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ABSTRACT

Shear flow instabilities can profoundly affect the diffusion of momentum in jets, stars, and disks. The Richardson
criterion gives a sufficient condition for instability of a shear flow in a stratified medium. The velocity gradient V ′
can only destabilize a stably stratified medium with squared Brunt–Väisälä frequency N 2 if V ′2/4 > N2. We find
this is no longer true when the medium is a magnetized plasma. We investigate the effect of stable stratification on
the magnetic field and velocity profiles unstable to magneto-shear instabilities, i.e., instabilities which require the
presence of both magnetic field and shear flow. We show that a family of profiles originally studied by Tatsuno &
Dorland remains unstable even when V ′2/4 < N2, violating the Richardson criterion. However, not all magnetic
fields can result in a violation of the Richardson criterion. We consider a class of flows originally considered by
Kent, which are destabilized by a constant magnetic field, and show that they become stable when V ′2/4 < N2, as
predicted by the Richardson criterion. This suggests that magnetic free energy is required to violate the Richardson
criterion. This work implies that the Richardson criterion cannot be used when evaluating the ideal stability of a
sheared, stably stratified, and magnetized plasma. We briefly discuss the implications for astrophysical systems.
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1. INTRODUCTION

Rotation plays an important role in the structure and evo-
lution of stars. Although rotation directly modifies hydrostatic
equilibrium only in the most rapid rotators, it drives large-scale
circulation, modifies the structure of convection and the nature
of convective transport, and is a key component of magnetic
dynamos. These phenomena in turn modify the rotation through
a complex interplay of nonlinear processes.

Shear flow instability is one of the mechanisms through which
rotation influences and is influenced by its environment. The
motion associated with the instability generates stresses, which
react back on the flow and drive it toward a stable state. If
the amplitude of the unstable perturbations is sufficiently large,
the motions become turbulent. Shear flow instability and shear
flow turbulence can amplify magnetic fields and mix chemical
species, in addition to modifying the rotation profile itself.

In the case of the Sun, and possibly other low-mass main-
sequence stars, the most likely venue for shear flow instability
is the so-called tachocline, the region of strong shear just
below the base of the convection zone (see Gough 2007,
for a review). Although the mechanisms which maintain the
tachocline are still uncertain, it is almost certainly a component
of the solar dynamo, and its existence has implications for the
way the convection zone, which is spun down by the solar
wind, is coupled to the radiative core. The tachocline may be
subject to purely hydrodynamic instabilities (Rashid et al. 2008;
Kitchatinov & Rüdiger 2009), global magnetohydrodynamics
(MHD) instabilities driven by the latitudinal structure of the field
(Gilman & Fox 1997; Gilman et al. 2007) magnetorotational
instabilities (Ogilvie 2007), and, if hydromagnetic forces are
large enough, magnetic buoyancy instabilities (Silvers et al.
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2009; Vasil & Brummell 2009). All these instabilities could
modify the tachocline’s structure.

Massive stars, which evolve quickly and tend to rotate rapidly,
are potentially more profoundly affected by shear flow instabil-
ity. The past two decades have witnessed significant advances
in understanding how the internal rotation of massive luminous
stars shapes, and is shaped by, their evolution (see Maeder &
Meynet 2000, and references therein for a comprehensive re-
view). Rapidly rotating massive stars follow bluer, more lumi-
nous evolutionary tracks in the Hertzsprung–Russell diagram
(HRD) than non-rotating equivalents, because strong merid-
ional circulation injects fresh hydrogen fuel into the convective
core (see, e.g., Meynet & Maeder 2000). This rotational mix-
ing brings CNO-cycle nucleosynthetic products from the stars’
cores to their surfaces, leading to changes in photospheric abun-
dance ratios (e.g., Talon et al. 1997).

The prevailing view of rotation in massive stars is based
on a canonical narrative developed by Zahn (1992). In this
scenario, turbulent diffusion of angular momentum is highly
anisotropic, with much stronger transport in the horizontal
direction than the radial one. This leads to a “shellular” rotation
profile, in which the angular velocity is constant on spherical
shells. The exchange of angular momentum between these shells
is then mediated by a combination of meridional circulation,
convection (in convective zones), and radial turbulent diffusion.
The turbulence itself is driven by secular shear instability
(Maeder & Meynet 2000), which grows on a thermal timescale
(see also Maeder 1995; Maeder & Meynet 1996; Talon & Zahn
1997).

Recent studies have considered the role that magnetic fields
might play in modifying angular momentum transport (e.g.,
Maeder & Meynet 2004). Generally, these studies of the impact
of magnetic fields have focused around contributions to the
radial angular momentum diffusivity arising from the field
stiffness (Petrovic et al. 2005). However, as Spruit (1999) has
discussed, a field can also introduce new instabilities that play a
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role in angular momentum transport. In this paper, we explore
a hitherto-overlooked magnetic-mediated instability, whereby
the presence of a horizontal field can destabilize a stratified
shear layer that—according to the Richardson criterion—would
otherwise be stable.

The paper is organized as follows. First we will briefly discuss
shear flow instabilities in Section 2. In Section 3, we set up
the eigenvalue problem which determines the linear stability
of an MHD shear flow in a stratified medium. We review
previous analytic results in Section 4, and describe our numerical
methods for solving the eigenvalue problem in Section 5.
Starting in Section 6 we examine specific examples, first adding
stratification to the linear velocity and parabolic magnetic field
example considered in a recent paper by Tatsuno & Dorland
(2006, hereafter TD06). Our key result is that sufficiently strong
parabolic magnetic fields can yield instability for arbitrarily
strong stratification, in violation of the Richardson criterion.
We consider and extend a family of velocity profiles which Kent
(1968, hereafter K68) showed can be destabilized by a constant
magnetic field in Section 7. In contrast to the parabolic magnetic
field case, it seems that the introduction of a constant magnetic
field cannot result in a violation of the Richardson criterion. This
suggests that the free energy of an inhomogeneous magnetic
field is essential to breaking the Richardson criterion. We discuss
possible applications to rotating stars in Section 8 and conclude
in Section 9.

2. INTRODUCTION TO SHEAR FLOW INSTABILITIES

The best known shear flow instability is the hydrodynamic
Kelvin–Helmholtz instability. The Kelvin–Helmholtz instability
has been studied extensively. Perhaps the most famous result is
the inflexion point criterion, stating that a necessary condition
for instability is the presence of an inflexion point in the velocity
profile (see, for example, Drazin & Reid 1981). Others have
also given necessary conditions for instability, making extra
assumptions on the flow profile (Lin 1955; Howard 1961;
Rosenbluth & Simon 1964).

Many have worked to extend parts of these results to MHD
shear instabilities. It is well known that a sufficiently strong
magnetic field stabilizes the Kelvin–Helmholtz instability
(Chandrasekhar 1961). It was shown years ago, but is perhaps
less well known, that a magnetic field can destabilize an other-
wise stable shear flow (K68). In particular, an inflexion point is
no longer necessary for shear instability. In hydrodynamics vor-
ticity is frozen into the flow, ensuring that perturbations are sta-
ble when there is no inflexion point (Lin 1955), but the presence
of a magnetic field can break the vorticity frozen-in condition,
relaxing the inflexion point criterion. K68 constructed a family
of flow profiles which are marginally stable in the absence of
a magnetic field and destabilized by a uniform field parallel to
the direction of flow. TD06 studied how a linear flow profile,
which has no inflexion point and is marginally stable, can be
destabilized by a particular family of magnetic field profiles. In
particular, TD06 find that a parabolic magnetic field can render
a linear velocity profile unstable.

In this paper, we add a new piece of physics to the analysis:
density stratification. We employ the Boussinesq approximation
and assume that the plasma is stably stratified, i.e., the squared
Brunt–Väisälä frequency, N 2, is positive. In hydrodynamics,
the Richardson criterion provides a sufficient condition for the
stability of a shear flow in a stratified medium (see, for example,
Drazin & Reid 1981). The interchange of two fluid elements
at different heights can release kinetic energy from the flow.

A necessary condition for instability is that the gravitational
energy required for the interchange must be less than the kinetic
energy released. However, in the presence of an inhomogeneous
magnetic field, energy can also be extracted from the magnetic
field, even if the field would be stable in the absence of shear
flow. Our main result is that the Richardson criterion no longer
holds for inhomogeneous magnetic fields.

