixing. Both schemes seem to give at least
qualitatively reasonable results and avoid the problems of
unphysically large accelerations that are possible with standard
instantaneous MLT. Hopefully this ad hoc solution will soon
be replaced by a quantitatively correct formulation.

4.8. Surface Boundary Conditions

MESA provides a variety of options for surface boundary
conditions (see, e.g., Section 5.3 of Paper I), and several more
have been added for use with hydrodynamics. The simplest

allow specification of a particular value for the surface
pressure, the surface temperature, or the Teff if the surface is
not at the photosphere. In the case of a given fixed surface
pressure, the corresponding surface temperature is set using the
surface luminosity and radius based on the usual blackbody
relation. For the second case, where the surface temperature is
fixed, the surface pressure is set to the corresponding radiation
pressure. For both of these, if the surface is not at the
photosphere, Teff is set using the Eddington T–τ relation.
Finally, for specified Teff when the surface is not at the
photosphere, the corresponding surface temperature is also
derived using the Eddington T–τ relation, and the surface
pressure is set to the radiation pressure for that temperature.
For computations involving shocks at the surface, there is an

option to use boundary conditions that specify a vanishing
gradient for compression at the surface and a temperature
corresponding to blackbody radiation. The outermost cells
(k 1, 2= ) satisfy the equation

1 1 1 1
, 56

1 start,1 2 start,2

( )
r r r r

- = -

which represents the vanishing of the surface compression
gradient.
Finally, for computations involving interior shocks but low

velocities at the surface, there is an option to use the surface
pressure from the selected atmosphere prescription with the
momentum equation relating the surface velocity to the surface
pressure gradient. This form for the surface boundary
conditions is used in the shocked massive star example in
Section 6 and in the following envelope shock test.

4.9. Shock Test

To test the implementation, we shock the extended envelope
of a 6.93M asymptotic giant branch (AGB) star evolved from
a 7MMS star without rotation and an initial metallicity of
0.001. This case is chosen because of the uniform properties of
the extended envelope (i.e., small density range, smooth
density, and uniform composition). Our interest is to study
the propagation of the shock, the properties of the shocked
material, and the magnitude of energy conservation errors. In
Section 6, we present results that mimic core-collapse
supernovae.
Explosion simulations with MESA start from a converged

model. The core is excised by removing inner shells of the
model and setting new inner boundary conditions for mass,
radius, velocity, and luminosity. For the current test, we
remove the center just above the helium core at a mass of
2.40M which corresponds to an inner radius of 27.2R. The
stellar surface lies at a radius of 282.7R. During the following
evolution, the excised region is treated as a point mass and is
linked to the above layers by the inner boundary conditions
which can be changed at each timestep to simulate various core
events. The model grid was adjusted at each step to give higher
resolution in the vicinity of the shock. The total number of cells
stayed at about 1000, with cell masses dropping to about 10 4-

of the total in approximately 100 cells around the shock.
In MESA, the artificial explosion that creates a shock can be

produced in three ways: a piston, a luminosity flash, or a
thermal bomb.

1. The first option changes the inner boundary conditions
for velocity and radius to mimic a piston. A core-collapse
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supernova can be simulated by moving the inner radius
inwards (collapse) at a free-fall speed and then violently
outwards (bounce and explosion). The parameterization
for the piston-driven explosion is the same as that
described in Woosley & Weaver (1995), and includes the
infall piston time, the final inward piston radius, the initial
outward piston speed, and the final piston radius.

2. The second option increases the inner boundary
luminosity over a specified time in order to deliver the
desired total energy. In this approach, the inner
boundary radius is fixed at all times and becomes a
zero-flux inner boundary once the flash is over. In this
approach, the inner boundary radius is fixed (zero
velocity) and we inject the energy within the first zone
of the domain.

3. The third option deposits energy at a constant rate during
a specified time and in a region bounded by two specified
Lagrangian-mass coordinates. As in the second option,
the inner boundary radius is fixed at all times.

The differences among these three options can alter the
properties of the shocked envelope.

To benchmark MESA for these shock tests, we have used the
explicit radiation-hydrodynamics code V1D (Livne 1993;
Dessart et al. 2010a, 2010b). Options 1 and 3 are implemented
in V1D. For the present envelope shock test, and subsequently
for the explosion tests, we use option 3 in both codes. We
initiate the explosion by depositing a total of 1049 erg at a
constant rate over 10 s between the Lagrangian mass
coordinates of 2.40 and 2.45M. This energy deposited is
well in excess of the initial binding energy, which is
approximately 2- ´ 1047 erg. Once the energy injection is
over, we save a model which is then used as initial conditions
for a shock evolution simulation.

Once the stellar core has been excised, the remaining
envelope has a smooth density profile, resembling a power law
whose exponent is −1 at depth and decreases outwards to
become about −10 at the photosphere (top row panels of
Figure 16). Because convective accelerations are limited, the
energy deposited increases the internal energy within the
innermost 0.05M of the grid. The pressure build-up leads to
the sudden expansion of the innermost layers and the formation
of a mildly supersonic shock (Mach number 2» ). The shock
propagates at a velocity in excess of 1000 km s 1- initially, but
slows to a few 100 km s 1- by the time it reaches the stellar
surface after 3× 105 s. The density contrast across this
somewhat weak shock is 6» . For a strong shock, one expects
a density jump of 4 for an ideal gas with an adiabatic index of
5/3 and a value of 7 for a radiation-dominated gas (g= 4/3).

This simulation is analogous to a shock-tube test. However,
in the stellar context (realistic stellar envelope, realistic
equation of state, spherical expansion), there is no analytical
solution for comparison. We thus run the same simulation with
the code V1D and include the results in Figure 16. The results
agree at multiple times spanning the progression of the shock
toward the stellar surface (the times used for comparison are the
same to within 1% and the grid resolution is comparable). The
sharpness of the shock in the two simulations differs with time
and location. In V1D, the artificial viscosity has a physical
spread of two grid zones, irrespective of radius, while in this
MESA run, the spread is set to 0.1% of the local radius (see
Section 4.2).

Since the explosion is started as a thermal bomb, the bulk of
the energy is initially internal (see Figure 17). As the material
expands and accelerates, the kinetic energy increases, mirroring
the decrease in internal energy (essentially no energy is used to
unbind the envelope). At the time of shock emergence, the
internal and kinetic energies are comparable.
In the present case, we can preserve good accuracy while

still allowing timesteps an order of magnitude greater than the
Courant time.13 The error in energy conservation at timestep i
is

E E E E , 57i i i ierror, 1 sources, ( )d = - --

where E isources, is the right-hand side of Equation (52) multi-
plied by td . The cumulative relative error in energy at a
timestep n is
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In the test case, after about 15,100 timesteps when the shock
reaches 6.6 M, the cumulative relative error has grown to
about 1.4 10 6- ´ - , corresponding to a roughly linear growth
rate of about 1 10 10- ´ - per step (bottom panel in Figure 17).
Note that at this stage of evolution the shock is nearing the
outer edge of the envelope but has not actually broken out
through the surface. Issues of shock break out are beyond the
scope of the current implementation. Using the parameters
selected for the test, the energy conservation with V1D is not as
good as with MESA (the jumps in cumulative error correspond
to times when the limit on the timestep are loosened);
comparable accuracy can be obtained with V1D by reducing
the explicit timestep well below the Courant limit.
Finally, to illustrate the effects of artificial viscosity, we vary

the quadratic term l2 that controls the spread of the shock in
response to compression (see Equation (33)), with the
explosion energy increased to 1050 erg in order to produce a
stronger shock, and otherwise the same parameters and initial
conditions. The top panel of Figure 18 shows the artificial
acceleration (gvisc) and energy ( visc ) terms that enter the
momentum and the energy equations for l2 = 0.001. The
acceleration term is positive ahead of the shock, causing a pre-
acceleration of the unshocked material, and negative behind the
shock causing a deceleration of the post-shock material. The
energy corresponding to those changes in momentum is
balanced by the extra term for artificial viscous heating in the
energy equation ( visc ). The lower panel of Figure 18 shows the
expected increase in the width of the shock as we raise the
parameter l2. For the model with l2 = 0.004, dots locate grid
cells. Note that with the smallest value (l2 = 0.001), the
velocity is showing small oscillations (“ringing”) behind the
shock indicating that we have reached a practical lower bound
for the shock spread given the other parameter choices and the
nature of the specific problem.

5. ADVANCED BURNING

For the advanced stages of stellar burning, we show here that
more accurate summations yield more efficient time integra-
tions. This development allows MESA to use large in situ

13 The Courant time is equal to the minimum sound crossing time through a
grid zone. In this envelope test, it is of the order of 10 s initially, increasing
progressively to 40 s prior to shock emergence.
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reaction networks. It offers an improvement by providing a
single solution methodology that avoids the challenges of
stitching together different solution methods such as nuclear
statistical equilibrium (NSE) or co-processing a reaction
network. We discuss this development and apply it to the

evolution of an X-ray burst on a neutron star (NS). In Section 6
we discuss the pre-supernova progenitors and combine the new
capability for advanced burning with the implicit hydrody-
namics module to discuss the explosion of core-collapse
supernovae.

Figure 16. Multi-epoch snapshots for the hydrodynamical simulation of a 1049 erg shock in the envelope of a 6.93M AGB star. We show the density (top row),
temperature (middle row), and velocity (bottom row) vs. Lagrangian mass (left column) and radius (right column). In each panel, the solid line refers to the
MESA results and the dashed line to the V1D results.
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The equations that describe the continuum limit of reacting
nuclei are
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where Yi is the abundance of isotope i, λ is a reaction rate, and
the three sums are over reactions which produce or destroy a
nucleus of species i with 1, 2, and 3 reacting nuclei,
respectively (e.g., Meyer et al. 1998; Hix & Meyer 2006;
Guidry et al. 2013; Longland et al. 2014). The positive or
negative stoichiometric coefficients ci account for the numbers
of nuclei created or destroyed in a reaction. The factorials in the
denominators avoid double counting of identical particles.

Figure 19 shows the evolution of the mass fractions for a
MESA one-zone burn at constant T = 9.6× 109 K and
ρ = 6.0× 109 g cm−3 for 106 s starting with a pure 28Si
composition. The 204 isotope network, mesa_204.net, used
in the calculation is listed in Table 2, and includes the isotopes
identified in Heger et al. (2001) as important for Ye in core-
collapse models. The thermonuclear reaction rates are from
JINA reaclib version V2.0 2013-04-02 (Cyburt et al. 2010).
Implementation of reaction rates and associated quantities are
described in Paper I and Paper II.

The thermodynamic conditions used in Figure 19 are
representative of the central regions of massive stars during
the advanced stages of evolution. At such temperatures the
initial composition of pure Si28 undergoes a rapid readjustment.
The timescale for the initial Ye » 0.5 composition to relax to an
NSE composition is roughly Texp 179.7 40.5nse

1 5
9( )t r» -

s = 3 10 8´ - s (Khokhlov 1991; Calder et al. 2007),
commensurate with the first burning phase in Figure 19.

Between 10» −8 s and » 10−4 s the isotopes 4He and 54Fe
dominate the Ye » 0.5 NSE composition. Since T and ρ are
constant, only changes to Ye can change the abundances. A
second period of intense rearrangement begins at 10» −4 s and
ends at 10» s. This activity is driven primarily by p e n,( )n-

and n e p,( ¯ )n+ and other weak reactions that change Ye. Beyond
10» s, the isotopes 48Ca, 49Ca, and 51Sc dominate the

Y 0.403e » NSE composition.

Figure 17. Top: evolution of internal energy Eint, gravitational energy Egrav,
kinetic energy Ekin, and their sum Etot for the envelope shock test simulated
with MESA and V1D. Bottom: log of cumulative relative error CRE
(Equation (58)) of the total energy Etot. We neglect sources (nuclear burning)
and sinks (radiation losses), which are negligible.

Figure 18. Top: normalized values of velocity, artificial acceleration gvisc,
artificial viscous heating visc , and Mach number in the vicinity of the shock.
The dashed vertical line marks where the Mach number is unity. Bottom:
dependency of the shock morphology on changes in the viscosity parameter l2.
The dots shown for the model with l2 = 0.004 denote the location of the
MESA grid points at that time. For all these tests, we deposit an energy of
1050 erg at a constant power over 1 s.

Figure 19. Evolution of the composition for a one-zone burn at constant
T = 9.6 × 109 K and ρ = 6.0 × 109 g cm−3 for 106 s starting with a pure 28Si
composition. The calculation uses the mesa_204.net isotope listing (see
Table 2), the most abundant isotopes are drawn with thick lines, and several
isotopes are labeled. The initial composition is quickly erased as NSE for Ye »
0.5 is established by» 10−8 s. Several orders of magnitude in time pass before
weak reactions drive a second period of rearrangement. By 10» s a second
NSE quiescent period with Ye » 0.403 is established.
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Table 3 shows the sensitivity of the finalYe in this calculation
to the number of isotopes in the network. Each successively
larger network encompasses the previous smaller network and
was crafted to yield approximately the same final Ye value as
given by the largest network. The 204 isotope network used in
Figure 19 is in the regime where larger networks give the same
final Ye to 3 significant figures.

