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AB S TRACT

A global analysis of the surface trapping of low-frequency non-radial g modes in rotating

early-type stars is undertaken within the Cowling, adiabatic and traditional approximations.

The dimensionless pulsation equations governing these modes are reviewed, and the

boundary conditions necessary for solution of the equations are considered; in particular, an

outer mechanical boundary condition, which does not enforce complete wave trapping at

the stellar surface, is derived and discussed in detail. The pulsation equations are solved for a

7-M( model star over a range of rotation rates, using a numerical approach.

The results of the calculations confirm the findings of the preceding paper in the series:

modes with eigenfrequencies below a cut-off cannot be fully trapped within the star, and

exhibit leakage in the form of outwardly propagating waves at the surface. The damping

rates resulting from leakage are calculated for such `virtual' modes, and found to be

appreciably larger than typical growth rates associated with opacity-driven pulsation.

Furthermore, it is demonstrated that the surface perturbations generated by virtual modes are

significantly changed from those caused by fully trapped modes; the latter result suggests

differences in the line-profile variations exhibited by these two types of mode.

The findings are discussed in the context of the 53 Per, SPB and pulsating Be classes of

variable star. Whilst wave leakage will probably not occur for overstable g modes in the 53

Per and slowly rotating SPB stars, the adoption of the new outer mechanical boundary

condition may still affect the pulsational stability of these systems. Wave leakage for

overstable modes remains a possibility in Be stars and the more rapidly rotating SPB stars.

Key words: waves ± stars: early-type ± stars: emission-line, Be ± stars: oscillations ± stars:

rotation.

1 INTRODUCTION

The first paper in this series (Townsend 2000, hereinafter Paper I)

presented a qualitative analysis of the surface trapping and leakage

of low-frequency g modes in rotating early (types O and B) stars.

This analysis was based around a dispersion relation for wave

propagation throughout the star, derived from a local solution of

the pulsation equations under the Cowling (1941) and adiabatic

approximations. The influence of rotation on the wave propaga-

tion was treated via the adoption of the `traditional approximation'

(Eckart 1960), appropriate for low-frequency modes in moderately

rotating stars. It was found that modes with frequencies v below a

trapping cut-off v t would leak from the star owing to the absence

of a completely reflective boundary at the stellar surface; this cut-

off depends, amongst other things, on the angular velocity of

rotation. These so-called virtual modes, whilst decaying in

amplitude with time, exhibit discrete frequencies, for reasons

which will be discussed subsequently.

The present work places the topics discussed in the preceding

paper on a more quantitative footing, through solution of the

pulsation equations, with appropriate boundary conditions, at a

global level. The motivation for such an undertaking is threefold:

first, to confirm the validity of results obtained in Paper I,

secondly, to place constraints on the properties of the virtual

modes mentioned above, and lastly, to lay the foundations for the

following paper in this series, which will investigate the line-

profile variations generated by virtual-mode excitation. The

following section reviews the appropriate pulsation equations

and boundary conditions; the method adopted for numerical

solution of the equations is described in Section 3, whilst the

results from corresponding calculations are presented in Section 4.

The findings are then discussed in Section 5, and summarized in

Section 6.
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2 PULSATION EQUATIONS

Within the traditional approximation adopted throughout Paper I,

the horizontal component of the angular frequency vector of

rotation, V, is neglected. In combination with the Cowling and

adiabatic approximations, where the perturbations to the gravita-

tional potential and specific entropy, respectively, are suppressed,

the traditional approximation considerably reduces the complexity

of linear pulsation theory in rotating stars, by rendering the

governing equations separable in spherical polar coordinates

(r,u ,f ). The angular dependence of solutions is described by

Qm
l �m; n� exp�imf�; where m ; cos u and Qm

l �m; n� is a Hough

function (Bildsten, Ushomirsky & Cutler 1996; Lee & Saio 1997),

whilst the radial dependence is found from solving a pair of

coupled first-order differential equations. These equations contain

coefficients which depend on the underlying structure of the

pulsating star, and require a numerical approach for solution. The

form of the equations presented in Paper I is not suitable for such

calculations, since the coefficients appearing therein vary by many

orders of magnitude throughout a typical star; accordingly, a

more-appropriate dimensionless formulation is reviewed below.

The system of radial-component pulsation equations is

effectively second order in nature, and general solutions therefore

contain two arbitrary constants of integration. These constants,

plus regularity conditions required to ensure that solutions are

physically realistic, lead to boundary conditions applicable to the

system at the origin and stellar surface. As will be demonstrated,

these boundary conditions, discussed in the latter parts of this

section, are of paramount importance when issues of wave

trapping and leakage are considered.

2.1 Dimensionless formulation

Whilst there exists a plethora of possible formulations of the

pulsation equations from which to choose, that introduced by

Dziembowski (1971) has proven to be very popular, and is

adopted herein. The radial fluid displacement j r and Eulerian

pressure perturbation p 0 are expressed in terms of dependent

variables y1 and y2,

y1�r� �
jr
r
; y2�r� �

p 0

rgr
; �1�

where, as in Paper I, r and g are the local equilibrium values of

the density and gravitational acceleration, respectively. Note that

the expression for y2 is a reduced form of that originally used by

Dziembowski (1971), since F 0, the perturbation to the gravita-

tional potential, is set to zero in accordance with the Cowling

approximation. With these definitions, the equations governing y1
and y2 in a rotating star, subject to the traditional approximation,

may be written in the canonical form

x
dy1

dx
� �Vg 2 3�y1 �

llm

c1v̂2
2 Vg

� �

y2; �2�

x
dy2

dx
� �c1v̂2

2 A*�y1 � �1� A*2 U�y2 �3�

(see, e.g. Lee & Saio 1989). Here, l lm is the eigenvalue associated

with the appropriate Hough function Qm
l �m; n�; as discussed in

Paper I, this eigenvalue is a measure of the effective wavenumber

of solutions in the transverse (horizontal) direction. The influence

of the Coriolis force on pulsation is reflected in the variation of

l lm with rotation parameter n ; 2V=v; where V ; jVj is the

angular frequency of rotation. The independent variable x and

dimensionless pulsation frequency vÃ are defined through

x � r

R
; v̂2 � v2R3

GM
; �4�

where M, R and G are the stellar mass, stellar radius and

gravitational constant, respectively. The other coefficients in

equations (2) and (3) are defined as

Vg �
V

G1

� 2
1

G1

d ln p

d ln r
� gr

c2s
; c1 �

r3M

R3Mr

;

U � d lnMr

d ln r
� 4prr3

Mr

; A* � rN2

g
; �5�

where Mr, cs and N are the mass interior to radius r, adiabatic

sound speed and Brunt±VaÈisaÈlaÈ frequency, respectively, and G1 is

the first adiabatic exponent. The above four expressions are

identical to those used throughout Unno et al. (1989).

2.2 Boundary conditions

The boundary conditions applicable to the eigenfunctions y1,2 may

be derived by considering the limiting behaviour of the dimension-

less pulsation equations (2) and (3) at the origin and at the stellar

surface. The former boundary presents some difficulty in the case

with rotation, since the assumption that radial fluid displacements

are dominated by horizontal ones, required within the traditional

approximation (e.g. Lee & Saio 1997), becomes inappropriate as

the centre of the star is approached. However, the core regions of

early-type stars are unstable against convection �N2
, 0�; and g

modes will be evanescent in character throughout; therefore, the

formal breakdown of the traditional approximation should not lead

to significant errors.

