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ABSTRACT
We present a new oscillation code, GYRE, which solves the stellar pulsation equations (both
adiabatic and non-adiabatic) using a novel Magnus Multiple Shooting numerical scheme de-
vised to overcome certain weaknesses of the usual relaxation and shooting schemes appearing
in the literature. The code is accurate (up to sixth-order in the number of grid points), robust,
efficiently makes use of multiple processor cores and/or nodes and is freely available in source
form for use and distribution. We verify the code against analytic solutions and results from
other oscillation codes, in all cases finding good agreement. Then, we use the code to explore
how the asteroseismic observables of a 1.5 M� star change as it evolves through the red-giant
bump.

Key words: methods: numerical – stars: evolution – stars: interiors – stars: oscillations – stars:
variables: general.

1 IN T RO D U C T I O N

The field of asteroseismology has been reinvigorated in recent years
thanks to the wealth of new observational data provided by space-
based instruments. Over the past decade there have been three satel-
lite missions with specific asteroseismic objectives: MOST (Walker
et al. 2003; Matthews 2007) launched in 2003, CoRoT (Michel et al.
2008; Baglin et al. 2009) launched in 2006 and Kepler (Borucki
et al. 2009; Gilliland et al. 2010; Kjeldsen et al. 2010) launched
in 2009. Exciting results from these missions include the discovery
that nearly all γ Doradus and δ Scuti stars are hybrid pulsators
(Grigahcène et al. 2010), ensemble asteroseismic analysis of solar-
like oscillations in hundreds of solar-type stars (Chaplin et al. 2011)
and the detection of solar-like oscillations in a large sample of red
giants (De Ridder et al. 2009). See also the reviews by Christensen-
Dalsgaard & Thompson (2011) and Chaplin & Miglio (2013) for
further highlights.

Interpreting these new observations requires the seismologist’s
analogue to the telescope: a stellar oscillation code which calculates
the eigenfrequency spectrum of an arbitrary input stellar model.
Comparing a calculated spectrum against a measured one provides
a concrete metric for evaluating a model, and therefore constitutes
the bread and butter of quantitative asteroseismology. Although
the task of iteratively improving model parameters has been quite
cumbersome in the past, there are now tools available that largely
automate this process. The Asteroseismic Modelling Portal (AMP;
Metcalfe, Creevey & Christensen-Dalsgaard 2009) provides a web-
based front end for asteroseismic analysis and model optimization
of solar-like stars, using the Aarhus Stellar Evolution code (ASTEC;
Christensen-Dalsgaard 2008a) to build models and the Aarhus Pul-
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sation code (ADIPLS; Christensen-Dalsgaard 2008b) to calculate their
eigenfrequencies. Likewise, the widely adopted MESA stellar evolu-
tion code (Paxton et al. 2011, 2013) includes an asteroseismology
module also based on ADIPLS, and offering similar optimization ca-
pabilities to AMP.

Such tools place ever-increasing demands on the oscillation codes
that underpin them. A code will typically be executed hundreds or
thousands of times during an optimization run, and must therefore
make efficient use of available computational resources (e.g. multi-
ple processor cores and/or cluster nodes). The code must be robust,
running and producing sensible output without manual intervention
like hand-tuning. The code must have an accuracy that matches or
exceeds the frequency precision now achievable by satellite mis-
sions. Finally, it is preferable that the code addresses the various
physical processes that inevitably complicate calculations, such as
non-adiabaticity, rotation and magnetic fields.

These desiderata motivated us to develop a new oscillation code,
GYRE, which we describe in the present paper. The code is based
on a ‘Magnus Multiple Shooting’ (MMS) scheme for solving the
linearized pulsation equations, devised by us to address various pit-
falls encountered with the standard relaxation and shooting schemes
appearing in the literature. The following section reviews these
schemes and the existing oscillation codes which use them. Sec-
tion 3 then describes the MMS scheme in detail, and Section 4
discusses how the scheme is implemented in GYRE. We present ex-
ample calculations in Section 5, and discuss and summarize the
paper in Section 6.

