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ABSTRACT
We present a semi-analytical approach for modelling circumstellar emission from rotating
hot stars with a strong dipole magnetic field tilted at an arbitrary angle to the rotation axis.
By assuming the rigid-field limit in which material driven (e.g. in a wind outflow) from the
star is forced to remain in strict rigid-body corotation, we are able to solve for the effective
centrifugal-plus-gravitational potential along each field line, and thereby identify the location
of potential minima where material is prone to accumulate. Applying basic scalings for the
surface mass flux of a radiatively driven stellar wind, we calculate the circumstellar density
distribution that obtains once ejected plasma settles into hydrostatic stratification along field
lines. The resulting accumulation surface resembles a rigidly rotating, warped disc, tilted such
that its average surface normal lies between the rotation and magnetic axes. Using a simple
model of the plasma emissivity, we calculate time-resolved synthetic line spectra for the disc.
Initial comparisons show an encouraging level of correspondence with the observed rotational
phase variations of Balmer-line emission profiles from magnetic Bp stars such as σ Ori E.

Key words: stars: chemically peculiar – stars: early-type – stars: emission-line, Be – stars:
magnetic fields – stars: mass-loss – stars: rotation.

1 I N T RO D U C T I O N

High-resolution images of the solar corona provide vivid evidence
of how the complex solar magnetic field can structure and confine
coronal plasma (e.g. Del Zanna & Mason 2003). In other cool, solar-
type stars, similar complex magnetic structuring of a hot corona is
inferred indirectly through rotational modulation of the underlying
chromospheric emission network, and by year-to-decade time-scale
modulations thought to be analogues of the solar magnetic activity
cycle (e.g. Wilson 1978; Baliunas et al. 1995). By contrast, in a
subset of hotter, early-type (O, B and A) stars, spectropolarimetric
measurements provide quite direct evidence for relatively strong,
stable, large-scale magnetic fields, of the order of 1–10 kG, and
generally characterized as a dipole with some arbitrary tilt relative
to the rotation axis. Instead of a hot corona, such stars often exhibit
hydrogen Balmer emission associated with relatively cool material
at temperatures of ca. 20 000 K, comparable to the stellar effective
temperature. The present paper develops a ‘rigidly rotating magne-
tosphere’ (RRM) model for this emission, based on the notion that
material in the star’s radiatively driven stellar wind is channelled and
confined into corotating, circumstellar clouds by a strong, rigidly
rotating dipole field.

�E-mail: rhdt@bartol.udel.edu

Following the pioneering detection of strong fields in the chemi-
cally peculiar Ap stars (Babcock 1958), observations in the mid and
late 1970s revealed similar magnetic fields in both the late B-type
helium-weak stars (e.g. a Cen; Wolff & Morrison 1974), and the
earlier (types B0–B2) helium-strong stars (e.g. σ Ori E; Landstreet
& Borra 1978). More recently, more moderate magnetic fields have
been detected in Be emission-line stars (e.g. β Cep; Henrichs et al.
2000), slowly-pulsating B stars (e.g. ζ Cas; Neiner et al. 2003) and
O-type stars (e.g. θ1 Ori C; Donati et al. 2002).

Many of the Bp stars1 exhibit both spectroscopic and photo-
metric variability (see, for example, Pedersen & Thomsen 1977;
Pedersen 1979), strongly correlated with changes in circular po-
larization arising from their magnetic fields. These variations have
been interpreted in terms of the same ‘oblique rotator’ conceptual
framework that is applied to the Ap stars: atmospheric stabilization
via a magnetic field allows elemental diffusion to generate surface
abundance anomalies, whose axis of symmetry is parallel to the
magnetic axis, and therefore inclined to the rotation axis (Michaud,
Charland & Megessier 1981).

Often, the variability seen in Bp stars manifests itself in
circumstellar as well as photospheric diagnostics. Perhaps the

1 By which we refer to both the helium-weak and the helium-strong,
chemically-peculiar B-type stars.
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best-studied example is the B2p helium-strong star σ Ori E, which
shows Hα shell-like emission varying on the same 1.19-d rotation
period as photospheric absorption profiles and photometric indices
(see Groote & Hunger 1982, and references therein). From studies
of this star, and from investigations of other Bp stars that exhibit
similar emission (e.g. Shore & Brown 1990; Shore et al. 1990), a
common observational picture has emerged of circumstellar plasma
confined into tori or clouds, and forced into corotation, by a strong
magnetic field (Shore 1993).

In the case of σ Ori E, the material responsible for both the vari-
able Balmer emission and the eclipse-like behaviour seen in photo-
metric light curves (e.g. Hesser, Walborn & Ugarte 1976) appears to
be concentrated at the intersection between the rotational and mag-
netic equators (Groote & Hunger 1982; Bolton et al. 1987; Short
& Bolton 1994). An obvious candidate for imposing such structure
is the centrifugal acceleration arising from magnetically enforced
corotation; not only can this force lead to the required breaking of
symmetry about the magnetic axis, it can also furnish the outward lift
necessary for confining plasma toward the tops of magnetic loops.

This overall scenario is somewhat related to the magnetically con-
fined wind shock (MCWS) model proposed by Babel & Montmerle
(1997a,b) to explain the X-ray emission from the A0p star IQ Aur,
and the O7pe star θ1 Ori C. However, their model focuses on the
wind collision shocks that can produce hot, X-ray emitting gas at
the top of closed loops, and does not follow the fate of the radia-
tively cooled, post-shock material. Magnetohydrodynamics (MHD)
simulations by ud-Doula & Owocki (2002) and ud-Doula (2003) in-
dicate that, without any rotational support, this material simply falls
back along the field line to the loop footpoint. None the less, recent
MHD simulations of the MCWS scenario applied to θ1 Ori C have
been quite successful in reproducing its observed X-ray properties
(Gagné et al., 2005).

Unfortunately, a similar MHD simulation test of the magnetocen-
trifugal confinement scenario is much more difficult to carry out.
The strong magnetic fields characteristic of Bp stars, coupled with
the relatively low densities associated with their lower mass-loss
rates, imply a very high Alfvén speed. As a result, the time-step
required to ensure numerical stability, via the Courant–Friedrichs–
Lewy criterion, becomes quite short. This makes it very expensive
to calculate an MHD model spanning the time-scales (∼ days) of in-
terest, even for the relatively simple, two-dimensional axisymmetric
case of a dipole aligned with the rotation axis. For the more general,
tilted-dipole case that would apply to σ Ori E and other magnetic hot
stars, the three-dimensional nature of the system makes full MHD
simulation impractical.

However, in the strong-field limit, an alternative approach be-
comes viable. Under the assumption that the field is sufficiently
strong so as to remain completely rigid, the plasma moves along tra-
jectories that are prescribed a priori by field lines that corotate with
the star. This reduces the overall three-dimensional modelling of cir-
cumstellar material into a series of one-dimensional problems for
flow evolving under the influence of an effective gravito-centrifugal
potential.

Michel & Sturrock (1974) used such an approach to model the
magnetosphere of Jupiter, arguing that exospheric material tends
to accumulate in minima of the effective potential, occurring along
field lines that pass near and above the geostationary orbital radius.
Nakajima (1985) demonstrated how the same approach can be ap-
plied to the circumstellar material of oblique rotator stars such as σ

Ori E. More recently, Preuss et al. (2004) have presented an alter-
native formulation of the strong-field limit, using the condition of
force balance tangential to field lines to map out the complex sur-

faces on which circumstellar material can accumulate. As a result
of the interrelation between force and potential, the latter treatment
is entirely equivalent to the prior studies based on effective potential
minimization.

