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AB S TRACT

A qualitative study of the surface trapping of low-frequency non-radial g modes in rotating

early-type stars is undertaken within the Cowling, adiabatic and traditional approximations.

A dispersion relation describing the local character of waves in a rotating star is derived; this

dispersion relation is then used to construct propagation diagrams for a 7-M( stellar model,

which show the location and extent of wave trapping zones inside the star. It is demonstrated

that, at frequencies below a cut-off, waves cannot be fully trapped within the star, and will

leak through the surface. Expressions for the cut-off frequency are derived in both the non-

rotating and rotating cases; it is found from these expressions that the cut-off frequency

increases with the rotation rate for all but prograde sectoral modes.

While waves below the cut-off cannot be reflected at the stellar surface, the presence of a

sub-surface convective region in the stellar model, owing to He ii ionization, means that they

can become partially trapped within the star. The energy leakage associated with such

waves, which are assigned the moniker virtual modes owing to their discrete eigen-

frequencies, means that stability analyses which disregard their existence (by assuming

perfect reflection at the stellar surface) may be in error.

The results are of possible relevance to the 53 Per and SPB classes of variable star, which

exhibit pulsation frequencies of the same order of magnitude as the cut-off frequencies

found for the stellar model. It is suggested that observations either of an upper limit on

variability periods (corresponding to the cut-off), or of line-profile variations owing to

virtual modes, may permit asteroseismological studies of the outer layers of these systems.

Key words: stars: early-type ± stars: oscillations ± stars: rotation.

1 INTRODUCTION

The self-excitation of global non-radial pulsation modes in a star

is a prime example of positive feedback, whereby small oscil-

latory perturbations grow in amplitude via the efficient conversion

of heat into vibrational energy by a suitable driving mechanism

(see, e.g., Unno et al. 1989 for a comprehensive review of the

topic). A fundamental ingredient in the feedback loop is that the

oscillations must be trapped in some part of the stellar interior, so

that energy does not leak from the system faster than it can be

generated. Such trapping can occur when a pair of evanescent

regions, where traveling waves cannot be supported, enclose a

propagative region; waves are repeatedly reflected at the two

evanescent boundaries, and the resulting superposition leads to a

standing wave of the normal-mode type.

For waves excited in stellar envelopes, it is common for the

surface layers to serve as one of the evanescent regions required

for the formation of a trapping zone. Ando & Osaki (1975)

demonstrated that such a situation occurs in the Sun, where low-

order p modes are trapped beneath the photosphere, supporting a

model first put forward by Ulrich (1970) to explain the five-

minute solar oscillation Leighton, Noyes & Simon (1962). How-

ever, the trapping is only effective for modes with frequencies

below some cut-off; higher frequency modes cannot be reflected

at the photosphere, and will leak through the stellar surface. This

issue was addressed in detail by Ando & Osaki (1977), who found

that, although leakage does occur through the solar photosphere at

frequencies above the cut-off, some waves can subsequently be

reflected at the chromosphere-corona interface, and standing

waves are able to form. More recently, Balmforth & Gough (1990)

suggested that such coronal reflection can explain apparent

observations of high-frequency chromospheric standing waves

(Fleck & Deubner 1989), although debate concerning this

interpretation still continues (Kumar et al. 1994; Dzhalilov &

Staude 1995; Jefferies 1998).

Pulsation in massive, early stars (types O and B) is qualitatively

quite different from the solar case, owing to the gross structural

differences between the two stellar classes. However, it is still
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subject to the same wave trapping requirements, since the under-

lying physics remains the same. Shibahashi & Osaki (1976), in

their study of g modes trapped within the hydrogen-burning shell

of evolved massive stars, found that high-frequency (low-order)

modes can tunnel through an evanescent region separating core

and envelope, and thence escape from the star. A complementary

situation was discussed by Osaki (1977) when studying pulsation

in Cepheid-type stars; non-radial p modes trapped within the

envelope were able to tunnel through an evanescent region into

the core, where they were damped rapidly without reflection at the

centre.

In both cases, the appropriate region of the star was modelled as

an isolating oscillating unit with the inclusion of wave leakage at

one boundary. The leakage was found to stabilize some modes

which would otherwise have been self-excited, as a result of the

associated loss of vibrational energy from the star. Shibahashi

(1979) analysed wave trapping in an idealized stellar model

(corresponding to an evolved massive star) using an asymptotic

method, and discussed in some depth these two cases; in addition,

he considered the situation where low-frequency (high-order)

g modes are able to tunnel through an evanescent region in the

envelope and thence escape through the stellar surface.