At the centre of the star, the limiting values

Vg ÿ! 0

U ÿ! 3

A* ÿ! 0

9

>

>

=

>

>

;

as x ÿ! 0 �6�

may be substituted into (2) and (3) to yield the differential

equations pertaining to the origin,

x
dy1

dx
� 23y1 �

llm

c1v̂2
y2; �7�

x
dy2

dx
� c1v̂

2y1 2 y2: �8�

At x � 0; c1 approaches a limiting value given by the ratio

between the central and mean densities of the star; therefore, the

above two equations may be regarded as having constant

coefficients. Solutions of the form y1;2 , xa then lead to a

characteristic equation for the exponent a , with roots given by

a �
~l2 2;

2�~l� 3�;

(

�9�

here, lÄ is a rotationally modified equivalent of the harmonic degree

l, and is defined through

~l � 2llm

1� �����������������

1� 4llm
p ; �10�

so that ~l�~l� 1� ; llm and ~l ! l in the limit of no rotation �n � 0�:
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The second root given in (9) must be discarded, since, for ~l . 0;
it describes solutions which are singular at the origin. The other

root leads to solutions which, when substituted into equations (7)

and (8), must satisfy the relation

c1v̂
2y1 2

~ly2 � 0; �11�

this is the inner boundary condition, and, in essence, is identical to

that applicable to a non-rotating star (e.g. Unno et al. 1989) when

the equivalence between lÄ and l is understood.

The requirement that both j r and p 0 are finite at the origin

indicates that acceptable solutions must satisfy a > 21; or,

equivalently, ~l > 1: For a given l, the eigenvalue l lm of the

prograde sectoral �m � 2l� mode is the smallest in the asymptotic

limit n @ 1; approaching the value m2 � l2 (Bildsten et al. 1996).

Whilst no formal proof is offered, experience suggests that l lm

exceeds this limiting value for all other values of m and n .

Therefore, it would appear that the requirement that ~l > 1 can

only be guaranteed for l > 2 : the boundary condition (11) should

be treated with extreme caution for l � 1 modes, and, of course, is

not appropriate at all for l � 0 (radial) modes.

The linear nature of the pulsation problem (at small physical

amplitudes) means that solutions scaled by some arbitrary con-

stant will still satisfy the pulsation equations (2) and (3); therefore,

it is necessary to adopt some normalization convention. An

appropriate choice is that

y1 � 1 �12�

at the outer boundary, which is convenient for numerical calcu-

lations since solutions will have an order of magnitude of unity.

Once solutions have been found, they can, of course, be re-scaled

to more physically realistic amplitudes.

The derivation of the outer mechanical boundary condition,

which completes the triplet required for solution of the pulsation

equations, is somewhat more ambiguous than those for the other

two conditions (11) and (12). One possible approach (e.g. Glatzel

& Gautschy 1992) is to require that the fractional Lagrangian

pressure perturbation dp/p vanishes at the stellar surface; since

dp � pV�y2 2 y1� �13�

in the Cowling approximation, this is equivalent to

y1 2 y2 � 0; �14�

the so-called `zero boundary condition'. A less stringent formu-

lation, originally introduced by Dziembowski (1971), and subse-

quently adopted by a number of authors (e.g. Osaki & Hansen

1973; Dziembowski, Moskalik & Pamyatnykh 1993), requires that

the gradient of dp/p vanishes at the surface. In the context of a

rotating star, within the traditional approximation, the resulting

boundary condition is given by

1� 1

V

llm

v̂2
2 42 v̂2

� �� �

y1 2 y2 � 0; �15�

which is derived in a straightforward manner from Dziembowski's

(1971) non-rotating expression by replacing l�l� 1� with l lm.

Strictly speaking, this boundary condition is only valid when

v̂2=V and llm=�v̂2V� are much smaller than unity; similar

requirements were stipulated by Dziembowski for the equivalent

non-rotating case.

At low frequencies, the latter of these two requirements can

break down, since vÃ 2 is small and l lm can become large, owing to

the confinement of modes within the equatorial waveguide

(Paper I); therefore, a more general formulation of the outer

mechanical boundary condition must be developed. Ando & Osaki

(1975), in considering the solar pulsation problem, used an

approach which may easily be adapted to include the influence of

rotation (note that their calculations were, in general, non-

adiabatic, but they used the adiabatic approximation in deriving

the outer boundary condition, so their method remains applicable).

The derivation follows the same procedure as that used to find the

inner boundary condition (11): at the surface, the limiting values

U ÿ! 0

c1 ÿ! 1

)

as x ÿ! 1 �16�

lead to the equations

x
dy1

dx
� �Vg 2 3�y1 �

llm

v̂2
2 Vg

� �

y2; �17�

x
dy2

dx
� �v̂2

2 A*� � �1� A*�y2: �18�

As before, the coefficients in these equations are assumed to be

constant, and solutions of the form y1;2 , xb give a characteristic

equation with roots

b � 1

2
��Vg � A*2 2�^ c�; �19�

where the `propagation discriminant' c is defined by

c � �A*2 Vg � 4�2 � 4
llm

v̂2
2 Vg

� �

�v̂2
2 A*�

� �1=2

: �20�

The `leaky' outer mechanical boundary condition is then found as

�A*2 Vg � 4^ c�y1 2 2
llm

v̂2
2 Vg

� �

y2 � 0; �21�

which, as expected, is equivalent to the expression found by Ando

& Osaki (1975) in the non-rotating case.

It is evident from inspection of (19) and (20) that b in the leaky

boundary condition (21) can be complex, even when vÃ is purely

real. In such cases, global solution of the pulsation equations (2)

and (3) will lead to eigenfunctions and eigenfrequencies which,

too, are complex. Near the stellar surface, these eigenfunctions

will vary as

y1;2 , exp��bR � ibI� ln x� exp�i�vR � ivI�t�; �22�

where, henceforth, the subscripts `R' and `I' denote real and

imaginary parts, respectively. Defining z ; x2 1 as the normal-

ized distance above the stellar surface, this expression is

approximated at small z by

y1;2 , exp�bRz2 vIt� exp�i�bIz� vRt��; �23�

which can be recognized as a canonical form for propagating

waves which grow or decay exponentially, in both space and time.

Therefore, such solutions correspond to the leaking virtual modes

introduced in Paper I.

To investigate the conditions under which virtual modes will

arise, it is pertinent to examine the dependence of the propagation

discriminant c on vÃ ; accordingly, Fig. 1 shows cR and c I over

the region of the (vÃ R, vÃ I) complex plane which corresponds to g

modes (i.e. v̂R & 1�: In calculating c , l lm was assigned a value of

20, which corresponds to a harmonic degree l � 4 in the non-

rotating case; furthermore, the values Vg � 919 and A* � 287

were adopted from the outer grid point of the 7-M( model star
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considered throughout Section 4. The branch cut along the

negative real axis was used in evaluating the square root in

expression (20), such that cR > 0 for all vÃ ; this convention

accounts for the discontinuity in c I across the v̂ I � 0 axis, evident

in the figure for v̂R & 0:126:
Following Unno et al. (1989), two dimensionless frequencies,

vÃ c1 and vÃ c2, are introduced as the (real) roots of the equation

c � 0 (and, hence, the branch points of c ), with v̂c2 . v̂c1 : It is
evident from inspection of Fig. 1 that the point v̂R < 0:126 on the

v̂ I � 0 axis, where c is identically zero, may be identified with

vÃ c1; a corresponding point at v̂R < 19:9 (not shown in the figure)

can similarly be identified with vÃ c2. When v̂c1 < v̂R < v̂c2 ;
solutions of the pulsation equations (2) and (3) with purely real

eigenfunctions and eigenfrequencies exist; these solutions, which

all lie on the v̂ I � 0 axis in the figure, correspond to complete

wave trapping within the star. In such situations, the sign of c in

the leaky boundary condition (21) must be taken to be negative;

this is to ensure that the mechanical energy density E owing to

pulsation, given by (e.g. Unno et al. 1989; Wang, Ulrich &

Coroniti 1995)

E , exp�^cRz2 2vIt�; �24�

decays as z increases above the surface.