In the present paper, we use these studies as the foundation on
which we build the RRM model. In Section 2 we conduct a de-
tailed review of the effective-potential formulation for the strong-
field limit; this review serves both to establish a more rigorous foot-
ing for the analyses by Michel & Sturrock (1974) and Nakajima
(1985), and as a basis for the developments presented in subse-
quent sections. Using this formulation, we examine how the loci
of effective-potential minima define a likely accumulation surface
for circumstellar material (Section 3). We then extend our analysis
to a full RRM model for the circumstellar material, including its
hydrostatic stratification around the potential minima (Section 4),
its build-up by feeding from the star’s wind outflow (Section 5) and
its associated circumstellar line emission (Section 6). The main text
concludes (Section 7) with a comparison of our analyses with those
from previous studies, and with a brief summary of results (Sec-
tion 8). Finally, Appendix A provides supporting analyses of the
ultimate centrifugal breakout of accumulated material against the
limited confining effect of a finite-strength magnetic field.

2 S T RO N G - F I E L D L I M I T

2.1 Basic principles

In developing a model for the strong-field limit, we adopt two basic
assumptions. The first is the ‘frozen flux’ condition of ideal MHD,
in which plasma is constrained to move along magnetic field lines.
The second is that these field lines are both rigid and time-invariant
in the frame of reference that rotates at the same angular velocity �

as the star. Together, these assumptions lead to a picture of plasma
moving along trajectories that are fixed in the corotating frame, these
trajectories being none other than the guiding magnetic field lines.

To develop an understanding of how plasma is channelled along
the rigid field lines, let us first consider the case of a solitary parcel
launched ballistically along one such line. The total instantaneous
vector acceleration g tot experienced by this parcel, in the corotating
frame, may be broken down into separate components:

gtot = g + gmag − 2 Ω× ṙ − Ω×(Ω × r ). (1)

Here, g is the acceleration due to gravity, and gmag is that due to the
magnetic Lorentz force. The last two terms in this expression arise
from the inertial Coriolis and centrifugal forces due to the rotation of
the reference frame; Ω is the vector angular velocity describing this
rotation, with magnitude |Ω| = �, while r is the position vector of
the plasma parcel, with its time derivative ṙ giving the corresponding
velocity vector.

At any time, the location of the parcel on its respective field line
may be specified by the arc-length distance s from some arbitrary
fiducial point. The temporal evolution of this field line coordinate
is governed by the equation

d2s

dt2
≡ s̈ = gtot · êt, (2)

where

êt ≡ ṙ
|ṙ | = ṙ

ṡ
(3)

is the unit vector tangent to the parcel’s trajectory. By our assump-
tions above, this trajectory is always directed along the field line;
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therefore, this vector is given by

êt = B
B

, (4)

where B is the local magnetic field vector, of magnitude B ≡ |B|.
The equation of motion (2) indicates that the dynamics of the par-

cel are governed solely by the component of g tot directed along its
trajectory. The components of g tot perpendicular to êt have no effect
on these dynamics: while they supply the centripetal acceleration
necessary to change the direction of the parcel’s space velocity ṙ ,
they leave its speed ṡ unchanged. Because both the Coriolis accel-
eration and the Lorentz acceleration

gmag ≡ 1

4π
(∇ × B) × B (5)

are perpendicular to êt (see equations 3 and 4), it follows that the
equation of motion does not depend on the appearance of these terms
in the expression (1) for g tot; accordingly, we find that

s̈ = [g − Ω× (Ω × r )] · êt. (6)

The gravitational and centrifugal terms in the brackets arise from
conservative forces; therefore, they may be expressed in terms of
the gradient of an effective potential �, such that the equation of
motion becomes

s̈ = −(∇�) · êt. (7)

Recognizing the right-hand side as the directional derivative of �

along the field line, we have

s̈ = −d�

ds
. (8)

This result is very instructive: it tells us that although the plasma
parcel follows a three-dimensional curve r = r (s) through space,
its motion is governed by a potential function �(s) that arises from
sampling �(r) along this curve. Throughout, we term this single-
variable function the ‘field line potential’.

If the field line potential �(s) exhibits an extremum, so that

d�

ds
≡ �′ = 0 (9)

at some point, then the plasma parcel can remain at rest, with no
net forces acting upon it; the components of the gravitational and
centrifugal forces tangential to the field line are equal and opposite,
while those perpendicular to the field line are balanced by the mag-
netic tension. Whether the parcel can remain at such an equilibrium
point over significant time-scales (i.e. multiple rotation periods) de-
pends on the nature of the extremum. In the case of a local maximum,
where d2�/ds2 ≡ �′′ < 0, the equilibrium is unstable, and small
displacements away from the extremal point grow in a secular man-
ner. This is what ud-Doula & Owocki (2002) found in their MHD
simulations of wind outflow from a non-rotating star, in the case
of a moderately strong magnetic field (their η∗ = 10). Because the
effective potential in the absence of rotation is just the gravitational
potential, the tops of magnetic loops are local maxima of the field
line potential. Therefore, although plasma at loop tops is supported
against gravity by magnetic tension, it is unstable against small per-
turbations, and – as the MHD simulations show – it eventually slides
down one or the other side of the loop toward the stellar surface.

In the converse situation, where the extremum in the field line
potential is a minimum, with �′′ > 0, the equilibrium is stable: any
small displacement along the local magnetic field line produces a
restoring force directed back toward the equilibrium point. Such
minima represent ideal locations for circumstellar plasma to accu-
mulate. Because these potential minima can occur on more than a

single field line, the accumulation is not at an isolated point in space,
but rather is spread across one or more surfaces defined by the loci
at which both �′ = 0 and �′′ > 0. Material that collects on these
‘accumulation surfaces’ forms a magnetosphere that is at rest in the
corotating reference frame. When viewed from an inertial frame of
reference, this magnetosphere appears to rotate rigidly with the star;
hence, the name chosen for the RRM model.

As a brief aside, it is readily demonstrated that the foregoing
potential-based analysis is entirely equivalent to the force-based
formulation presented by Preuss et al. (2004). For instance, the con-
dition �′ = 0 for an equilibrium point (stable or unstable) may be
expressed in the form

[g − Ω× (Ω × r )] ·B = 0, (10)

which comes from combining equations (6)–(9) with equation (4).
This expression can be recognized as the exact same condition of
force equilibrium tangential to the local field line that Preuss et al.
(2004) impose in their equation (2).