2 BAC K G RO U N D

The differential equations and algebraic boundary conditions gov-
erning small-amplitude non-radial oscillations of a star about an
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equilibrium background state – the so-called linearized stellar pul-
sation equations, presented in the adiabatic case in Appendix A –
constitute a two-point boundary value problem (BVP) in which the
oscillation frequency ω serves as an eigenvalue (for a comprehen-
sive review, see the monographs by Cox 1980; Unno et al. 1989;
Aerts, Christensen-Dalsgaard & Kurtz 2010; Smeyers & van Hoolst
2010). Although there exist special cases where analytic solutions
exist (e.g. Pekeris 1938), in general this BVP must be solved numer-
ically. Oscillation codes specializing in this task were first described
a half century ago, and since then many different numerical schemes
have been proposed in the literature. The following sections review
the two most prevalent, and Section 2.3 then briefly discusses other
approaches which have been adopted.

2.1 Relaxation schemes

Relaxation schemes for BVPs replace the derivatives in the differ-
ential equations with finite-difference approximations specified on
a grid. Applied to pulsation problems, the finite-difference relations
together with boundary conditions and a normalization condition
establish a (typically large) system of algebraic equations in which
the unknowns are the dependent variables y at the grid points plus
the dimensionless oscillation frequency ω. Because these equations
are non-linear (specifically, bi-linear in y and ω2 for adiabatic pul-
sation), the simultaneous determination of all unknowns requires
iterative improvement of a trial solution – for instance using the
procedure developed initially for stellar evolution calculations by
Henyey, Forbes & Gould (1964), which can be regarded as a multi-
dimensional Newton–Raphson algorithm. (Unno et al. 1989 present
a detailed implementation of this procedure specifically tailored to
the pulsation equations).

The convergence of the Henyey scheme depends on how close
a trial solution is to a true solution. Castor (1971) proposed an
elegant approach to finding good trial solutions for radial pulsation
problems, which Osaki & Hansen (1973) subsequently adapted to
the non-radial case. One of the boundary conditions is set aside,
allowing the system of algebraic equations to be solved at any
ω using a standard linear algorithm (e.g. Gaussian elimination).
The overlooked boundary condition is then used to construct a
discriminant function D(ω) which vanishes when the boundary
condition is satisfied. Clearly, the roots of D(ω) correspond to the
eigenfrequencies of the full BVP; thus, good trial solutions can be
obtained by isolating and refining these roots.

Relaxation using the Castor (1971) approach has proven very
popular, forming the basis for many oscillation codes including the
BOOJUM code (Townsend 2005), the Nice Oscillation code (NOC;
Provost 2008), the Granada Oscillation code (GRACO; Moya &
Garrido 2008) and the LNAWENR code (Suran 2008). It is generally
robust, but can run into difficulty when the discriminant function
exhibits singularities. These arise when the dependent variable used
for normalization naturally exhibits a zero at the point where the
normalization is applied. Unno et al. (1989) propose addressing this
problem by dividing the discriminant by one of the dependent vari-
ables evaluated at the opposite boundary to the overlooked bound-
ary condition. This approach works well for the adiabatic pulsation
equations within the Cowling (1941) approximation (where pertur-
bations to the gravitational potential are neglected), because neither
of the dependent variables in this second-order BVP is ever zero
at the boundaries. However, in more general cases no such guaran-
tees can be made, and the division itself can make the singularities
recrudesce.

Attempts at more-sophisticated fixes to the singular discriminant
problem seem similarly doomed to failure. Because the singularities
ultimately stem from the imposition of an inappropriate normaliza-
tion, it is better to avoid normalization altogether when searching
for eigenfrequencies; this is the approach taken by the MMS scheme
(Section 3).

2.2 Shooting schemes

Shooting schemes treat BVPs as a set of initial value problems
(IVPs), with matching conditions applied where pairs of these IVPs
meet. In the stellar oscillation literature ‘double shooting’ (also
termed ‘shooting to a fitting point’) is most commonly encountered:
IVPs are integrated from each boundary towards an internal fitting
point, with initial values determined from the boundary conditions.
The mismatch between solutions at the fitting point is quantified by
a discriminant function D(ω) which vanishes when the integrations
match. As before, the roots of D(ω) correspond to the eigenfre-
quencies of the BVP.