When v̂R , v̂c1 ; no purely real values of c exist in the (vÃ R,

vÃ I) plane, and wave leakage of the form described by (23) must

occur; therefore, vÃ c1 may be identified as a dimensionless form of

the trapping cut-off frequency v t introduced in Paper I. Note that

the definitions of these two quantities are not completely

equivalent, owing to the presence of the leading �A*2 Vg � 4�2
term in definition (20) of c , which arises from differences in the

approximations adopted in the derivations. As before, the sign of

c in the outer boundary condition must be chosen to ensure that

solutions are physically acceptable; in the present case, the

requirement is that leaking waves have an upward (positive) radial

group velocity, and therefore transport energy outwards through

the stellar surface. Using the well-known result that the radial

group and phase velocities of g modes are opposite in direction

(e.g. Gill 1982; Unno et al. 1989), it is evident that the sign of c

must be chosen such that the phase velocity is negative; this is

equivalent to the requirement that b I be positive, since waves

described by equation (23) have a phase velocity 2vR=bI; and the

convention that vR is positive is adopted throughout.

Once solutions to the pulsation equations are calculated

(Section 4), it is found that v I is invariably greater than zero

when leakage occurs; this result is to be expected, since the

amplitude of virtual modes decays with time to compensate for the

outward loss of mechanical energy through the stellar surface.

Inspection of Fig. 1 shows that the choice of the plus sign in the

boundary condition (21) will then ensure that b I is positive, as

required above. However, a corollary of such a choice is that the

mechanical energy density E will diverge with increasing distance

above the stellar surface (see equation 24), a seemingly unphysical

result.

It transpires that this behaviour is, in fact, perfectly reasonable.

If the leakage is viewed as a continuous stream of spatially

localized wave groups, then, at some epoch t0, the mechanical

energy in regions above the surface is associated with those wave

groups which leaked from the star prior to t0. Let FW(t) be the

instantaneous mechanical energy flux through the stellar surface

owing to leakage; then this quantity, being proportional to E when

the group velocity is time independent, as is the case in the linear

approximation, will obey the relation

kFWl�t� � kFWl�t0� exp�2vI�t0 2 t��; �25�

where k l denotes the time-average over one pulsation cycle. With

vI . 0; it is evident that kFWl�t� . kFWl�t0� for all t , t0; and
therefore that those wave groups emitted prior to the epoch

contain more energy than those being emitted at t0 itself. The

outward divergence of E found previously then follows from

the fact that �t0 2 t� is a monotonically increasing function of the

distance of a given group above the surface. Note that the total

space-integrated mechanical wave energy will be infinite, which is

inconvenient but by no means fatal, and arises from treating the

leakage in Fourier space, rather than as an initial-value problem.

Using the latter approach, Wang et al. (1995), in considering wave

propagation in an isothermal atmosphere, demonstrated that E will

Figure 1. cR and c I, the real and imaginary parts, respectively, of the propagation discriminant c , plotted over the (vÃ R,vÃ I) complex plane for Vg � 919;
A* � 287 and llm � 20: Solid (dotted) lines show contours of constant positive (negative) cR,I, spaced at intervals Dc � 70; whilst thick solid lines indicate

where cR;I � 0:
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diverge outwards for upwardly propagating g modes, in accord-

ance with the results presented herein, but will vanish above some

(outwardly moving) radius, to give a finite total wave energy.

2.3 The steady-wave approximation

A complication arises in the adoption of the traditional

approximation for the virtual modes, whose eigenfrequencies are

complex. This may most easily be appreciated by considering the

infinite-dimension coupling matrix W, introduced by Lee & Saio

(1987a), whose eigenvalues are l lm, and whose eigenvectors b give

the coefficients in the representation of the Hough functions

Qm
l �m; n� as a series expansion of associated Legendre polynomials

Pm
l �m�: The inverse matrix W

21 is symmetric and tridiagonal, with

every non-zero element exhibiting some dependence on the rotation

parameter n (Lee & Saio 1987a; Townsend 1997a). In situations

where n is real, it is trivial to demonstrate thatW is Hermitian, and,

therefore, that both l lm and b are real. Furthermore, since the

eigenvalues l lm are non-degenerate in such cases (Townsend

1997a), the eigenvectors b form a complete orthogonal vector

basis, and the Hough functions are orthogonal too.

These useful properties are, unfortunately, lost when n becomes

complex (i.e. for vI ± 0�: W is symmetric but not Hermitian,

owing to the presence of terms in n on the leading diagonal of

W
21, and both l lm and b are complex also. Indeed, W is not even

normal (i.e. W
²
W ± WW

²; where ² denotes the Hermitian

conjugate), and thus cannot be guaranteed to possess eigenvectors

which are orthogonal or complete (Press et al. 1992). As a

consequence, the Hough functions cease to be orthonormal, and

can no longer serve as the angular basis functions for pulsation in

rotating stars. This same result can be obtained by noting that the

differential operator Ln occurring in Laplace's tidal equation (Lee

& Saio 1997), of which the Hough functions are the eigensolu-

tions, is only self-adjoint when n is real.

The physical reason for these difficulties lies in the decay of

virtual modes with time. As Ando (1983) points out, fluid-particle

trajectories are symmetric over a whole cycle for pulsation which

is both adiabatic and steady, but become asymmetric when either

of these conditions are relaxed. In the present case, such an

asymmetry arises from the net loss of mechanical energy and

angular momentum by fluid particles over a cycle, compensating

for the outward leakage of these quantities through the stellar

surface. Therefore, whilst both energy and angular momentum are

conserved at a global level, they are not at a local level, and it is

this local breakdown of conservation laws which leads to the

problems within the traditional approximation.

Fortunately, all is not lost. When vI ! vR; W will be `almost'

Hermitian (i.e. W2W
² < 0�: In such cases, it seems reasonable

to neglect v I in evaluating n (so that, by definition, n � 2V=vR�;
leading to a purely real W and therefore obviating the problems.

Physically, this approach corresponds to enforcing local conserva-

tion laws, at the expense of violating global ones, by ensuring that

particle trajectories are steady; however, for suitably small v I, the

departure from global conservation will be negligible, and can be

disregarded. As will be demonstrated in Section 4.3, the condition

vI ! vR is met for all modes considered, and the adoption of this

`steady-wave' approximation appears to be valid.

3 NUMERICAL PROCEDURE

In this section, the procedure adopted for numerical solution of the

dimensionless pulsation equations (2) and (3), subject to the

appropriate boundary conditions (equations 11, 12 and 21), is

discussed in detail. A direct approach at arbitrary values of V,

whilst feasible, is computationally very expensive, owing to the

implicit and non-linear functional dependence of l lm on the

(initially unknown) eigenfrequencies vÃ . However, this depen-

dence is itself inherently independent of the underlying equi-

librium stellar structure; therefore, a two-stage technique suggests

itself as a natural approach to the problem.