More recently, however, relatively little attention has been

shown regarding wave trapping issues at the surface of early-type

stars; in particular, stability analyses (Cox et al. 1992; Kiriakidis,

El Eid & Glatzel 1992; Dziembowski & Pamyatnykh 1993;

Gautschy & Saio 1993), based on the new opacity calculations of

Rogers & Iglesias (1992) and Seaton (1993), have assumed that

the Lagrangian pressure perturbation dp tends to zero or some

limiting value at the stellar surface. Such an assumption corre-

sponds to the ab initio condition that waves incident from the

interior are totally reflected at the stellar surface; the possibility of

leakage is thereby disregarded, and no consideration of trapping

issues is undertaken.

This is the first in a short series of papers studying the surface

trapping of low-frequency g modes in early-type stars, in an

attempt to re-open discussion of, and investigation into, this

important area. Much of the work is conceptually developed from

that of Ando & Osaki (1975); however, in light of recent research

into the influence of rotation on low-frequency modes (Lee & Saio

1990, 1997; Bildsten, Ushomirsky & Cutler 1996), and owing

to the fact that significant rotation appears to be commonplace in

O- and B-star populations (Howarth et al. 1997), the theory is

updated to include rotational effects.

The current paper serves as a introduction, covering the more

qualitative, general aspects of the study; subsequent papers will

investigate various issues arising from this paper in greater depth.

The following section reviews the pulsation equations appropriate

for low-frequency g modes in rotating stars, whilst Section 3

derives the dispersion relation corresponding to these equations.

The trapping of waves described by this dispersion relation is

examined in Section 4 with the aid of propagation diagrams, and

the effect of rotation on the eigenfrequencies of individual modes

is discussed in Section 5. The findings are discussed in Section 6,

and summarized in Section 7.

2 PULSATION EQUATIONS

The dynamics of pulsation in a rotating star differ from the non-

rotating case as a result of the influence of the fictitious Coriolis

and centrifugal forces, which arise as a consequence of the non-

inertial nature of a rotating frame of reference. The centrifugal

force breaks the equilibrium symmetry of the star, so that the level

(equipotential) surfaces become oblate spheroids rather than the

usual concentric spheres. Such a change in stellar configuration

will manifest itself implicitly in the pulsation equations, through

modifications to the equilibrium variables of state. However, in

the case of uniform (solid-body) rotation, no explicit modification

of the pulsation equations occurs as a result of this centrifugal

distortion (Unno et al. 1989). In contrast, the Coriolis force enters

the pulsation equations explicitly, through the introduction of a

velocity-dependent term in the hydrodynamical momentum

equation. This term can lead to the significant modification of

individual pulsation modes, and is also responsible for the

existence of new classes of wave-like solutions (Longuet-Higgins

1968) which are not found in non-rotating systems.

Simultaneous treatment of both forces within a pulsation

framework is fraught with difficulty. Some progress towards this

goal has been made (e.g. Lee 1993; Lee & Baraffe 1995), but

attempts remain frustrated by the fact that the centrifugal

distortion cannot really be considered as an a posteriori modifi-

cation to the structure of a given star, but must be treated self-

consistently with the evolution of the star (see, e.g., Meynet &

Maeder 1997). However, in a number of limiting cases, certain

approximations can be made which simplify the problem signifi-

cantly. In the case of the low-frequency modes, the Coriolis force

will dominate the centrifugal force, and the effects of the latter on

the equilibrium configuration may be disregarded if the rotation is

not too severe. Furthermore, the so-called `traditional approxima-

tion' (Eckart 1960) may be employed, whereby the horizontal

component of the angular frequency vector of rotation V is

neglected. This approximation is most appropriate for low-

frequency pulsation modes in the outer regions of a star (Unno

et al. 1989), and therefore can be considered useful in the present

study.

In combination with the Cowling (1941) and adiabatic

approximations, where the perturbations to the gravitational

potential and specific entropy, respectively, are neglected, the

traditional approximation renders the pulsation equations separ-

able in the spherical polar co-ordinates (r, u ,f). Solutions for the

dependent variables j r and p 0, the radial fluid displacement and

Eulerian pressure perturbation, respectively, may then be written

in the form (Lee & Saio 1997)

jr � jr�r�Qm
l �m; n� exp�i�mf1 vt��; �1�

p 0 � p 0�r�Qm
l �m; n� exp�i�mf1 vt��; �2�

where m ; cos u is the normalized latitudinal distance from the

equatorial plane, v is the pulsation frequency in the co-rotating

reference frame, and Qm
l �m; n� is a Hough function (Bildsten et al.