We will only consider the effect of stable stratification on
magneto-shear instabilities. However, Tatsuno et al. (2003)
studied how a shear flow can destabilize a homogeneous
magnetic field in the presence of an unstable density gradient.
They found that a linear (Couette) velocity profile can be
destabilizing when the velocity shear was not too strong. Their
result is similar to ours in the sense that the system is maximally
destabilized when the velocity gradient, magnetic field, and
density stratification all have comparable strength.

In this paper, we consider only ideal instabilities, i.e., we set
the resistive, viscous, and thermal diffusivities to zero. Diffusive
effects could unleash a host of additional instabilities such as
tearing modes (e.g., Furth et al. 1963), doubly diffusive modes
(e.g., Schmitt & Rosner 1983), and secular shear instabilities
(e.g., Maeder & Meynet 2000). Although such instabilities are
important in their own right, in this paper we focus entirely on
dynamical instabilities.

3. BASIC EQUATIONS

The time evolution of an ideal, incompressible plasma is given
by

ρ

(
∂V
∂t

+ V · ∇V
)

= −∇
(

p +
B2

2μ0

)
+

1

μ0
B · ∇B − gρez,

(1)

∂B
∂t

= ∇ × (V × B) , (2)

0 = ∇ · V, (3)

0 = ∇ · B, (4)

0 = ∂ρ

∂t
+ V · ∇ρ, (5)

where the symbols have their usual meanings. Equation (1) is
the momentum equation, Equation (2) is the induction equation,
Equation (3) enforces incompressibility, Equation (4) is the
divergenceless magnetic field condition, and Equation (5) is the
continuity equation. We will write the unit vectors in the x, y,
and z directions as ex , ey , and ez, respectively. The gravitational
strength is parameterized by g, and gravity is assumed to point in
the −ez direction. We denote background velocity and magnetic
fields with capital letters, and then perturb the background
fields with fields denoted with lower case letters, except that
the background density is denoted by ρ, and the perturbed
density by ρ̂. We assume that the background quantities ρ,
V, and B all are the functions of only z, and that our domain
is the volume between z = −z0 and z = +z0 with “free-slip,”
perfectly conducting boundary conditions in the z direction,
and periodic boundary conditions in the x and y directions. By
“free-slip,” we mean no constraint on perturbed quantities in the
x and y directions at the walls, but that perturbations have no
z component at the walls. These are the boundary conditions
adopted by TD06 (who termed them “no-slip” which is not
correct—as will be shown in Section 6.3, the perturbations slip



1118 LECOANET ET AL. Vol. 712

along, but do not penetrate, the walls). Next, we assume that
V is oriented toward only one direction throughout the domain,
which we define to be the x direction. Thus, we take

V = (V (z), 0, 0), (6)

in Cartesian coordinates. The background magnetic field B is

B = (Bx(z), By(z), 0) (7)

in Cartesian coordinates. The background fields are assumed to
be in equilibrium, so we have that

∇
(

p +
B2

2μ0

)
+ gρez = 0. (8)

Equation (8) specifies an integral equation for the background
pressure p for arbitrary B and ρ. The induction and continuity
equations for the background fields are automatically satisfied
by the geometry we have imposed.

Now assume the perturbation fields all have the form

f (x, y, z, t) = f (z) exp(ikxx + ikyy − ikxct). (9)

We will take k ≡ kxex + kyey , k = |k| and k̂ = k/k. In many
applications, the density gradient ρ ′ is small in comparison to
the velocity gradient V ′—where prime denotes differentiation
with respect to z—but the strength of gravity g is large.
Assuming this, we recover the Boussinesq approximation, in
which we drop terms proportional to ρ ′ alone, but keep terms
proportional to gρ ′. These assumptions yield the following
eigenvalue problem for ξ , the plasma displacement in the z
direction:([

k2
x (V − c)2 − k2A2

]
ξ ′)′

− k2
[
k2
x (V − c)2 − k2A2

]
ξ + k2N2ξ = 0, (10)

where A ≡ k̂ ·B/
√

ρμ0 is the Alfvén velocity, and N2 ≡ gρ ′/ρ
is the Brunt–Väisälä frequency in the Boussinesq approxima-
tion. To simplify our analysis, we assume that N 2 is constant
throughout the domain, which corresponds to the exponentially
decaying density profile. When computing the Alfvén velocity,
the Boussinesq approximation will allow us to consider ρ to
be a constant. The boundary conditions are that ξ = 0 at the
boundaries at z = −z0 and z = +z0.

There is an asymmetry in how velocity shear, magnetic fields,
and density stratification depend on the wavenumber k. For
k = kyey , kx = 0 and the velocity shear is irrelevant (note that
kxc, the growth rate, could still be finite). The purpose of this
paper is to examine the interplay between velocity and magnetic
fields, so we will not consider this case. Also note that the Alfvén
velocity, as it occurs in Equation (10), is a function of k̂. For
example, if B is constant in the z direction, there exists a k̂ for
which A = 0, so the magnetic field would have no effect on
such a perturbation. The strength of gravity in relation to shear
flow contains a factor of k2/k2

x . Thus, gravity is maximally
destabilized by shear flows when ky = 0.

Consider an eigenvalue problem for the magnetic field B,
velocity V, Brunt–Väisälä frequency N 2, and wavenumber
k = kxex +kyey , with ky �= 0. We will show that this eigenvalue
problem is equivalent to another eigenvalue problem with
ky = 0, but with different B, N 2, and kx. Define B′ ≡ exk ·B/kx ,
N ′2 ≡ k2N2/k2

x , and k′ ≡ kex . Then the magnetic field B′,

velocity V, Brunt–Väisälä frequency N ′2, and wavenumber k′
have the same eigenvalue equation as above. Thus, finite ky is
equivalent to ky = 0, if one appropriately rotates and augments
the magnetic field, and increases the density stratification. With
this in mind, we will consider the ky = 0 case in the remainder
of this paper, for which the eigenvalue equation reduces to([

(V − c)2 − A2
]
ξ ′)′ − k2

[
(V − c)2 − A2

]
ξ + N2ξ = 0.

(11)
The eigenvalue Equation (11) possesses some symmetries.

First, the sign of A is unimportant, so changing the sign of the
magnetic field does not change the problem. Another symmetry
is translational: taking V → V + ΔV and c → c − ΔV
corresponds to Galilean transformations. Thus, without loss
of generality, we can and do put ourselves in a frame in
which V (0) = 0. To make the problem more tractable, we
add additional symmetries to the equation by postulating that
A is even in z and V is odd. There is a rescaling symmetry:
Equation (11) remains invariant under

z → z/z0,

V → V/z0,

A → A/z0, (12)

k → kz0,

c → c/z0.

Note that N 2 and Ri are left unchanged under this transforma-
tion.

There is also structure in the eigenvalues. In general, c and
ξ are complex: c = cr + ici , ξ = ξr + iξi . We ignore the
singular ci = 0 case. If ξc is an eigenfunction with eigenvalue
c, then ξ ∗

c , the complex conjugate of ξc, is a solution to
Equation (11) with eigenvalue c∗. Thus, eigenvalues come in
complex conjugate pairs, regardless of the symmetry properties
of A and V. Assuming that A is even and V is odd, we can show
that if c is an eigenvalue, then −c is also an eigenvalue, with
eigenfunction ξc(−z).

Numerically, we only find eigenvalues with cr = 0 and
with the following eigenfunction symmetry. If we normalize
the eigenfunction ξ such that ξ (0) = 1, then ξr is even and ξi

is odd. In Sections 6 and 7, we assume that cr = 0, and the
eigenfunction has this symmetry. These properties are linked. If
we multiply Equation (11) by ξ ∗ and integrate over the domain
the result is∫ z0

−z0

[
(V − c)2 − A2

] (∣∣∣∣dξ

dz

∣∣∣∣
2

+ k2 |ξ |2
)

− N2|ξ |2dz = 0.

(13)
The imaginary part of Equation (13) is

2ici

∫ z0

−z0

(cr − V )

(∣∣∣∣dξ

dz

∣∣∣∣
2

+ k2 |ξ |2
)

dz = 0. (14)

If the real and imaginary parts of ξ each have definite parity,
the term proportional to V in Equation (14) vanishes. Therefore,
crci ≡ 0, and unstable modes have cr = 0. This result is useful
in searching for unstable modes, as described in Section 5.