3.1 The lÄ-track technique

At a formal level, the pulsation equations and boundary conditions

are functions of lÄ, the rotationally modified harmonic degree

defined in equation (10). If, for the moment, the physical

significance of the equations is disregarded, then lÄ may be treated

as a free parameter. It is reasonable to expect that, for suitably

small DlÄ, solutions found at some lÄ will be very similar to those at
~l� D~l; suggesting a relaxation method (e.g. Press et al. 1992) as

an appropriate numerical approach. Such methods rely on finding

some `trial' solution, known to be close to a true solution, which is

then iteratively improved until convergence is achieved. The

algorithm adopted for calculating solutions as a function of lÄ thus

proceeds as follows: solutions are found at some initial value
~l � ~ls; and are then used as trial solutions in a relaxation method at
~l � ~ls � D~l: Once convergence (to some suitable tolerance) is

achieved, the procedure is repeated as many times as is necessary,

resulting in the tabulation of eigenfrequencies vÃ as a function of
~l > ~ls; at intervals of DlÄ. These tabulations are hereinafter referred
to as `lÄ-tracks', an appellation chosen to highlight the similarity

with the numerical approach for calculating stellar evolutionary

tracks (e.g. Kippenhahn & Weigert 1990). It is interesting to note

that Aizenman, Smeyers & Weigert (1977) have already calcu-

lated the zero-rotation equivalents to lÄ-tracks, by investigating the

dependence of fundamental (f) mode eigenfrequencies on non-

integral values of the harmonic degree l.

In themselves, lÄ-tracks are somewhat difficult to interpret, since

lÄ is not directly related to any of the parameters typically used to

characterize pulsation, except in the non-rotating case when ~l � l:
However, the formalism of the traditional approximation provides

a means to map lÄ into the rotation angular frequency V, a more

natural parameter. Whilst this mapping depends on the particular

choice of harmonic degree l and azimuthal order m, it is inde-

pendent of the equilibrium stellar structure; therefore, the lÄ-tracks

may be viewed as a condensed representation of the pulsation

characteristics of a star, at arbitrary rotation rates and for arbitrary

mode parameters.

The mapping from lÄ to V proceeds as follows: for a given l and

m, the eigenvalue l lm is tabulated as a function of the rotation

parameter n using an appropriate numerical approach (e.g.

Bildsten et al. 1996; Lee & Saio 1997; Townsend 1997b). These

data are combined with equation (10) to calculate lÄ as a function

of n . At each ordinate point in the latter tabulation, the associated

abscissa value of lÄmay then be used to interpolate the real part vÃ R
of the eigenfrequency in the lÄ-track data for each mode under

consideration. Finally, the n ordinate may be converted into a

rotation angular frequency via application of the relations

V2 � V̂2GM

R3
�26�

and

V̂ � nv̂R

2
�27�
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for each (n ,vÃ R) pair; the former defines the dimensionless angular

rotation frequency VÃ , whilst the latter results from the definition

of n within the steady-wave approximation discussed in Section

2.3. The adoption of this approximation is justified in Section 4.3.

When combined with this mapping procedure, the lÄ-track

technique described above allows the calculation of a stellar

eigenfrequency spectrum over a range of rotation rates. The

technique was implemented in a fortran 95 code, tahini, using

the relaxation method presented by Unno et al. (1989), which is

specifically tailored to two-point boundary eigenvalue problems; a

centred differencing scheme (i.e. ui � 0:5 in the nomenclature of

Unno et al. 1989) was adopted throughout. Results generated

using tahini are presented in Section 4; the remainder of this

section is devoted to a discussion of two especially significant

points regarding the implementation of the technique.

3.2 Starting solutions

As indicated previously, the lÄ-track technique requires solutions at

some initial value ~l � ~ls of the rotationally modified harmonic

degree. These initial solutions are found by tahini using a

procedure based on the root-finding method of Castor (1971) and

Osaki & Hansen (1973). The leaky outer mechanical boundary

condition is set aside, so that the pulsation equations can be solved

using the relaxation method from arbitrary trial solutions and at

arbitrary vÃ . The discriminant

D�v̂� � D1

D0

�28�

is then calculated, where

D1 � �A*2 Vg � 4^ c�y1 2 2
llm

v̂2
2 Vg

� �

y2

� �

x�1

�29�

is the numerical value of the left-hand side of the leaky boundary

condition (21) and

D0 � �y1 � y2�x�0 �30�

is a term included to ensure that D(vÃ ) remains finite even when y1
or y2 diverge at the surface (see Unno et al. 1989). This term is

guaranteed to be non-zero for all v̂R ± 0 and y1 ± 0; the former

requirement is satisfied for all pulsation modes other than the

imaginary-vÃ g2 convective modes (Aizenman & Smeyers 1977),

whilst the latter holds via the normalization condition (12). When

the discriminant D(vÃ ) is zero, the excluded leaky boundary con-

dition (21) is satisfied; therefore, the roots of D(vÃ ) are the eigen-

frequencies of the star, and are used by tahini, in tandem with the

corresponding eigenfunctions, as initial solutions at ~l � ~ls:
When complete wave trapping occurs, the roots of the

discriminant D(vÃ ) are located along the vÃ R-axis, and the root-

finding problem is one-dimensional and trivial (e.g. Osaki &

Hansen 1973). However, whenever leakage arises, the roots lie

somewhere in the complex-vÃ plane, and are somewhat more

difficult to locate. The contour-integral method introduced by

Dziembowski (1977) and Shibahashi & Osaki (1981) is one

possible means of isolating roots; however, a different approach is

implemented in tahini. First, the minima along the vÃ R-axis of

|D(vÃ )|, the modulus of the discriminant, are found. The values of

vÃ at these minima are then used as starting points in the

application of a secant algorithm (e.g. Press et al. 1992) for

convergence to roots of the discriminant in the complex-vÃ plane;

the secant algorithm was chosen because it is trivially adapted to

complex variables (e.g. Castor 1971).

This approach works by locating the `valley floors' (one-

dimensional minima) of |D(vÃ )|, and then following these floors in

the complex-vÃ plane towards the roots of D(vÃ ) which correspond

to eigenfrequencies. It broadly parallels the solution-matching

procedure used in the Riccati shooting technique (see, e.g.

Gautschy & Glatzel 1990, equation 4.13 plus accompanying text)

for pulsation problems, although the underlying algorithms

adopted in solving the pulsation equations themselves differ

fundamentally. Fig. 2 shows |D(vÃ )| along a selected range of the

the vÃ R-axis, for ~l � 4 modes of the stellar model considered in

Section 4; the minima which lead to the eigenfrequencies of each

mode are immediately apparent.

Note that tahini adopts a golden-section algorithm to locate the

minima. More sophisticated approaches, such as Brent's inverse

parabolic interpolation algorithm (Press et al. 1992), cannot be

used, since they rely on the second-order continuity of dependent

variables; this property is absent when complete trapping occurs,

because the gradient of |D(vÃ )| is discontinuous across the minima.

3.3 Modal classification

A procedure to classify modes in a unique and complete manner,

as well as being taxonomically useful, is important for the lÄ-track

technique to function reliably. Sometimes, in the calculation of

tracks, the relaxation method erroneously converges to solutions

which neighbour the one under consideration. Such `track-

jumping' is especially prone to occur when a pair of modes

undergo an avoided crossing (Aizenman et al. 1977), and the

eigenfrequencies of the modes become very close. Modal

classification is a straightforward way of detecting automatically

when track-jumping has arisen, permitting appropriate action to be

taken.

A classification scheme suitable for fully trapped modes was

presented by Scuflaire (1974) and Osaki (1975), which consists of

considering the so-called `phase path' of solutions in the (v,w)

plane, where the phase variables v and w are calculated from

Figure 2. The modulus |D(vÃ )| of the discriminant as a function of vÃ R, the

real part of the dimensionless pulsation frequency vÃ . Local minima

indicate the approximate location of eigenfrequencies in the complex-vÃ

plane.
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eigenfunctions y1,2 using

v � �rgr�1=2

jllm=�c1v̂2�2 Vgj1=2
r2y1 �31�

and

w � �rgr�1=2

jc1v̂2 2 A*j1=2
r2y2; �32�

these definitions have been adapted, for use within the tradition

approximation, from the equivalent zero-rotation ones (e.g.