We turn now to examining the effective potential �(r ), which
determines the potential �(s) along each field line. Within the Roche
limit, where the star is assumed to be so centrally condensed that it
may be treated as a point mass, this effective potential is given by

�(r ) = − G M∗
r

− 1

2
�2r 2 sin2 θ. (11)

Here, G is the gravitational constant, M ∗ is the stellar mass, and
r and θ are the radial and colatitude coordinates corresponding to
the position vector r, in the spherical-polar system aligned with the
rotation axis. Let us introduce the Kepler corotation radius2

rK =
(

G M∗
�2

)1/3

, (12)

at which the gravitational and centrifugal forces balance in the equa-
torial plane. Then, � may be written as

�(r ) = G M∗
rK

(
− 1

ξ
− 1

2
ξ 2 sin2 θ

)
, (13)

where ξ ≡ r/r K is the radial coordinate in units of the Kepler radius.
This latter form is convenient, because the minima of �(s), along
each field line, occur in the same location as the corresponding
minima defined by the dimensionless potential

�(r ) ≡ rK

G M∗
�(r ) = − 1

ξ
− 1

2
ξ 2 sin2 θ. (14)

The advantage of working with this dimensionless potential is that it
is independent of the rotation rate �; as Preuss et al. (2004) demon-
strate, a similar conclusion can be reached in the force-based for-
mulation of the problem. Accordingly, for each magnetic field con-
figuration, we only need solve once for the accumulation surfaces
where plasma can remain at rest in stable equilibrium. This solution
can then be mapped on to a specific rotation rate by transforming
the radial coordinate from ξ back to r.

Looking at the form of the dimensionless potential �(r ) intro-
duced above, we can identify two regimes. When r is much smaller
than the Kepler radius r K, such that ξ � 1, this potential is spher-
ically symmetric about the origin, and increases outwards. Con-
versely, when the distance from the rotation axis greatly exceeds
the Kepler radius, such that ξ sin θ � 1, the potential is cylin-
drically symmetric about the same axis, and decreases outwards.

2 Applied to Earth, the Kepler radius is equivalent to the orbital radius of a
geostationary satellite.
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As we demonstrate in the following sections, it is in this second
regime that the field line potential �(s), and its dimensionless equiv-
alent �(s), exhibit the minima near which circumstellar plasma
accumulates.

2.2 Aligned dipole configuration

In the foregoing discussion, we argue that circumstellar plasma ac-
cumulates on the surfaces defined by minima of the field line po-
tential. We now consider the geometry of one such accumulation
surface in the simplest of all configurations, that of a centred dipole
magnetic field aligned with the star’s rotation axis. Defining a Carte-
sian coordinate system (x, y, z) with origin at the star’s centre and
rotation taken along the z-axis, Fig. 1 shows an x versus z contour
map of the dimensionless effective potential �(r ) (see equation 14)
in the y = 0 plane. Superimposed over the map are four curves, each
following the parametric equation for a dipole field line:

ξ = γ sin2 θ. (15)

Here, the parameter γ specifies the summit radius (in units of r K) of
the field line; in the present case of Fig. 1, the γ = 3

√
2/3,

√
2, 2 and

Figure 1. A contour map of the dimensionless effective potential over the
y = 0 plane. The white regions correspond to � > −0.6, black regions to �

< −3, and the intermediate grey-levels are spaced in increments � = 0.15.
Drawn over the map are four selected field lines for a magnetic dipole aligned
with the rotation axis; these lines have summit radii γ = 3

√
2/3 (solid),

√
2

(dashed), 2 (dotted) and 4 (dot-dashed), and are oriented at azimuthal angles
φ = 0◦ (right) and φ = 180◦ (left). Shown beneath is the dimensionless
potential along each of the φ = 0◦ lines, plotted as a function of θ ; note that
the scale of the ordinate is logarithmic.

4 lines are plotted. The significance of the first value is discussed
below. Beneath the contour map, we plot the dimensionless potential

�(θ ) = − 1

γ sin2 θ
− 1

2
γ 2 sin6 θ, (16)

this being �(r) sampled along the dipole trajectory (15), for each of
the four field lines. For simplicity, we chose the colatitude θ as the
independent variable in the above expression, rather than the usual
field line coordinate s. However, noting that the two are related via
the differential equation

ds

dθ
= rK γ sin θ

√
1 + 3 cos2 θ, (17)

it is clear that, everywhere away from the poles, s varies monotoni-
cally with θ .

Inspecting the �(θ ) data for the three outer field lines (γ =√
2, 2, 4) shown in Fig. 1, minima can be seen at the stellar equator

(θ = 90◦). Because the aligned dipole configuration is symmetric
about the z-axis, we can conclude that the accumulation surface
takes the form of an equatorial disc, with its normal pointing along
the rotation axis. However, because a potential minimum does not
occur along the innermost field line, it is evident that this disc does
not extend to the origin, but instead must terminate at some finite
radius. To determine this inner truncation radius, we observe that

� ′′ =
(

dθ

ds

)2
d2�

dθ2
+ dθ

ds

d2θ

ds2

d�

dθ

= 1

r 2
K

(
− 2

ξ 3
+ 3

)
(18)

for θ = 90◦, where in the second line we make use of the identity
ξ = γ within the equatorial plane (cf. equation 15). We recall that
� ′′ must be positive in order for an extremum (� ′ = 0) to constitute
part of an accumulation surface. Accordingly, the inner truncation
radius is given by

ξi = 3
√

2/3 ≈ 0.87 (19)

at which � ′′ changes from being positive (ξ > ξ i) to negative
(ξ < ξ i).

The reason for our choice of γ = 3
√

2/3 = ξi for the innermost
field line in Fig. 1 should now become apparent: it ensures that this
particular line exactly intersects the inner edge of the accumulation
disc at ξ = ξ i. Plasma at the summit of this line is therefore in neutral
equilibrium, whereby small displacements away from the equator
produce no net force (to first order in the displacement) along the
field line, either away from the equilibrium point or toward it. This
is evident in the lower panel of Fig. 1 from the flatness of this field
line’s dimensionless potential at θ = 90◦.

Throughout the region in the equatorial plane between the trun-
cation radius ξ = ξ i and the Kepler corotation radius3 ξ = 1, mag-
netic tension supports accumulated material against the net inward
pull caused by gravity exceeding the centrifugal force. Beyond this
region, when ξ > 1, the centrifugal force surpasses gravity, and
the effect of magnetic tension then becomes to hold material down
against the net outward pull.

Clearly, the interplay between gravitational and centrifugal forces
has a different significance in the RRM case than it does for a
Keplerian disc. In the latter, material at each radius orbits the star at
a velocity whereby both forces are in exact balance. Such complete
force balance is not required in an RRM, inasmuch as magnetic

3 Apparent in the figure as the twin saddle points at (x , z) = (±1, 0) r K.
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Figure 2. As with Fig. 1, except that a tilted-dipole field is assumed, at angles β = 30◦, 60◦ and 90◦ to the rotation axis.

tension can absorb any net resultant force perpendicular to field
lines (Preuss et al. 2004). Only the tangential components of the
forces are required to be in balance, so as to produce an equilibrium
that is stable against small displacements along field lines – a point
recognized in the original treatment by Michel & Sturrock (1974),
although these authors employed a more geometrical approach to
arrive at the same conclusion.

2.3 Tilted-dipole configuration

Up until now, we have dealt with the trivial case of a dipole field
aligned with the rotation axis. However, there is nothing that restricts
us to such simple systems. As Nakajima (1985) first demonstrated,
the rigid-field approach we have presented can be applied to ar-
bitrary magnetic configurations, so long as the effective potential
along each field line can be computed and minimized.