We find that generally the growth rate c = ici is small in
comparison to V, which is O(1). When V 2 = A2, the coefficient
of the ξ ′′ term in Equation (11) goes to | − c2

i | 	 1. Thus, the
equation becomes “almost singular” when |V | = |A|, and be-
comes actually singular when c = 0. The “almost singularities”
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are characterized by large gradients in the eigenfunctions, as is
shown in Sections 6 and 7.

We will often consider the limit k2 = 0. When k2 = 0, the
growth rate, kc, is formally zero. However, one can view the
eigenvalue c as a function of the various parameters A,V, k2,
and N 2. We assume that c(k2) is analytic about k2 = 0, so our
results for the k2 = 0 case still hold in a neighborhood of k2 = 0.
Thus, when we consider k2 = 0, we are really taking the limit as
k becomes small. The k2 term in Equation (11) is only important
when it is comparable to the scale heights of the velocity and
magnetic fields and the perturbation ξ . Numerically, we find
that kz0 < 0.1 is “small” for the examples presented in this
paper.

4. REVIEW OF ANALYTIC RESULTS

Shear flow instabilities are global instabilities. Thus, the
two categories of analytic results—necessary conditions for
instability and sufficient conditions for instability—can be
viewed as local and global conditions. Necessary conditions
for instability give criteria which must be satisfied in at least
one spot in the domain, whereas the sufficient conditions for
instability are global criteria involving integrals over the domain.
We present a short overview of the analytic results regarding the
linear stability of shear flows. We begin by discussing shear
flows alone, and then add stratification, a magnetic field, and
then both. The zero magnetic field and zero density gradient
cases can be viewed as limits of the more general problem.

4.1. Shear Flow Instabilities

Probably the best known result is the inflexion point criterion,
which states that V ′′ must have a zero in the domain for there
to be instability. This is a local, necessary condition. There are
several physical interpretations of the inflexion point criterion.
Consider the Reynolds stress of the perturbation, τ = −ρvxvz,
where the bar denotes averaging with respect to x. Assuming
c �= 0, one can show that dτ/dz has a zero iff V ′′ has a zero (for
instance, in Lin 1955, or K68). Since τ = 0 at the boundaries,
when c �= 0, we must have that V ′′ has a zero. Lin (1955)
has proposed an alternate interpretation considering vorticity. A
zero in V ′′ corresponds to an extremum in vorticity, and Lin has
shown that perturbations feel a restoring force unless they are
at an extremum of vorticity.

The inflexion point theorem is useful because it rules out a
large class of velocity profiles as stable. However, it cannot be
used to show that a particular shear flow is unstable. Rosenbluth
& Simon (1964) were able to prove a necessary and sufficient
condition for instability by using the additional assumptions
that V ′′ has a single zero and V is monotonic. Under these
assumptions, V is unstable in z1 � z � z2 if and only if

1

V ′(Vc − V )

∣∣∣∣
z2

z1

−
∫ z2

z1

V ′′

V ′3(V − Vc)
dz > 0, (15)

where Vc is the velocity at the inflexion point. This result is
derived for the k2 = 0 case. A priori, it seems that there could
be velocity profiles which are unstable for k2 > 0 but stable for
k2 = 0. Then an instability condition for k2 = 0 would be only
sufficient for instability. This is addressed by a theorem of Lin
(1955) which shows that under the assumptions of Rosenbluth
& Simon, velocity profiles which are unstable for k2 > 0 are
also unstable for k2 = 0.

4.2. Shear Flow Instabilities in a Stratified Medium

The key stability result for stratified media is the Richardson
criterion, a necessary condition for the instability of a shear flow
in a stratified medium. If

Ri ≡ N2

V ′2 >
1

4
(16)

everywhere, then there is stability. A physical interpretation
(see, for example, Chandrasekhar 1961 or Drazin & Reid 1981)
is that if exchanging fluid elements at slightly different heights
increases the potential energy more than it decreases the kinetic
energy, then the perturbation is stable.

Provided that Ri < 1/4, we have that

k2c2
i � max

(
1

4
V ′2 − N2

)
. (17)

This result by Howard (1961) follows from the proof of the
Richardson criterion and is also discussed in Drazin & Reid
(1981).

4.3. Magneto-shear Instabilities

Magnetic fields can both stabilize and destabilize shear flows.
First, we consider their stabilizing effect. Perturbations which
bend magnetic field lines induce a restoring magnetic tension
force. A classic result is that in a constant density medium, the
vortex sheet V (z) = −U for z < 0 and V (z) = +U for z > 0
for some constant U, is stabilized by a magnetic field A if and
only if A2 > V 2 (Chandrasekhar 1961). This step function ve-
locity profile is the limiting distribution of V (z) = U0 tanh(z/a)
as a → 0. Keppens et al. (1999) have investigated the hyper-
bolic tangent V case with a constant magnetic field, including
compressibility, and found the magnetic field stabilizing. These
results were qualitatively similar to those by Chandrasekhar,
which is expected because a constant magnetic field has no
length scale (or it has an infinite length scale), so it cannot tell
the difference between the a → 0 and a finite case.

Keppens et al. also found that the addition of a non-uniform
magnetic field could be destabilizing. When they added a small
field A(z) = −A0 for z < 0 and A(z) = A0 for z > 0,
they found that the growth rate increased, and was even larger
when A reversed smoothly. Although their calculation, unlike
ours, includes compressibility, there is one robust effect which
is always present: magnetic fields allow transfer of vorticity
between fluid elements. The loss of the frozen-in vorticity
constraint changes the range of motions allowed in the plasma,
and yielding instability.

We now review some general results on magneto-shear
instabilities in order to understand how the Richardson criterion
can be violated by the introduction of a magnetic field.

The necessary and sufficient instability condition of Rosen-
bluth & Simon (1964; Equation (15)) has been generalized to
the MHD case by K68 and Chen & Morrison (1991). Both ar-
guments use that when k2 = 0, there is an exact solution to
Equation (11),

ξ (z) =
∫ z

z1

dz′

(V − c)2 − A2
, (18)

and then define

f (c) ≡
∫ z2

z1

dz

(V − c)2 − A2
= ξ (z2). (19)
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The eigenvalues of Equation (11) are then just the zeros of f (c),
and one can search for instabilities by implementing Nyquist’s
method to determine if there are any zeros of f (c) for ci > 0.
Nyquist’s method is an application of the argument principle
(see, for instance, Gamelin 2001), which states that the integral
of the argument of f (c) on the boundary ∂D of some region D
is equal to 2π (N0 − N∞), where N0 is the number of zeros of
f (c) in D, and N∞ is the number of poles of f (c) in D. In our
case, we assume N∞ = 0, so counting the number of times f (c)
wraps around the origin tells us how many zeros, i.e., unstable
modes, there are. Further discussion of Nyquist’s method can
be found in Krall & Trivelpiece (1973).

Nyquist’s method can only be applied if we know what
contour to use. The real part of c can be bounded by extending
an important hydrodynamic result by Rayleigh. It can be shown
(Hughes & Tobias 2001) that cr must lie in the range of V, so the
contour in c space is bounded by Vmin < cr < Vmax. The lower
bound for ci is 0+, and the upper bound can be recovered by
modifying Howard’s semicircle theorem (Howard 1961). In the
hydrodynamic case, Howard showed (see, for instance, Drazin
& Reid 1981) that

[
cr − 1

2 (Vmax + Vmin)
]2

+ c2
i �

[
1
2 (Vmax − Vmin)

]2
. (20)

Thus, we have that ci � 1/2(Vmax − Vmin). Hughes & Tobias
(2001) have shown that in MHD, we have the two inequalities

(V 2 − A2)min � c2
r + c2

i � (V 2 − A2)max, (21)

and[
cr − 1

2 (Vmax + Vmin)
]2

+ c2
i �

[
1
2 (Vmax − Vmin)

]2 − (
A2

)
min .

(22)

This gives an even stronger upper bound on ci, that

ci �
√

(1/2(Vmax − Vmin))2 − (A2)min. (23)

These two inequalities can be used to show stability, if one
can show that there are no c which simultaneously satisfy both
inequalities.