Hurley, Roberts & Wright (1966) and Smeyers (1966, 1967) were
among the first to apply double shooting to the pulsation equations.
Scuflaire (1974) adopted a simplified version of the scheme, where
the fitting point is placed at a boundary and only one IVP integra-
tion is performed (so-called ‘single shooting’ or ‘simple shooting’);
however, the integration can become unstable when approaching a
boundary where the differential equations become singular (i.e. the
inner boundary, and in polytropic models the outer boundary too).
Modern oscillation codes based on double shooting include ADIPLS

(which can use either shooting or relaxation), the Porto Oscillation
Code (POSC; Monteiro 2008) and the OSCROX code (Roxburgh 2008).

Christensen-Dalsgaard (1980) discusses a complication that
arises when using double shooting to solve the adiabatic pulsa-
tion equations without the Cowling (1941) approximation. This
fourth-order BVP requires integrating two linearly independent so-
lutions from each boundary. In evanescent regions these solutions
are dominated by an exponentially growing component, and they
can easily become numerically linearly dependent. The problem
cannot be fixed by switching the direction of integration (as one
might do with an IVP), because the BVP has an ‘exponential di-
chotomy’ – components that grow and decay exponentially in both
directions.1 This is a well-established weakness of single/double
shooting schemes in general and has been extensively analysed in
the BVP literature (see e.g. the excellent monograph by Ascher,
Mattheij & Russell 1995). Happily, the same literature provides
a number of strategies for avoiding this weakness. One of them,
the Riccati method, has already been used by Gautschy & Glatzel
(1990) to explore highly non-adiabatic oscillations (and see also
Valsecchi et al. 2013). Another, multiple shooting, forms the basis
of the MMS scheme.

2.3 Other approaches

Although shooting and relaxation dominate in the stellar oscillation
literature, they are by no means the only schemes used. The ground-
breaking paper by Hurley et al. (1966), already mentioned above as
an early instance of shooting, also describes a collocation method
(and the authors allude to the possibility of a third approach, which

1 In fact this is a good thing; as Hoog & Mattheij (1987) demonstrate,
an exponential dichotomy is a necessary condition for a BVP to be well
conditioned.
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can be recognized as relaxation!). Collocation methods approximate
BVP solutions as a superposition of basis functions (e.g. Chebyshev
polynomials) which satisfy the differential equations exactly at a
set of nodes. Recently, Reese, Lignières & Rieutord (2006) again
used collocation to explore oscillations of polytropes, but this time
incorporating the effects of rapid rotation.

The finite element method (FEM) shares some similarities with
collocation methods, also using superpositions of basis functions.
However, the functions are chosen to minimize certain integrals
representative of the solution error. Two examples of FEM-based
oscillation codes are FILOU (Suárez & Goupil 2008) and PULSE

(Brassard & Charpinet 2008).
One other approach garnering some interest is inverse iteration.

As with relaxation, the differential equations are approximated with
finite differences. However, the resulting algebraic equations are
explicitly structured as a generalized linear eigenvalue problem,
which is then solved using the well-established technique of inverse
iteration (e.g. Golub & van Loan 1996). With a good trial solution
convergence is rapid. This approach is used by the MAD code (Dupret
2001) and the Liège oscillation code (OSC; Scuflaire et al. 2008).

3 TH E M AG N U S M U LTI P L E - S H O OT I N G
SCHEM E

3.1 Problem statement

The MMS scheme solves BVPs defined by a system of linear,
homogeneous, first-order ordinary differential equations

d y
dx

= A(x) y (1)

defined on the interval xa ≤ x ≤ xb, together with boundary condi-
tions applied at each end of the interval,

Ba y(xa) = 0, Bb y(xb) = 0. (2)

For n equations, y ∈ C
n is the vector of dependent variables and

A ∈ C
n×n is the Jacobian matrix. If na of the boundary conditions

are applied at the inner point xa and the remaining nb ≡ n − na are
applied at the outer point xb, then Ba ∈ C

na×n and Bb ∈ C
nb×n.