5.1. More Accurate Summations Yield
More Efficient Integrations

We now test different summation methods for Equation (59)
and demonstrate that improved accuracy of the summations
reduces the number of timesteps with a commensurate
reduction in the execution time—while producing the same
answers to within the specified integration accuracy.

When the summations in Equation (59) are accumulated in
IEEE 64-bit arithmetic (16 significant figures, real*8
precision in Fortran on most architectures; more specifically
binary64 with round to nearest and round ties to even) the
integration in Figure 19 takes 3062 timesteps using a variable-
order Bader–Deuflhard integrator with a specified accuracy of

intt = 10−4 and a scaling value yscale = 10−3. The specified
accuracy intt limits the maximum error over one timestep for
any isotope. Other potential, but less demanding, choices for
the meaning of intt include limiting the average or root-mean-
square error over one timestep for all isotopes. When an
abundance is greater than yscale a relative error is calculated,
while for abundances smaller than yscale, the absolute error is
calculated (e.g., Press et al. 1992). In essence, only abundances
greater than yscale can exert control on the size of the timestep.

When the summations are accumulated in IEEE 128-bit
arithmetic (32 significant figures, real*16 precision in
Fortran on most architectures), the same integration takes only
55 timesteps, a factor 50» improvement in the number of
timesteps, and a factor of 30» less execution time. Both
calculations returned the same answers to within the specified
integration error tolerances. For tighter integration tolerances of

intt = 10−6 and yscale = 10−5, the evolution with summations in
IEEE 64-bit arithmetic takes 10,081 timesteps while the
evolution with summations in IEEE 128-bit arithmetic takes
88 timesteps. This is a factor of 100» improvement in the
number of timesteps, a factor of 150» in execution time, with

both calculations again producing the same abundances to
within the specified integration error tolerances. Both sets of
integration tolerances are practical, everyday usage tolerances;
they are not extreme cases of hypothetical interest only. Using
low-order Rosenbrock and first-order Euler integrators also
showed similar improvements in the number of timesteps when
the summations were performed in IEEE 128-bit arithmetic
instead of IEEE 64-bit arithmetic. We achieve a reduction in
the number of timesteps and execution times regardless of the
number of isotopes, choice of integrator, integration tolerances,
or linear algebra solver. This improvement in efficiency is
fundamentally driven by a reduction in the numerical noise of
the function being integrated.
At temperatures larger than ≈5× 109 K, integrating Equa-

tion (59) can be challenging as terms in the summation usually
become large and opposite in sign. As shown above, the classic
symptom during an integration under these thermodynamic
conditions is the integrator taking an excessive number of very
small timesteps in order to satisfy the specified integration
accuracy criteria. The traditional workaround to this numerical
problem is abandoning a network integration at elevated
temperatures and deploying equilibrium solution methods. This
switching of methods raises its own numerical issues when
used within the larger context of multi-dimensional simulations
or stellar evolution models (see Section 5.2).
Unless precautions are taken the summation of large sets of

numbers can be very inaccurate due to the accumulation of
rounding errors. Methods for accurate summation within the
bounds of a given arithmetic remain an active field of research
(e.g., Demmel & Hida 2003; McNamee 2004; Ogita et al.
2005; Rump et al. 2008; Graillat & Ménissier-Morain 2012;
Collange et al. 2014). These summation discrepancies also
worsen on heterogeneous architectures—such as clusters with
NVIDIA GPUs or Xeon Phi accelerators—which combine
programming environments that may obey various floating-
point models and offer different precision results.
The summations in Equation (59) for the neutron, proton,

and α-particle abundances are especially prone to inaccuracies
because every isotope in a network reacts with these three
particles. We report on the summation errors for these three
isotopes. Each term in the summations of Equation (59) is
calculated using IEEE 64-bit arithmetic and then copied into a
IEEE 128-bit variable using the Fortran promotion rules. Each
IEEE 128-bit term is then imported into the MP (Brent 1978)
and MPf90 (Bailey 1995) multiple precision packages. All
other aspects of the integration were executed in IEEE 64-bit
arithmetic. The summations are then accumulated with

1. IEEE 64-bit: terms in the order as given;
2. IEEE 64-bit: terms sorted by their absolute value in

ascending order;

Table 2
204 Isotope Network Listing

Element Amin Amax Element Amin Amax

n L L S 31 37
H 1 2 Cl 35 38
He 3 4 Ar 35 41
Li 6 7 K 39 44
Be 7 10 Ca 39 49
B 8 11 Sc 43 51
C 12 13 Ti 43 54
N 13 16 V 47 56
O 15 19 Cr 47 58
F 17 20 Mn 51 59
Ne 19 23 Fe 51 66
Na 21 24 Co 55 67
Mg 23 27 Ni 55 68
Al 25 28 Cu 59 66
Si 27 33 Zn 59 66
P 30 34 L L L

Table 3
Final Ye for Figure 19

# of Isotopes Ye Zmax Amax

75 0.4093 Ni 68
125 0.4065 Ni 68
160 0.4032 Ni 68
204 0.4032 Zn 66
368 0.4035 Zn 77
833 0.4029 Sn 125
3298 0.4039 At 211
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3. IEEE 64-bit: terms sorted by their absolute value in
ascending order and the Kahan (1965) algorithm, which
reduces the numerical error in summation by retaining a
separate variable to accumulate the errors;

4. IEEE 128-bit: terms in the order as given;
5. IEEE 128-bit: terms sorted by their absolute value in

ascending order;
6. MP and MPf90 100 digits: terms sorted by their absolute

value in ascending order.

There are many summation methods and alternative multiple
precision packages we did not deploy in these studies (e.g.,
Knuth 1997; Higham 2002; Li et al. 2002; Muller et al. 2010;
Collange et al. 2014).

Table 4 summarizes these summation experiments. We
confirm that 100 digits are sufficient to prevent errors in our
multiple precision sums. Column 4 gives the minimum number
of correct digits in a summation. There are three time periods in
the evolution of Figure 19 where summations performed in
IEEE 64-bit arithmetic greatly increase the number of timesteps
taken by the integration. One is during the first rearrangement
into the NSE state ending around 10−8 s, another is during the
second rearrangement around 10−1 s and the third time period
is when the abundances do not change much (Ẏ » 0) and
reaction rates reach equilibrium. It is during these equilibrium
periods where a summation in IEEE 64-bit arithmetic with the
terms summed in the order given may yield only six accurate
digits. As a result, 3062 timesteps are needed to complete the
integration (e.g., row 2 of Table 4). It is important to note that
this strategy and choice of arithmetic is commonly used by
nuclear reaction networks (e.g., Timmes 1999)—and is the
most inaccurate choice. Row 4 of Table 4 is an important case,
sorted plus Kahan summation, because it demonstrates that a
marginal improvement in the accuracy of the summation (8
minimum correct digits) has a major reduction on the number
of timesteps (1174 timesteps) and execution time (a factor of

2.5» smaller). This establishes the general trend that improved
accuracy of the summations reduces the number of timesteps
with a commensurate reduction in the execution time—while

producing the same answers to within the specified integration
accuracy.
The left-hand side of Equation (59) for Yi̇ is a IEEE 64-bit

array to be filled with one of the summations. SettingYi̇ equal to
one of the IEEE 128-bit summations (at least 22 digits of
accuracy) or the multiple precision package summations gives
the most efficient integration (55 timesteps, rows 5 and 6 in
Table 4) because the Fortran precision demotion rules assure Yi̇
is accurate to the limit of IEEE 64-bit arithmetic. The next best
strategy, but a distant second, is setting Yi̇ equal to the
sorted, Kahan summation. The worst case is setting Yi̇ equal to
the 64-bit arithmetic sum with the terms in the order they
appear—which is a common approach (e.g., Timmes 1999).
Figure 20 shows the number of correct digits in 64-bit and

128-bit summations for Ẏ (4He) with the terms accumulated in
the order they are given. The number of correct digits is
measured against the 100 digit sum calculated by the multiple
precision packages MP and MPf90. The choices for the
integrator and integration tolerances are the same as in
Figure 19. Figure 20 shows that the minimum number of
accurate digits is usually within a few digits of the limit of
IEEE 64-bit arithmetic, but degrades to 6 digits (see row 1 of
Table 4) during a time period of intense isotope rearrangement.
These relatively large inaccurate summations cause the right-
hand side of Equation (59) to be poorly defined in IEEE 64-bit
arithmetic. As a direct result, the integration of Equation (59)
with IEEE 64-bit summations takes 3062 timesteps to
complete. Sorting the terms in the sums in ascending order
and using the Kahan summation algorithm results in an
accurate digit pattern that is very similar except the number
of accurate digits is improved by one or two (see row 3 of
Table 4). As a direct result of the improved accuracy of the
summations, the number of timesteps is reduced from 3062
to 1141.
For the IEEE 128-bit sum relative to the 100 digit sum in

Figure 20, the minimum number of accurate digits is usually
near the limit of IEEE 128-bit arithmetic, but degrades to 21
digits (see row 5 of Table 4) during the second period of
intense isotope rearrangement. Relative to the IEEE 64-bit
summations the number of correct digits is improved by at

Table 4
Results of Summation Experiments

IEEE Maximum Strategy Minimum Number of Ratio of
Arithmetic Digits Compared Correct Digitsa Timestepsb CPU Timesc

intt = 10−4 yscale = 10−3

64-bit 16 in order given 6 3062 31.7
64-bit 16 sorted, ascending 7 2614 24.4
64-bit 16 sorted, Kahan sum 8 1141 13.1
128-bit 32 in order given 21 55 1.0
128-bit 32 sorted, ascending 22 55 1.0

intt = 10−6 yscale = 10−5

64-bit 16 in order given 6 10081 156
64-bit 16 sorted, ascending 7 7972 123
64-bit 16 sorted, Kahan sum 8 7674 112
128-bit 32 in order given 21 88 1.0
128-bit 32 sorted, ascending 22 88 1.0

Notes.
a Relative to the 100 digit sum by the MP and MPf90 multiple precision packages.
b For a Bader–Deuflard integrator in IEEE 64-bit arithmetic.
c For a single thread on one 2.7 GHz Intel Xeon E5 core with the Intel 15.0.1 Fortran compiler, and relative to the execution time for the integration with 128-bit
summations with terms in the order given.
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least 15, consistent with our conversion of the IEEE 64-bit
terms in the sum to IEEE 128-bit using the Fortran promotion
rules. As a direct result of the improved accuracy of the
summations the integration that used the IEEE 128-bit
summation took only 55 timesteps to complete the evolution.

We found no notable improvements by increasing the
accuracy of the summations for the Jacobian matrix used by the
stiff ordinary differential equation integrators. For this problem,
it is evidently more important to better define the function—the
right-hand side of Equation (59)—than the Jacobian matrix
holding the derivatives of the function.

Based on these experiments we currently choose to improve
the accuracy of the summations by converting the terms in the
order they appear from IEEE 64-bit to IEEE 128-bit using the
Fortran promotion rules and adding the terms in IEEE 128-bit
arithmetic. IEEE 128-bit precision is presently almost always
implemented in software by a variety of techniques (e.g.,
double–double methods), since direct hardware support for
IEEE 128-bit precision is presently rare. However, Table 4
shows the reduction in the number of timesteps from
accumulating the sums in IEEE 128-bit arithmetic far exceeds
the extra computational cost per addition.

5.2. A Uniform Solution Method for Nuclear Burning
in Stellar Evolution

At high temperatures, the traditional workaround for the
numerical problem of inaccurate summations in IEEE 64-bit
arithmetic is to forgo using a reaction network integration to
evolve the abundances and nuclear energy generation rate and
to replace it with equilibrium solution techniques. An example
of such an equilibrium calculation is NSE, where a root-find for
the neutron and proton chemical potentials is performed. Once
these two chemical potentials are known, all the abundances
can be determined from nuclear Saha equations (e.g., Clifford
& Tayler 1965; Hartmann et al. 1985; Meyer et al. 1998;
Nadyozhin & Yudin 2004; Seitenzahl et al. 2008; Odrzywolek
2012). Equilibrium solution methods by themselves are
efficient, robust, and inexpensive.