Chen & Morrison (1991) used Nyquist’s method to provide a
sufficient condition for instability for flows in which V is even,
and A is either odd or even. They showed that

�
∫ z0

−z0

dz

(V − iε)2 − A2
> 0 (24)

as ε → 0 is sufficient for instability. Note that it is not assumed
that V has an inflexion point.

K68 considered the effects of a small, constant magnetic field
on a stable velocity profile. He showed that when V ′′ has a single
zero, and there exist points ys, yt such that the velocities at these
points, Vs, Vt satisfy Vs − Vt = 2A and V ′

s − V ′
t = 0, then

M(A) ≡ ℘

∫ z2

z1

dz

(V − c0)2 − A2
> 0, (25)

implies instability. Here, c0 is defined by c0 = (Vs +Vt )/2, and ℘
denotes the principal value of the integral. For small A, c0 is the
velocity at the inflexion point, but as A increases, it can deviate
somewhat. For a marginally stable velocity profile, we have
M(0) = 0. In the remainder of this section, we will use ˙ (dot)

to denote derivative with respect to A. In the limit A → 0, we
have Ṁ(A) → 0. Thus, to evaluate the stability of V to infinitely
small A, we need to consider M̈(0), which Kent shows is given
by

M̈(0) = 2c̈r (0)
∫ z2

z1

dz

(V − C0)3
+ 2

∫ z2

z1

dz

(V − C0)4
, (26)

where

c̈r (0) = − C
(4)
0

3C0C
(3)
0

. (27)

This criterion is useful because one can change variables to
integrate over V, and if C0 = 0 and ω(V ) := dz/dV is even,
then

M̈(0) =
∫ V2

V1

ωdV

V 4
, (28)

where Vi = V (zi). Although these conditions are sufficient for
instability, they are not necessary. Unlike in the hydrodynamic
case, there can be unstable modes for finite k2 for a velocity
profile which is stable at k2 = 0 (K68).

Another way to tackle the general problem with arbitrary
velocity and magnetic field profiles is to attempt to extend the
physical arguments behind the inflexion point criterion to the
MHD problem. In the MHD problem, one must consider both
the Reynolds and Maxwell stresses, so the total stress is given
by

τtot = −ρvxvz + bxbz. (29)

A necessary condition for instability is still dτtot/dz = 0
somewhere in the flow. K68 has shown that this condition can
be written as

�
[
|X|X

′

X

]′
= 0, (30)

or

�
[

2XX′′ − X′2

4X2

]
= 0, (31)

where X ≡ (V − c)2 − A2. Unfortunately, these (equivalent)
conditions are not as useful as the inflexion point criterion
because they depend on both the flow profile and the growth rate.
Thus, one needs to check Equations (30) or (31) for all possible c.
This condition seems to be fairly weak, and is satisfied by many
stable profiles.

4.4. Magneto-shear Instabilities in a Stratified Medium

The addition of a magnetic field to a shear flow in a stratified
medium makes the problem significantly more complex. The
Richardson criterion is no longer valid, but it can be generalized.
We have carried out the same analysis used to derive the
Richardson criterion, but included magnetic fields. The result is
that if

0 >
1

ci

�
(

2ZZ′′ − Z′2

4Z2
+

V ′Z′

Z
+

V ′2
4 − N2

Z

(V − c)

)
(32)

everywhere in the domain, then the system is stable. Here,
Z ≡ 1 − A2/(V − c)2. Similar to the generalization of the
inflexion point criterion (Equations (30) and (31)), this condition
involves c. This condition also seems to be weak.

Although we normally assume that cr = 0, this condition can
be relaxed, and we can find bounds for cr. The argument by
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Hughes & Tobias (2001) mentioned in Section 4.3 still holds
when stratification is introduced and shows that cr must lie
within the range of V. This bound on cr is valid with and without
magnetic field, and with and without stratification.

5. NUMERICAL METHODS

Because the problem is global, analytic results exist only in
cases with particular symmetries (i.e., k2 = 0 or N2 = 0),
so we must generally solve for stability numerically. We
have implemented three numerical methods for solving the
eigenvalue problem, Equation (11). In the first, we discretize the
equation onto a Chebyshev grid, and use a finite-dimensional
approximation for the differential operator. Then Equation (11)
can be rewritten as a generalized finite-dimensional eigenvalue
equation:

γ

(D 0 0
0 1 0
0 0 1

) (
vz

bz

ρ̂

)

=
⎛
⎝−ikxVD + ikxV

′′ ikAD − ikA′′ −N2k2

ikA −ikxV 0
1 0 −ikxV

⎞
⎠

(
vz

bz

ρ̂

)
,

(33)
where D ≡ ∂2

z − k2. Matlab was used to solve this finite-
dimensional eigenvalue problem. This approach was useful
when we did not require high resolution. This method was not
able to resolve the large gradients in the eigenfunctions that
sometimes appeared when |V | = |A|.

Another strategy, for k = 0, was implementing Nyquist’s
method. We used Mathematica to calculate f (c), as defined in
Equation (19) for various c. As mentioned in Section 4.4, we
know that cr lies between the minimum and maximum of V. The
advantage of Nyquist’s method is that we need not assume that c
is imaginary. We picked the rectangle with vertices at iε + Vmax,
iε + Vmin, ia + Vmin, and ia + Vmax as the contour, with a of
order 1 and ε small. If one plots f (c), where c traverses this
contour, it is easy to see if there are any unstable modes with
c in this contour. We varied the size of the rectangular contour
to find the exact eigenvalues. For the examples presented below
in Sections 6 and 7, eigenvalues were always purely imaginary,
and the eigenfunctions had the symmetry properties described
in Section 3.

Finally, we used a finite difference relaxation code to integrate
across the domain. We assumed that c was imaginary, and
integrated Equation (11) over the domain for c between iε and
ia for a of order 1 and ε small, in logarithmic steps. When the
real part of f (c) changed sign between two consecutive steps,
the secant method was used to find the zero in the real part of
f (c), which corresponds to a zero in f (c). This algorithm was
the most efficient, but makes the assumption that the eigenvalues
are purely imaginary. As mentioned in Section 3, we have not
found any eigenvalues with non-vanishing real part using the
other two methods mentioned above, so this seems to be a valid
assumption.

All three numerical methods give similar results in cases
where we used more than one.

6. LINEAR V, PARABOLIC A

In this section, we add density stratification to the linear
velocity and parabolic magnetic field profiles considered by
TD06. The main result is that we find instability even when
V ′2/4 < N2 everywhere, i.e., when the Richardson criterion

predicts stability. We believe this is because the magnetic
field provides another free energy source for the instability.
At k2 = 0, there are magnetic field profiles which are unstable
for arbitrarily large N 2, but when k2 > 0, there is only a finite
range of N 2 which are unstable for the profiles considered here.

6.1. The Field and Flow Profiles

Consider the following velocity and magnetic field profiles in
a domain from z = −1 to z = +1:

V (z) = z, (34)

A(z) = (1 − α)z2 + α. (35)

These are the fields considered in Section III.A.1 of TD06
(where we call their α1 parameter α). The magnetic field is
a parabola with A(0) = α and A = 1 at the boundaries.

An important characteristic of these profiles is that neither
the magnetic field nor the velocity profile are unstable by
themselves. The instability is truly a magneto-shear instability,
as both magnetic field and shear flow play a part in rendering
the profiles unstable. In this respect, this example is different
from those considered by others in which a magnetic instability
is stabilized by gravity (Dikpati et al. 2009), a magnetic layer
destabilizes a stratified medium (Newcomb 1961), or magnetic
field and shear flow modify a buoyancy instability (Howes et al.
2001).

These profiles can be viewed as local approximations to a
wide range of field and flow profiles. The parabolic magnetic
field profile is valid locally whenever B has an extremum, which
we take to be at z = 0. As mentioned in Section 3, taking
A → −A does not change the problem, so although we are
considering a local minimum, the exact same results hold for
A(z) = −(1 − α)z2 − α, which characterizes a local maximum.
We can always transform to a frame in which V (0) = 0, so the
velocity has a local expansion of the form of Equation (34).

To view these profiles as a local approximation, we also need
to make an assumption about the relative strength and scale
of variation of the magnetic field and the shear flow, since we
require that |V | = |A| at the boundary. When α is close to zero,
the magnetic field and velocity are changing at similar rates, so
the locality assumption is plausible. But when α is close to 1 or
very negative, the scale heights of the flow and magnetic field
are very different, so viewing these profiles as a local expansion
is not as accurate.