In the present section we now consider the oblique rotator config-
uration, where a dipole is inclined at an angle β to the rotation axis.
For such a geometry, equation (11) still describes the effective po-
tential in the corotating frame, but the field lines of the tilted dipole
now follow the parametric equation

ξ = γ sin2 θ̃ , (20)

where θ̃ is the colatitude coordinate in the frame of reference aligned
with the magnetic axis. To relate this magnetic reference frame back
to the rotational one, we adopt the convention that the former is
obtained from the latter by rotating by an angle β about the Cartesian

y-axis.4 With this convention, colatitudes in the two reference frames
are related to one another via

sin2 θ = sin2 θ̃ sin2 φ̃ + (sin β cos θ̃ + cos β sin θ̃ cos φ̃)2, (21)

where φ̃ denotes the azimuthal coordinate in the magnetic frame.
The latter expression may be used to eliminate the sin2θ term from

equation (14), allowing us to express the dimensionless effective
potential along each field line as

�(θ̃ ) = − 1

γ sin2 θ̃
− 1

2
γ 2 sin4 θ̃ [sin2 θ̃ sin2 φ̃.

+(sin β cos θ̃ + cos β sin θ̃ cos φ̃)2]. (22)

Here, we have also used equation (20) to eliminate ξ . It is straight-
forward to derive an expression for the derivative � ′ of this field
line potential. However, in contrast to the aligned dipole config-
uration, the equation � ′ = 0 for the extrema of this potential no
longer admits algebraic solutions. Nevertheless, in the x–z plane
that contains both the magnetic and rotation axes, we can still
illustrate these minima using the same graphical approach as in
Section 2.2.

Fig. 2 shows similar effective potential plots to Fig. 1, but for
dipole field configurations tilted at angles β = 30◦, 60◦ and 90◦ to
the rotation axis. Focusing initially on the first two cases, we note
that a single potential minimum occurs along the outer three field

4 We assume that β > 0 corresponds to a clockwise rotation, when looking
out from the origin along the positive y-axis.
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lines whenβ =30◦, and along the outer two forβ =60◦. In each case,
the minima are situated at approximately the same colatitude, which
falls somewhere between the magnetic and rotational equators: θ̃ ≈
80◦ for β = 30◦ and θ̃ ≈ 70◦ for β = 60◦. This bisection of the
equators arises because of competition between the two misaligned
symmetry axes, magnetic versus rotational.

Looking now at the β = 90◦ case, we can see that two minima –
albeit shallow ones – occur in the potential along the outermost field
line, at equal distances above (θ̃ ≈ 55◦) and below (θ̃ ≈ 125◦) the
magnetic equator. This shows that the accumulation surfaces of tilted
configurations can be significantly more complex than the simple
disc found for the aligned dipole. Indeed, as we demonstrate in the
following section, there is no guarantee even that the surfaces are
made from a single contiguous sheet. Nakajima (1985) overlooked
such situations, and it was not until the study by Preuss et al. (2004)
that this possibility became known.

To conclude this section, we draw attention to a limitation of
the graphical approach we have used to illustrate the accumulation
surfaces. Although these surfaces are inherently three-dimensional,
our approach is restricted to plotting the effective potential and mag-
netic field lines over a two-dimensional slice through the system.
This is not a problem for the aligned dipole shown in Fig. 1, because
rotational symmetry ensures that all slices containing the polar axis
are identical. However, this symmetry is absent from the tilted field
configurations plotted in Fig. 2, meaning that the figure cannot in-
dicate the nature of the accumulation surfaces outside the x–z plane
that contains the misaligned rotation and magnetic axes.

3 AC C U M U L AT I O N S U R FAC E S

To overcome these limitations of two-dimensional plots, let us now
use perspective images to show the full three-dimensional form of
the accumulation surfaces. For the same aligned and tilted-dipole
magnetic field configurations introduced above, Fig. 3 illustrates
these as surfaces illuminated by an artificial parallel light source
from the observation point. The vertical, single-headed arrows de-
note the rotation axis, while the double-headed arrows shown in
projection at various orientations represent the magnetic axis. For
each of the four values of the tilt angle β = {0◦, 30◦, 60◦, 90◦},
the accumulation surface is shown from three different observation
points, situated at the same inclination i = 60◦ to the rotation axis,
but having differing azimuthal angles φo = 0◦, 45◦ and 90◦. Al-
though the full surfaces formally extend to arbitrarily large radii,
for the illustration the outer edge is truncated by omitting regions
threaded by field lines with summit radii greater than γ = 12.

For the aligned field (β = 0◦) case, the accumulation surface
is a simple disc lying in the plane of the rotational and magnetic
equators, and so appears identical from all azimuths. The hole at
the centre reflects the lack of potential minima inside the inner
truncation radius ξ i (Section 2.2). For the β = 30◦ case, the surface
is titled, with a mean normal vector between the two symmetry axes,
in a direction consistent with the θ̃ ≈ 80◦ angle found in Section 2.3.
Although not obvious in Fig. 3, the surface is not strictly planar, but
has a slight warp.

For the greater tilt of the β = 60◦ configuration, this warping
becomes more apparent. While still shaped approximately like a
disc, the regions nearest the intersection with the plane formed by
the two axes are warped away from the rotation axis. Physically,
this arises because the centrifugal force vanishes along the rotation
axis. This force being crucial to forming the potential minima that
make up the accumulation surface, it follows that there is a ‘zone of

avoidance’ around the rotation axis, inside which the surface cannot
exist. An additional, remarkable feature of the β = 60◦ case is the
appearance of a pair of secondary accumulation surfaces, situated
in each hemisphere between the magnetic and rotation axes. These
secondary surfaces, which we term ‘leaves’, are a consequence of
the appearance of an additional minimum in the effective potential
along a particular bundle of magnetic field lines.

From the analysis in Section 2.3, it might appear that such
two-minima scenarios are restricted to the perpendicular (β =
90◦) configuration. However, the appearance of the leaves in this
intermediate-tilt case proves otherwise. In fact, as Preuss et al.
(2004) have demonstrated, leaves – or ‘stable chimney regions’ in
their parlance, the chimney being the rotation-axis aligned surface
defined by �′ = 0, that is composed of both stable and unstable equi-
librium loci – occur in all configurations other than the aligned field
one, but are situated at larger and larger radii as β decreases toward
zero. In the present case with β = 60◦, the leaves are threaded by
magnetic field lines for which γ � 10; this explains why the middle
panel of Fig. 2, which plots field lines up to γ = 4, does not exhibit
the second potential minimum associated with the appearance of a
leaf.

Turning finally to the perpendicular field (β = 90◦) configuration,
we see the ultimate product of the disc warping and leaf formation.
The accumulation surface now takes the form of a partial disc lying
in the magnetic equator, intersected by an opposing pair of trun-
cated cones aligned with the rotation axis. These cones have an
opening half-angle of tan−1 2−1/2 ≈ 35.◦3 at asymptotically large
radii, a value that can be derived by setting the first derivative of
�(θ̃ ) (cf. equation 22) to zero, and then solving for θ̃ as γ → ∞
(see also Preuss et al. 2004). To understand the unusual geome-
try of the perpendicular configuration, note that if β were to de-
part slightly from 90◦, then the half of each cone that lies between
the two axes would split off from the main accumulation surface,
and take the form of a leaf. Therefore, we can recognize the cones
as being formed from a merger between the warped disc and the
leaves.