1996; Lee & Saio 1997). These Hough functions are the eigen-

solutions of Laplace's tidal equation (Longuet-Higgins 1968), and

form a one-parameter family in n ; 2V=v; where V ; jVj is the
angular frequency of rotation. The integer indices l and m, with

l > 0 and jmj < l; correspond to the harmonic degree and

azimuthal order, respectively, of the associated Legendre poly-

nomials Pm
l �m� (Abramowitz & Stegun 1964) to which the Hough

functions reduce in the non-rotating limit, so that Qm
l �m; 0� ;

Pm
l �m�: This indexing scheme, based on the one adopted by Lee &

Saio (1990), is less general than that of Lee & Saio (1997), in that

it does not encompass the Hough functions corresponding to

Rossby and oscillatory convective modes (which do not have non-

rotating counterparts); however, such modes are not considered

herein, and the current scheme is sufficient. Note that v is
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considered to be positive throughout the following discussion,

and, therefore, prograde and retrograde modes correspond to

negative and positive values of m, respectively.

The radial dependence of the solutions (1±2) is described by the

eigenfunctions j r(r) and p 0(r), which are governed by a pair of

coupled first-order differential equations. In order to facilitate

subsequent manipulation, it is useful to write these equations in

the form

1

r2
d

dr
�r2jr�2

g

c2s
jr �

1

v2c2s

l2lmc
2
s

r2
2 v2

� �

p 0

r
�3�

and

1

r

dp 0

dr
1

g

c2s

p 0

r
� �v2

2 N2�jr; �4�

where r , cs, g and N are the local equilibrium values of the

density, adiabatic sound speed, gravitational acceleration and

Brunt±VaÈisaÈlaÈ frequency, respectively. Note that j r and p
0 are now

taken to be functions of r alone in both these and subsequent

equations, unless explicitly stated.

The quantity l lm appearing in equation (3), which arises as

separation constant when solutions of the form (1±2) are sought,

is the eigenvalue of Laplace's tidal equation corresponding to the

appropriate Hough function Qm
l �m; n�: In the limit n � 0; this

eigenvalue is equal to l(l11), and equations (3±4) are then

identical to those appropriate for a non-rotating star (e.g. Unno

et al. 1989, section 15.1). The utility of the traditional approxi-

mation thus lies in the fact that much of the formalism of the non-

rotating case may also be applied to rotating stars with the simple

replacement of l(l11) by l lm, a result first found by Lee & Saio

(1987).

Global solution of equations (3±4) must typically be

approached numerically; however, an examination of the local

character of the solutions suffices in the present qualitative

context. This character is governed by the dispersion relation

applicable to the equations, discussed in the following section.

3 D ISPERS ION RELATION

To derive a local dispersion relation for the pulsation equations

(3±4), it is useful first to place the equations in a canonical form

similar to that introduced by Osaki (1975) for the non-rotating

case. By defining the two new eigenfunctions,

~j � r2jr exp 2

�r

0

g

c2s
dr

� �

; �5�

~h � p 0

r
exp 2

�r

0

N2

g
dr

� �

; �6�

the left-hand sides of both pulsation equations may be written as a

single derivative, and the canonical form is found as

d ~j

dr
� h�r� r2

c2sv
2

llmc
2
s

r2
2 v2

� �

~h ; �7�

d ~h

dr
� 1

r2h�r� �v
2
2 N2� ~j ; �8�

where

h�r� � exp

�r

0

N2

g
2

g

c2s

� �

dr

� �

: �9�

Note that h(r) is always positive, so that the original eigenfunc-

tions j r and p 0 everywhere share the same sign as jÄ and hÄ ,

respectively.

Qualitative solution of these canonical equations is accom-

plished using the same method as Osaki (1975), namely, by

assuming that the coefficients on the right-hand sides are

independent of r. Such an assumption will be valid if the

characteristic variation scale of the solutions is much smaller than

that of the coefficients. Then, local solutions of the form

~j ; ~h , exp�ikrr�; �10�

lead to a dispersion relation for the radial wavenumber kr,

k2r �
1

c2sv
2

llmc
2
s

r2
2 v2

� �

�N2
2 v2�: �11�

By introducing the effective transverse wavenumber ktr, defined

by Bildsten et al. (1996) as

k2tr �
llm

r2
; �12�

the dispersion relation may be re-written in the more useful form

k2r c
2
sv

2 � �k2trc2s 2 v2��N2
2 v2�; �13�

The value of kr for given v and r, calculated using this expression,

determines the local character of waves at the appropriate fre-

quency and location within the star. Inspection of equation (10)

shows that real values �k2r . 0� correspond to propagative regions,

where the waves oscillate spatially, whilst imaginary values

�k2r , 0� correspond to evanescent regions, where the waves grow

or decay exponentially in amplitude. The k2r � 0 curves in the

(r,v2) plane, defined by the roots of the right-hand side of the

dispersion relation, separate these two types of region, and there-

fore correspond to the reflective boundaries discussed in the

introduction. These boundaries, of fundamental importance when

trapping zones are considered, are examined in the following

section with the aid of propagation diagrams. Note that this k2r � 0

definition of the reflective boundaries formally violates the

assumption used previously to derive the solutions (10); however,

this violation will have little effect on the positions of the

boundaries, and is not important at a qualitative level.