However, combining reaction networks and equilibrium
solution methods creates its own numerical issues, especially
when the temperature and density are spatial and time
dependent. For example, the temperature of a cell may start
relatively low, move into quasi-static equilibrium (QSE) range
above 3× 109 K, and then move into NSE range above
5× 109 K. Ad-hoc decision trees must be created for switching
between a network integration, QSE solutions, and NSE
solutions. These switches can introduce unphysical disconti-
nuities in the abundances either from one timestep to the next
or in the abundance spatial profiles from one cell to the next.
Furthermore, cells near the transition between a network

integration and an equilibrium method can be unstable in the
sense that the equilibrium solution can evolve a cell to lower
temperatures pushing the cell into using a network integration,
while the solution from the network integration can evolve the
cell toward higher temperatures evolving the cell back toward
using the equilibrium solution. Moreover, the reaction network
used for the time integration is different (usually smaller) than
the isotope listing used for the equilibrium methods. This
necessitates crafting a delicate mapping between two abun-
dance vectors, which may also introduce unphysical disconti-
nuities. In addition, care must be taken to assure the reaction
rate screening corrections used in the time integration are
properly taken into account in the equilibrium solution method,
otherwise a fundamental incompatibility exists between the
abundance vectors.
Finally, equilibrium methods determine the composition at a

fixed electron fraction Ye. It then becomes necessary to solve an
ordinary differential equation for Yė based on weak reaction
rates in order to advance the abundance solution with a time
varying Ye (McLaughlin et al. 1996; Townsley et al. 2009;
Arcones et al. 2010, also see Section 8). Switching between
integration and equilibrium methods mid-stream is a liability,
not a positive asset.
The need for traditional workarounds forced by limited

accuracy of the summation is now avoided. The summation
experiments in Section 5.1 demonstrate that network integra-
tion can be robust and efficient, even at very high temperatures,
when the accuracy of the summations is improved. We stress
this is not just a solution to issues of limited accuracy. It also
offers an improvement in MESA by providing a single solution
methodology, network integration, that avoids the challenges of
stitching together different solution methods.

5.3. X-Ray Burst Models and Adaptive Nets

The new capabilities described above allow MESAstar to
use large in situ reaction networks (i.e., fully coupled to the
stellar evolution rather than uncoupled co-processing). A
demonstration is Type 1 X-ray bursts, a class of objects with
unstable nuclear burning on the surface of a NS. These bursts
are sensitive functions of accretion rate (Chen et al. 1997),
accretion composition (Galloway et al. 2006), the spatial
distribution of burning on the surface of the NS (Bildsten 1995),
the type of burning that occurs between bursts (Galloway
et al. 2008) as well as possibly other conditions, for instance
“superbursts” where carbon, rather than H/He, burns (Cum-
ming & Bildsten 2001). Here we focus on a simplified model of
constant accretion rate, where the burning occurs over the
whole surface of the NS. GS 1826-24 (Tanaka 1989), also
known as the “clocked burster” (Ubertini et al. 1999), provides

Figure 20. Number of accurate digits in 64-bit and 128-bit summations for
Y He4˙ ( ) as measured by the 100 digit sum calculated by the multiple precision
packages. The x-axis gives the timestep number for the integration done with
IEEE 128-bit summations. The number of accurate digits in Y p˙ ( ) and Y n˙ ( ) are
within a few digits of Y He4˙ ( ).
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an example of such a system due to its regular Type 1 X-ray
bursts.

As material is accreted at the surface of a NS it is
compressed and heats the underlying material. The accreted
hydrogen (from a low mass MS star (Chen et al. 1997)) burns
via the hot CNO cycle. However, with high enough accretion
rates the hydrogen will be accreted faster than the hot CNO
cycle, which is limited by the β-decay timescale (of order
minutes), can process the material. The accreted helium ignites
unstably in a hydrogen rich environment, allowing rapid proton
(rp) captures onto seed nuclei (Wallace & Woosley 1981).
This process forms nuclei along the proton drip line up to and
beyond the iron group (Schatz et al. 1999), peaking at 107Te,
when α-decays prevent heavier elements from being formed
(Schatz et al. 2001; Fisker et al. 2008). Once the burst begins,
convection will commence, mixing the freshly burnt material
with the ashes of previous burning episodes (Weinberg
et al. 2006).

GS 1826-24 has been studied by the Rossi X-Ray
Timing Explorer (RXTE) over several years (Galloway
et al. 2004, 2008). The bursts showed a decrease in the
recurrence time between bursts, from 4.1 hr in 2000 to 3.56 hr
in 2002, though during each observational epoch the bursts
were consistent with each other. Based on the ratio of the burst
energy to the persistent flux, it is assumed that the bursts are
powered by hydrogen burning of solar metallicity material.

We model the NS envelope using inner boundary conditions
for mass and radius of M 1.4c = M and R 11.2c = km (Heger
et al. 2007), implying a gravitational redshift of z1 1.26+ = .
The base of the envelope is composed of an inert layer that
does not undergo reactions. The luminosity at the base of the
envelope is set to L 1.6 10 erg s34 1= ´ - (Woosley et al.
2004). We base our nuclear networks on the 304 species rp.
net network of Fisker et al. (2008), which includes proton rich
isotopes up to 107Te. Isotopes above Zn66 , which is the peak
isotope in the mesa_204.net, are included due to the proton
captures possible on high-Z isotopes during the peak of the
burst (Fisker et al. 2006). We also include the effects of
rotational mixing by setting a minimum amount of mixing in
the NS envelope. This mixing, while having a physical
motivation (Piro & Bildsten 2007; Keek et al. 2009), is there
primarily to improve the convergence of MESAmodels by
smoothing out the compositional gradients that form in the
ashes of previous bursts. We include the post-Newtonian
correction to correct the local gravity in each cell for GR
effects. During the burst we allow the accretion to continue.

Our results are compared to the RXTE observations of GS
1826-24 over bursts 9-20. Time resolved spectra were binned
during the bursts’ rise time and decay (Galloway et al. 2008;
Zamfir et al. 2012). Data output by MESA is not GR time
corrected, thus we set the burst times to be t t z1( )¢ = + , and
average multiple bursts to produce a scaled light-curve.

Figure 21 shows the temperature profile during two X-ray
bursts, for the rp_305 net, accreting solar metallicity material
at a rate of 3.0 10 M yr9 1´ - -

 . At t 10 s¢ » - the envelope
ignites material and drives the formation of the first convection
zone. This zone expands outwards in the envelope mixing the
ashes from the burning at the base of the envelope outwards to
lower pressures (Weinberg et al. 2006). As the burst decays the
convection zone recedes outwards and by t 150 s¢ » the
envelope returns to its pre-burst temperature profile.

We test three reaction networks, rp_53, rp_153 and
rp_305, each a modified form of that in Fisker et al. (2008).
Table 5 shows that increasing the number of isotopes in the
reaction network increases the recurrence time and that all (for
M 3.0 10 M yr9 1˙ = ´ - -

 ) have recurrence times 1 hr» less
than that of GS 1826-24.
Figure 22 and its insert show the folded light curves for each

of the three rp reaction networks plus the GS 1826-24
observations. The rise time is sensitive to the net, with the
largest net matching the observed slow rise. The observed
decay profile is also best matched by rp_305. Burst to burst
variations of the models decrease with increasing net size and
can be further reduced by increasing the temporal resolution of
the models. However, increasing the size of the net reduces the
variation without having to increase the temporal resolution
and also highlights the impact of MESAʼs capability to include
large nuclear networks.
To achieve a better match to the GS 1826-24 recurrence

time (see Table 5), we reduce the accretion rate to Ṁ =
2.4 10 M yr9 1´ - -

 . However, Figure 23 shows that the light
curve comparisons are not as good as for the higher Ṁ .

Figure 21. Kippenhahn plot during two X-ray bursts for the rp_305 net with
the solar metallicity accretion model. The x-axis values are times relative to the
peak of each burst, note the nonlinearity of the scale. The y-axis values are the
column depth and the color coding shows the temperature of the NS envelope.
The dashed contours show the extent of the convective regions.

Table 5
Recurrence Times of X-Ray Bursts

Model
Accretion Rate
( M10 yr9 1- -

 ) Composition
Recurence
Time (hr)

GS 1826-24 4.0750 ±
0.0003

rp_53 3.00 2% metals 1.5 ± 0.10
rp_153 3.00 2% metals 3.3 ± 1.80
rp_305 3.00 2% metals 3.2 ± 0.07
rp_305 3.00 2% N14 3.0 ± 0.07
rp_305 2.40 2% metals 4.1 ± 0.30
Heger et al. (2007) 1.17 2% N14 5.4 ± 0.10
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GS 1826-24 was also modeled by Heger et al. (2007) with
accretion of hydrogen, helium and 2% N14 . For comparison, we
run a model with this same composition with the rp_305 net.
Table 5 shows that the recurrence time decreases slightly when
accreting 2% N14 rather than 2% metals. The model with metal
accretion is in better agreement with both the light curve rise
and decay.

We now explore adaptive nets (Woosley et al. 2004), where
we allow MESA to determine which isotopes (and reactions) are
necessary by assessing the available reaction pathways for the
most abundant isotopes. The network is constructed by first
finding those isotopes with an abundance above a threshold,
Xkeep, and then introducing those isotopes which are connected

by adding or removing protons, neutrons, or α particles. That
determination is made via the additional parameters Xn (i.e.,
neutron reactions) and Xp (i.e., proton and α reactions)
potentially re-adding isotopes removed with the initiating
Xkeep threshold.
Accreting solar composition material at M 3.0˙ = ´

10 M yr9 1- -
 we follow the model to the second burst, finding

a recurrence time of 3.1 hr, comparable to that from the
rp_305 net (Table 5). The adaptive net has a better rise time
profile than the rp nets, while the rp_305 net has a better fit
to the decay. This gives us confidence that the rp_305 net
includes all relevant isotopes which drive the X-ray burst and
thus is a useful approximation. For suitable values for the
sensitivity of the adaptive net, the net limits itself to 400»
isotopes between bursts, which increases to 600» isotopes
during the burst. Variations of a factor 100 in the threshold
parameters only change the isotope count by at most 50
isotopes and do not affect the final results.

6. CORE-COLLAPSE SUPERNOVAE

The capability of using large, in situ reaction networks
without the need for equilibrium or co-processing techniques
was described in Section 5 and applied to X-ray burst models.
We extend our demonstration of this capability by first
considering pre-supernova models. We then combine the
advanced burning development with the implicit treatment of
shocks discussed in Section 4 to core-collapse supernovae
models.

6.1. Pre-supernova Evolution without QSE or NSE

Figure 24 shows the Tc cr- evolution of Mi = 15 and 30
Mmodels from the onset of carbon burning until iron-core
collapse. These non-rotating, solar metallicity models used the
204 isotope reaction network described in Section 5 and
MESAstarʼs “Dutch” mass loss prescription with η = 0.8.
These models have ≈2200 cells on the MS, ≈3500 cells as the
star becomes a red supergiant, and ≈2300 cells at the onset of

Figure 22. Folded burst profiles for the different nuclear networks as compared
to GS 1826-24 for an accretion rate of 3 10 M yr9 1´ - -

 with 2% metals
with a solar composition, Three rp network models are shown and one of the
adaptive net models. The insert shows a zoom in of the first 30 s during the
burst.

Figure 23. Folded burst light curve for the rp_305 net, with a solar metallicity
accretion composition, shown for M 2.4 10 M yr9 1˙ = ´ - -

 and
M 3 10 M yr9 1˙ = ´ - -

 , normalized to the peak flux measured for GS
1826-24. The insert shows the first 30 s of the burst.

Figure 24. Evolution of Tc and cr in solar metallicity, non-rotating Mi = 15 and
30 M pre-supernova models. The curves are calculated using an in situ 204
isotope reaction network. Locations of the core carbon, neon, oxygen, and
silicon ignition are labeled, as is the scaling relation Tc

3
crµ , and the

E k T 4F B » electron degeneracy curve. Regions dominated by electron–
positron pairs, photodisintegration, and rapid electron capture are shaded and
labeled.
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core collapse. At core collapse the final masses are Mf = 13.0
and 15.2M. The curves fall below the Tc

3
crµ scaling relation

because the core becomes partially electron degenerate, as
indicated by tracks crossing the Fermi energy E k TF B( ) » 4
curve. Evolution toward lower density at nearly constant
temperature signals ignition of a nuclear fuel.

Figure 25 shows the radial velocity and Ye profiles at the
onset of core collapse for the Mi = 15 Mmodel. Dashed
curves show the results using a 22 isotope network and solid
curves show the results using a 204 isotope network. Both
models are evolved from the pre MS to the onset of core
collapse with their respective reaction network. The vertical
gray lines mark the mass of the iron core as defined by the Ye
jump, which is m » 1.43M for the 204 isotope model and
m » 1.59M for the 22 isotope model. The infall speed has
reached ≈1000 km s−1 just inside these iron core locations.

Figure 26 shows the thermodynamic profiles at the onset of
core collapse for the Mi = 15 Mmodel. Dashed curves again
show the results using a 22 isotope network and solid curves
show the results using a 204 isotope network. The vertical gray
lines again mark the mass of the iron core as defined by the Ye
jump in Figure 25. The impact of these differences remains to
be explored.