Shibahashi 1979) through the usual trivial replacement of

l�l� 1) with l lm. By following the phase path corresponding to

a pair of eigenfunctions y1,2 from the origin to the surface, the

number of clockwise and anti-clockwise crossings of the axis

v � 0 are enumerated. Denoting these two integers by Np and Ng,

respectively, their difference

~n � Np 2 Ng; �33�

may be used as an unambiguous index, conserved during

evolutionary changes to the stellar structure (Osaki 1975) and

over changes in the harmonic degree l (Aizenman et al. 1977), for

labelling each mode of a star. In unevolved stellar models, positive

and negative nÄ correspond to p- and g modes, respectively, whilst

~n � 0 corresponds to the f-mode.

This scheme requires modification in order to function properly

when the leaky outer mechanical boundary condition (21) is

adopted. Whilst the phase variables v and w are real, the eigen-

functions y1,2 can be complex owing to leakage; therefore, it is

pertinent to use the real parts of the latter when calculating phase

paths via equations (31) and (32). This trivial adjustment

corresponds to considering phase paths at a specific, but arbitrary,

temporal phase.

A more-significant modification is necessary to deal with the

influence of the leaky boundary condition on the terminal �x � 1�
point of phase paths. Osaki (1975) adopted the zero boundary

condition (14) throughout, so that y1 and y2 always agree in sign at

the surface, and the terminal point is invariably located in the first

�v;w . 0� or third �v;w , 0� quadrants of the (v,w) plane.

However, when the leaky boundary condition is used, it is possible

for the surface values of y1 and y2 to be opposite in sign, and for

this terminal point to fall in the second �2v;w . 0� or fourth

�2v;w , 0� quadrants of the plane. In such situations, the

classification scheme discussed above sometimes leads to values

of Ng which are smaller by unity than those anticipated, and the

utility of nÄ as an unambiguous modal index is compromised.

The reasons for the difficulty seem to lie in the assumption of

wave evanescence at the surface, implicit in Osaki's (1975)

adoption of the zero boundary condition; evidently, this assump-

tion is violated when leakage occurs. However, surface evanes-

cence can be artificially maintained by extending phase paths

beyond the outer boundary with a supplementary phase segment;

this segment, which follows a hyperbolic trajectory with asymp-

totic lines w � ^v; characteristic of evanescent waves (see, e.g.

Unno et al. 1989), is chosen to carry the the terminal point of the

phase path into the first or third quadrant of the (v,w) plane. Fig. 3

illustrates the nature of typical supplementary segments, for

eigenfunctions which lie, at the surface, in the second or fourth

quadrants of the plane.

Adopting extended phase paths in the calculation of Np and Ng

(in the usual manner) was found to resolve the difficulty discussed

above, for all modes apart from those with eigenfrequencies very

close to the trapping cut-off vÃ c1. The differential equations

governing v and w (Unno et al. 1989) exhibit a turning point near

the outer boundary for such modes; as a consequence, the asymp-

totic lines of evanescent-wave trajectories deviate from w � ^v;
and supplementary segments based on these lines may be

incorrect. A heuristic yet effective solution to the problem is to

adopt the asymptotes w � ^v=�1� e� throughout the considera-

tion of all supplementary segments, where e ! 1 is a parameter

which accounts for these deviations.

The actual calculation of supplementary segments is not

necessary for implementation of the modified classification

scheme. Instead, the value of Ng, calculated from the original

phase path, is incremented by unity whenever the sign of v and w

differ and jwj . jvj=�1� e� at the terminal point of the path; the

value of Np is left unaltered. This approach, which is functionally

identical to adopting extended phase paths (but certainly less

transparent), was implemented within tahini using an empirically

determined value of 2 � 1023 for the parameter e. Prior to classi-

fication, all eigenfunctions y1,2 are renormalized by tahini, such

that y1 � 1 at the inner boundary; this is to ensure that phase paths

start in the first quadrant of the (v,w) plane, in accordance with the

original prescription of Osaki (1975).

In its totality, the modified classification scheme implemented

by tahini leads to a self-consistent and complete set of indices nÄ

for all modes considered throughout this work. As indicated at the

start of this section, these indices are primarily used to detect

automatically any track-jumping over an increment in lÄ, during the

calculation of lÄ-tracks. When a discontinuity in nÄ arises, indicative

of a track-jump, tahini bisects the DlÄ interval recursively, and the

relaxation algorithm is applied over each resulting sub-interval,

until the full interval can be traversed correctly.

4 RESULTS

In this section, results calculated using tahini are presented. The

equilibrium stellar model adopted throughout is based on the same

7-M( ZAMS model of Paper I (see table 1 therein for the

parameters of the star). Originally, this model consisted of 800

Figure 3. Typical supplementary phase-path segments in the (v,w) plane;

these segments start at points corresponding to the outer boundary

(squares), and follow hyperbolic trajectories (arrows) into the first or third

quadrants of the plane. The dotted lines indicate the w � ^v asymptotic

lines of the trajectories.
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unequally distributed grid points extending from near the origin

out to the surface at x � 1: For the calculations, it was necessary

to re-grid the model, to ensure adequate resolution of the spatial

oscillation of eigenfunctions in propagative regions; the new grid

consisted of 15 500 and 500 uniformly distributed points in the

envelope �x * 0:2� and core �x & 0:2� regions, respectively, the

lower resolution in the core reflecting the fact that pulsation is

invariably evanescent there owing to convection. Cubic spline

interpolation (Press et al. 1992) was used to calculate quantities on

the new grid. Denoting the spacing between adjacent grid points

by Dx, Fig. 4 shows the grid density Dx21 as a function of x for the

original and re-gridded models. Also shown in the figure is the

density of nodes �y1�x� � 0� for the highest-order (g210) mode

considered subsequently; this nodal density is the effective

Nyquist frequency required for minimal resolution of the spatial

oscillations of the eigenfunction. Evidently, whilst the original

model is woefully inadequate in the inner envelope �0:25 & x &

0:55�; the re-gridded model provides good resolution of the

eigenfunction, oversampling it by at least 40 times this effective

Nyquist frequency.

4.1 lÄ-tracks

All modes of the re-gridded 7-M( model with eigenfrequencies in

the interval 0:01 , v̂R , 2:5 were found by tahini at ~l � ~ls � 1;
using the procedure discussed in Section 3.1. The modes,

classified using the scheme presented in Section 3.3 as g�2 ~n� �
g1¼g210; were adopted by tahini as initial solutions in the

calculation of corresponding lÄ-tracks over the range 1 , ~l , 50; at
intervals D~l � 0:05; at every stage, the criterion applied for

convergence of the relaxation method was that the fractional

change in |vÃ | over a single iteration did not exceed 1029.