The remainder of this section is left to a discussion of the

effective transverse wavenumber ktr, since, as will be demon-

strated subsequently, this quantity can be pivotal in determining

the trapping conditions at the stellar surface. In the case of plane

waves in an infinite, plane-parallel, stratified medium, ktr may be

regarded as a free parameter; however, in the case of a spherical

configuration, its is constrained to assume values permitted by

equation (12). These constraints arise from to transverse boundary

conditions applicable to waves propagating in horizontal (i.e.,

non-radial) directions; in a non-rotating star, they are equivalent to

the requirement that solutions are invariant under the periodic

transformations u ! u1 2p and f ! f1 2p; and lead to the

familiar result (e.g. Unno et al. 1989)

k2tr �
l�l1 1�

r2
�n � 0�: �14�

When significant rotation is introduced, both of these require-

ments still hold, but an additional constraint in u is introduced as a

consequence of the variation of the Coriolis force with latitude.

Such variation means that, for n . 1; waves near the equator

which are propagating in the latitudinal direction become
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evanescent when jmj . 1=n; subsequent reflections lead to the

trapping of these waves within the so-called `equatorial wave-

guide' (Gill 1982). The resulting horizontally-standing waves,

whose angular dependence is described by the Hough functions

Qm
l �m; n�; are oscillatory in latitude between the waveguide

boundaries at m � ^1=n; and evanescent elsewhere. With

increasing n , these boundaries converge towards the equator; for

significant rotation, the constraints on ktr therefore become

dominated by the approximate requirement that an integer number

of half-wavelengths in latitude fit between the waveguide

boundaries. This requirement is manifest in the asymptotic

expression for l lm found by Bildsten et al. (1996), which, when

substituted into equation (12), gives

k2tr �
�2lm 2 1�2n2

r2
�n @ 1�; �15�

where lm is the number of latitudinal nodes exhibited by the

appropriate Hough function between the waveguide boundaries.

This latter quantity is independent of n for prograde �m . 0� and
zonal (m=0) modes, whilst it increments by 2 as n is increased

beyond unity for retrograde �m , 0� modes, due to the introduc-

tion of an additional pair of latitudinal nodes at n � 1 (Lee & Saio

1990; Lee & Saio 1997). Furthermore, lm � l2 jmj for n � 0;
since the associated Legendre polynomials Pm

l �m� exhibit l2 jmj
zeroes over 21 , m , 1; and Qm

l �m; 0� ; Pm
l �m�: These proper-

ties mean that lm in the above asymptotic expression (15) may be

written in terms of l and m as

k2tr �
�2l2 2jmj^ 1�2n2

r2
�n @ 1�; �16�

the plus sign being chosen for retrograde modes �m . 0�; and the

minus sign for prograde and zonal modes �m < 0�: A comparison

of this result with equation (14) indicates that the permitted values

of ktr for n @ 1 can greatly exceed the corresponding ones in the

non-rotating case, especially for small jmj:
The notable exception to this discussion is the case of the

prograde sectoral modes �m � 2l�; which in the limit n @ 1 are

transformed into equatorially-trapped Kelvin waves. Such Kelvin

waves have a exponential latitudinal dependence at small m

described by (Gill 1982)

jr; p
0
, exp 2

V2m2r2

c2s

� �

; �17�

indicating that they should be considered evanescent in the

latitudinal direction even at the equator. Therefore, the constraints

on ktr are dominated by the periodic boundary condition in f ; the

exp(imf) azimuthal dependence of the solutions (1±2) then gives

the transverse wavenumber for prograde sectoral modes as

k2tr �
m2

r2
�n @ 1;m � 2l�; �18�

which can also be derived using the asymptotic expression for l lm

found by Bildsten et al. (1996) for these modes.

4 WAVE TRAPPING AND LEAKAGE

As was demonstrated in the preceding section, the character of

waves within a star is determined by the local radial wavenumber,

so that positive and negative values of k2r can be identified with

propagative and evanescent regions, respectively. An indis-

pensable diagnostic tool for visualizing the location and extent

of these regions, over a range of frequencies, is the propagation

diagram introduced by Scuflaire (1974), in which the (r,v2) plane

is divided into zones over which the sign of k2r is constant.