Depending on the sign of α, the magnetic field has either two
or zero nulls. When α < 0, A = 0 at

z = ±
√

α

α − 1
. (36)

When α > 0, there are no nulls in the magnetic field, and when
α = 0, there is a single null at z = 0. We find that the nulls
in the magnetic field are unimportant in this problem—rather,
zeros of V 2 − A2 are important. The eigenfunctions discussed
below (see Section 6.3) show no special behavior at A = 0, but
have sharp gradients when |A| = |V |. In terms of α, |V | = |A|
at

z = ± 1, (37)

z = ± α

1 − α
. (38)
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When α > 0.5, the solutions in Equation (38) are no longer in the
domain. This means that V � A in the entire domain, yielding
stability by Equation (24). Heuristically, when α becomes more
positive, the strength of the magnetic field in the domain
increases until the magnetic tension force becomes so strong
that all perturbations become stable.

In the opposite limit, when α becomes very negative, the
solutions in Equation (38) approach z = ±1. For arbitrarily
negative α, there is still some region for which V > A. Tatsuno
& Dorland find instability for α as small as −25, and we can
prove that there is instability for all α < 0.5 when k2 = 0
using the sufficient condition for instability by Chen & Morrison
described in Section 4. The explicit computation is messy, but
is included in the Appendix.

The limit in which α → −∞ is probably not physically
relevant. As the two “almost singular” layers approach each
other (see Equations (37) and (38)), there are large gradients at
the boundary of the domain. In this case, the instability probably
relies crucially on our choice of boundary conditions. Moreover,
when stratification is included, the high field strengths and
large currents corresponding to |α|  1 are destabilizing in
themselves, in contrast to what we assume here. Thus, results
in this limit should be viewed as proving a point about the
Richardson criterion, but are not necessarily physically relevant
by themselves. As we show in explicit calculations presented
below, α does not need to be very negative to recover the results
described in the infinitely negative case.

6.2. Effect of Stratification on Stability

Our main result is evidence for the following conjecture.
There is instability as α → −∞, even in the presence of arbi-
trarily strong density stratification, in violation of the Richard-
son criterion. There does not seem to be any way to prove this
claim analytically, as there was in the N2 = 0 case. The suf-
ficient condition for stability presented by Chen & Morrison
(1991) relies crucially on the analytic solution to the eigenvalue
equation when k2 = 0. When N2 �= 0, we no longer have an
analytic solution to the eigenvalue equation, even when k2 = 0,
so there is no extension of the proof.

Given the assumptions made above, the growth rate c is a
function of the following parameters: k 2, N 2, and α. We first
specialize to the k2 = 0 case, and then examine the more general
k2 finite case.

6.2.1. k2 = 0

For this problem, the unstable area of the (N2, α) plane is
maximized for k2 = 0—though this is not necessarily true in
general (K68). When k2 = 0, we have c = c(N2, α). We have
plotted contours of constant c on the N2, α plane in Figure 1.

We find instability when N2 > 1/4, violating the Richardson
criterion. It seems that given an arbitrarily large value of N 2,
there is a sufficiently negative value of α such that the fields are
unstable. However, as mentioned in Section 6.2, the extremely
negative α case is probably strongly affected by the boundary
conditions.

Gravity is stabilizing: the growth rate decreases as N 2 in-
creases. There is stability for α < 0.5 by the same arguments
as above, and as α becomes more negative, we find larger c.
Although a stronger magnetic field results in a strong magnetic
tension force, and the “destabilizing” region in which |V | > |A|
shrinks for more negative α, we nevertheless find stronger insta-
bility. We hypothesize that c increases because there is more free
energy in the magnetic field as α becomes more negative and the

Figure 1. Contours of constant c on the α, N 2 plane. The Richardson criterion
states that the shaded region is stable. The dotted line represents the c = 0
contour—the region below this line is unstable.

magnetic field becomes stronger. As α becomes more negative,
the instability can tap more free energy from the magnetic field,
and thus we find a violation of the Richardson criterion. How-
ever, note that the stronger magnetic field, and corresponding
increase in magnetic free energy, is not a sufficient condition for
instability, as the magnetic field is stable without the presence
of shear flow.

The contours of constant c are well fit by straight lines.
The equation for the boundary between the stable and unstable
regimes is

α = 0.5 − 2.65N2. (39)

Thus, for α < −0.1625, the Richardson criterion is violated.
The slopes of the contours become steeper as c increases.
Although there is instability with arbitrarily large c, this does
not mean the instability has an arbitrarily large growth rate.
As mentioned in Section 3, the growth rate is formally zero at
k2 = 0. Thus, to find the growth rate, we need to understand the
instability at k2 �= 0.

6.2.2. k2 > 0

Although when k2 = 0 there is instability for arbitrarily
negative α, for every finite k, there is a cutoff αk for which
any α more negative than αk yields stable profiles due to an
insurmountable magnetic tension force. Looking at it another
way, c always decreases as k increases, so for any values α
and N 2 which are unstable at k2 = 0, there is a k for which
c = 0. Call this value kcrit(α,N2). Figure 2 plots kcrit(α,N2)
as a function of α and N 2. The point (α,N2, k) is unstable
iff k < kcrit(α,N2). Although it is possible to find instability
when k2 > 0 for profiles which are stable when k2 = 0 (see
Section 4.3), this does not seem to occur for these classes of
profiles.

Figure 3 plots surfaces of constant ω in (α,N2, k) space.
The figure shows that ω is a sharply peaked function of k, and
that it decreases with increasing N 2. Given N2, k �= 0, there is
instability for only a finite range of α. For N2 ≡ 0, our results
agree with Tatsuno & Dorland (2006). For sufficiently small k,
c is almost constant. Thus, the growth rate ω ≡ kc is linear in k
with slope c. However, as k grows, c begins to decrease. There
is a maximum growth rate defined by d log c/d log k = −1, and
the growth rate goes to zero when c does. The growth rate is
1–2 orders of magnitude lower than the typical growth rates of
hydrodynamic shear flow instabilities.

As k2 increases from zero, the fluid displacement becomes
more vertical. Vertical perturbations bend field lines, and are
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Figure 2. Largest k, denoted kcrit, for each α and N 2 which is unstable. The
white area is stable.

subject to a restoring magnetic tension force. Thus, it makes
sense that the most unstable modes are the horizontal modes
characterized by k2 = 0. For some applications, such as stellar
interiors (see Section 8), it is important to consider the vertical
transport (of angular momentum, etc.) by these modes. In this
case, the k2 = 0 mode is irrelevant. One must then consider an
optimization problem in which modes with too low k2 have no
vertical transport effects, whereas modes with too high k2 are
stable. This argument is only valid assuming that the nonlinear
evolution is similar over a broad range of k2. A full nonlinear
simulation for various k2 is necessary in order to understand the
transport properties of these instabilities.

6.3. Eigenfunctions

We normalize the eigenfunctions as described in Section 3.
The eigenfunctions all look like the example plotted in Figure 4.
The most salient features are the sharp gradients at z = ±.47,
where |V | = |A|. Note that the nulls in the magnetic field at
a = ±.69 produce no special features.

7. CONSTANT A WITH VELOCITY PROFILES
SUGGESTED BY KENT

In Section 4.3, we summarized Kent’s discussion (K68) of
velocity profiles which are marginally stable in the absence of
a magnetic field and destabilized by a small, constant field. In
this section, we generalize Kent’s construction and investigate
the stability of the resulting family of Kent flows.

The velocity profile is most conveniently specified by the
inverse relation z = z(V ). Note that only invertible velocity

Figure 3. Surfaces of constant growth rate ω in (α,N2, k) space. The maximum
ω in this range of (α,N2, k) is given also.

profiles, i.e., dV/dz �= 0, can be specified by this inverse
relation. When k2 = 0 and N2 = 0, we can use the in-
stability condition by Chen & Morrison (1991) and evaluate
the integral in Equation (24) in closed form. This provides a
transcendental equation for the growth rate. From solving this
equation numerically, it seems that there exist velocity pro-
files which are (marginally) stable at A0 = 0, but unstable for
0 < A0 < |V |max. When we increase N 2 from zero, we always
find stability when N2 � (max V ′)2/4, but can find instability
for all N 2 up to this limit. Our interpretation of this result is
that the positive energy required to perturb a constant magnetic
field triumphs over the extra freedom granted by magnetically
breaking the frozen-in vorticity constraint.