3.2 Multiple shooting

Multiple shooting is a natural extension of the single/double shoot-
ing schemes discussed in Section 2.2 which avoids the numerical
difficulties encountered when the system of equations exhibits an
exponential dichotomy. Ascher et al. (1995) discuss it in consider-
able depth; here, we highlight the important aspects. The interval is
divided up into a grid of N points

xa ≡ x1 < x2 < · · · < xN−1, xN ≡ xb. (3)

The solution to the BVP at any point in the kth subinterval xk ≤ x ≤
xk+1 (k = 1, 2, . . . , N − 1) is written as

y(x) = Y(x; xk) yk, (4)

where yk ≡ y(xk) and the fundamental solution Y(x; x ′) ∈ C
n×n is

the matrix function satisfying the IVP

dY

dx
= A(x)Y, Y(x ′; x ′) = I. (5)

Here, I is the rank-n identity matrix.

The requirement that y be continuous at subinterval edges im-
poses the matching condition

yk+1 = Yk+1;k yk, (6)

where we use the shorthand

Yk+1;k ≡ Y(xk+1; xk) (7)

for the fundamental solution matrix spanning the kth subinterval.
There are N − 1 such matching conditions, and in combination with
the boundary conditions (2) they lead to the system of algebraic
equations

S u = 0. (8)

The vector of unknowns u ∈ C
Nn packs together the dependent

variables at the grid points,

u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

...

yN−1

yN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

and the system matrix S ∈ C
Nn×Nn has a staircase structure (e.g.

Fourer 1984) given by

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ba 0 0 · · · 0 0

−Y2;1 I 0 · · · 0 0

0 −Y3;2 I · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −YN ;N−1 I

0 0 0 · · · 0 Bb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

As a linear homogeneous system, equation (8) admits non-trivial
solutions only when the determinant of the system matrix vanishes,

det(S) = 0. (11)

This can be recognized as the characteristic equation of the BVP.
In the case of the pulsation equations S depends implicitly on ω;
thus, the stellar eigenfrequencies are the roots of the discriminant
function

D(ω) = det[S(ω)], (12)

and can be determined using a suitable root-finding algorithm. Set-
ting ω equal to one specific eigenfrequency, the corresponding
eigenfunctions are first constructed on the shooting grid {xk} by
finding the non-trivial vector u satisfying equation (8). Then, the
eigenfunctions at any point in any subinterval follow from applying
equation (4).

Inspecting the form of S suggests that the system of equations
can be greatly simplified to

Sc uc = 0, (13)

where

uc =
(

y1

yN

)
(14)
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and

Sc =

⎛
⎜⎜⎝

Ba 0

−YN ;N−1YN−1;N−2 . . .Y3;2Y2;1 I

0 Bb

⎞
⎟⎟⎠. (15)

Unfortunately, this approach, known as compactification, suffers
from a similar issue to single/double shooting: when evaluating the
product of fundamental solution matrices in the above expression,
the columns become numerically linearly dependent (see Ascher
et al. 1995, for a more-detailed discussion).

3.3 Magnus integrators

To evaluate the fundamental solution matrices Yk+1;k in each of the
N − 1 subintervals, the MMS scheme builds on an approach pro-
posed by Gabriel & Noels (1976). These authors approximated the
Jacobian matrix of the adiabatic pulsation equations as piecewise-
constant in each subinterval (‘shell’ in their terminology). In the
present context this leads to a fundamental solution

Yk+1;k = exp(A�xk), (16)

where �xk ≡ xk+1 − xk (a derivation of this result appears below).
This expression involves matrix exponentiation – a topic discussed
at length by Moler & Van Loan (2003), who survey the strengths and
weaknesses of nineteen different methods. Here we focus on eigen-
decomposition (their method 14), both for pedagogic purposes and
because it is adopted in the GYRE code (Section 4.3). The Jacobian
matrix is written as

A = MA�AM−1
A , (17)

where �A ∈ C
n×n is a diagonal matrix whose non-zero elements

are the eigenvalues {λi
A} (i = 1, . . . , n) of A, and the columns of the

matrix MA ∈ C
n×n comprise the corresponding eigenvectors. With

this decomposition, the fundamental solution (16) becomes

Yk+1;k = MA exp(�A�xk)M−1
A , (18)

where the non-zero elements of the diagonal matrix exp(�A�xk)
are

[exp(�A�xk)]ii = exp(λi
A�xk). (19)