Figure 27 shows the mass fraction profiles of the ten most
abundant isotopes within the iron core at the onset of core
collapse for the Mi = 15 Mmodel evolved with the 204
isotope network. Each isotope shown dominates the NSE
composition at some location within the iron core, although we
stress that no NSE or QSE approximation was used; the same
204 isotope reaction network was used throughout the entire
model from the pre-MS to the onset of core collapse.

The most abundant isotopes in an NSE distribution generally
have an individual Ye that is within a small range of the local Ye.
A small spread usually exists due to nuclear structure effects.
For example, the dominant isotopes at the center in Figure 27
are 49Sc and 48Ca. These isotopes have individual Ye of 0.429
and 0.417, respectively; commensurate with the central
Ye » 0.428 shown in Figure 26. The dominant isotope changes
as the NSE distribution adapts to the rapidly decreasing density
profile and increasingYe profile. All the isotopes in the iron core

eventually become part of the compact remnant after the
explosion. However, the thermodynamic and composition
profiles near the mass cut depend on the profiles interior to
the mass cut.

6.2. Core-collapse Supernova Explosions

The envelope shock tests described in Section 4.9 show that
the hydrodynamic solver in MESAmeets the basic requirements
for shock propagation in a star. The AGB star model was
selected because of the well behaved conditions of its envelope
—a density structure that is smooth and monotonically
declining toward the stellar surface, and a uniform
composition.
Here we explore the more challenging conditions associated

with a strong shock born deep in the stellar interior of a
massive star. We study the dynamics of such a supernova
shock and the explosive nucleosynthesis that takes place in the

Figure 25. Radial velocity and Ye profiles at the onset of core collapse for the
Mi = 15 M model. Dashed curves show the results using a 22 isotope
network and solid curves show the results using a 204 isotope network. Both
models are evolved from the pre main-sequence to the onset of core collapse
with their respective reaction network. The vertical gray lines mark the mass of
the iron core as defined by the Ye jump.

Figure 26. Thermodynamic profiles at the onset of core collapse for the
Mi = 15 M model. Dashed curves show the results using a 22 isotope network
and solid curves show the results using a 204 isotope network. Both models are
evolved from the pre main-sequence to the onset of core collapse with their
respective reaction network. The vertical gray lines mark the mass of the iron
core as defined by the Ye jump.

Figure 27. Mass fraction profiles of the ten most abundant isotopes within the
iron core at the onset of core collapse for the Mi = 15 M model evolved with
the 204 isotope network. The entire iron core is in NSE and the mass fractions
adapt to the changing temperature, density and Ye.
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wake of the shock during the first second. The yields from
explosive nucleosynthesis depend on both the energy and the
power (characteristic energy deposition timescale), while the
dynamics of the shock are primarily dependent on the total
energy deposited.

The starting conditions for the explosion simulations are the
two 15M pre-supernova models discussed above; one for the
approximate 22 isotope network and one for the 204 isotope
network.

6.2.1. Explosion Dynamics

Since the focus here is on the dynamics rather than
nucleosynthesis, we expedite the MESA simulation by using
the 22 isotope network for both the pre-supernova and the
explosion phases. Before triggering the explosion, we remove
the iron core of the red-supergiant star by placing the inner
boundary of the grid at a Lagrangian mass of 1.75M. We
trigger the explosion by depositing 1.52× 1051 erg at a
constant rate during 1 s. The artificial viscosity is raised during
the energy deposition phase (i.e., l2 = 0.01), when the shock is
at small radii, and lowered in the subsequent evolution until
shock breakout (i.e., l2 = 0.003). Since the binding energy of
the envelope to be shocked is −3.2× 1050 erg at the time we
trigger the explosion, this choice of energy deposition yields a
total energy at the end of the deposition phase of
1.2× 1051 erg. This is generally considered a standard value
for a core-collapse supernova.

Figure 28 shows that the development of the explosion is
analogous to the tests using the (low-density) envelope of an
AGB star in Section 4.9, but with significant quantitative
differences. Here, the shock born at the edge of the iron core
first travels through the dense CO-rich core. At the outer edge
of the He-rich shell, the shock traverses a steep density gradient
to enter the low-density H-rich envelope. Hence, the shock
crosses regions with densities ranging from ∼106 g cm−3 at the
edge of the iron core down to 10−10 g cm−3 at the stellar
surface.

The radii of the innermost shells are initially very small since
they lie at the outer edge of the iron core. Consequently, they
suffer considerable cooling from expansion. Figure 28 shows a
drop in temperature from a few 109 K down to ∼104 K at
∼1 day. In addition, the supernova shock splits into a reverse/
forward shock structure when it encounters the density drop at
the transition between the He-rich core and the H-rich
envelope. The reverse shock is the new feature, absent in the
envelope shock test, that causes a significant deceleration of
He-core material. The conversion of kinetic energy into internal
energy causes this inner material to heat up, erasing the cooling
effect from expansion. The innermost layers, which travel the
slowest, will be shocked last. These innermost zones can
evolve to temperatures ∼104 K. It is in these innermost regions
at late times that the differences between MESA and V1D are the
largest. The offset occurs in a region of relatively high density
(∼10−7 g cm 3- ) and low temperature (∼104 K). The offset in
temperature between the MESA and V1D simulations at late
times stems from a difference in the equation of state for metal-
rich regions. MESA accounts for ionization through the OPAL
equation of state table for metallicities z< 0.04. For higher
metal abundances where OPAL tables are unavailable,
MESA currently assumes full ionization while V1D solves for
the ionization state of the gas. Note that such density/
temperature regimes are normally not encountered in stellar

interiors. For other quantities and/or locations/times, the
agreement between MESA and V1D is excellent.
We also note that in the MESA simulation, two small spikes

appear in the temperature and density profiles at <2.5M at
≈1000 s after the energy deposition phase. This feature is
absent in V1D because V1D uses a much larger viscous spread
when the shock is in the helium-rich core (R R< ). One can
reduce or eliminate such spikes by increasing the viscous
spread, although this may visibly smear the shock when it
crosses the H-rich envelope—the current choice seems a
suitable compromise.
In contrast to the envelope shock test, this supernova

explosion configuration raises the temperature by a factor of
about ten. Consequently, because P P Trad gas

3 rµ , the post-
shock material becomes completely radiation dominated
(P Prad gas ). If we neglect the binding energy and the kinetic
energy of the post-shock material, the post-shock energy is of
the order of the explosion energy. We indeed find a good
correspondence between the post-shock temperature computed
by MESA and the temperature obtained from E aV0

1 4( ) (where
a is the radiation constant, E0 is a fitting parameter, typically of
the order of the explosion energy, and V R4 3sh

3p= is the
volume within the shock radius Rsh). As expected, we also find
that the shock accelerates (decelerates) in regions where Rsh sh

3r
decreases (increases) outward.

6.2.2. Explosive Nucleosynthesis

Here we compare the shock nucleosynthesis results from the
two independent codes, MESA and V1D. The same initial 204
isotope pre-supernova model was the starting point. Our first
test case is a strong explosion triggered by injecting
1.57× 1051 erg for 0.05 s and within 0.02M of the mass cut,
which is positioned at the outer edge of the iron core at 1.5M.
The exact choice of explosion energy, deposition timescale,
and mass cut is not strictly relevant.
Figures 29 and 30 compare the mass fraction profiles of

MESAwith a 22 isotope network, MESAwith a 204 isotope
network, and V1Dwith a 54 isotope network. The first
comparison at 0.0 s shows the impact of mapping from the
pre-supernova 204 isotope network to the networks used in the
shock nucleosynthesis test. The next comparison at 0.05 s is at
the end of the energy deposition phase. The final comparison at
42.7 s is after explosive nucleosynthesis has completed. In all
cases, the silicon-rich and oxygen-rich shells are strongly
influenced by the explosion; the former primarily for the
production of Ni56 and the latter primarily for the production
of Si28 and S32 . The 56Ni yields at 42.7 s are 0.092M for
V1D, 0.087M for MESAwith 22 isotopes, and 0.096M for
MESAwith 204 isotopes.
Overall the agreement between MESA and V1D on this

strong explosion is very good. The small differences between
MESA and V1D in Figures 29 and 30 are due to the difference in
mapping procedures.
MESA follows rules for mapping isotopes from one network

to another network: if an isotope present in the old network is
also present in the new network, then the abundance from the
old network is copied to the abundance for the new network.
Isotopes in the new network that are not present in the old
network are initially given a mass fraction of zero. MESA then
separately renormalizes classes of isotopes to have the same
total mass fraction in the new network as in the old network.
The classes are neutrons, hydrogen, helium, carbon, nitrogen,

27

The Astrophysical Journal Supplement Series, 220:15 (44pp), 2015 September Paxton et al.



oxygen, and other metals. This procedure guarantees that the
sum of the mass fractions in a given class will be the same in
the new network as in the old network. V1Dʼs mapping
procedure for isotopes is the following. For any isotope present
in the V1D network but absent in the MESA input the mass

fraction is set to the solar metallicity value. When an isotope
included in the MESA input is absent in the V1D network, this
isotope is left out in the V1D simulation. After completing the
mappings, the resulting composition is renormalized so that the
sum of the mass fractions is unity.

Figure 28. Multi-epoch snapshots of the hydrodynamical simulation from energy injection mimicking core-collapse supernova. The initial model is a 15 M star at
solar metallicity, evolved with mass loss but no rotation, and employing a nuclear network of 22 isotopes. We show the density (top row), temperature (middle row),
and velocity (bottom row), vs. Lagrangian mass (left column) and radius (right column). In each panel, the solid line shows the MESA results and the dashed line the
V1D results.
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Our second test case is a lower power explosion. We inject
1.326× 1051 erg in 1.0 s over 0.05M of the mass cut, which
is also positioned at the outer edge of the iron core at 1.5M.
The total energy after the deposition phase is 1051 erg.

In Figure 31, we show the composition profiles for the eight
most abundant isotopes in the inner ≈0.4M at the end of the
energy-deposition phase (i.e., at 1 s). The correspondence
between MESA and V1D is again very good. The Ni56 mass
fraction approaches unity—it would reach unity if we
appreciably increased the power (see Figure 29 for example).
Some Ni58 is produced in the same region, while Fe54 is
synthesized in the layers immediately above. The 56Ni yields at
1.0 s are 0.0041 M for V1D, and 0.011 M for MESAwith 204
isotopes.
This work shows that the power of the explosion has a

significant impact on the abundance profiles. In the high power
explosion, the yield of Ni56 is ≈10 times larger and the He4 is
several orders of magnitude more abundant. The nucleosynth-
esis of the low power explosion is completed at end of
deposition phase at 1.0 s, while nucleosynthesis in the high
power case continues for ≈30 s. This sensitivity suggests
potentially observable signatures between low and high power
explosions. In addition, the explosive nucleosynthesis that
takes place in core-collapse supernovae is sensitive to the way
the explosion is triggered. With the approach we use (fixed
power during the energy deposition phase), we find that
increasing the explosion energy (at a given power), the power
(at a given explosion energy), or both alters the amount of mass
burnt. Moving the mass cut deeper into denser layers
considerably enhances the amount of burnt material but this
material may fall back rather than be ejected. Moving the mass
cut further out into lower-density regions may completely
quench the production of Ni56 , in favor, for example, of Si28 . It
is thus important to keep in mind that the piston or thermal
explosion trigger is artificial and that the yields from explosive
nucleosynthesis bear significant uncertainties.

7. IMPROVED TREATMENT OF MASS ACCRETION

Adding mass to a star requires a way to accurately and
efficiently compute the thermal state of the freshly accreted
material in the outermost layers. This is simplified by a
hierarchy of timescales. For accretion at Ṁ , there are two
important timescales at a given location, m, the thermal time

Figure 29. Nucleosynthesis profiles of selected isotopes for the
1.57 × 1051 erg energy deposition test case at 0.0 s (top) and 0.05 s (bottom).
The dashed lines show the MESA results with a 22 isotope network, the solid
lines show the MESA results with a 204 isotope network, and the long dashed
lines show the V1D results with a 54 isotope network.

Figure 30. Same as Figure 29 but at a time after all nucleosynthesis has
completed.

Figure 31. Composition profiles of the eight most abundant isotopes at 1 s in
the inner 0.4 M of the ejecta for MESA (solid) and V1D (dashed) simulations
of a 1051 erg explosion in the 15 M model. The Si-rich and O-rich shells have
been influenced by explosive nucleosynthesis, the former primarily for the
production of Ni56 and the latter primarily for the production of Si28 and S32 .
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M m C T LPth ( )t - , where CP is the specific heat at
constant P, and the time to accrete this same layer,

M m Macc ( ) ˙t - . Near the surface, L C TMP ˙ , implying
that th acct t , so that these layers have ample time to relax to
the thermal equilibrium configuration fixed by L (Nomoto &
Sugimoto 1977; Nomoto 1982; Townsley & Bildsten 2004).