The geometrical complexity of accumulation surfaces, even in the
relatively simple case of a tilted dipole, was unknown to Nakajima
(1985). He had to rely on simple particle-based maps for visualiza-
tion (see his figs 2 and 3), and was unaware of the possibility of
leaves or of the truncated-cone configuration occurring at β = 90◦.
Only in recent years have computers become sufficiently powerful
that the visualization of the surfaces is a relatively straightforward
procedure. However, there still remains the question of how closely
a physical system would resemble an accumulation surface. The
answer depends on the nature and distribution of the matter that
populates the surfaces and renders them visible or detectable. While
the accumulation surfaces presented in this section, and by Preuss
et al. (2004), furnish a geometrical picture of where circumstellar
material can accumulate, they provide no indication of how much
material does accumulate, nor of its physical conditions – density,
temperature, opacity, emissivity, etc. We address these issues in the
following sections, where we derive the distribution of circumstellar
gas, and then use this to calculate the line emission from an RRM
model.

4 H Y D RO S TAT I C S T R AT I F I C AT I O N

The various processes that could fill effective potential wells with
material may generally be quite dynamic and variable, but, over
time, it seems likely that most such material should eventually set-
tle into a nearly steady, static state. Along any given field line that
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Figure 3. Accumulation surfaces for aligned (β = 0◦; left-hand column) and tilted (β = 30◦; right-hand column) dipole magnetic fields. The surfaces are
viewed at an inclination i = 60◦ to the rotation axis, and from azimuths (top to bottom) φo = 0◦, 45◦ and 90◦. In each plot, the rotation and magnetic axes
are shown as single- and double-headed arrows, respectively. To indicate the scale of the plots, a bar with a length of one Kepler radius (r K) is shown in the
bottom right-hand corner of each. The following part of the figure is the same, except that the tilted configurations for β = 60◦ (left-hand column) and β = 90◦
(right-hand column) are shown.

intersects with one or more of the potential minima that define ac-
cumulation surfaces, the relative distribution of material density ρ

is then set by the requirement of hydrostatic stratification within the
field line potential

dp

ds
= −ρ

d�

ds
, (23)

where the gas pressure is given by the ideal gas law,

p = ρkT

µ
. (24)

Taking for simplicity the temperature T and mean molecular weight
µ to be constant, we can solve for the density distribution along the
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Figure 3 – continued

field line as

ρ(s) = ρm exp

[
−µ

�(s) − �m

kT

]
. (25)

Here, ρm ≡ ρ (s m) and �m ≡ � (s m), where sm is the field line co-
ordinate at the potential minimum.5 In our application to magnetic
hot stars, we assume radiative equilibrium should set the circum-
stellar temperature to be near the stellar effective temperature. This

5 Here and throughout we use the subscript ‘m’ to denote quantities evaluated
on the accumulation surface s = s m.

implies a thermal energy per unit mass kT/µ that is much smaller
than the variation in the corresponding potential energy �, which
by equation (13) is typically comparable or greater than the gravi-
tational binding energy at the Kepler radius. By equation (25), we
thus expect that most of the material should be confined to a relative
narrow layer near the potential minimum at s = s m.

A Taylor series expansion of the potential about this minimum
gives

�(s) = �m + (s − sm)2

2
�′′

m + . . . , (26)
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where we have used the fact that, by definition,�′
m =0. Accordingly,

in the neighbourhood of the minimum, the density distribution (25)
may be well approximated by

ρ(s) ≈ ρm exp

[−(s − sm)2

h2
m

]
, (27)

where the RRM scaleheight is

hm =
√

2kT /µ

�′′
m

=
√

2kT /µ

G M∗/rK

√
1

� ′′
m

. (28)

In the latter equality, the first square root is of the ratio between the
thermal energy and the gravitational binding energy at the Kepler
radius, while the second root gives the curvature length of the ef-
fective potential. Overall, we thus see that the effect of a finite gas
pressure is to support material in a nearly Gaussian stratification on
either side of an accumulation surface.

A similar Gaussian stratification is found in models for Keplerian
discs. However, the scaleheight in that case grows as the three-halves
power of the distance from disc centre (e.g. Hummel & Hanuschik
1997), leading to a disc that flares outward with increasing radius.
In contrast, the RRM scaleheight approaches a constant value far
from the origin. For example, in the case of the aligned dipole con-
figuration, equation (18) gives � ′′

m = 3/r 2
K when ξ 3 � 1, yielding

the asymptotic scaleheight

hm → rK

√
2kT /µ

3G M∗/rK
(r � rK) (29)

(compare with equation 5 of Nakajima 1985). Because the ratio
of thermal energy to gravitational binding energy is typically very
small, we thus see that the disc is indeed geometrically thin, with a
scaleheight hm that is much smaller than the characteristic Kepler
radius r K.

A convenient way to characterize the properties of such a thin
accumulation layer is in terms of its surface density. For a field
line with a projection cosine µm to the surface normal, the asso-
ciated local surface density σ m can be obtained by integration of
equation (27) over the Gaussian hydrostatic stratification

σm ≈ √
πρmµmhm. (30)

For the application here to magnetic hot stars, we next develop a
specific model for the global distribution of this surface density as
being proportional to the rate of material build-up by the loading
from the star’s radiatively driven wind.

5 M A S S L OA D I N G O F AC C U M U L AT I O N
S U R FAC E S

5.1 Accumulation rate for surface density

The high luminosity of hot stars is understood to give rise to a
radiatively driven stellar wind. In a magnetic hot star, this wind
provides a key mechanism to load mass into the effective gravito-
centrifugal potential wells around the accumulation surfaces.

For a radiatively driven wind in the presence of a magnetic field,
Owocki & ud-Doula (2004) derive an expression for the mass flux
density at the stellar surface, in terms of the spherical mass-loss rate
Ṁ predicted by the standard CAK wind model (Castor, Abbott &
Klein 1975). For a dipole flux-tube bundle intersecting the stellar
surface r = R∗ with a projection cosine µ∗, and having a cross-
sectional area dA∗, the rate of mass increase is

ṁ = 2µ∗ Ṁ

4πR2∗
dA∗, (31)

where the factor of 2 accounts for the mass injection from two
distinct footpoints.

In a highly supersonic stellar wind, the collision of material from
opposite footpoints leads to strong shocks that heat the plasma ini-
tially to temperatures of millions of degrees. This dogma, advanced
by Babel & Montmerle (1997a,b) in their MCWS paradigm, has
been amply confirmed both by MHD modelling (e.g. ud-Doula &
Owocki 2002) and by analysis of the observed X-ray emission from
the superheated post-shock plasma (Gagné et al. 2005). Eventually,
the plasma cools radiatively back to temperatures near the stellar
effective temperature of a few times 104 K. As discussed already in
Section 4, at such temperatures material trapped within the effective
potential well will quickly settle into a relatively narrow hydrostatic
stratification centred on the potential minima.

For the moment, let us consider the relatively simple, common
case that there is a single minimum at field line coordinate sm, at
which point the flux tube has area dAm and intersection cosine µm

with the accumulation surface normal. Then the associated rate of
increase in surface density σ m can be written

σ̇m = ṁµm/dAm = µm µ∗
Ṁ

2πR2∗

dA∗
dAm

. (32)

From the conservation of magnetic flux, ∇·B = 0, we have

dA∗ B∗ = dAm Bm, (33)

which when applied to equation (32) gives

σ̇m = µ∗ µm
Ṁ

2πR2∗

Bm

B∗
. (34)

For a dipole field, this declines with radius r as σ̇m ∝ B ∝ r−3.