Fig. 1 shows the propagation diagram for l � 4 modes in a

typical (non-rotating) early-type star; the logarithm of the tem-

perature T has been adopted as the abscissa, rather than the radius,

to emphasize the outer regions of the star. Regions in the

(log T,v2) plane where waves are propagative �k2r . 0� are

hatched, whilst evanescent regions �k2r , 0� are blank. Values

for the Brunt±VaÈisaÈlaÈ frequency N and adiabatic sound speed cs
throughout the star, required for the evaluating k2r using the

dispersion relation (13), have been taken from a 7-M( ZAMS

stellar model, calculated by Loeffler (private communication), the

parameters of which are summarized in Table 1; the model

extends out to the photosphere at optical depth t � 2=3; where the
temperature T ; Teff � 21 000K corresponds to an early-B

spectral type. Equation (14), which is appropriate in the non-

rotating case, has been used to calculate ktr.

In this figure, the type of hatching used to show propagative

regions delineates between waves with p- and g-mode characters,

the former occurring when both parenthetical terms on the right

hand side of the dispersion relation (13) are negative, and the latter

when both terms are positive. The division of the diagram into

relatively distinct p- and g-mode propagation regions is char-

acteristic of early-type stars. This division arises owing to the fact

that k2trc
2
s diverges at the origin (owing to the 1/r dependence of ktr)

Figure 1. The propagation diagram for l � 4; m � 21 modes in the 7-M(

stellar model, plotted in the (logT,v2) plane to emphasize the outer

regions of the model; the period P corresponding to the frequency is

shown on the right-hand ordinate. Hatched areas correspond to propagative

regions where waves have g-mode (/) or p-mode (\) character, whilst

evanescent regions are blank. The dotted horizontal line shows the position

of the trapping cut-off frequency v t.

Table 1. The physical parameters of the stellar
model considered throughout.

M/M( R/R( L/L( Teff/K Z

7.00 3.16 1.76�103 21 000 0.02
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and is relatively small at the surface, while N
2 is approximately

zero in the convective core �log T * 7:3� and relatively large at the
surface due to the steep stratification there. The prominent `well'

at log T < 4:6 indicates the presence of a thin convective region

�N2
, 0� due to He ii ionization, whilst the smaller well at

log T < 5:3 is due to the metal opacity bump responsible for

k-mechanism pulsation in early-type stars.

As mentioned in the previous section, the k2r � 0 curves which

separate propagative and evanescent regions correspond to the

reflective boundaries required for wave trapping. Inspection of

Fig. 1 shows that, for g modes with frequencies greater than the

trapping cut-off v t, where v2
t < 1:9 � 1029 rad2 s22 is shown in

the figure as a horizontal dotted line, there exists an extensive

trapping zone formed by a pair of reflective boundaries, one at the

edge of the convective core and the other in the envelope at lower

temperatures. In contrast, for modes with frequencies below v t,

waves are propagative even at the surface of the star, and the outer

reflective boundary required for the formation of a trapping zone

does not exist.

Strictly speaking, the term `mode' is not appropriate in such

circumstances, since stationary waves will not be established by

repeated complete reflection. However, all waves at frequencies

below the cut-off are evanescent in the convective region at

log T < 4:6: This region, with a width of approximately 0.16 per

cent of the stellar radius, behaves like a partially-reflecting barrier

to waves incident from the interior; some fraction of the waves

will leak through the barrier and thence propagate unhindered to

the surface, where they are lost from the star, whilst the remaining

reflected fraction will contribute to the establishment of `some-

what-stationary' waves interior to the barrier. Within the adiabatic

approximation, these waves must decay exponentially in ampli-

tude with time to compensate for the the energy lost through

leakage, but will still exhibit a discrete eigenfrequency spectrum.

Shibahashi & Osaki (1976), when considering a similar situation

for high-frequency g modes in evolved early-type stars, drew a

useful analogy with virtual levels in the potential problem of

quantum mechanics; therefore, it seems appropriate to refer to such

partially-trapped waves as virtual modes. Whether virtual modes can

actually be self-excited in a star depends on the balance between the

input of vibrational energy from a suitable driving mechanism, and

the loss of vibrational energy associated with the leakage; non-

adiabatic calculations are required to answer such a questions.