An instructive physical narrative for these equations can be ob-
tained by substituting equation (18) into (6) to yield

yk+1 = MA exp(�A�xk)M−1
A yk. (20)

The matrices on the right-hand side of equation (20) correspond to
a sequence of operations which advance y from the kth grid point
to the k + 1 point. First, yk is projected on to a set of basis vectors
given by the rows of M−1

A . This projection amounts to decomposing
yk into contributions from n independent waves. Then, the ampli-
tudes and phases of the waves are evolved across the subinterval by
applying the diagonal matrix exp(�A�xk). In evanescent zones all
eigenvalues are real and only the wave amplitudes change, whereas
in propagation zones one or more eigenvalues are complex and the
wave phases also change. Finally, the waves are projected back into
physical space by the matrix MA.

The Gabriel & Noels (1976) approach can be generalized by
recognizing it as an application of a simple yet powerful theorem
proposed by Magnus (1954). Subject to certain convergence criteria,
the solution to the IVP (5) can be written as the matrix exponential

Y(x; x ′) = exp[�(x; x ′)], (21)

where the Magnus matrix � ∈ C
n×n has a series expansion whose

leading terms are

�(x; x ′) =
∫ x

x′
A(x1) dx1

− 1

2

∫ x

x′

[∫ x1

x′
A(x2) dx2,A(x1)

]
dx1 + · · · (22)

(here, [. . . , . . . ] denotes the matrix commutator). Blanes et al.
(2009) present a detailed review of Magnus’s theorem, covering
both its mathematical underpinnings and its practical application to
solving systems of differential equations.

In the context of the MMS scheme, Magnus’s theorem gives the
fundamental solution matrix within each subinterval as

Yk+1;k = exp[�(xk+1; xk)]. (23)

If the Jacobian matrix A is independent of x, then all terms but the
first in the expansion (22) vanish and the Magnus matrix is simply

�(xk+1; xk) = A�xk. (24)

By combining equations (23) and (24) we recover the fundamental
solution (16) obtained using the Gabriel & Noels (1976) approach.
This constant-Jacobian case is the only one having a closed-form
expression for the Magnus matrix; however, as discussed by Blanes
et al. (2009) it is relatively straightforward to construct approxi-
mations to equation (22) which are correct to some specified order
in the subinterval width �xk. Specifically, if second-order Gauss–
Legendre quadrature is used to evaluate the integrals in the expan-
sion (22), then the Magnus matrix becomes

�(xk+1; xk) ≈ A

(
xk + �xk

2

)
�xk + O[(�xk)3]. (25)

Higher-order quadratures lead to correspondingly higher-order ap-
proximations; in Appendix (B) we quote fourth- and sixth-order
accurate expressions for the Magnus matrix, also based on Gauss–
Legendre quadrature. We refer to the fundamental solutions (23)
using these expressions as the Magnus GLo integrators, where GL
for stands for Gauss–Legendre and o = 2, 4, 6 indicates the or-
der of accuracy. These integrators all share the useful property
of not requiring Jacobian evaluations at the subinterval endpoints,
which allows them to gracefully handle singularities at the interval
boundaries.

3.4 Commentary

Compared to single/double shooting schemes, multiple shooting has
the advantage that the subinterval width �xk can always be chosen
sufficiently small that the columns of the associated fundamental
solution matrix Yk+1,k remain linearly independent, even in the
presence of an exponential dichotomy. This is because the matrix
approaches the identity matrix in the limit �xk → 0. In practice,
this choice rarely needs to be made explicitly; small �xk is already
desirable in the interests of accuracy.