5.2 Time evolution of the volume density

The above merely gives the rate at which surface density increases in
the accumulation surface. In the idealized limit that the field is arbi-
trarily strong, the actual surface density could thus increase without
bound. In reality, for any large but finite field, the finite magnetic
tension could only contain a finite mass of material. As analysed in
Appendix A, above some breakout density the net centrifugal and
gravitational force should overwhelm the tension, leading to cen-
trifugal ejection that effectively empties the accumulation surface.

This view suggests a simple model in which the local surface
density builds linearly with the time t since the last evacuation,
σm = σ̇mt . Applying such a model to equations (30) and (34), we
can eliminate the normalizing term ρm from the equation (25) for
the volume density, to find the time evolution of this density as

ρ(s, t) ≈ Ṁt µ∗
2π3/2 R2∗ hm

Bm

B∗
exp

[
−µ

�(s) − �m

kT

]
. (35)

For field lines that exhibit two potential minima, we divide the latter
expression by the factor

f = 1 + h†
m

hm

Bm

B†
m

exp

(
µ

�m − �†
m

kT

)
, (36)

where h†
m, B†

m and �†
m are the scaleheight, field strength and poten-

tial, respectively, evaluated at the secondary minimum with field line
coordinate s†m. This factor accounts for the partitioning of plasma
between the two minima, assuming a free exchange of material leads
to a common hydrostatic stratification.

We emphasize that equation (35) applies only to field lines that
intersect one or more accumulation surfaces, with one or more po-
tential minima. For all other field lines we set the density to zero,
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reflecting the notion that there can be no stable accumulation of
material over time. Moreover, even for field lines intersecting a sur-
face, we only apply equation (35) up to the bracketing maxima in
the potential. Beyond these maxima, the decreasing potential sug-
gests an exponentially growing density, contrary to the true physical
picture of no accumulation. We resolve this difficulty by setting the
density ρ to zero in the regions beyond the potential maxima.6 This
approach creates discontinuities in the densities at the maxima them-
selves, but in most cases ones so small that they are unlikely to be
of much significance for the overall model.

6 C I R C U M S T E L L A R E M I S S I O N

Let us now apply the expression (35) for the density distribution
toward calculating the circumstellar line emission from a tilted-
dipole RRM configuration. As a typical example case, we adopt a
tilt angle β = 60◦, and set the stellar angular velocity � to 50 per
cent of the critical rate

�c ≡
√

8G M∗
27R3∗

, (37)

at which the surface centrifugal force at the equator would balance
gravity.7 This rotation rate corresponds to a dimensionless stellar
radius ξ ∗ ≡ R∗/r K = 0.42. Our choice of parameters is loosely
guided by the rotation rate and magnetic tilt inferred from the Groote
& Hunger (1997) model for the surface of σ Ori E. However, we
make no attempt at fine tuning, because we are more concerned
here with demonstrating the capabilities of the RRM model than
with obtaining an accurate picture of this particular helium-strong
star.

To specify the temperature T and mean molecular weight µ in
the model, we introduce the dimensionless quantity

ε∗ ≡ kT R∗
µG M∗

, (38)

which characterizes the ratio of thermal to gravitational binding
energy at the stellar surface. In the photospheres of early-type stars,
this ratio is of the order of ∼10−3. Following again the scenario
that the circumstellar environment remains at a temperature close to
photospheric (see Section 4), we therefore set ε∗ = 10−3 throughout.

We now make the assumption that the plasma volume emissivity
j λ, at a wavelength λ, may be characterized by the relation

jλ = j0ρ
2 δ(λ − λ0). (39)

Here, j0 and λ0 are constants, and δ(. . .) is the Dirac delta function.
This expression is intended to mirror the process of monochromatic
line emission at a rest-frame wavelengthλ0, arising from the density-
squared radiative recombination of ionized hydrogen. Integrating
the emissivity along a given ray passing through the magnetosphere,
the observed surface intensity of the emission is given by

Iλ = j0

∫ ∞

0

ρ2(zo) δ{λ − λ0[1 + vp(zo)/c]} dzo, (40)

6 Unless, of course, a region beyond a potential maximum belongs to a
neighbouring secondary minimum at s = s†m – in which case, the expression
for the density remains valid.
7 Note that, while this expression for �c is appropriate to a centrifugally
distorted star, we have assumed elsewhere, for simplicity, that the star re-
mains spherical. For the particular choice � = 0.5 �c, the stellar oblateness
remains small, with the equatorial surface radius being barely 4 per cent
larger than that at the poles.

where zo is the distance along the ray from the observer, vp is the
projection of the local plasma velocity on to the ray, and c is the
speed of light. For rays intersecting the star, this integral must be
truncated at the stellar surface, to account for the occultation of
radiation incident from the star’s far side. Note that this simple ex-
pression does not include the emission of radiation by the star itself;
therefore, it should be taken to represent the notional circumstellar
component of the net radiation from the system, with the under-
standing that the corresponding photospheric component has been
subtracted away. Of course, such an interpretation is in itself an
approximation, because our emission model does not account for
episodes when circumstellar plasma transits the disc and absorbs
stellar radiation over the range −vesin i < vp < vesin i . However, at
the level of the present investigation, this approximation is entirely
sufficient.

Because the magnetospheric plasma corotates rigidly with the
star, vp may be expressed as

vp(zo) =  ve sin i, (41)

where the impact parameter  is the perpendicular distance, in units
of R∗, between the ray and the rotation axis, and ve is the equatorial
rotation velocity of the star. These quantities, and therefore vp too,
are independent of zo; hence, the intensity may be written in the
form

Iλ = j0 δ[λ − λ0(1 +  ve sin i/c)]

∫ ∞

0

ρ2(zo) dzo. (42)

From this latter expression, it can be seen that all plasma having the
same  – that is, situated on a plane parallel to the rotation axis –
will radiate monochromatically at the same wavelength.

Applying equation (42) to the known density distribution of the
β = 60◦ RRM configuration, Fig. 4 shows maps of the wavelength-
integrated emission intensity

I ≡
∫ ∞

0

Iλ dλ, (43)

extending out to 5 R∗ in directions parallel and perpendicular to the
projected rotation axis. The observer is situated at the same inclina-
tion i = 60◦ that we adopt in Section 3, and at eight differing values
of the azimuth φo, separated by uniform increments of 45◦. Beneath
each map we show the corresponding spectrum, in which the spa-
tially integrated emission is plotted as a function of the projected
velocity vp. Because we are interested more in the distribution of
emission than its absolute value, Fig. 4 adopts an arbitrary (although
consistent) normalization for the intensities in both the maps and
the spectra.

In Section 3, we demonstrate that the accumulation surface for
a β = 60◦ tilted dipole takes the form of a warped disc. The emis-
sion maps in Fig. 4 reveal that the distribution of material across
this disc is decidedly non-uniform. Specifically, the distribution is
dominated by two clouds, located near the inner edge of the disc at
the intersection between the rotational and magnetic equators. Seen
from an inertial frame, these clouds appear to rotate synchronously
with the star; furthermore, their characteristic twin-peaked emis-
sion spectrum displays temporal variations in the form of a double
S-wave.