The resulting tracks for the first 80 modes (i.e. g1¼g80) are

displayed in Fig. 5. Rather than showing vÃ itself, l
1=2
lm =v̂R is

plotted in the figure. This latter quantity is approximately

independent of lÄ for a given mode in the asymptotic limit (see

Lee & Saio 1987a; equation 23 of Paper I), and is a monotonically

increasing function of the mode order |nÄ |, so that the higher-order

modes appear towards the top of the figure. The imaginary part vÃ I
of the eigenfrequency is not shown directly; however, different

line styles are used to distinguish between trapped �v̂ I � 0� and
leaking �v̂ I . 0� solutions. The tracks in the figure may be

interpreted in one of two ways. At integral values of lÄ, the

frequencies corresponding to the track curves are identical to

those of a non-rotating star pulsating with harmonic degree l � ~l:
For more general (non-integral) values of lÄ, however, these

frequencies are pertinent to a rotating star pulsating with llm �
~l�~l� 1�:
The outstanding feature of the figure is the discrete nature of the

eigenfrequency spectrum, even after the onset of wave leakage at

l
1=2
lm =v̂R * 38:5 (see also Fig. 2). In Paper I, it was implied that

this phenomenon was a consequence of the convection zone at

log T < 4:6; owing to He ii ionization, which acts as a partially

reflecting barrier to waves incident from the interior. However,

when the zone was artificially eliminated by modifying the values

of A* (equation 5) across its extent, it was found that the discrete

character of the spectrum remained. An alternative explanation

has been given by Gautschy (1992), who considered the related

problem of leaking p-modes in Ap stars. He argued that such

modes will be discrete because of a combination of the complete

reflection of waves at the stellar origin, and the assumption that

only outwardly propagating waves are present at the stellar

surface.

The same reasoning can be used to explain the discrete

character of the virtual (leaking) g modes considered herein: the

leaky boundary condition (21) automatically pre-selects only

outgoing waves, and complete reflection of waves at the origin is

assured by the fact that the Brunt±VaÈisaÈlaÈ frequency is zero there.

Evidently, then, the convection zone is not important in generating

the discrete nature of the mode spectrum; however, as will be

demonstrated in Section 4.3, it does play a roÃle in controlling the

degree of damping as a result of leakage.

At ~l � 1; the g53¼g80 modes are virtual, whilst the the g1¼ g52
modes are fully trapped. As lÄ is increased, it is evident from

inspection of Fig. 5 that some of the latter undergo a transition to

virtual modes and begin to leak; this occurs first for the g52 mode

at ~l < 17:5; then for the g51 mode at ~l < 25:5; and so on. The

transition is primarily the result of the departure of eigenfrequen-

cies from the asymptotic limit, which manifests itself in the

gradual increase of l
1=2
lm =v̂R with lÄ. This limit holds only for the

higher-order modes at small values of lÄ, which exhibit tracks

which appear almost horizontal. The existence of such a transition

apparently invalidates the hypothesis, suggested in Paper I, that

the set of modes trapped within a star is invariant under the

influence of rotation.

One other feature in the figure which warrants brief discussion

is the appearance of avoided crossings between trapped-mode

tracks at ~l < 33:5 (g7 and g8) and ~l < 44:5 (g6 and g7). Avoided

crossings usually arise when modes are trapped within two well-

separated regions of the star (e.g. Osaki 1975); in the present case,

these regions are identified as the inner envelope, and the outer

part of the He ii convection zone. In the former and the latter,

waves have the character of g- and p-modes, respectively, as can

be seen from the propagation diagrams presented in Paper I;

therefore, the avoided crossings indicate the presence of mixed-

character modes.

4.2 Eigenfrequencies

The mapping procedure discussed in Section 3.1 was applied to

Figure 4. The grid density Dx21, where Dx is the spacing of adjacent grid

points, as a function of normalized radius x, for the original (solid) and re-

gridded (dotted) 7-M( model. Also shown (diamonds) is the density of

nodes of the highest-order (g210) mode considered subsequently.
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the lÄ-tracks calculated previously, to find the dependence of vÃ R on

V for all l � 4 pulsation modes apart from the zonal �m � 0�
mode, the latter generally being unimportant as a source of line-

profile variability. The eigenvalue l lm was tabulated, using the

same method as in Paper I, at 1000 points uniformly sampling

the range 0 < n < 5 for the m � 1 modes, 0 < n < 30 for the

m � 24 modes, and 0 < n < 7 for all other modes; these upper

limits on n ensured adequate final coverage of V. Interpolation

of vÃ R in lÄ-tracks was performed using cubic splines. The resulting

eigenfrequencies (or, rather, the real parts vÃ R) are shown in Fig. 6

as a function of the parameter V/Vcrit, where the dimensionless

critical rotation rate Vcrit is defined by

V2
crit �

8GM

27R3
: �34�

The upper limit V=Vcrit � 0:75 displayed in the figure was chosen
to reflect the fact that, as V approaches Vcrit, centrifugal-force

effects neglected within the traditional approximation begin to

have a significant effect on the stellar geometry and cannot be

disregarded. Note that, in order to improve the clarity of the

figure, only the odd-nÄ (i.e. g1, g3, g5¼g77, g79) modes are

shown.

Figure 5. lÄ-tracks for the g1¼g80 modes of the 7-M( model, shown by plotting l
1=2
lm =v̂R as a function of lÄ. Solid and dotted lines indicate trapped and virtual

(leaking) modes, respectively.
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As with Fig. 5, each panel of this figure shows a pronounced

division between trapped and virtual modes, which here can be

identified with the trapping cut-off vÃ c1. The figure confirms the

qualitative findings of Paper I, namely, that the effect of rotation is

to increase vÃ c1 for all but the prograde sectoral modes;

furthermore, this increase is most pronounced for the retrograde

�m . 0� modes, and those for which �l2 jmj� is largest. The

notable exceptions to this behaviour are the prograde sectoral

modes, for which vÃ c1 decreases monotonically with increasing

rotation rate, owing to the transformation of the modes into

equatorially trapped Kelvin waves (Paper I). Note that, as V is

gradually increased from zero, vÃ c1 first decreases for all prograde

modes; this occurs because dllm=dn , 0 at n � 0 when m , 0

(Lee & Saio 1997).

These points apply not only to the cut-off vÃ c1, but also to the

mode eigenfrequencies themselves (or, more specifically, the real

parts vÃ R). The effects of rotation are most pronounced for the

high-order modes, since the Coriolis force has the greatest influ-

ence on slow, long time-scale waves; as a consequence, the density

of the mode spectrum increases with V for all but the prograde

sectoral modes. This result raises questions regarding the self-

excitation of single, small-|m| and/or retrograde pulsation modes

Figure 6. The real part vÃ R of the eigenfrequency for prograde m , 0; l � 4; odd-nÄ g modes of the 7-M( model, plotted as a function of V/Vcrit. Solid and

dotted lines indicate trapped and virtual (leaking) modes, respectively. As before, except that the retrograde m . 0 modes are shown.
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in rapidly rotating stars (e.g. Be stars), since these systems will

possess exceedingly dense mode spectra, and it is not clear what

kind of mechanism could lead to the selective excitation of one

mode, without simultaneously exciting neighbouring ones.

Unlike the lÄ-tracks shown in Fig. 5, no trapped modes become

virtual over the range of V displayed in Fig. 6. This is because, for

the l � 4 modes, lÄ never becomes large enough (*17.5) for a

transition from trapped to virtual to occur. Therefore, whilst the

hypothesis of rotation-invariant trapping is formally invalidated by

Fig. 5, it may well be the case that it holds in all physically

relevant situations.