The trapping cut-off frequency v t, which separates the leaking

virtual modes from the fully-trapped `traditional' modes, is given

by the smaller root of the dispersion relation (13) at the stellar

surface, namely

v2
t � k2trc

2
s jr�R; �19�

where R is the stellar radius. This expression demonstrates the

pivotal role of the effective transverse wavenumber ktr, discussed at

the end of the preceding section, in determining the trapping

condition at the surface. In the non-rotating context, ktr can be

eliminated from this expression through use of equation (14) to give

v2
t �

l�l1 1�c2s
r2

�

�

�

�

r�R

�20�

for V � 0:
When the effects of rotation are included, the more general

expression (12) for ktr must be used in evaluating the sign of k2r
using the dispersion relation (13). However, propagation diagrams

may be constructed and interpreted in exactly the same manner as

the non-rotating case. Fig. 2 shows the propagation diagram for

the 7-M( stellar model considered previously, but with rotation

included at an angular frequency V � 8:04 � 1025 rads21; which
is half of the critical rotation rate for the star, and corresponds to a

period of 21.7 h. The effects of the rotation on the equilibrium

stellar structure having been neglected. Calculation of the

eigenvalue l lm in equation (12), for each frequency ordinate

value in the �log T;v2� plane, was accomplished using Town-

send's (1997) implementation of the matrix eigenvalue method

presented by Lee & Saio (1990). This method corresponds to the

spectral expansion of Hough functions in a truncated series of

associated Legendre polynomials of the same azimuthal order m;

100 expansion terms were used throughout the calculations, a

value deemed to provide sufficient accuracy since a similar

calculation with 200 terms produced no numerical change in the

results. An azimuthal order m � 21 was adopted, so Fig. 2 should

be taken as appropriate for modes with �l;m� � �4;21�:
Inspection of this figure shows that the trapping cut-off is

significantly larger �v2
t < 8:0 � 1029 rad2 s22� than in the non-

rotating case. This is a direct consequence of the influence of

rotation on ktr; at low frequencies where v , 2V; n . 1; and ktr
can assume large values, as discussed in the preceding section.

The appropriate expression for v t in rotating stars is given by

v2
t �

llmc
2
s

r2

�

�

�

�

r�R

; �21�

although this should be regarded as formal, since it must be

remembered that l lm is itself a function of v through its

dependence on the parameter n. However, in the limit V2
@ c2s=r

2

(at the surface), this expression will have solutions corresponding

to n @ 1; and thus the asymptotic expressions (16,18) found

previously may be used in the place of the general expression (19)

for ktr. Solving the resulting equations for v t then gives

v2
t �

2V�2l2 2jmj1 1�cs=r
2V�2l2 2jmj2 1�cs=r
m2c2s=r

2

8

>

>

<

>

>

:

�

�

�

�

�

�

�

�

r�R

�m . 0�
�2l , m < 0�
�m � 2l�

�22�

Figure 2. As for Fig. 1, but rotation has been introduced at an angular

frequency V � 8:04 � 1025 rad s21: The azimuthal order m is 21.
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for V2
@ c2s=r

2: Applying the middle expression to the 7-M(

model for V � 8:04 � 1025 rad s21; and cs=r � 9:76 � 1026 s21 at

the surface, leads to the asymptotic value v2
t � 7:85 � 1029

rad2 s22 for �l;m� � �4;21� modes, which is in reasonably good

agreement with the value v2
t < 8:0 � 1029rad2 s22 shown in

Fig. 2.

The above expressions, when compared with equation (20),

demonstrate that the effect of rotation is to increase the trapping

cut-off v t for all but the prograde sectoral modes; these latter

modes will exhibit a smaller cut-off in rotating stars than in the

non-rotating case, owing to their transformation into Kelvin waves

discussed previously. This result is interesting in light of anecdotal

observational evidence favouring prograde sectoral modes as the

source of periodic line-profile variations in rapidly-rotating early-

type stars. If such evidence can be substantiated at a quantitative

level, as has been done by Howarth et al. (1998) for the rapidly-

rotating pulsators HD93521 and HD64760, then it can be

suggested that the bias towards prograde sectoral modes is due

to the suppression of other types of mode, which will have a large

values of v t at rapid rotation rates and therefore preferentially leak

from the star without self-excitation.

5 E IGENFREQUENCIES

In addition to its influence on the trapping cut-off frequency v t,

rotation modifies the eigenfrequencies and eigenfunctions of

individual modes through its influence on the positions of trapping

boundaries; this can be anticipated from the appearance of l lm in

the pulsation equations (3±4). To evaluate the modified eigen-

frequencies at a qualitative level, the asymptotic technique

developed by Shibahashi (1979) and Tassoul (1980) may be

adapted using the traditional approximation to given expressions

appropriate for rotating stars. Using such an approach, Lee & Saio

(1987) found that low-frequency g modes trapped between the

boundary of the convective core �r � rc� and the surface of a

rotating early-type star have eigenfrequencies vn given by

vn �
2

�������

llm
p

�n1 he=22 1=6�

�R

rc

jNj
r

dr; �23�

where he is the effective polytropic index at the surface, and n is

the radial order of the mode. This expression is not strictly

appropriate in the current context, owing to the fact that the outer

reflecting boundary for trapped modes in Figs 1 and 2 occurs at

r , R; furthermore, the presence of the convective region at

log T < 4:6 has been neglected. However, the form of the

expression demonstrates that the frequencies of individual

modes share the same l lm-dependence as the trapping cut-off v t

in equation (21).