These findings exhibit an encouraging degree of agreement with
the inferred behaviour of σ Ori E. As discussed in the introduction,
observations of this star indicate that circumstellar plasma is con-
centrated at the intersection between rotational and magnetic equa-
tors (Groote & Hunger 1982; Bolton et al. 1987; Short & Bolton
1994). Without the need for any special tuning, beyond the require-
ment that the tilt angle β be moderate, the RRM model naturally
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Figure 4. Maps of the emission from the β = 60◦ RRM model (see text), for eight different values of the observer azimuth φo; darker shading indicates
greater intensity. In each map, the rotation and magnetic axes are shown as a single- and double-headed arrows, while the outline of the central star (whose
contributions toward the emission are neglected) is shown by a circle. Beneath each map, we plot the corresponding emission spectrum as a function of the
projected velocity vp, the latter being measured in units of the projected equatorial rotation velocity ve sin i of the star.

reproduces such a distribution. It also accounts for the Balmer line
emission from the star, which – when the measured longitudinal
field is strongest, corresponding to φo = 0◦ and φo = 180◦ in Fig. 4
– is observed to exhibit strong peaks situated at vp ≈ ±3vesin i
(Groote, private communication).

7 D I S C U S S I O N

As we have discussed in Section 1, there have been a number of
previous studies that have made use of the rigid-field approach (see
Section 2) to determining the regions where circumstellar mate-
rial can accumulate (Section 3). In the present paper we build on
these studies, by presenting a physically grounded RRM model
for the steady accumulation of wind plasma in the circumstellar
environment (Sections 4 and 5), which is able to make specific
predictions regarding the observables associated with this plasma
(Section 6).

Our treatment of the mass loading of accumulation surfaces dif-
fers markedly from the approach advanced by Nakajima (1985), who
fixed the plasma density at each point by requiring equal magnetic
and kinetic energy densities (see his equation 13). Such a choice is
guided by the notion that when the density is high enough for the

kinetic energy due to rotation to dominate the magnetic energy, the
field lines break open, and any subsequently added plasma leaks
away from the system. By contrast, our approach to deriving the
plasma distribution focuses on the mass accumulation rather than
on leakage (see Section 5). While Nakajima (1985) treats the mass
leakage as a gradual, quasi-steady process, we view it more as an
episodic evacuation caused by magnetic breakout (see Appendix A),
which effectively resets the mass accumulation.

In actual systems, the mass distribution may reflect a combination
of both perspectives, and there are even other alternative frameworks
for treating the problem (see, e.g. Michel & Sturrock 1974; Havnes
& Goertz 1984). However, one particularly favourable aspect of the
present model is that it can naturally reproduce the plasma con-
centrations at the intersection of rotational and magnetic equators,
as is inferred from observations of σOri E. To obtain a similar re-
sult, Nakajima (1985) had to make the ad hoc assumption that some
process of diffusion, across magnetic field lines, leads to the redis-
tribution of plasma into the desired configuration.

We turn now to a brief discussion of the recent paper by Preuss
et al. (2004), which was published during the final stages of prepa-
ration of the present work. These authors found the same accumu-
lation surfaces as we present in Section 3, but using the alternative
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formulation based around consideration of the loci where all forces
tangential to field lines vanish. They were the first to discover the
possibility of leaves and the truncated cones occurring at β = 90◦,
and even explored the case of tilted dipoles offset from the origin.
However, Preuss et al. (2004) stopped short of considering the mass
loading of the accumulation surfaces, and instead focused on their
geometrical form. As such, their study does not make the type of
specific predictions for observable emission-line variations that we
provide in Section 6.

Another relevant comparison here is to the ‘magnetically torqued
disc’ (MTD) model proposed by Cassinelli et al. (2002) to explain
the circumstellar emission of Be stars. Building upon insights from
one-dimensional equatorial-plane models of magnetically torqued
stellar winds (Weber & Davis 1967; Belcher & MacGregor 1976),
this analysis centres on an assumed empirical scaling of the az-
imuthal velocity, which initially increases as a rigid-body law out to
some peak, and then declines asymptotically with angular momen-
tum conservation. When this peak occurs above the Kepler radius,
the model envisions that the associated torquing of the wind out-
flow can lead to formation of a ‘quasi-Keplerian’ disc. However,
recent dynamical simulations (Owocki & ud-Doula 2003) indicate
that fields marginally strong enough to spin wind material beyond
Keplerian rotation tend instead to lead to centrifugal mass ejection
rather than a Keplerian disc.

For much stronger fields, the region of rigid rotation becomes
more extended, and the MTD scenario can be viewed as becom-
ing similar to the field-aligned rotation case (β = 0) of the RRM
model developed here.8 Although the disc rotation is rigid-body
rather than Keplerian, the tendency for the bulk of the material to
build up in the region near the Kepler radius means that the re-
sulting line emission should develop a doubled-peaked profile that
might be quite difficult to distinguish from what is expected from a
Keplerian disc. Note, however, that such rigid-body discs seem un-
likely to produce the long-term (years to decade) violet/red (V/R)
variations often observed in Be-star emission lines (Telting et al.
1994); such variations seem instead likely to be the result of long-
term precession of elliptical orbits within a Keplerian disc (Savonije
& Heemskerk 1993). As such, we do not believe that the RRM
model is likely to be of general relevance to explaining Be-star
emission. However, as noted above, it does seem quite well suited
to explaining the rotationally modulated emission of Bp stars such
as σ Ori E.

On a concluding note, we draw attention to the fact that
X-ray flaring has been detected in σ Ori E by ROSAT (Groote &
Schmitt 2004), and subsequently by XMM–Newton (Sanz-Forcada,
Franciosini & Pallavicini 2004). Mullan (in preparation) has argued
that the flares originate from the B2 star itself, rather than from an
unseen low-mass companion. If this is indeed the case, then we sug-
gest a likely mechanism for the flare generation is thermal heating
arising from magnetic reconnection. As we discuss in Appendix A,
we expect the outer parts of the accumulation surface to undergo
relatively frequent breakout events, during which stressed magnetic
field lines will reconnect and release significant quantities of energy.
We intend to explore this hypothesis further in a future paper (and
see also ud-Doula, Townsend & Owocki 2004).

8 Note, however, that while the MTD analysis emphasized the torquing role
of the magnetic field, in the RRM model the rigid field also plays a crucial
role in holding material down against a net centrifugal force that, for radii
beyond the Kepler radius, exceeds the inward force of gravity.

8 S U M M A RY

We have presented a new RRM model for the circumstellar plasma
distributed around magnetic early-type stars. By assuming that field
lines remain completely rigid, and corotate with the star, we are
able to find regions in the circumstellar environment where plasma
can accumulate under hydrostatic equilibrium. In the general case
of a tilted-dipole field, these regions take the form of a geometri-
cally thin, warped disc, whose mean surface normal lies between
the misaligned magnetic and rotation axes. When coupled with a
quantitative description of the accumulation process, our treatment
allows us to evaluate the density throughout the circumstellar en-
vironment, and thereby calculate observables such as emission-line
spectra.