In cases where L arises solely from compression of material,
such as a very rapidly accreting star of high Ṁ or an old, cold
accreting WD, then L C T MP b ˙~ , where Tb is the temperature at
the degenerate/nondegenerate transition in a WD (Townsley &
Bildsten 2004) or of the core in a normal star. Even in these
cases, the outer layers have T Tb , allowing the inequality

th acct t to hold. This also implies that the thermal state of the
arriving material is unimportant, allowing us to safely use the
approximation that material arrives with the same entropy as
the photosphere, since material relaxes toward this on the very
short tht at the photosphere.14 Even when Ṁ varies on short
timescales, using an averaged accretion rate is a good
approximation for computing the evolution of the interior
layers due to their long tht (Piro et al. 2005; Townsley &
Gänsicke 2009).

The timescale hierarchy th acct t implies that the outer
regions evolve nearly homologously in the fractional mass
coordinate q m M= (Sugimoto & Nomoto 1975). Hence, the
thermal profile (e.g., the run of T with P or ρ) of the outer layer
is nearly constant in time even as fluid elements are compressed
to higher pressures and have T m( ) increase. More formally,
T q( ) varies slowly in time near the surface, where

q1 1( )-  . This motivates reformulating the Lagrangian
based form of

T
Ds

Dt
T

s

t
60

m
grav ( )⎜ ⎟⎛

⎝
⎞
⎠ = - º -

¶
¶

that is needed in the energy equation, L m¶ ¶ =
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Sugimoto & Nomoto (1975), and later works based on it,
denote the second term on the right-hand side the “homo-
logous” term. Physically it is the local loss of entropy in the
fluid element as it is compressed to higher pressure. They label
the first term on the right-hand side the “non-homologous”
term. It arises from the much slower departure of the outer
layers from simple homologous evolution on a timescale
M Ṁ .
MESAstar includes the ability to have an inner inert core of

mass Mc. In this situation q m M M Mc c( ) ( )= - - rather
than the more typical m M . For simplicity here, we will use
Mc = 0. Approximate homology holds in either case for

q1 1-  .
In Paper II, following the work of Townsley & Bildsten

(2004), only the homologous term in Equation (61) was
included in grav in and near regions of newly accreted material.
We also described the huge advantage of such an implementa-
tion, as it allows the mass added per timestep to be much larger

than the smallest cell mass near the surface, while maintaining
accurate thermal profiles at low pressures. However, leaving
out the non-homologous term can create a discontinuity in
grav at the location where the standard Lagrangian derivative,
Equation (60), begins to be used. We now describe the
improvement we have made to MESAstar so that it now
includes both the homologous and non-homologous terms.
Hence, the two forms of Ds Dt are physically equivalent and
there is no longer any discontinuity.

7.1. Lagrangian and Homologous Regions

The independent coordinates used for writing the time-
dependent structure of the star are m and t, and for fluid
elements deep within the star at both timesteps, the conven-
tional form of Equation (60) is adequate. One numeric subtlety
of accretion is that the derivative at constant m cannot be
evaluated for material that is not present in the star at the
beginning of the timestep. However, the simplification
available when th acct t , manifest in Equation (61), enables
grav to be evaluated in the outer regions.
When T and ρ are used as independent variables, we write
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in the interior of the star, as in Paper I, and near the surface we
choose to write, using Equation (61),

, 63grav grav,nh grav,h ( )  = +
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Here d T d Pln lnT = is the T–P profile in the star,
and we have used the thermodynamic derivatives ad =

T Pln ln s( )¶ ¶ , P TT ( )c = ¶ ¶ r, and P T( )c r= ¶ ¶r . There
is also a transition region where a weighted combination of
these forms is used, with weights varying linearly in m.
Placement of the transition is related to the mesh. The

MESAstarmesh structure is unchanged from that discussed
in Paper I and Paper II. An illustration of the mesh regions and
an indication of the behavior of cell boundaries during
accretion is shown in Figure 32. In the case of mass loss,
analogous operations are performed; here, we focus only on
mass gain.
A mass M M t t2 1˙ ( )d = - is added to the star from time t1

to t2. Sizes are exaggerated for clarity; there are generally
many zones in each region, possibly hundreds in the newly
added material. The diagram is shown in both mass coordinate,
m, and homology coordinate, q. Before each timestep,
MESAstar adjusts the initial mesh resolution by splitting or
merging cells based on local gradient conditions, producing an

14 A possible exception to this case is rapidly accreting pre-main-sequence
stars where the accretion shock is so optically thick that the materialʼs entropy
remains high and is advected inward (Palla & Stahler 1990).
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adjusted resolution mesh, which we show at t1. No simulation
time elapses during that process. When constructing the mesh
that will represent the star at t2, MESAstar divides the new
mesh into three regions: an inner Lagrangian region, in which
the m boundaries of each cell are preserved during the timestep,
a transition region, and an outer, homologous region, in which
the q boundaries of each cell are the same across the timestep.
The result of this operation is an expanded mass domain shown
at t2 in Figure 32.

Time derivatives appearing in the equations for physical
evolution are then estimated using first order differences. In the
Lagrangian mesh region, the finite difference form of t m( )¶ ¶
involves a simple same-cell difference. Similarly, in the
homologous mesh region, the finite difference form of

t q( )¶ ¶ involves a same-cell difference. In most cases, by
design, these same-cell differences are for values whose
changes, e.g., Tlnd , are directly available from the iterative
solution of the new structure, allowing us to avoid the
numerical problems inherent in subtracting two almost identical
numbers. In the transition region both m and q coordinates of
cells have been modified, so we cannot do a same-cell
difference for either t m( )¶ ¶ or t q( )¶ ¶ . Instead, we interpolate
values from the model at the start of the step to corresponding
locations in m or q at the end of the step.

A smooth and accurate value for grav in the transition region
is important. To ensure this, the location of the transition region
is selected to reduce the differences between the constant m and
constant q forms of the time derivative and maintain accurate
finite differencing. As a simple mechanism to control these, we
limit, in units of cell size, the offset in the interpolation used to
translate locations from the beginning to the end of the timestep
(B. J. Miles et al. 2015, in preparation). Using the cell size
implicitly takes advantage of the limits imposed by mesh
controls on the maximum possible magnitude of cell-to-cell
changes in key variables, including the variables of interest for
grav time derivatives.

7.2. Testing

In order to demonstrate that the interface between the outer
homologous region and the inner Lagrangian region provides a
smooth profile that is independent of timestep size, we have
repeated the test shown in Paper II Section 5.3. This test
involves accretion of solar composition material onto a WD at
10 M10-

 yr−1. We use the same starting model as in Paper II,
which was produced by accreting hydrogen-rich material
through several hydrogen shell flashes on a 0.6M WD with
an initial core temperature of about 107 K. As accretion
proceeds, the total accumulated accreted mass, Macc, increases
up to a maximum which causes the hydrogen flash and nova
runaway, Mign.
Profiles near the transitions region are shown in Figure 33 at

the time when M M 0.2acc ign = , which had the most severe
discontinuity in Paper II. The first panel shows T and the
second panel shows r H4 2

P gravp r ´ , where HP is the
pressure scale height. This is the amount of energy being
released due to the T Ds Dt term in the energy equation within
a scale height, and has units of luminosity. We have chosen a
timestep of 5000 years, which places the homology-Lagrangian
transition region in a similar place to the location of the
discontinuity in Paper II.
The orange curve in Figure 33 was computed using

MESA version r4664, as used in Paper II. This displays the

Figure 32. Illustration of the MESAstar mesh in both m and q for a timestep
in which mass is added to the star over the time interval t1 to t2. Vertical and
slanted lines indicate cell boundaries. Cell size is exaggerated; there can be
many cells in the newly added material. Three regions are chosen in the process
of expanding the mesh for the added material, an inner Lagrangian region, an
outer homologous region, and a transition region.

Figure 33. Profiles spanning the Lagrangian-homologous grid transition region
in a M0.6  WD with a core temperature of 107 K undergoing accretion of solar
composition material at a rate of M10 10-

 yr−1. At the time shown
M M 0.2acc ign = . Shown for comparison are the results of the treatment
discussed here for a 5000 years timestep and a 1000 years timestep and the
treatment discussed in Paper II. For the current treatment the transition from
homologous to Lagrangian is indicated by two open circles at either end of the
region. The location Md in from the surface, the base of material newly
accreted this step, is indicated by the triangle.
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discontinuity due to using grav from Equations (62) and (63)
with only the homologous term and a transition point a factor
of five deeper in pressure than Md . The black curve shows the
same simulation with the same timestep for the treatment
discussed here, in which grav,nh is included and the transition
region, indicated with open circles at either end, is placed as
described in Section 7.1. We see that, away from the
transitions, grav is unchanged from the values found in
Paper II, in which only the homologous term was used in the
exterior. We also show the result for a timestep of 1000 years is
indistinguishable on this plot; the grav profile differs by a
fraction of a percent at the edges of the transition region, and
less elsewhere. In the current treatment the profiles are
independent of timestep size.

8. WEAK REACTIONS

The ratesmodule provides weak reaction rates for
hundreds of isotopes. By default, when atoms are fully ionized,
these rates are based (in order of precedence) on the tabulations
of Langanke & Martínez-Pinedo (2000), Oda et al. (1994),
and Fuller et al. (1985). These tables span a wide range
of density and temperature, Y1 log g cm 11e

3( ) r - and
T7 log K 10.5( )  , but are relatively coarse, with 11 points

in the Yer dimension ( Ylog 1erD = ) and 12 points in the T
dimension ( Tlog 0.25D » ).

These grids include the thermodynamic conditions where the
electrons are degenerate and relativistic, which are realized for
example in massive WDs and cores of intermediate mass stars.
Under these conditions, the rates of electron-capture and beta-
decay reactions are sufficiently sensitive to density and
temperature that they can change by tens of orders of
magnitude between adjacent points in these tables. Linear or
cubic interpolation cannot accurately reproduce the value of the
rate between the tabulated points.

The difficulty of interpolating in coarse rate tabulations was
discussed by Fuller et al. (1985), who proposed a physically
motivated interpolation scheme, hereafter referred to as Fuller,
Fowler, and Newman (FFN) interpolation. Their procedure
assumes the rate has the form given by a single transition
between the parent and daughter nuclear ground states.
However, the true rate may be dominated by allowed
transitions to or from excited states in the parent or daughter
nucleus. This is almost always the case when the ground state
to ground state transition is highly forbidden. The specific
transition that dominates the rate may change over the range of
thermodynamic conditions covered by the table. The FFN
interpolation method does not account for these complications.

Figure 34 compares the results of the interpolation methods
described in the preceding paragraphs with the on-the-fly
approach that we have implemented in MESA and will be
described here. It shows the electron-capture rate on Mg24 and
beta-decay rate of Na24 at fixed temperature. Linear interpola-
tion of these coarse tables fails to reproduce the rapid variation
in the rate. The FFN interpolation method produces curves with
characteristic shapes more similar to the true rate, but because
the Q-value is that of the ground state to ground state transition
and not that of the transition that dominates the rate, the density
dependence is not correct in detail.

In recent years, a number of authors have discussed the
importance of well-sampled weak rates in capturing the
influence of these processes on stellar evolution. This can be
achieved by generating denser tables for the specific reactions

of interest or by using analytic approximations to the rates (e.g.,
Toki et al. 2013; Martínez-Pinedo et al. 2014). We now present
a capability by which MESA can calculate weak reaction rates
on-the-fly from input nuclear data. This removes the potential
for interpolation artifacts. It also enables easy experimentation
in cases where the input nuclear data may not be well-
measured. We begin with an overview of how we calculate
these weak rates and illustrate their utility and a few
applications.

8.1. Calculation of Weak Rates

Consider two nuclei A Z N,( )º and B Z N1, 1( )º - +
that have two states connected by an electron-capture transition

A e B 66e ( )n+  +-

and beta-decay transition

B A e . 67e¯ ( )n + +-

The energy difference between the ground states can be written
as

Q
M M c

M M c

for electron capture,

for beta decay,
68

A B

B A
g

2

2

( )
( )

( )
⎪

⎪

⎧
⎨
⎩

=
-

-

where MA and MB are the nuclear rest masses of the ground
states. The total energy difference between any two states can
be written as

Q Q E E , 69ij i fg ( )= + -

Figure 34. Top panel (bottom panel) shows the rate of electron capture on
Mg24 (beta decay of Na24 ) as a function of density at a fixed temperature of

Tlog K 8.6( ) = . The Oda et al. (1994) tabulated points are shown as black
dots. The dotted line shows the result of using linear interpolation between the
tabulated points. The dashed line shows the result of using the physically
motivated interpolation method suggested by Fuller et al. (1985). The solid line
shows the rate calculated using the on-the-fly rate calculation capability of
MESA documented in this section. Slight differences between points and the
line are due to differences in the input nuclear data.
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where Ei and Ef are the energies of the initial and final states
measured relative to the ground state. For the transitions that
we consider here, Q 0g < and Q 0ij < for electron capture and
Q 0g > and Q 0ij > for beta decay.