4.3 Damping rates

As discussed previously, the outward loss of mechanical wave

energy through the stellar surface causes the amplitude of virtual

modes to decay with time. The strength of such `advective

damping' (see Paper I) is characterized by

hd ;
v̂ I

v̂R

; �35�

such that the fractional change in the amplitude of a mode, over

one pulsation cycle, is given by exp�22phd�: When v̂ I ! v̂R;

Figure 6 ± continued
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this advective damping rate hd is related to the work integral W

(e.g. Ando & Osaki 1975) of the pulsation through

hd � 2
1

4p

W

ET

; �36�

where ET, the time-averaged total pulsation energy of the star, is

given in terms of the fluid displacement vector j as

ET �
�M

0

kE l dMr �
v2
R

2

�M

0

jjj2 dMr: �37�

The work integral is a measure of the increase in ET over one

pulsation cycle, and may be written in the form (Unno et al. 1989)

W �
�

dt

�M

0

dT
ddS

dt
dMr 2

�

S

FW ´ dA

� �

; �38�

where dT and dS are the Lagrangian perturbations to the tempera-

ture and specific entropy, respectively, FW is the mechanical

energy flux discussed in Section 2.2, dA is the vector surface-area

infinitesimal and S is the surface of the star. In the present case,

the first term in this expression is identically zero, since dS � 0 in

the adiabatic approximation. Thus,

W � 2

�

dt

�

S

FW ´ dA � 2
vR

2p

�

S

kFWl ´ dA; �39�

in combination with (36), indicates that hd is proportional to the

time-averaged outward flux of wave energy owing to leakage.

Fig. 7 shows hd as a function of vÃ R for the l � 4; m � 1 g

modes of the 7-M( model; unlike the preceding section, both odd-

and even-nÄ modes are shown, in order to illustrate fully the

dependence of hd on vÃ R. The division between trapped �hd � 0�
and virtual �hd . 0� modes is immediately apparent, as is the

increase in the trapping cut-off vÃ c1 with V. The order of

magnitude of hd for the virtual modes (,1024), which was found

to be similar for other values of l and m, supports a posteriori the

validity of adopting the steady-wave approximation introduced in

Section 3.1. The implications of this value, with regards to the

self-excitation of virtual modes, are discussed below in Section 5.

The repetitive structure of hd, evident in every panel of the

figure, can be attributed to the differing energy distribution of each

virtual mode. For such modes, the star is divided into two

propagative regions by the He ii convection zone at log T < 4:6

Figure 7. The damping rate hd, as a function of the real part vÃ R of the eigenfrequency, for l � 4; m � 21 g modes of the 7-M( model, at four selected

rotation rates. The dashed vertical line shows the location of the trapping cut-off vÃ c1.
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(see figs 1 and 2 of Paper I), and the total energy ET may be

partitioned into contributions from each of these regions. Let Mi

denote the mass interior to the outer boundary of the zone; then

ES � v2
R

2

�M

Mi

jjj2 dMr �40�

is the contribution to the total energy from the surface regions

above the convective zone, and the `partition measure' ES/ET is an

indication of the relative significance of these regions in the

pulsation energy distribution. Fig. 8 shows the latter values plotted

over the corresponding damping rates taken from the zero-rotation

panel of Fig. 7.

Evidently, there is a direct correlation between the two

quantities, which is easily explained. As indicated in Section

4.1, the convection zone behaves like a partially reflecting barrier

to waves incident from the interior, which tends to restrict the

leakage of mechanical energy from the star. Those virtual modes

with the larger partition measures are (energetically) relatively

concentrated in regions above the barrier, and do not benefit so

much from its influence as a leakage `throttle'. Therefore, the

damping rate associated with such modes is correspondingly

greater, as is apparent in the figure.

The underlying decrease in both hd and the partition measure,

as vÃ R is lowered, arises from the evanescent character of virtual g

modes across the He ii convection zone. Within the zone, the

eigenfunctions of these modes will vary as

y1;2 , exp�ikrr�; �41�

where the radial wavenumber kr is given in the low-frequency

limit, from a local analysis (Paper I), by

kr ,

�������

llm
p

vr
N: �42�

Across the zone, N2 is negative, and kr will be imaginary, so that

the eigenfunctions decay exponentially with a scale height

proportional to v . Evidently, then, the effectiveness of the zone

as a leakage throttle increases as the frequency is lowered, which

explains the corresponding decline in both the damping rate and

the partition measure.

4.4 Surface perturbations

In addition to providing a necessary constraint for solution of the

pulsation equations, the outer mechanical boundary condition

dictates the nature of pulsation at the stellar surface, and is of

paramount importance in determining the pulsation-originated

line-profile variations (lpv) exhibited by a star. The principal

sources of such variability in rapidly rotating early-type stars are

velocity and temperature perturbations to photospheric fluid

elements (e.g. Townsend 1997b). The former may be expressed

in spherical polar co-ordinates as

v � iv y1;
y2

v̂2
7n
u;

y2

v̂2
7n
f

� �

Qm
l �m; n� exp�i�mf� vt��; �43�

where the operators 7n
u and 7n

f; defined by

7n
u �

1

�12 m2n2�
��������������

12 m2
p 2�12 m2� d

dm
� mnm

� �

; �44�

7n
f � i

�12 m2n2�
��������������

12 m2
p 2nm�12 m2� d

dm
� m

� �

; �45�

may be regarded as rotationally modified equivalents to the lati-

tudinal and azimuthal components, respectively, of the spherical-

polar gradient operator. Within the adiabatic approximation, the

Lagrangian temperature perturbation dT is proportional to the

Lagrangian pressure perturbation dp; equation (13) then gives

dT

T
� 7adV�y2 2 y1�Qm

l �m; n� exp�i�mf� vt��; �46�

where 7ad is the adiabatic temperature gradient at the stellar

surface. These expressions demonstrate that the characteristics of

photospheric perturbations are dependent on the relative ampli-

tudes and phases of the eigenfunctions y1,2 at the surface; the latter

are, in turn, determined by the choice of outer mechanical

boundary condition.

Previous attempts at modelling the lpv of early-type stars (e.g.

Vogt & Penrod 1983; Gies 1991; Aerts & Waelkens 1993; Telting

& Schrijvers 1997; Townsend 1997a,b) have typically used the

zero boundary condition (14) in the evaluation of velocity fields

(43), and, where appropriate, the expression given by Buta &

Smith (1979) for calculating temperature perturbations; the latter

may be derived by substituting the boundary condition introduced

by Dziembowski (1971) into equation (46). Such approaches have

been fairly successful in reproducing the qualitative features of

lpv; however, they have met with difficulty in modelling correctly

the distribution of variability power across a given line profile,

which might be the result of a lack of physical sophistication in

the boundary conditions adopted for calculations.

Whilst proper lpv modelling, in the context of wave leakage, is

deferred to the following paper in this series, it is pertinent to

examine the differences between the three outer mechanical

boundary condition formulations (equations 14, 15 and 21). Fig. 9

shows the modulus and argument of the surface value of y2 for the

l � 4 g modes considered in the previous section, calculated using

the normalization (12) and the leaky boundary condition (21) in

the zero-rotation limit. Also shown are the corresponding values

which would result from adopting the zero boundary condition

(14) and Dziembowski's boundary condition (15). Although there

is little to distinguish between the three at higher frequencies,

Figure 8. The partition measure ES/ET (crosses) and the damping rate hd

(diamonds) as a function of vÃ R, for l � 4 g modes of the 7-M( model in

the zero-rotation limit.
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marked differences between each are apparent for lower-

frequency modes. Most significantly, the leaky boundary con-

dition predicts a phase difference between y1 and y2, approaching

p=2 rad in the limit v̂R ! v̂c1 ; this is in contrast to the other two

boundary conditions, which indicate that y1 and y2 remain in phase

for all vÃ R.