7.1. N2 = 0

First we consider various velocity profiles defined by z =
z(V ) at k2 = 0. Define

ω(V ) ≡ dz

dV
. (40)

We restrict ourselves to velocity profiles which are marginally
stable at A = 0, as they seem to be maximally destabilized
by magnetic fields. We will first consider velocity profiles
with walls at z = ±z0, with the condition that V (±z0) =
±1. This will simplify the algebra when deriving analytic
stability results. We will then employ the rescaling symmetry

Figure 4. Vertical displacement ξ (left panel) and horizontal displacement ξx = −iξ ′/k (right panel), where prime denotes differentiation with respect to z,
eigenfunctions for α = −0.9, N2 = 0.3, and k = 0.2. The thick solid lines are the real part of the eigenfunctions, and the thick dashed lines are the imaginary part of
the eigenfunctions. The thin vertical dotted lines are at z = ±.47 where |V | = |A| and the thin vertical dot-dashed lines are at z = ±.69, where A = 0.
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described in Equation (12) to present numerical results using
the normalization z0 = 1.

The condition for marginal stability (Kent 1968) is

∫ 1

−1

ω(V )dV

V
= 0, (41)

where we have assumed that V ranges from −1 to +1 in the
domain. Assuming

z = V + a3V
3 + a5V

5 + · · · , (42)

we have
ω = 1 + 3a3V

2 + 5a5V
4 + · · · , (43)

so the marginal stability condition on the aj’s is

∑
j�3,odd

jaj

j − 2
= 1. (44)

Our construction is a generalization of K68, who truncated the
series in Equation (42) at three terms. Next we assume that there
is only one inflexion point at z = 0. This condition implies
that ω cannot have any extrema, so none of the aj are negative.
Numerical work suggests that the results discussed here hold for
velocity profiles with multiple inflexion points, so by assuming
only one inflexion point, we make the problem much easier, but
do not qualitatively change the results.

Now we add a constant magnetic field. When k2 = 0, we
have that ∫ z0

−z0

dz

(V − c)2 − A2
0

= 0 (45)

implies instability with growth rate c. If we change variables to
V, we find ∫ 1

−1

ω(V )dV

(V − c)2 − A2
0

= 0, (46)

where ω(V ) is defined as in Equation (40). We can rewrite the
integral in Equation (46) as

∫ 1

−1

1

2A0
ω(V )dV

(
1

V − c − A0
− 1

V − c + A0

)
= 0. (47)

The two integrals have equal real parts, so all we need to
calculate is

�
∫ 1

−1

ω(V )dV

V − c − A0
= 0. (48)

When specifying ω(V ) as a power series in odd powers of V, as
in Equation (43), we can evaluate the integral by noticing that

1

2

∫ 1

−1

V ndV

V − c − A0
= c + A0

n − 1
+

(c + A0)3

n − 3
+ · · · + (c + A0)n−1

+
1

2
(c + A0)n (log(1 − c − A0) − log(−1 − c − A0)) , (49)

and summing over each term in the power series for ω(V ).
This gives a transcendental condition for stability, instead of the
differential condition of Equation (11).

Note that the location of the walls plays a crucial role in the
equation for stability, Equation (49). Moving the walls from the
z0 where V (z0) = 1 could make the marginally stable velocity
profiles stable or unstable. Although we will only consider

Figure 5. Velocity profile solutions of Equation (50) for n = 5 (solid) and
n = 41 (dashed).

velocity profiles which are marginally stable with no magnetic
field below, our results do not change qualitatively when we
add a constant magnetic field to a velocity profile which is
stable or unstable when A0 = 0. We choose marginally stable
velocity profiles because they are more clearly destabilized by
magnetic fields than unstable velocity profiles, and they are more
destabilized than stable velocity profiles.

For the remainder of this paper, we will normalize the problem
by setting the walls at z = ±1. Under the assumptions that V has
only a single inflexion point and is marginally stable at A = 0,
we numerically find that the most unstable velocity profile at
k2 = 0 and N2 = 0 is given by

z = V +

(
1 +

n − 2

n

)n−1 (n − 2)V n

n
, (50)

for n odd, when n → ∞. In this limit, the velocity profile
approaches

V (z) =

⎧⎪⎨
⎪⎩

+ 1
2 , 1

2 < z < 1

z, − 1
2 < z < 1

2

− 1
2 , −1 < z < − 1

2 .

(51)

For every n odd and greater than 3, the velocity in Equation (50)
is marginally stable. We plot the velocity profile for n = 5 and
n = 41 in Figure 5. Note that max V ′ = 1, so the Richardson
criterion states that N2 > 1/4 yields stability.

For each n, we can plot c as a function of A0 at k2 = 0. Because
we assumed the magnetic field is parallel to the velocity, we
know there is stability when A0 > Vmax. Thus, Vmax sets a natural
scale for measuring the magnetic field strength. Figure 6 plots
c(A0/Vmax) for n = 5 and n = 41. It seems that as n → ∞, the
maximum c approaches ≈ 0.125 for A0 ≈ 0.65Vmax = 0.325.

Figure 7 shows an eigenfunction for A0 = 0.65Vmax ≈ 0.31,
n = 41. Note that it is very similar to the eigenfunction for the
Tatsuno & Dorland (2006) profiles in Section 6.3.

7.2. N2 �= 0

As mentioned in Section 7.1, the velocity profiles considered
here have max V ′ = 1, so the Richardson criterion states that
N2 > 1/4 implies stability. As n increases, the maximally
unstable N 2 increases, but never seems to reach 1/4. Figure 8
shows contours of c as a function of N 2 and A0/Vmax for k = 0
and n = 41. Although there is instability for N 2 very close to
1/4, we find stability at N2 = 0.25. It seems that the Richardson
criterion is not violated when adding a constant magnetic field
to this class of velocity profiles.
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Figure 6. Imaginary part of the eigenvalue c as a function of A0/Vmax for the
velocity profiles given by Equation (50) for n = 5 (solid) and n = 41 (dashed).

Figure 7. Eigenfunction for A = 0.6Vmax ≈ 0.31 and velocity given by
Equation (50) for n = 41. The thick solid line is the real part of the eigenfunction,
and the thick dashed line is the imaginary part of the eigenfunction. The vertical
dotted lines denote the points where |V | = |A|, at z = ±0.40.

Figure 9 shows a typical eigenfunction. As with the velocity
and magnetic field profiles considered in Section 6, there are
sharp gradients when |V | = |A|. Unlike the eigenfunctions
considered above, the real part of this eigenfunction is close to
zero at the origin.

The constant magnetic field case is very different from the
parabolic case because there is no violation of the Richardson
Criterion. We can understand result heuristically by noting
that a constant magnetic field cannot increase the free energy
of the perturbation, and thus cannot render a velocity profile
with N2 > max V ′2/4 unstable. Although there is no energy
principle in the presence of shear flow, one can show that
a sufficient condition for stability is that the energy of a
perturbation is positive, i.e., F(ξ ) ·ξ > 0, where F(ξ ) is the force
operator (Frieman & Rotenberg 1960). A constant magnetic
field contributes +|Q|2 to the energy of a perturbation, where
Q = ∇ × (ξ × B). Thus, a constant magnetic field always
increases the energy of a perturbation.

However, in Section 7.1, we describe an entire class of
velocity profiles which are (marginally) stable at A0 = 0, but
unstable for A0 > 0. Our interpretation of the destabilized is as
follows. An unstable perturbation must have negative energy
(Frieman & Rotenberg 1960), but this is only a necessary
condition for instability. Thus, perturbations to the velocity
profiles considered in Section 7.1 have negative energy, but are
still stable. For a sufficiently small magnetic field (A0 < Vmax),
the increase in energy of the perturbation from the magnetic
field can be overcome by a negative contribution from the shear
flow, so the total energy of the perturbation is negative and there
could be instability.

Because the Richardson criterion can be understood from
energetic arguments (see Section 4.2), one could assume that

Figure 8. Contours of c as a function of N 2 and A0/Vmax for k = 0 and the
velocity profile given by Equation (50) with n = 41. The white area is stable.