In this section, we use J to represent the nuclear spin. We
work in the allowed approximation, which neglects all total
lepton angular momentum (L = 0). This restricts us to Fermi
transitions, where the total lepton spin is S = 0, and therefore
the initial and final nuclear spins are equal (J Ji f= ), and
Gamow–Teller transitions, where S = 1, and therefore
J J J, 1i f f=  (excluding J J 0i f= = ). In both cases, there
is no parity change: 1i fp p = + (e.g., Commins 1973).

The total rate of the process (electron capture or beta decay)
is the sum of the individual transition rates from the ith parent
state to the jth daughter state, ijl , weighted by the occupation
probability of the ith parent state, pi.

p
ft

T Q
ln 2

, , , 70
i

i
j ij

ije( )
( )

( )å ål m= F

where ft( ) is the comparative half-life and can be either
measured experimentally or calculated from theoretical weak-
interaction nuclear matrix elements. The i-sum is over all
parent states and the j-sum is over all daughter states. The
occupation probability is
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where we define k TB
1( )b = - . The quantity Φ is a phase space

factor which depends on the electron chemical potential em
(including the electron rest mass), on the temperature T, and the
energy difference Qij. The value of Φ for electron capture is
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where α is the fine structure constant. For beta decay it is
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Similarly, the total rate of energy loss via neutrinos is
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The value of Ψ for electron capture is
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and for beta decay it is
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In order to implement these equations in MESA, we rewrite
the integrals in terms of Fermi–Dirac integrals, following

Appendix A of Schwab et al. (2015). MESA implements fast
quadrature routines to evaluate integrals of this form. Each time
a weak rate is needed, it is calculated on-the-fly. We discuss the
computational cost of this procedure in Section 8.3.
Assuming thermal equilibrium, the energy released by weak

reactions depends only on total reaction rate, total neutrino loss
rate, energy difference between the nuclei, and the electron
chemical potential. Therefore, the total specific heating rate
from a reaction is

n
Q , 77A

ec g e ec ,ec( ) ( )⎡⎣ ⎤⎦
r

m l e= + - n

n
Q , 78B

g e ,( ) ( )⎡⎣ ⎤⎦
r

m l e= - -b b n b

where nA and nB are the number densities of the species
undergoing electron capture and beta decay, respectively, and ρ
is the total mass density.
Therefore, given a list of nuclear levels and the ft( )-values

for the transitions between them, MESA can calculate the rates
of electron capture and beta decay and the corresponding
energy generation rates. Typically only a few low-lying states
and the transitions between them are needed. As an example,
Figure 35 shows the rates for the Na23 – Ne23 Urca pair.

8.1.1. Coulomb Corrections

In a dense plasma, the electrostatic interactions of the ions
and electrons introduce corrections to the weak rates relative to
those which assume a Fermi gas of electrons and an ideal gas of
ions. Our treatment of these effects, which is presented in
Appendix B of Schwab et al. (2015), is similar to Appendix A
of Juodagalvis et al. (2010).
Since electron capture and beta decay change the ion charge,

the Coulomb interaction energy changes the energy difference
between the parent and daughter nuclear states. To calculate
this shift, we use the excess ion chemical potential exm from
Potekhin et al. (2009). We incorporate this effect by shifting
the value of Qij, as defined in Equation (69), by an amount

E ex,parent ex,daughterm mD = - . This shift, Q Q Eij ij¢ = + D ,

Figure 35. Electron capture (solid lines) and beta decay (dashed lines) rates of
the Na23 – Ne23 Urca pair as calculated by MESA, using the on-the-fly methods
described in this section. The value of Tlog K( ) is shown next to each electron
capture line; the beta decay line of matching color is at the same temperature.
The rates vary rapidly, with both temperature and density, near the threshold
density, which is roughly in the center of the plot.
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enters the calculation of the phase space factors and the energy
generation rates.

The electron density relevant to the reaction rate is not the
average electron density, but rather the electron density at the
position of the nucleus. This correction is accounted for as a
shift in the value of the electron chemical potential that enters
the phase space factor, Vse em m¢ = + . Values of Vs have been
calculated by Itoh et al. (2002). This correction does not enter
the energy generation rates because it has not changed the
energy cost to add or remove an electron.

8.2. Applications

When Qe ∣ ∣m , only the few electrons in the tail of the
Fermi–Dirac distribution have sufficient energy to overcome
the energy gap and capture on A to form B. Thus, the rate of
electron capture is small compared to the rate of beta decay,
and so isotope B is favored in the equilibrium. When Qe ∣ ∣m ,
there are only a few unoccupied states available to accept the
energetic electron from the beta decay. This final state blocking
means the rate of beta decay is small compared to the rate of
electron capture, and so isotope A will be favored in the
equilibrium.

The shift in this equilibrium can have profound conse-
quences when it occurs in stellar interiors. It modifies the
composition, reduces the electron fraction, and alters the
thermal state of the plasma. We now discuss two applications
of our on-the-fly treatment of the weak rates: the Urca process
and accretion-induced collapse.

8.2.1. Urca Process

When the ground state to ground state transition is allowed
(odd nuclei), the rates of electron capture and beta decay are
both significant when Qe g∣ ∣m » . Since each reaction produces
a neutrino which free-streams out of the star, this can lead to
significant cooling. With a total number density of an Urca
species n n nU A B= + , assuming the abundances are given by
the detailed balance condition n n 0A Becl l+ =b , the volu-
metric neutrino cooling rate will be n CU , where

C . 79,ec , ec
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In the limit k T QB ∣ ∣ , the maximum value of the Urca
cooling rate at a given temperature has a simple form (e.g.,
Tsuruta & Cameron 1970)
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Well-sampled rates such as those shown in Figure 35 are
necessary to reproduce the correct Urca cooling rates. We
illustrate this in Figure 36, which shows Cmax for the Na23 –

Ne23 Urca process for temperatures 108–109 K. The circles
show the results using the on-the-fly treatment described in this
paper; the squares show the results using the coarse tables of
Oda et al. (1994). The dashed line shows the cooling rate
expected from Equation (80) which is in excellent agreement
with the results of the on-the-fly method. The Urca cooling
rates calculated from interpolating in coarse tables severely
underestimate the true cooling rate when k T QB ∣ ∣ .

Thus, when the Urca process is important, well-resolved
weak rates are necessary to correctly capture the temperature
evolution of the core (Jones et al. 2013; Toki et al. 2013). Jones
et al. (2013) used MESA r3709 along with a denser table
described in Toki et al. (2013) to do their work. The Toki et al.
(2013) table is not publicly available, so to reproduce the
results of Jones et al. (2014) we save a model of an 8.8 M
star at log g cm 8.95c

3( )r =- from our run with MESA (version
r3709) using the Jones et al. (2014) inlists. We then load this
model into a newer MESA version (r7503) that has access to the
on-the-fly weak rates and evolve this model using a network
with only the Urca process reactions. During this phase other
nuclear reactions are not important to the central evolution.
Figure 37 shows the central temperature and density of

the core. The solid lines show the evolution using the
on-the-fly rates, the dashed lines show the results when
interpolating in coarse tables. The drops in temperature at
log g cm 9.1c

3( )r »- and 9.25» correspond to cooling from
the Mg25 – Na25 and Na23 – Ne23 Urca pairs, respectively. The
corresponding shifts in composition can be clearly seen in the
lower panel. These results demonstrate the importance of
densely sampled weak rates to the evolution of the core.

8.2.2. Accretion-induced Collapse

When the ground state to ground state transition is forbidden
(even nuclei), the first transition to become significant is
typically an allowed transition into an excited state. In these
cases, the beta decays from the daughter ground state are
blocked and decays from daughter excited states are strongly
suppressed by the Boltzmann factor. Therefore significant
cooling via the Urca process does not occur. Instead, since the
captures are preferentially to an excited state, significant
heating occurs via gamma-ray emission as level populations
relax to a thermal distribution.
Two important capture chains occur in oxygen-neon-

magnesium (ONeMg) cores: Mg Na Ne24 24 24  and
Ne F O20 20 20  . For these sequences of captures, the excess

electron energy is thermalized. These are the key reactions in

Figure 36. Effect of the interpolation method on the Urca process cooling rates.
The circles show the maximum value of C (Equation (79)) calculated using
the on-the-fly methods discussed in this section; the squares show the
results using the coarse tables of Oda et al. (1994). Interpolation in these coarse
tables severely underestimates the Urca cooling rates at low temperatures.
The dashed line shows the expected value of the cooling rate given by
Equation (80).
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electron-capture supernovae and the accretion-induced collapse
(AIC) of ONeMg WDs (e.g., Miyaji et al. 1980). As the
degenerate core approaches the Chandrasekhar mass, the
electron captures remove the pressure support and heat the
plasma. Figure 38 shows the evolution of a cold ONeMg
WD (X 0.5O = , X 0.45Ne = , X 0.05Mg = ) accreting at
M 10 M yr6 1˙ = - -

 . The solid lines show the evolution using
the on-the-fly rates described in this section; the dashed lines
show the results when interpolating in coarse tables. When
using the coarse tables, the electron captures on Mg24 do not
occur until approximately a factor of two larger density. At this
greater density, the energy deposition from each capture is
higher and this leads to a large temperature change due to the
A = 24 captures alone. In contrast, the on-the-fly rates show the
behavior demonstrated in previous studies of this evolution that
did not use sparse tables (e.g., Miyaji & Nomoto 1987): the
A = 24 captures heat the plasma and accelerate the contraction;
the A = 20 captures, due to the higher Ne20 abundance and a
higher energy release per capture, cause a thermal runaway and
the formation of an oxygen deflagration (Schwab et al. 2015).

8.3. Guidelines

MESA provides the nuclear data used in the calculation of the
reactions specifically discussed in this section (Tilley et al.
1998; Firestone 2007a, 2007b, 2009; Shamsuzzoha Basunia
2011; Martínez-Pinedo et al. 2014). To consider additional
reactions, a list of nuclear levels and ft( )-values must be
specified.

The expressions in Section 8.1 assume degenerate, relati-
vistic electrons. As em increases, additional transitions to higher
energy states of the daughter nuclei and must be included. At
higher temperatures, excited states of the parent nucleus will
begin to be thermally populated and captures or decays from
those states and must be included. At temperatures and
densities where the composition approaches NSE, these
methods are particularly inappropriate, as it is necessary to
consider large pools of isotopes (Juodagalvis et al. 2010).

9. CHEMICAL DIFFUSION

MESAʼs early implementation of microscopic element
diffusion incorporated the approach used by Thoul et al.
(1994) in their seminal work on understanding the sedimenta-
tion of helium in the solar interior. The fundamental starting
point for this treatment of diffusion is the Boltzmann equation
with the assumption of binary collisions where the particleʼs
mean free path is much larger than the average particle spacing.
This formalism, encoded in the Burgers equations (Bur-
gers 1969), assumes that ions interact with an effective
potential that governs isolated interactions between only two
particles at a time. For more strongly coupled plasmas, as

e k T2
ion B( )lG » exceeds unity (where n3 4ion ion

1 3( )l p=
is the mean inter-ion spacing, and nion is the total ion number
density), it is no longer clear that this assumption remains valid.
Later updates to MESA incorporated the work of Hu et al.
(2011) on radiative levitation and incorporated the resistance
coefficients calculated by Paquette et al. (1986) for approaches
to the denser plasma regime as 1G  .
Here we describe MESAʼs current implementation of

chemical diffusion and then discuss the path forward for
diffusion implementations in the 1G > regime, needed for
accurate studies of diffusion in the interiors of WDs or surfaces
of NSs. Recent theoretical work in this strongly coupled regime
(Baalrud & Daligault 2013, 2014; Beznogov & Yakovlev 2014)
provides support for a future update of MESA.

9.1. Current Methods in MESAstar

We now describe the formalism and assumptions underlying
the approach to diffusion currently present in MESA. This is
followed by a discussion of the framework for numerical
implementation of this formalism provided by Thoul et al.
(1994) and key modifications present in the current version of
the MESA diffusion routine.

9.1.1. Burgers Equations and the Low Density Limit

The Burgers equations for diffusion in an ionized plasma are
derived using the Boltzmann equation for the distribution

Figure 37. Top panel shows the evolution of Tc and cr in an 8.8 M star.
The bottom panel shows the central Mg25 and Na23 mass fractions. The solid
lines show the evolution using the on-the-fly rates, the dashed lines show
the results when interpolating in coarse tables. The locations of the changes
in mass fraction match the locations of cooling in the top panel. This
demonstrates the importance of densely sampled weak rates to the evolution of
the core.