Despite being based on shooting, certain parts of the MMS
scheme bear a strong resemblance to relaxation. In particular, the
staircase structure of the system matrix (10) also arises in finite-
difference approximations to the BVP differential equations (see
Section 2.1). This is no coincidence: it is straightforward to demon-
strate that any relaxation scheme can be built from a multiple
shooting scheme (and vice versa) by choosing a suitable numer-
ical method for the IVP (4).
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In principle, equation (8) could be solved using Castor’s method:
by replacing one of the boundary conditions in the first or last block
rows with a normalization condition, the system of equations be-
comes inhomogeneous and can be solved for any ω. The replaced
boundary condition then serves as the discriminant function. How-
ever, this would be an obtuse way to solve a homogeneous linear
problem, and it is little wonder that problems arise (e.g. the singular-
ities discussed in Section 2.1). The determinant-based discriminant
we propose in equation (12) is the natural approach, and given that
the elements of S are finite it is guaranteed to be well behaved.
Dupret (2001) and Scuflaire et al. (2008) successfully use a similar
method to find trial solutions for their inverse iteration schemes.

The MMS scheme is the first explicit application of Magnus’s
theorem to stellar oscillations. However, as we demonstrate in the
preceding section the Gabriel & Noels (1976) method is equivalent
to shooting using a Magnus integrator. More recently, Christensen-
Dalsgaard (2008b) mentions that the ADIPLS code can optionally use
a similar approach (second-order Magnus based on Newton–Cotes
quadrature) to integrate the adiabatic pulsation equations within
the Cowling (1941) approximation. In both papers, the authors
recognize the schemes’ key strength that they can resolve solu-
tions which vary on arbitrarily small spatial scales – something that
fixed-stepsize IVP solvers cannot do.

4 TH E GYRE C O D E

GYRE is a new oscillation code which uses the MMS scheme de-
scribed above to calculate the eigenfrequencies and eigenfunctions
of an input stellar model. Although GYRE can address both adiabatic
and non-adiabatic pulsation problems, in this paper we focus on the
adiabatic case (documented in Appendix A) because our primary
goal is to introduce the MMS scheme and the code.

GYRE is written in FORTRAN 2008 with a modular architecture
that allows straightforward extension to handle more-complicated
problems. To take advantage of multiple processor cores and/or
cluster nodes it is parallelized using a combination of OpenMP
(Dagum & Menon 1998) and Message Passing Interface (MPI;
Dongarra et al. 1995). In brief, a typical GYRE run involves the
following steps: first, a stellar model is either read from file or built
analytically (Section 4.1), and the calculation grids are constructed
(Section 4.2). A scan through frequency space then searches for sign
changes in the discriminant D(ω), which are used as initial guesses
for the discriminant roots (Section 4.5). After these roots are found,
the corresponding eigenfunctions are reconstructed (Section 4.6).
The following sections further discuss these steps and provide other
salient implementation details.

4.1 Stellar model

GYRE supports three classes of stellar model, each providing the di-
mensionless structure coefficients V, A∗, U, c1 and �1 appearing in
the pulsation equations (see Appendix A). Evolutionary models are
generated by a stellar evolution code, polytropic models are based
on solutions to the Lane–Emden equation, and analytic models rely
on explicit expressions for the structure coefficients. Both evolution-
ary and polytropic models are specified on a discrete radial grid,
with cubic spline interpolation used to evaluate the structure coeffi-
cients between grid points. Different options exist for constructing
the splines, with the monotonicity-preserving algorithm by Steffen
(1990) being the default.

4.2 Grid construction

GYRE offers a number of strategies for establishing the grids used for
multiple shooting (see equation 3) and eigenfunction reconstruction
(discussed below in Section 4.6). For evolutionary and polytropic
models, the grid can be cloned from the corresponding model grid,
with the option of oversampling certain subintervals. GYRE can also
create an ab initio grid following a variety of recipes. The simplest
of these is the ‘double geometric’ grid with subinterval widths given
by

�xk = (1 + g)�xk−1 k ≤ M,

�xk = (1 + g)�xk+1 k > M. (26)

Here, M = N/2 for even N and M = (N − 1)/2 for odd N, and the
growth factor g is determined from the requirement that

N−1∑
k=1

�xk = 1. (27)

The subinterval sizes at the boundaries are fixed by a user-specified
stretching parameter s representing the ratio between the average
subinterval size and the boundary size; thus,

�x1 = �xN−1 = 1

s(N − 1)
. (28)

The double geometric grid has greatest resolution near the inner and
outer boundaries – a useful property because the components of the
Jacobian matrix typically vary fastest near these boundaries.