Figure 9. Eigenfunction for A = 0.6Vmax ≈ 0.31 and velocity given by
Equation (50) for n = 41, with N2 = 0.225, k = 0. The thick solid line is
the real part of the eigenfunction, and the thick dotted line is the imaginary part
of the eigenfunction. The vertical dot-dashed lines are at z ≈ ±0.31, where
|V | = |A|.

when N2 > V ′2/4 in the entire domain that the energy is
necessarily positive. Then the addition of a constant magnetic
field only further increases the energy of the perturbation,
preventing instability. This is a rather considerable assumption,
so this argument is best viewed as a heuristic.

8. APPLICATION TO ASTROPHYSICAL SYSTEMS

We have studied shear flow instability in stably stratified
media for flow profiles which would be stable in the absence
of a magnetic field and shown that Richardson’s criterion
for buoyancy stabilization can be violated, provided that the
magnetic field is inhomogeneous. In this section, we briefly
discuss astrophysical applications.

First, some general considerations. Our analysis holds when
the flow and field are perpendicular to gravity. We ignored
the effect of the magnetic field on the density stratification,
thereby precluding any instabilities associated with magnetic
buoyancy. Thus, our work applies primarily to situations in
which the field is not too strong and its scale height is not
much less than the pressure scale height. Thus, although we
gave an example in Section 6 of a system that can be unstable
at arbitrarily large Ri, instability at large Ri required in that
case that the flow be sub-Alfvénic in most of the domain and
that the magnetic scale length be much less than the velocity
shear length. In addition to the possible introduction of magnetic
buoyancy effects, a small magnetic scale height relative to the
velocity scale height requires that the magnetic Prandtl number
Pm—the ratio of viscous to magnetic diffusivity—be much
greater than unity, opposite to the situation in dense plasmas
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such as stellar interiors. Bearing these things in mind, there is
probably a practical upper limit on Ri at which magnetic fields
are destabilizing according to the mechanism discussed here.

It is useful to cast Ri in a form which allows its magnitude to
be estimated. We introduce a buoyancy parameter fbu in terms
of which N 2 can be written in terms of the local gravity and
pressure scale height as

N2 = fbu

g

Hρ

, (52)

where g and Hρ are the local gravity and density scale height,
respectively; in the Boussinesq approximation, fbu = 1. Spe-
cializing to the case that V is a rotational velocity, we introduce
the velocity scale height Hv by V

′ = V/Hv and a breakup
parameter fbr by

|V ′ |2 = fbr

rg

H 2
v

, (53)

where r is the distance from the rotation axis. Using
Equations (52) and (53), Ri can be written as

Ri = fbu

fbr

Hv

Hρ

Hv

r
. (54)

In stably stratified systems with uniform composition, fbu is
generally O(1), while a molecular weight gradient can render
fbu  1. Except for systems rotating near breakup, fbr 	 1.
Typically, Hv exceeds the geometric width of a shear layer
because V changes by only a fraction of itself. Thus, although
the second and third ratios on the rhs of Equation (54) are
below unity, they are generally not enough to offset fbu/fbr , and
Ri  1. One exception to these considerations occurs near the
boundaries of convection zones, where N 2 crosses through zero.
Thus, a thin layer on the stably stratified side of the boundary
could be magnetically destabilized even if Ri > 1/4.

The expectation that Ri  1 in the stably stratified portions
of stellar interiors is borne out by examination of stellar models.
First, we consider the Sun. Helioseismology has revealed a thin
shear layer, known as the tachocline, below the base of the solar
convection zone, which is thought to lie at 0.713 R� (see Gough
2007 for a review). If we take N 2 at 0.700 R� from Gough and
V

′
from Schatzman et al. (2000), we find that at the equator

Ri = 6400 and fbu ∼ 10−2. In other words, even very close to
the base of the convection zone Ri is quite large, and increases
with depth from the value given here.

We also evaluated Ri in an evolutionary sequence of models of
massive, rotating stars generously provided to us by G. Meynet.
The initial mass is 20 M� (which decreases due to mass loss)
and the initial surface rotation period is about 1.2 days. When
the star first reaches the main sequence, the core is convective
and the envelope is radiative. As hydrogen is exhausted in the
core, strong nonhomologous contraction spins up the core and
creates strong shear layers, which tends to reduce Ri. At the
same time, steep negative molecular weight gradients increase
fbu. We find that in the bulk of the interior, Ri is between 102 and
106. In the models, the boundaries of convection zones (which
form in association with shell burning) actually show spikes in
Ri. This is because Ω is set to a constant in convection zones, due
to efficient turbulent mixing. Thus, although there is probably
a thin layer in which Ri drops to small values, it cannot be
evaluated from these models.

These estimates suggest that destabilization of stellar rotation
profiles by weak magnetic fields is likely to occur only in

thin layers outside convection zones. However, the tendency
for such fields to destabilize a system may be important even
when physical processes neglected by our analysis are included.
Chief among them is thermal diffusion, which can suppress the
stabilizing effects of buoyancy (Zahn 1974) and leads to a larger
critical Ri to guarantee stabilization. Whether this carries over
our analysis is a topic for future study.

The instability could conceivably also operate on poloidal
flows. However, because such flows are generally slow com-
pared with rotation, their Ri tends to be even larger than Ri
for rotation. And because rotational shear tends to make the
magnetic field predominantly toroidal, magnetic effects on the
stability of poloidal flow are probably weak.

Similar considerations hold for accretion disks. The vertical
shear in a Keplerian disk of thickness H is smaller than the
radial shear by a factor of H/r . If the radial inflow velocity is
a function of height, its shear could be large, but the magnetic
field is expected to be predominantly toroidal. Therefore, this
instability is probably not critically important for either rotation
or radial flow in disks.

9. CONCLUSION

Turbulence is a key ingredient in the transport of chemical
species, entropy, angular momentum, and magnetic flux in
astrophysical settings. Shear flows, which are driven almost
ubiquitously in nature, can become turbulent through instability.

In this paper, we have considered ideal instabilities of magne-
tized shear flows in stably stratified systems. In the absence of
magnetic fields, the Richardson criterion provides a necessary
condition for instability based on comparing the kinetic energy
released by vertical interchange of fluid elements to the potential
energy required to displace them. The Richardson criterion is
often assumed to set the ideal stability boundary for shear flow
instabilities in stratified media such as stars and accretion disks.
The main result of this paper is that the Richardson criterion
is no longer valid when inhomogeneous magnetic fields are in-
cluded: because such fields carry free energy, buoyancy forces
must be stronger to stabilize the system. We have provided an
example by adding density stratification to the fields described
by Tatsuno & Dorland (2006). These fields can be viewed as a
local approximation of any shear flow in the presence of a mag-
netic extremum. The system has the interesting property that
the flow is neutrally stable in the absence of the magnetic field,
but unstable in its presence. Solving the eigenvalue problem in
Equation (11), we find unstable modes for arbitrarily large N 2,
provided that the magnetic field is sufficiently strong. Even for
magnetic fields yielding Alfvén velocities comparable to flow
velocities, we find violation of the Richardson criterion. Thus,
when considering the ideal stability of a plasma shear flow in a
stratified medium, it is not sufficient to consider the Richardson
criterion.

We were unable to find an example in which a constant
magnetic field leads to violation of the Richardson criterion. We
extended and analyzed a class of velocity profiles considered by
Kent (1968), which were shown to be destabilized by a constant
magnetic field. Although we were able to destabilize the flows
when N2 = 0, and the fastest growing modes have moderately
strong magnetic fields, when N2 > V ′2/4, we always found
stability. We provided two heuristics for understanding the
destabilization due to magnetic fields. An inhomogeneous
magnetic field provides a free energy source which can be
tapped by an instability. Thus, while a homogeneous magnetic
field can be destabilizing because vorticity is no longer frozen
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into the flow, allowing new unstable plasma motions, only an
inhomogeneous field can provide the source of energy needed
to violate Richardson’s criterion.