Figure 38. Evolution of a cold ONeMg WD toward AIC. The top panel shows
the evolution of cr and Tc. The bottom shows the central Mg24 and Ne20 mass
fractions. The solid lines show the evolution using the on-the-fly rates; the
dashed lines show the results when interpolating in coarse tables.
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where xi are the components of the position vector, ix are the
components of the velocity vector, fsi are components of the
forces on particles of type s, and ms is the mass for those
particles. Throughout this section, the indices s and t refer to
particle species, while i and j are used to index other quantities
such as spatial components of vectors.

Burgers adopts the 13-moment approximation due to Grad
(1949) as a closure scheme for taking moments of the
Boltzmann equation. Burgers also assumes an approximately
Maxwellian distribution function

F
n

a

c

a
exp 1 , 82s

s

s

s

s
s3 2 3

2

2 ( ) ( )
⎛
⎝⎜

⎞
⎠⎟p

f=
-

+

where a k T m2s sB
1 2( )= , c usi i six= - represents the com-

ponents of the deviation of the velocity from the mean flow
velocity us of the species, and

B c c C c a c
5

2
83s

i j
sij si sj

i
si s s si

,

2 2 ( )⎜ ⎟⎛
⎝

⎞
⎠å åf = + -

is the small deviation ( 1sf  ) from the Maxwellian distribu-
tion. The coefficients Bsij and Csi are defined such that the
distribution function has a total of 13 free parameters
corresponding to the 13 moments of the closure scheme (see
Burgers 1969).

Burgers derives the collision integrals (Sst
l( )) and cross-

sections ( st
lj( )S ) that result from taking moments of the right-

hand side of the Boltzmann equation
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Ba m= , m m m mst s t s t( )m = + , v represents the
relative velocity of colliding particles, and the angle of
deviation stc is a function of both v and the impact parameter
b that depends on the physics of the two-particle interaction
between colliding particles in the gas. Burgers then defines the
dimensionless coefficients zst, zst¢ , zst, and zst‴, along with
resistance coefficients ( Kst) in terms of the collision integrals:
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In the “single-fluid picture” the diffusion velocities are defined
with reference to the mean velocity of the gas as a whole (u),

rather than with respect to the mean species velocity (us):
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As shown in Section 18 of Burgers (1969) if we assume
w as s∣ ∣  and the absence of magnetic fields, the basic
equations of diffusion are
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where E is the quasi-static electric field and esr is the average
charge density of species s. These equations are still general,
with the form of the resistance coefficients not yet fully
specified. The physics of the particular types of interactions
within ideal gases is fully contained in the coefficients Kst, zst,
zst¢ , zst, and zst‴.
For ionized gases, the resistance coefficients require

evaluation of collision integrals that diverge for a pure
Coulomb potential. However, since the two-particle interaction
potential is only truly applicable on short length scales, an
integration cutoff or screened potential is commonly adopted.
Burgers chooses to calculate resistance coefficients using a
pure Coulomb potential truncated at the Debye radius
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which is assumed to be much larger than the inter-ion spacing.
Indeed, for a plasma of one species, R 3D ion

1 2( )l = G - .
Applying this form of interaction to the collision integrals, the
l = 1 integrals defined in Equation (84) can be evaluated
(Baalrud & Daligault 2014)
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and the final result for the resistance coefficients follows as

K
n n Z Z e k TR

Z Z e

16

3
ln

3
, 94st

s t s t

st st s t

2 2 4

3
B D

2
( )

⎛
⎝⎜

⎞
⎠⎟

p
m a

»

z z z z
3

5
,

13

10
, 2, 4. 95st st st st‴ ( )= ¢ =  = =

With these coefficients now fully specified, Burgers diffusion
equations along with constraints such as charge neutrality and
current neutrality form a closed set of equations, which can be
solved for ws, rs, E, and g from the input of a stellar profile.

9.1.2. MESA’s Implementation of Thoul et al.’s Approach

The diffusion routine originally implemented in MESAwas
based on the work of Thoul et al. (1994). They start with the
Burgers equations, written in a compact notation following
Noerdlinger (1977, 1978) that is equivalent to Equations (89)
and (90) in one dimension. However, the approach of Thoul
et al. (1994) differs from Burgers’ original treatment in one
important respect: the resistance coefficients are based on a
modified result for the collision integrals. They follow
Equation (95) for the various zst coefficients, which uses a
pure Coulomb potential with a cutoff at the Debye length, but
the Kst coefficients were derived from an alternative fitting of
the Coulomb logarithms introduced by Iben & MacDonald
(1985). For these coefficients, they define Rmax ,D ion( )l l= ,
and use
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This expression is a fit to the numerical results of Fontaine &
Michaud (1979), motivated by WD conditions where Burgers’
approximations for dealing with Equation (92) are not valid
( 1G > ). Since this fit focuses on the strong coupling regime,
and differs from Equation (94), these results can be incorrect in
the limit of a dilute plasma as we discuss later. Nevertheless,
Thoul et al. (1994) elected to use Equation (96) under all
conditions, since it provides an approximately correct solution
in a convenient closed form.

Using Equations (89) and (90) along with the constraints of
current neutrality ( w 0

s es så r = ) and local mass conservation
( w 0

s s så r = ), Thoul et al. (1994) express an entire closed
system of equations in a dimensionless matrix form suitable for
numerical evaluation:
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where S is the total number of species in the gas (including
electrons) andC n nj j e= is the concentration of the jth species.
Consult Thoul et al. (1994) for definitions of K0, ia , in , ijg , and

ijD . The definition of Wj is
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This is the vector containing the unknown quantities solved for
after specifying K0, ia , in , ijg , and ijD . The routine provided by
Thoul et al. (1994) inverts Equation (97) for one term in the
left-hand side at a time so as to find the “generalized diffusion
coefficients,” which can be used to construct diffusion
velocities or contributions from pressure, temperature, or
concentrations individually.

9.1.3. Modified Coefficients and Radiative Levitation
as Implemented by Hu et al.

Hu et al. (2011) extend the methods of Thoul et al. (1994) by
introducing some key modifications. First, they include an extra
force term due to radiative levitation, so that Equation (89)
becomes
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where g srad, refers to the radiative acceleration on species s. Zs¯
is the average charge of species s, allowing an account of
partial ionization so that n Z es s es

¯ r= . They do not modify
Equation (90).15

In contrast to Thoulʼs original routine, Hu et al. (2011) use the
resistance coefficients from Paquette et al. (1986), which were
generated based on substantial improvements to Fontaine &
Michaud (1979). In evaluating the collision integrals, Paquette
et al. (1986) use a screened Coulomb potential of the form
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r

r

exp
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where, once again, Rmax ,D ion( )l l= . As we note below, this
choice of λ makes a substantial difference in strongly coupled
plasmas, where the Debye radius no longer corresponds to a
distance at which other nearby charged particles can sig-
nificantly screen the Coulomb field. After setting up the algebra
for a matrix solution very similar to that of Thoul et al. (1994),
Hu et al. (2011) solve for the vector Wj (as defined in
Equation (98)) appearing in the equation
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15 As written in Equation (3) of Hu et al. (2011), their expression has two
errors in the first term on the right-hand side of the first line: the sign is wrong,
and it is missing resistance coefficients Kij. Since neither of these errors
propagates into later sections of the paper, it appears that both are simply typos,
and otherwise their expression matches Equation (90) exactly.
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Many of the quantities appearing in this equation are defined
differently than in Thoul et al. (1994); see Hu et al. (2011) for
details. We can also solve this equation directly for the vector
Wj to obtain
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the strength of the electric field relative to gravity.

9.2. Analytic Expression for the Electric Field

In some simple cases, Burgers equations can be solved to
yield an analytic expression for the electric field, providing a
useful test for MESA. Starting directly with his diffusion
equations, Burgers (1969) arrives at the following expressions
for a pure plasma of electrons along with one species of ions
(charge Ze):
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where w w wi e= - . For a plasma with only one ion species in
diffusion equilibrium, the constraints of current neutrality and
local mass conservation give w 0= . In the case of a pure
hydrogen plasma, p p2 e= , and in hydrostatic equilibrium

gp p 2 2e r =  = . Hence, we can solve the above set of
equations to find
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The coefficient for the temperature gradient term depends
directly on the nature of the resistance coefficients in the
Burgers formalism, so different models of Coulomb collisions
in ionized plasma will lead to different results for the
electric field.

As a slight generalization of Equation (105) in one
dimension, we write
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If we calculate the coefficient ea using the Burgers’ formalism
with Equations (95) and (96), we find
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A comparable analytic expression for the electric field is
provided by Roussel-Dupré (1981), who applies a Boltzmann–
Fokker–Planck approach to finding diffusion coefficients for
trace elements in hydrogen plasma. His treatment of diffusion
is more precise than the Burgers’ formalism, but has the
limitation of only being applicable in the case of nearly pure
hydrogen with a diffusing trace element. His result for the
electric field matches the form of Equation (106) with the
coefficient 0.703ea = . This provides another useful point of
comparison in the specific case of nearly pure hydrogen
plasmas. Below we use this analytic expression as a test of the
updated resistance coefficients employed by Hu et al. (2011).

9.3. Results and Comparisons

We have constructed several simple MESA test cases in
order to illustrate the effects of radiative levitation and
different resistance coefficients. Where possible, we compare
MESA output to corresponding analytic expressions.

9.3.1. Electric Fields

By default, MESA uses the resistance coefficients provided
by Paquette et al. (1986), but it can also use the resistance
coefficients defined by Iben & MacDonald (1985), given here
in Equation (96). In the case of a pure hydrogen star, the
coefficients given in Equation (96) lead directly to Equa-
tion (107), so these coefficients are especially useful in
performing simple comparisons of MESA output to a corre-
sponding analytic expression. Due to the complicated numer-
ical methods used to obtain the resistance coefficients of
Paquette et al. (1986), it is not possible to write down a directly
corresponding closed form analytic expression for the electric
field, but results based on these more precise calculations
compare favorably to those of Roussel-Dupré (1981) in the
case of a pure hydrogen plasma. Starting with the MESA test
suite, we constructed a solar mass pure hydrogen star, and we
ran just long enough to turn on the diffusion routine and gather
output for electric and gravitational fields. For such a star, we
can compare MESA results for the electric field directly to the
analytic expression given in Equation (106), with 0.804ea =
in the solution of Burgers (1969) and 0.703ea = for Roussel-
Dupré (1981).
Figure 39 plots the result of Equation (106) for both values

of ea , along with the results from the diffusion routine
(Equation (102)) for each type of resistance coefficients
available in MESA. As expected, the curve calculated from
the MESA diffusion routine output using the resistance
coefficients of Iben & MacDonald (1985) closely matches the
analytic expression with 0.804ea = as calculated by Burgers
(1969) using his similar coefficients. When using the more
detailed numerical calculations for the resistance coefficients
provided by Paquette et al. (1986), the diffusion routine output
closely resembles the more precise analytic calculation given
by Roussel-Dupré (1981).
The Sun provides another interesting test case for comparing

the effects of using different resistance coefficients. An
example solar model from the MESA test suite was run with
different choices of the resistance coefficients. Figure 40 shows
a slight difference between the electric field strengths relative to
gravity given by the Paquette et al. (1986) coefficients and
those by Iben & MacDonald (1985).

9.3.2. Gravitational Fields

The MESA diffusion routine treats both the electric field and
local gravitational acceleration as unknown quantities.
MESA records the quantity W S2 2+ (Equation (98)), used to
calculate the gravitational acceleration from the diffusion
routine:

g
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This expression for gdiff is independent of the simpler expression
for local gravitational acceleration g Gm rGauss

2= . Figure 41
compares gGauss and gdiff for a typical profile found using the
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example solar model from the MESA test suite. In Figure 41, a
profile from a star of larger mass (M 1.5 M= ) shows
disagreement between the gravity outputs in the convective
core. The Burgers formalism assumes heat transfer that is
correlated with temperature gradients through the residual heat
flow vectors defined in Equation (88). This assumption breaks
down when most of energy is transported by convection;
however, the effects of diffusion in this region are completely
overwhelmed by convective mixing and are therefore
inconsequential.

9.3.3. Radiative Levitation

MESAʼs implementation of radiative levitation is based on
Hu et al. (2011). Figure 42 shows an abundance profile of a
subdwarf B star model produced by MESA, where radiative
levitation is responsible for the presence of Fe56 , Ni58 , and
other metals near the surface (as also seen in Figure 3 of Hu
et al. 2011).

9.3.4. WD Sedimentation

In a cooling WD, diffusion governs sedimentation over long
timescales. The assumptions behind the formalism of the
Burgers equations do not hold under WD conditions.