It can therefore be suggested that a g mode that is trapped in a

non-rotating star will remain trapped once rotation is introduced,

since the effect of rotation is to scale both sides of the trapping

condition vn . vt by an equal amount. Disregarding the

possibility of avoided crossings (Aizenman, Smeyers & Weigert

1977; Lee & Saio 1989), a more general hypothesis may be put

forward that, ceteris paribus, the set of radial orders {n} of the g

modes which are trapped in a non-rotating star will remain

invariant under the influence of rotation, with a similar result

applying to the virtual modes. The hypothesis can be supported

with an analogy drawn to atomic energy levels under the influence

of a magnetic field; even though the levels are distorted by the

action of the Lorentz force (which, like the Coriolis force, can be

expressed as a velocity cross-product), the set of discrete states

which are bound is invariant under the action of the field.

However, numerical calculations should be employed to test this

hypothesis rigorously.

6 DISCUSS ION

An important caveat regarding quantitative interpretation of the

results presented previously is that atmospheric layers above the

photosphere at t � 2=3 have been disregarded. This is justifiable

if ktr is constant throughout these layers; however, such a situation

is unlikely to be realized, since even in the case of isothermal

trans-photospheric regions where the sound speed cs is constant,

ktr , 1=r because of the spherical geometry. As a consequence,

waves which are formally propagative at r � R may leak out to

some radius r . R and thence be reflected back towards the

interior, leading to complete wave trapping at frequencies below

the cut-off v t.

To address properly this issue of trans-photospheric reflection,

it is necessary to relocate the nominal outer boundary of the star to

a radius at which it is guaranteed that no reflected, inward-

propagating waves will occur. In the context of the linear and

adiabatic approximations adopted herein, this guarantee can only

be made of the outer boundary is located at infinity. However,

once non-adiabatic effects are considered, it is possible that strong

radiative or non-linear dissipation above the photosphere can lead

to the effective absorption of all outward-propagating waves, with

no reflection and subsequent trapping. Such a situation is ana-

logous to the core-absorption of inwardly-propagating envelope p

modes found by Osaki (1977), and can be treated by placing the

outer boundary at the base of the dissipative region (which may be

close to the photosphere).

Similar arguments concerning the absence of trans-photo-

spheric reflection can be made for systems with stellar winds.

Owocki & Rybicki (1986) found that, for a line-absorption driven

wind, any wave-like disturbance which reaches the sonic point rs
can never propagate back to smaller radii, due to the non-linear

interaction between the wave and underlying mean flow. In this

case, the outer boundary can be located at rs; however, quantitative

treatments are problematical, since the pulsation equations must

be revised to take the sub-sonic wind regions into account.

In spite of these difficulties, the results of this work are valid on

a phenomenological level, and may be of particular relevance to

the 53 Per (Smith & Karp 1976) and slowly-pulsating B (SPB;

Waelkens 1991) classes of variable stars, which are unstable to

low-frequency g-mode pulsation owing to the metal opacity bump

at log T < 5:3 (Dziembowski & Pamyatnykh 1993; Dziembowski,

Moskalik & Pamyatnykh 1993); the observed periods of these

stars are typically 1-3 d, which is the same order of magnitude as

the trapping cut-off depicted in figs. 1 and 2. As indicated

previously, the global self-excitation of a given pulsation mode in

one of these stars (or, indeed, any other type of star) depends on

the competitive interplay between excitation and damping

mechanisms, which, respectively, pump energy into and remove

energy from the pulsation at each point within the star; self-

excitation will only occur if the net contributions from the former

outweighs the net deductions from the latter. For the purposes of

the following discussion, both of these generic energy-transfer

processes may be classified as either

(a) non-adiabatic, where the transfer arises through perturba-

tions to the specific entropy, corresponding to the operation of a

6 R. H. D. Townsend
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Carnot heat engine which converts between thermal and mechan-

ical (wave) energy within a given region, or

(b) advective, where the transfer arises through the non-zero

divergence of the wave flux, corresponding to a net flow of

mechanical energy through the boundaries of the region.