We briefly applied our results to the solar tachocline and to
high mass, rapidly rotating stars. In the bulk of the tachocline,
Ri is very large because the Sun rotates slowly. Very near the
boundary of the convection zone, Ri drops because N 2 is passing
through zero. A similar situation holds, for different reason, in
high mass stars. Although these stars rotate rapidly, the regions
of strong shear coincide with regions of strong, stabilizing,
molecular weight gradient. This keeps Ri large, except near
convection zone boundaries. Thus, in stars, the destabilization
of stratified shear flow by magnetic fields is most likely to occur
in thin regions on the stable side of convection zone boundaries.
If the weakening of buoyancy by thermal diffusion destabilizes
magnetized flow in the same way as unmagnetized flow, the
unstable region could be much larger, however.

Our two-dimensional slab model is not a realistic geome-
try for many applications. The introduction of additional terms,
such as curvature terms from toroidal geometry or the cen-
trifugal force for rotation, probably changes our results quan-
titatively, but not qualitatively. The Boussinesq approximation
could also be relaxed to allow more realistic density profiles
and other physics. Inclusion of diffusive effects would allow
us to consider non-ideal instabilities, including the secular
shear instability. For many applications, the nonlinear phase
and saturation of these instabilities is also important for de-
termining effects such as angular momentum transport. These
considerations should be investigated further to better under-
stand the nature of magneto-shear instabilities in a stratified
medium.
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APPENDIX

INSTABILITY OF V = z, A = (1 − α)z2 + α WHEN α < 0.5

We will prove that the velocity and magnetic field profiles
considered in Section 6, V = z, A = (1−α)z2 +α, are unstable
when α < 0.5. In Section 4.3, we described the following
sufficient condition for instability at k2 = 0 by Chen & Morrison
(1991; Equation (24)): If

∫ 1

−1

1

(V − iε)2 − A2
> 0 (A1)

as ε → 0, then there is instability. We can factor the denominator
to get

1

2

∫ +1

−1

dz

A(V − iε − A)
− 1

2

∫ +1

−1

dz

A(V − iε + A)
. (A2)

Let us examine how these two integrals are related. Define
u = −z. Then

− 1

2

∫ +1

−1

dz

A(z)(V (z) − iε + A(z))

= 1

2

∫ −1

+1

du

A(z)(V (z) − iε + A(z))

= −1

2

∫ +1

−1

du

A(u)(−V (u) − iε + A(u))

= 1

2

∫ +1

−1

du

A(u)(V (u) + iε − A(u))
, (A3)

which has the same real part as the first integral, but opposite
imaginary part. Thus, we need only check that

�
∫ +1

−1

dz

A(V − iε − A)
> 0 (A4)

as ε → 0 to prove instability. Integrals of this form can be
evaluated in a closed form, but must first be factored. To simplify
the algebra, we reduce the degree of the polynomial in the
denominator through partial fractions.

�
∫ +1

−1

dz

A(V − iε − A)

= �
∫ +1

−1

dz

A(V − iε)
+ �

∫ +1

−1

dz

(V − iε)(V − iε − A)
. (A5)

The first integral gives no contribution because multiplying by
V + iε in the numerator, and denominator shows that the real
part is odd and integrates to zero. Thus, we need only evaluate
the second integral.

We can integrate the remaining part by brute force, i.e., using
Mathematica. Assuming ε > 0, Mathematica gives∫

dz

(V − iε)(V − iε − A)

= − 1

4(α − ε2 + αε2)

[
−4i arctan

(
ε

z

)
− log

(
ε2 + (−1 + z)2z2 − 2α(−1 + z)2z(1 + z) + α2(−1 + z2)2)

+
4(1 − 2i(1 − α)ε)√

−1 − 4α2 + 4iε − 4iα(i + ε)

× arctan

(
−1 + 2(1 − α)z√

−1 − 4α2 + 4iε − 4iα(i + ε)

)

+ 2i arctan

(
(−1 + z)(z − αz − α)

ε

)
+ 2 log

(
ε2 + z2

)]
. (A6)

Note that the prefactor has the opposite sign as α. The term on
the first line is imaginary, so we do not need to consider it. In the
logarithm on the second line, the third and fourth terms which
are 0 at z = ±1. On the last line, the first term is imaginary and
the second term is even, so neither contribute to the integral.
Thus, if

− 1

4(α − ε2 + αε2)

[
log

(
ε2 + 4

ε2

)

+ � 4(1 − 2i(1 − α)ε)√
−1 − 4α2 + 4iε − 4iα(i + ε)

× arctan

(
−1 + 2(1 − α)√

−1 − 4α2 + 4iε − 4iα(i + ε)

)
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− � 4(1 − 2i(1 − α)ε)√
−1 − 4α2 + 4iε − 4iα(i + ε)

× arctan

(
−1 − 2(1 − α)√

−1 − 4α2 + 4iε − 4iα(i + ε)

)]
> 0 (A7)

for a particular α as ε → 0, then the profiles for that α are
unstable. The ε for which the rhs of Equation (A7) equals
zero is the growth rate of the instability. Thus, this relation
gives a transcendental equation for the growth rate, which is
significantly easier to solve than the differential eigenvalue
problem given in Section 3.

As ε → 0, the logarithm term diverges and is positive. How-
ever, when z = +1, the arctan term also diverges, approaching
−i∞, meaning that the entire term gives a negative divergent
contribution. We need to see which diverges faster. The argu-
ment of the z = +1 arctan term is

1 − 2α√
−1 − 4α2 + 4iε − 4iα(i + ε)

= −i
1 − 2α√

4α2 − 4α + 1 − 4iε(1 − α)

= −i

(
1 − 4iε(1 − α)

4α2 − 4α + 1

)−1/2

≈ −i

(
1 +

1

2

4iε(1 − α)

(1 − 2α)2

)
. (A8)

In general, arctan(z) is given by

arctan(z) = i 1
2 (log(1 − iz) − log(1 + iz)) . (A9)

The divergent part for us is the first term, so

arctan

(
−1 − 2(1 − α)√

−1 − 4α2 + 4iε − 4iα(i + ε)

)

≈ i
1

2
log

(
−2iε(1 − α)

(1 − 2α)2

)
. (A10)

If we neglect the ε terms which are not in the divergence, we
find that the coefficient of the log(ε) term is −2/(1−2α). Thus,
only considering the terms in Equation (A7) which are divergent
as ε → 0, and taking ε = 0 except for in the divergence, we are
left with

− 1

4α

(
2 log(ε) − 2

1 − 2α
log(ε)

)
. (A11)

When α < 0, we have that −1/4α > 0, and the first log(ε)
term dominates, so the whole quantity is positive. Thus, we have

proven that there is instability for α < 0. When 0.5 > α > 0, we
have −1/4α < 0, but the second logarithm term dominates and
is negative, again yielding instability. However, when α > 0.5,
both divergent terms become positive, but −1/4α < 0, so the
quantity is negative as ε → 0, and the profiles are stable. In
order to show instability at α = 0, we would need to retain
more terms in our perturbative expansion in ε.

REFERENCES

Chandrasekhar, S. 1961, Hydrodynamic and Hydromagnetic Stability (Oxford:
Clarendon)

Chen, X. L., & Morrison, P. J. 1991, Phys. Fluids B, 3, 863
Dikpati, M., Gilman, P. A., Cally, P. S., & Miesch, M. S. 2009, ApJ, 692,

1421
Drazin, P. G., & Reid, W. H. 1981, Hydrodynamic Stability (London: Cambridge

Univ. Press)
Frieman, E. A., & Rotenberg, M. 1960, Rev. Mod. Phys., 32, 898
Furth, H. P., Killeen, J., & Rosenbluth, M. N. 1963, Phys. Fluids, 6, 459
Gamelin, T. W. 2001, Complex Analysis (Berlin: Springer)
Gilman, P. A., Dikpati, M., & Miesch, M. S. 2007, ApJS, 170, 203
Gilman, P. A., & Fox, P. A. 1997, ApJ, 484, 439
Gough, D. 2007, in The Solar Tachocline, ed. D. W. Hughes, R. Rosner, & N.

O. Weiss (Cambridge: Cambridge Univ. Press), 3
Howard, L. N. 1961, J. Fluid Mech., 10, 509
Howes, G. G., Cowley, S. C., & McWilliams, J. C. 2001, ApJ, 560, 617
Hughes, D. W., & Tobias, S. M. 2001, Proc. R. Soc. Lond. A, 457,

1365
Kent, A. 1968, J. Plasma Phys., 2, 543
Keppens, R., Tóth, G., Westermann, R. H. J., & Goedbloed, J. P. 1999, J. Plasma

Phys., 61, 1
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