1. The Burgers equations assume all particle species satisfy
an ideal gas equation of state. In the context of a
degenerate WD both electrons and ions violate this
assumption.

2. The very dense, strongly coupled ( 1G > ) conditions of a
WD call into question the validity of the two-particle

Figure 39. Comparison of electric field strengths relative to gravity in a pure
hydrogen star (M 1.0 M= , T 5.74 10 Keff

3= ´ , L 0.576 L= ) with
nuclear burning artificially suppressed in the MESA routine to avoid any
helium contamination. Solid lines represent the analytic expression given by
Equation (106) for two different values of the coefficient ea . Dashed lines
represent output from the MESA diffusion routine as described in Equa-
tion (102), with the only difference being the resistance coefficients used to
solve the Burgers equations.

Figure 40. Comparison of electric field strengths relative to gravity using
different resistance coefficients in a solar model.

Figure 41. Comparison of gravitational fields obtained from gdiff and gGauss in
two MESA test suite cases. The two lines representing the Sun
(age 4.57 Gyr= ) show good agreement, while the two lines representing a
1.5 M star disagree in regions with large convective flux where diffusion is
inconsequential.

Figure 42. Abundance profile of a subdwarf B star model (M 0.462 M= ,
T 2.67 10 Keff

4= ´ , L 1.12 L= , age 5 Myr= ) showing the effects of
radiative levitation with a layer of Fe Ni56 58 at the surface.

39

The Astrophysical Journal Supplement Series, 220:15 (44pp), 2015 September Paxton et al.



scattering picture used to calculate the ion resistance
coefficients.

Nevertheless, for lack of a better option, previous studies
have relied on the Burgers equations with the coefficients of
Paquette et al. (1986). For example, see Córsico et al. (2002).

Figure 43 shows an abundance profile produced by MESA for
a CO WD after 4 Gyr of evolution, where diffusion governs
sedimentation in the outer layers. The vertical lines in Figure 43
mark the outer boundaries of regions where the two concerns
listed above become significant. Nearly all of the WD resides
inside at least one of these regimes, and much of the interesting
diffusion sedimentation occurs inside regions that are both
significantly coupled and highly degenerate. Thus, improve-
ments to the treatment of diffusion are clearly necessary
before we are able to describe diffusion in WDs adequately.
This MESA run turns off diffusion for 50G , where we
expect strong coupling to substantially modify the underlying
equations.

9.4. Expanding the Domain of Validity and Next Steps

The validity of the Boltzmann approach becomes question-
able as 1G > and the ions become a liquid. Bildsten & Hall
(2001) estimated the diffusion coefficient in this liquid regime
by using the Stokes–Einstein relation. However, for a broad-
based code such as MESA, we need to implement diffusion into
the 1G > regime in a manner that allows for a smooth
transition between coupling regimes.

Paquette et al. (1986) successfully described diffusion in a
regime of intermediate coupling through the use of screened
potentials, which are a way to account for the collective nature
of interactions in a dense plasma. Though there is no rigorous
reason to expect that a formalism based on the two-particle
scattering picture should work well as 1G  , their comparison
to simulations verified that this description of diffusion is very
accurate for 1G .

Can these approximations be extrapolated to the strongly
coupled regime of 1G > ? Baalrud & Daligault (2013) provide
a method for numerically calculating resistance coefficients
using a hypernetted chain (HNC) approximation from effective
potentials. Figure 44 compares their HNC results (diamonds) to
their Molecular Dynamics (MD) simulations of a one-
component plasma (OCP, circles) for the self-diffusion
coefficient D*, defined by
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For reference, we also include a direct fit of Daligault &
Murillo (2005) to the MD data of Ranganathan et al. (2003),
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The agreement between the HNC and MD simulations shows
that the HNC does a better job of accounting for correlation
physics in strongly coupled plasmas than a simple screened
Coulomb potential and allows for a surprising (and still
physically unexplained) extension of the Burgers formalism
into the strongly coupled regime. This recent work allows us to

Figure 43. Abundance profile of a CO WD (M = 0.611 M, Teff = 5.16 ×
10 K3 , L 9.29 10 L5= ´ -

) after 4 Gyr of WD evolution. The region left of
the blue, dashed line is the interior of the WD, where 1G . Left of the red,
dashed line 50G , and diffusion has been turned off for this region. The
electrons are an ideal gas to the right of the black dotted–dashed line.

Figure 44. Compilation of the self-diffusion coefficients obtained from
different methods. “MD Data” and “HNC” points are taken from Baalrud &
Daligault (2013). The solid black line is the result of the MESA calculation
using the coefficients of Paquette et al. (1986). The dashed green line is the
result of the calculation using the resistance coefficients from the original
routine of Thoul et al. (1994) based on the fit to the Coulomb logarithm found
in Iben & MacDonald (1985), given here in Equation (96). The dashed purple
line represents the fit to MD data given here in Equation (112).
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go into the large Γ limit with the Burgers formalism, but the
question remains as to how we obtain diffusion coefficients in a
reliable manner.

The self-diffusion coefficients from the two options in
MESA are shown in Figure 44 and correlate with the MD data
better than expected for the high Γ regime. In particular, the
agreement is much better than that shown in Figure 2 of
Baalrud & Daligault (2013) for either “cutoff” or “screened”
Coulomb methods. The reason for this agreement is that both
MESA implementations use the inter-ion spacing rather than the
Debye length once 1 3G > , which yields favorable scalings in
the high Γ limit. Iben & MacDonald (1985) constructed their
fitting formula based on a few numerical results for G > 1.
Paquette et al. (1986) also showed that their formalism can be
extended to 1G > as long as the inter-ion spacing is used
rather than the Debye radius for the screening length.

Though MESA does not yet provide the capability of
implementing resistance coefficients based on the HNC
method, we hope to accomplish this in the near future by
means of a table similar to that provided for the coefficients of
Paquette et al. (1986). For a more thorough discussion of these
methods and the likely path of application to mixtures, consult
Beznogov & Yakovlev (2014). We will also need to correctly
account for the electron degeneracy and the non-ideal equation
of state for the ions, both of which modify the electrostatic field
needed to correctly determine the forces that drive diffusion.

10. SOFTWARE INFRASTRUCTURE

Here we describe a number of changes to MESA that have
occurred since Paper II and are of potential interest to users of
MESA or developers of similar software.

MESA can be compiled with either the GNU or Intel Fortran
compilers, runs on multiple operating systems (Windows,
OS X, and Linux), and can use different numbers of OpenMP
threads. It is necessary to regularly test that the code is
performing correctly across the different combinations of
compiler, OS, thread count. To this end, developers and
engaged users run the MESA test suite on a wide range of
systems before each release.

Previously, test cases in the MESA test suite accepted
different results so long as they were within a certain tolerance,
an appropriate choice for testing scientific results where the
physical uncertainties are much greater than the numerical
ones. However, we found that this made detecting and tracking
bugs across platforms difficult. For the purposes of code
testing, it is much better to insist that any inconsistency is a
problem, no matter how small.

Motivated by this challenge, MESA now provides bit-for-bit
consistency for all results across all the supported platforms. It
is essential to emphasize that the goal of this achievement is to
enable better testing. It allows users to exactly reproduce the
results of others, independent of platform differences, which is
especially useful to developers attempting to reproduce bugs.
The achievement of bit-for-bit consistency is not a claim that
the results of MESA calculations are physically accurate or
numerically converged to any specific degree.

This bit-for-bit consistency was achieved via the following
choices.

1. Using parallel algorithms that give identical results
independent of number of threads or order of thread
execution. MESAʼs linear algebra solver is based on

BCYCLIC (Hirshman et al. 2010). It sub-divides the
work between threads based on the the size of the matrix
rather than on the number of threads available. It is also
necessary to avoid OpenMP reduction clauses, which
provide no guarantees on ordering of operations.

2. Specifying compiler flags that forbid the compiler from
making any optimization that can affect floating point
precision (e.g., forbid re-association and fast math
operations). Most optimizations are still allowed.

3. Using an I/O library that does precise conversion from
binary to ASCII for double precision numbers.

4. Using a math library that gives consistent results for
operations such as log, exp, sin, cos, pow.
MESA uses CRLIBM16 in round toward zero mode. The
choice to use a math library that gives exact results is not
because 16 digit accuracy from the math routines in
necessary. Rather, we want consistent results across
supported platforms and this is the best way to achieve
this consistency.

5. Replacing integer power expressions (i.e., x**3) by
repeated multiplications (i.e., x*x*x). Different compilers
implement integer powers differently, giving different
results.

Having achieved bit-for-bit identical results, we can test files
for exact equality. This applies both to the module-by-module
tests that run at installation time and the case by case tests in the
star and binary test suites. These test cases compare the final
model from the test run to a saved result from a previous
MESA version. If they are not exactly the same, the test fails.
The test is also restarted from an intermediate state to confirm
that runs which are stopped and restarted yield exactly the same
results as those that are not.
While MESAstar is parallelized via OpenMP, the install

process has historically been serial. MESA contains approxi-
mately 1000 Fortran files and so the ability to compile more
than one file simultaneously has the potential to provide
significant reductions in the time needed to install MESA.
Recently the compilation step has been parallelized, enabled by
the automated dependency generation tool makedepf90,17

allowing multiple instances of the Fortran compiler to be
invoked simultaneously. This is of particular utility for
developers who may recompile MESA frequently.
Since Paper II the main MESAwebsite18 has undergone

significant revision, making it easier for new users to get started
with MESA. This restructuring has also made it easier for the
developers to keep material up-to-date as MESA evolves. One
of the most important improvements is that the files that
document the default value of each MESA option use the
Markdown19 markup language. This allows documentation
web pages to be generated automatically for each
MESA release.
Improvements have also been made to the distribution of

MESA. Previously, MESAwas available only by checking out
the source code using the Subversion20 version control system.
Now, every release version of MESA (including past releases) is
available for download as a ZIP archive. This is simpler and

16 http://lipforge.ens-lyon.fr/www/crlibm/index.html
17 http://personal.inet.fi/private/erikedelmann/makedepf90/
18 http://mesa.sourceforge.net
19 http://daringfireball.net/projects/markdown/
20 https://subversion.apache.org/
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saves bandwidth and disk space. It has quickly become the
preferred way to install MESAwith the ZIP file of the current
release being downloaded tens of times per week.

11. SUMMARY AND CONCLUSIONS

We have explained and, where possible, verified or
validated, major new capabilities and improvements imple-
mented in MESA since the publication of Paper I and Paper II.
These advancements include interacting binary systems (Sec-
tion 2), implicit hydrodynamics and shocks (Section 4), in situ
usage of large reaction networks, especially for X-ray bursts
and core-collapse supernova progenitors (Section 5), and the
explosion of massive stars (Section 6). These new capabilities
will allow for extended exploration of core collapse progenitors
and the sensitivity of shock nucleosynthesis to their explosion
mechanism. The full coupling of MESA to the GYRE non-
adiabatic pulsation instrument (Section 3) has already revealed
the richness of the instability strips for massive stars and
enables the continued growth of astero-seismology across the
HR diagram. Progress in the treatment of mass accretion
(Section 7) and weak reaction rates (Section 8) will improve
studies of their impact on stellar evolution. We also discuss the
domain of validity for particle diffusion within MESA and
describe a path forward for extending diffusion into the regime
relevant to WD sedimentation (Section 9). We also describe
significant improvements to the infrastructure of MESA
(Section 10). MESAstar input files and related materials for
all the figures are available at http://mesastar.org.

These hitherto unpublished advancements have already
enabled a number of studies in interacting binary systems
(Wolf et al. 2013; Pavlovskii & Ivanova 2015; Vos et al. 2015)
and stellar pulsations (Pápics et al. 2014; Stello et al. 2014;
Cunha et al. 2015; Quinn et al. 2015), and led to the discovery
of new features in the thermal runaway during the evolution of
ONeMg cores toward AIC (Schwab et al. 2015). It also enabled
the first three dimensional simulations of the final minutes of
iron core growth in a massive star up to and including the point
of core gravitational instability and collapse (Couch
et al. 2015). In addition, these enhanced capabilities have
allowed for applications of MESAstar that were not initially
envisioned, such as the treatment of Magneto-Rotational
Instability in stars (Wheeler et al. 2015), effects of axions on
nucleosynthesis in massive stars (Aoyama & Suzuki 2015), and
particle physics beyond the Standard Model (Curtin &
Tsai 2014).

As a community software instrument for stellar astrophysics
new directions for MESAwill be driven by features useful to the
MESA user community, advances in the physics modules,
algorithmic developments, and architectural evolution. Poten-
tial examples include a treatment of ionization in the equation
of state for an arbitrary composition across an expanded region
in the ρ–T plane, nonlinear pulsations, Monte Carlo based
thermonuclear reaction rates, modules for subsonic flame
propagation, ports to additional architectures, and a web-
interface to MESA for education.
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