The opacity mechanism operative in 53 Per and SPB stars is

thus a non-adiabatic excitation mechanism (a), whilst the energy

loss associated with wave leakage at frequencies below the

trapping cut-off v t may be identified as an advective damping

mechanism (b). In the stability calculations of Dziembowski et al.

(1993), who use the approach described by Dziembowski (1977),

the assumption is made that the Lagrangian pressure perturbation

dp tends to a limiting value at the surface; this corresponds to the

ab initio restriction that all waves are evanescent at the surface,

and thus completely trapped within the star. Hence, any contri-

butions to advective damping arising from wave leakage are

neglected, which might lead to incorrect results for the over-

stability of modes at frequencies below v t.

However, it must be stressed that the last point is somewhat

formal, if modes are stabilized by non-adiabatic damping well

before the frequency is low enough for leakage to occur; whilst

advective damping might enhance the stability of the virtual

modes, it will have little influence in determining which (trapped)

modes are unstable in a star. In the case of the 53 Per and SPB

stars, such a situation may arise due to the dominance of the

opacity mechanism by radiative damping at lower frequencies.

The latter is large for high-order (large-n) g modes, whose

eigenfunctions exhibit many radial nodes in the stellar envelope;

the sub-adiabatic temperature gradient in the radiative parts of the

envelope will lead to significant thermal diffusion between

neighbouring oscillating elements, which tends to suppress the

pulsation (see, for instance, equation 26.13 in Unno et al. 1989

plus their accompanying text). These issues will be examined

further in the next paper in this series.

In a contrasting situation, where non-adiabatic damping is less

important at low frequencies, the overstability of virtual modes

will be determined by the relative strengths of non-adiabatic

excitation and advective damping. If the latter is dominant, then g

modes will exhibit an upper limit in their variability periods which

corresponds to the trapping cut-off; in the more rapidly-rotating

stars (see, e.g., Aerts et al. 1999), this upper limit will depend,

amongst other things, on m and the degree of rotation. In contrast,

if non-adiabatic excitation dominates, then no upper period limit

will be observed, since virtual modes will be excited in addition to

trapped modes. Estimates of the strength of advective damping

can be obtained using, for instance, the asymptotic approach

presented by Shibahashi (1979). However, as with the local

analysis used in Section 3, such an approach is only valid when

the characteristic variation scale of eigenfunctions is much smaller

than that of the underlying star. This restriction means that

Shibahashi's approach may lead to poor results for those virtual

modes with frequencies close to v t; therefore, an examination of

the importance of leakage-originated advective damping is

deferred to the following paper, where the pulsation equations

are solved globally using a numerical approach which does not

suffer from the restriction discussed.

Whilst a proper treatment of trapping, even in cases without the

trans-photospheric reflection described above, adds a certain level

of complexity to theoretical studies, it does open the way for

asteroseismological studies of the near-surface regions of early-

type stars. For instance, if an upper period limit is observed as

described, the inferred value of v t may be used, in tandem with

equations (20±22), to calculate a value for the acoustic time-scale

tacc � r=cs �24�

in the region where the onset of wave leakage occurs. Since, for an

ideal gas, the adiabatic sound speed cs is a function of temperature

T alone, this time-scale then gives an independent estimate of the

temperature in the outer layers of the star. Conversely, observa-

tions of variability attributable to virtual modes can confirm the

existence of sub-surface convective regions arising in ionization

zones, predicted by evolutionary models of early-type stars. The

degree of wave leakage associated with a virtual mode depends on

the thickness of these regions (which form the partially-reflective

barrier necessary for the existence of virtual modes); therefore, it

might be possible to obtain estimates of the thickness through

measurements of the leakage rate.

7 CONCLUSIONS

The prime conclusion to be drawn from the work presented herein

is that the complete trapping of low-frequency g modes beneath

the surface of early-type stars is not guaranteed. This is especially

the case in rotating stars, where the trapping cut-off frequency v t

can be significantly increased by the action of the Coriolis force

for all but the prograde sectoral modes. The fact that the latter are

more effectively trapped in rapidly-rotating stars than other types

of modes may explain anecdotal observational evidence which

points to their favoured excitation. As a consequence of the

dependence of g-mode eigenfrequencies on the rotation rate, the

hypothesis has been put forward that the set of radial orders {n} of

trapped g modes is invariant under the influence of rotation.

Stability analyses which contain the ab initio assumption of

complete wave reflection at the stellar surface might be in error at

frequencies below the cut-off v t. More rigorous calculations can

include the possibility of wave leakage, by adopting a more

physically-realistic outer mechanical boundary condition. Such

calculations will reveal to what extent advective damping

associated with leaking virtual modes might suppress the self-

excitation of these modes. These points may be of especial

relevance to the 53 Per and SPB classes of variable stars.
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