The other important difference between the three boundary

conditions is the predicted amplitude of y2, relative to y1. At

frequencies below the trapping cut-off, this amplitude is signifi-

cantly smaller when calculated using the leaky boundary con-

dition, than when using the other two. Since the strength of

horizontal velocity fields is proportional to y2 via equation (43),

this may be of relevance in resolving the so-called `K-problem'

(e.g. Smith 1980, 1982, 1986), where observations of lpv in some

stars suggest horizontal velocity fields much smaller than those

predicted by theory. Similarly, the accompanying change in

temperature perturbations may help to explain discrepancies

between photometric and spectroscopic pulsation amplitudes (e.g.

Buta & Smith 1979; Smith & Buta 1979). These issues are

examined in greater detail in the following paper.

5 DISCUSS ION

As with Paper I, a caveat regarding the qualitative interpretation of

the results presented herein must be stipulated: the atmospheric

layers above the photosphere have been neglected in calculations.

Waves which leak from the star may subsequently be reflected by

these layers, invalidating the assumption that no inwardly

propagating wave component is present at the outer boundary.

However, as before, the results remain valid on a phenomeno-

logical level, and in the present case serve to confirm, via a more-

rigorous global analysis, the principal assertions of Paper I:

(i) wave leakage occurs at frequencies below some trapping

cut-off,

(ii) the eigenfrequency spectrum remains discrete at frequencies

below the cut-off, and

(iii) the cut-off is significantly increased by the action of the

Coriolis force, for all but the prograde sectoral modes.

Note, however, that (ii) occurs for the reasons discussed by

Gautschy (1992), rather than those suggested in Paper I (see

Section 4.1). The results also indicate that, formally, the

hypothesis of rotation-invariant trapping proposed in Paper I is

incorrect; however, it may be the case that the hypothesis holds in

all physically significant scenarios.

The interplay between non-adiabatic excitation and damping

mechanisms, and advective damping owing to wave leakage,

determines whether a given mode will be overstable in a star.

Dziembowski et al. (1993) have demonstrated that a metal-opacity

bump at log T < 5:3 is probably responsible for the excitation of

higher-order g modes in the 53 Per (Smith 1977) and SPB

(Waelkens 1991) variable stars; however, these stability calcula-

tions used the outer mechanical boundary condition introduced by

Dziembowski (1971), which implicitly enforces complete wave

trapping at the stellar surface, and thus neglects the effects of

advective damping. In spite of this point, it is unlikely that the

latter will have any significant influence on which modes are

unstable in a star, for the reason given in Paper I: radiative

damping will probably stabilize modes well before the pulsation

frequency is low enough for leakage to occur.

In support of this conclusion, Dziembowski et al. (1993) found,

for instance, that l � 4 g modes in a (non-rotating) 4-M( model

star were overstable to the opacity mechanism only up to a

limiting value � ~n < 40� of the radial order; higher-order modes

were not excited, as a result of the dominance of radiative

damping. This upper limit is significantly smaller than the lower

limit � ~n < 53� found in Section 4.1 for the onset of wave leakage;

whilst a direct comparison of these two figures is not rigorous, it

would appear that all g modes found to be overstable by

Dziembowski et al. (1993) will be fully trapped, and, as a

corollary, that no virtual mode excitation will occur in the stars

they considered. Nevertheless, the adoption of the leaky boundary

condition (21) may still influence the stability of the fully trapped

modes, owing to the fact that surface values of y2, relative to y1,

differ from those predicted by Dziembowski's (1971) boundary

condition (see Fig. 9).

An interesting phenomenon discussed by Wang et al. (1995)

warrants mention at this point. They found that the trapping

Figure 9. The modulus and argument of the surface value of y2, as a function of vÃ R for l � 4 g modes of the 7-M( model in the zero-rotation limit. Diamonds

show modes calculated using the leaky boundary condition (21), whilst solid and dotted lines show the corresponding values calculated using the zero

boundary condition (14) and Dziembowski's boundary condition (15), respectively. The dashed vertical line shows the location of the trapping cut-off vÃ c1.
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cut-off frequencies for vertical wave propagation in an isothermal

atmosphere are only well defined when the wave amplitude is time

independent. In other situations, when the amplitude grows or

decays exponentially with time, leakage will occur at all

frequencies, and, formally, no trapping cut-offs exist. The same

result is evident from inspection of Fig. 1: the propagation

discriminant c is complex, and waves are propagative at the

surface via equation (23), whenever vÃ I is non-zero. Therefore, if

non-adiabatic effects are included, such that vÃ is always complex,

leakage will occur even for those `trapped' g modes whose

eigenfrequencies lie above the formal low-frequency cut-off;

however, the degree of this leakage is expected to be negligible.

As Dziembowski et al. (1993) stress, their calculations neglect

the influence of rotation; therefore, the preceding conclusions

regarding the non-excitation of virtual modes is appropriate only

for the 53 Per stars, which by definition are narrow lined, and the

slowly rotating SPB stars found in Waelkens's (1991) original

sample. Whilst some qualitative analyses of vibrational stability in

rapidly rotating stars have been made (e.g. Osaki 1974; Lee &

Saio 1987b; Lee & Baraffe 1995), few quantitative data are

available; the overstability of virtual modes in these systems

remains a possibility, and will depend, amongst other things, on

the degree of advective damping arising from leakage. The latter

was found in Section 4.3 to have an order of magnitude of 1024;

this value, which is dependent on the thickness of the subsurface

He ii convection zone, is appreciably larger than typical non-

adiabatic growth rates (,1025) found by Dziembowski et al.

(1993) for opacity-driven pulsation. Evidently, if virtual modes are

to be self-excited to observable amplitudes in rapidly rotating

early-type stars, any putative excitation mechanism operative in

these systems must be significantly more robust than those already

known for the non-rotating stars. Reliable conclusions on this

issue must await fully non-adiabatic calculations which include

the effects of both rotation and leakage; such studies are planned

for the near future.

On a final note, the reader may wonder why significant

discussion has been devoted to the overstability of virtual modes.

The reasons for this emphasis lie in the results presented in

Section 4.4, in particular the predicted phase differences between

y1 and y2 for these modes. As will be demonstrated in the

following paper, such phase differences will lead to pronounced

asymmetries in the lpv generated by surface velocity fields and

temperature perturbations. Similar asymmetries have been

observed in a number of rapidly rotating early-type stars (e.g. l

Eri ± Gies 1994; HD64760 ± Howarth et al. 1998; m Cen ±

Rivinius et al., in preparation), and one motivation behind this

series of papers is to examine whether such lpv morphologies can

be explained in terms of wave leakage and self-excited virtual

modes. In addition, wave leakage may play a role in explaining

the Be phenomenon, by providing a source of energy and angular

momentum for the observed episodic disc formation, and there-

fore definitely warrants investigation.

6 CONCLUSIONS

The results presented in this paper lead to conclusions similar to

those drawn in Paper I, and serve to strengthen the latter by a

more-rigorous global analysis. However, the fact that leakage only

occurs when the radial order nÄ is suitably large (*53) indicates

that virtual modes will probably not be excited in 53 Per or slowly

rotating SPB stars; nevertheless, the stability calculations of

Dziembowski et al. (1993) and other authors for these stars may

still be influenced by the findings of this and the preceding paper,

as a result of alterations to the outer mechanical boundary

condition.

Whether virtual modes will be overstable in Be stars or the

more rapidly rotating SPB stars (Aerts et al. 1999) depends on the

existence of a putative excitation mechanism, which is signifi-

cantly more robust than that known for the 53 Per and slowly

rotating SPB stars; this result follows from the fact that damping

rates owing to leakage are typically quite large. If such excitation

does occur, the leaky outer mechanical boundary condition

predicts significant modifications to the characteristics of surface

velocity fields and temperature perturbations owing to the

pulsation.
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