This RRM model shows promise; even without a fine tuning
of parameters, it reproduces the principal features of σ Ori E, the
archetype of the variable-emission helium-strong stars. In a forth-
coming paper, we will investigate the extent to which the model
can reproduce the more detailed aspects of this star – in particular,
the strength of the emission lines, as well as their shape, and the
eclipse-line variations seen in photometric indices. We also plan
to examine whether the model can be applied to other magnetic
early-type stars.
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A P P E N D I X A : B R E A KO U T O F
AC C U M U L AT E D M AT E R I A L

A1 Breakout time

In deriving the form of the accumulation surfaces, we have as-
sumed an arbitrarily strong, rigid field. However, in practice the finite
magnitude of any stellar magnetic field means that there is a limit
to the mass that can be contained against the centrifugal force. When
the density becomes too high, the material should break out from
the field containment. Just prior to such an episode, the overstressed
magnetic field becomes distorted from its equilibrium configuration,
sagging radially outward as it passes through the dense material in
accumulation surfaces. Under these circumstances, the inward force
arising from the tension in the distorted field lines barely balances
the net outward gravito-centrifugal force. Therefore, we can con-
struct an approximate condition for the occurrence of breakout by
equating these two forces. Focusing our analysis in this appendix
on the simple case of an aligned dipole field (β = 0◦), the breakout
condition may be expressed as

ρb

(
�2r − G M∗

r 2

)
≈ B2

4πhm
, (A1)

where ρ b represents a breakout value for the peak density at radius
r within the equatorial plane, and the scaleheight hm appears as the
typical curvature radius of the distorted magnetic field lines, whose
tension B2/4π generates the balancing inward force. In analogy
with equation (30) we can define an associated breakout surface
density σb ≡ √

πρbhm, where we have taken µm = 1 as appropriate
to the equatorial plane. Using the Kepler radius r K (equation 12) to
scale both the local radius (ξ ≡ r/r K) and the stellar radius (ξ ∗ ≡

R∗/r K), we have for the usual dipole field scaling B ∼ r−3

σbg∗ξ 2
∗

[
ξ − 1

ξ 2

]
= B2

∗ξ
6
∗

4πξ 6

√
π, (A2)

or, solving for the breakout surface density,

σb(ξ ) = B2
∗ξ

4
∗

4πg∗

√
π

ξ 4(ξ 3 − 1)
. (A3)

Scaled in terms of typical parameters for a rotating, magnetic B star,
we find a characteristic surface density for breakout

σ∗ ≡ B2
∗ξ

4
∗

4πg∗
≈ 8 g cm−2 B2

3 ξ 4
∗

g4
, (A4)

where B 3 ≡ B/103 G and g4 ≡ g∗/104 cm s−2.
For comparison, note that for a dipole field the surface density

accumulation rate in equation (34) has the scaling

σ̇m(ξ ) = µ∗
ξ 3
∗

ξ 3

Ṁ

2πR2∗
, (A5)

where once more we have assumed µm = 1. Then for each scaled
radius ξ we can define a characteristic breakout time, tb(ξ ) ≡ σb/σ̇m.
Casting the stellar gravity in terms of the surface escape speed and
free-fall time, g∗ = vesc/2t ff, the ratio of breakout to free-fall time
becomes

tb(ξ )

tff
= η∗

√
π

µ∗

ξ∗
ξ (ξ 3 − 1)

. (A6)

Here we have collected dimensional quantities in terms of a single,
dimensionless ‘magnetic confinement parameter’ for the accumu-
lation surface,9

η∗ ≡ B2
∗ R2

∗
Ṁvesc

≈ 1.6 × 106 B2
3 R2

12

Ṁ−10 v8
, (A7)

with the latter equality giving a characteristic value in terms of scaled
parameters R12 ≡ R∗/1012 cm, Ṁ−10 ≡ Ṁ/10−10 M� yr−1 and
v8 ≡ vesc/108 cm s−1. Noting that the free-fall time t ff = vesc/2g∗ =
104 s (v8/2g4), the breakout time evaluates to

tb(ξ ) ≈ 250 yr
B2

3 R2
12ξ∗

Ṁ−10 g4

1

ξ (ξ 3 − 1)
, (A8)

where we have taken
√

π/µ∗ ≈ 2. As a typical example, cor-
responding roughly to values appropriate to σ Ori E, let us take
Ṁ−10 = g4 = 1, B3 = 10 and R12 = ξ ∗ = 1/2, yielding a value
12.5 for the ratio factor in equation (A8). At a location equal to twice
the Kepler radius, we then find a typical breakout time of t b(2) ≈
220 yr.

A2 Mass in accumulation surface

Let us next estimate the total mass in the equatorial accumulation
surface after some elapsed time t since it was last emptied. The
mass contained between inner radius r i = ξ ir K and outer radius
r o = ξ or K is given by the integral

m(t) ≈ 2πr 2
K t

∫ ξo

ξi

σ̇m(ξ ) ξ dξ

≈ Ṁtµ∗ ξ∗

(
1

ξi
− 1

ξo

)
, (A9)

9 Note that this is closely related to the ‘wind magnetic confinement parame-
ter’ defined by ud-Doula & Owocki (2002), differing only by the order-unity
substitutions v∞ → vesc and B eq → B∗, where v∞ is the wind terminal
speed, and Beq is the stellar surface field at the magnetic equator.
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where the latter equality uses equation (A5). Approximating the
inner radius by the Kepler radius, ξ i ≈ 1, we then find

m(t) ≈ Ṁtµ∗ ξ∗
ξo − 1

ξo
≈ Ṁ tff η∗ξ 2

∗
√

π

ξ 2
o

(
ξ 2

o + ξo + 1
) . (A10)

The latter equality assumes the outer radius is limited by breakout,
and uses equation (A6) to eliminate the explicit appearance of t in
terms of the time-variable outer radius ξ o(t). Over a long time, the
outer radius approaches the inner (Kepler) radius ξ o → 1, with the
total asymptotic disc mass approaching

m∞ ≈ Ṁ tff η∗ ξ 2
∗
√

π

3
≈ B2

∗ R2
∗ξ

2
∗
√

π

6g∗
, (A11)

where the latter equality uses the definition (A7) to eliminate the
confinement parameter, mass-loss rate and terminal speed, and we
have also eliminated the escape speed vesc in favour of the surface
gravity g∗. In terms of scaled parameters, this evaluates to

m∞ ≈ 1.5 × 10−8 M�
B2

3 R2
12ξ

2
∗

g4
. (A12)

Again adopting the above typical parameters for σ Ori E – B 3 =
10, ξ ∗ = R12 = 1/2 and g4 = 1 – we find m∞ ≈ 9.4 × 10−8 M�.

If instead we consider a time when the outer radius happens to be
at twice the Kepler radius, ξ o = 2, then by equation (A10) the total

mass is reduced by an extra factor of 3/28 = 0.107. For σ Ori E, this
now gives a total mass m ≈ 1.0 × 10−8 M�. As noted above, the
associated breakout time for this twice-Kepler outer radius is about
t b(2) ≈ 220 yr.

Overall, the picture from this analysis is that the outer parts of
the accumulation surface should be subject to relatively frequent
breakout events that empty mass from those regions. Over a longer
time, rarer breakouts can occur from closer in, eventually even quite
near the Kepler radius. This simple analysis formally assigns an ar-
bitrarily long build-up time, and thus arbitrarily large mass build-
up, to the Kepler radius itself. However, based on MHD simula-
tions carried out so far (Owocki & ud-Doula 2003), it seems more
likely that breakouts sufficiently close to the Kepler radius (i.e. with
ξ � 2) should be associated with a broader disruption of the overall
field structure. This can lead to an emptying of mass throughout
the accumulation surface, including the region around the Kepler
radius itself. Following such a global evacuation, the relative dis-
tribution of material at any given time is proportional to the wind
accumulation rate, as detailed in Section 5.
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