4.3 Fundamental solution calculation

GYRE calculates the fundamental solutions with one of the Magnus
GLo integrators (the order o is configurable at run time). The matrix
exponential in equation (23) is evaluated using eigendecomposition,
and so the fundamental solution in the kth subinterval is obtained
as

Yk+1;k = M	 exp(�	)M−1
	 . (29)

Here, �	 and M	 are the eigenvalue and eigenvector matrices of
the Magnus matrix �(xk+1; xk), itself taken from one of equations
(25), (B1) or (B4) for the GL2, GL4 or GL6 integrators, respectively.
The eigendecomposition is implemented with calls to the LAPACK
linear algebra library (Anderson et al. 1999); OpenMP directives
are used to distribute the work for the N − 1 subintervals across
multiple processor cores.

The eigendecomposition can fail if �(xk+1; xk) lacks a complete
set of linearly independent eigenvectors (i.e. the matrix is defective;
see Golub & van Loan 1996). In such cases one of the alternative
matrix exponentiation methods discussed by Moler & Van Loan
(2003) must be used. In practice, we have never encountered this
situation; nevertheless, as a precaution GYRE is configured to abort
with an error when it detects a defective or near-defective Magnus
matrix.

4.4 Determinant evaluation

To evaluate the determinant of the system matrix S, GYRE first con-
structs the LU factorization

S = LU, (30)

where L is a lower-triangular matrix with unit diagonal elements
and U is an upper triangular matrix. The determinant of a triangular
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matrix is simply the product of its diagonal elements, and it therefore
follows that

det(S) =
Nn∏
j=1

Ujj . (31)

GYRE undertakes the factorization (30) using the structured algo-
rithm described by Wright (1992, 1994), which is specifically tar-
geted at matrices arising in multiple shooting schemes. The cyclic
reduction version of the algorithm is implemented because it pro-
duces the same results whether run serially or in parallel. Block-row
pairs are distributed across multiple processor cores using OpenMP
directives, and then factorized with calls to the LAPACK and BLAS
(Blackford et al. 2002) libraries. We explored an MPI version of the
algorithm for use on clusters, but found that inter-node communi-
cation overhead produces poor performance on systems larger than
a few tens of nodes. As the dimension of S becomes large the de-
terminant calculation risks overflowing the computer floating-point
range; therefore, GYRE evaluates equation (31) with extended-range
floating point arithmetic, build on the object-oriented capabilities
of recent FORTRAN dialects.

4.5 Eigenfrequency searching

GYRE searches for eigenfrequencies within a user-specified fre-
quency interval ωa ≤ ω ≤ ωb by first evaluating the discriminant
D(ω) at nω points distributed within this interval. A change in the
sign of D(ω) between an adjacent pair of points signals that a root is
bracketed, and the pair is passed as starting guesses to a root-finding
routine based on the algorithm described by Brent (1973).

To leverage multi-node clusters GYRE parallelizes the initial dis-
criminant evaluations and subsequent root searches with calls to
the MPI library. This is in addition to the OpenMP parallelization
described above for the eigendecompositions and LU factorization.

4.6 Eigenfunction reconstruction

For each eigenfrequency found as a root of D(ω), GYRE reconstructs
the corresponding eigenfunctions on the shooting grid {xk} by solv-
ing the algebraic system (8). The LU factorization (30) reduces this
system to

U u = 0. (32)

Because the upper triangular matrix U is singular when ω is an
eigenfrequency, one of its diagonal elements – say, Uj ′j ′ – must be
zero to within numerical uncertainties. The elements of the solution
vector can then be written as

uj =

⎧⎪⎪⎨
⎪⎪⎩

−[Ũ
−1

ũ]j j < j ′,

1 j = j ′,

0 j > j ′,

(33)

where the square matrix Ũ is formed from the first j′ − 1 rows
and columns of U, and the vector ũ is formed from the first
j′ − 1 elements of the j′ column of U. Because Ũ is upper trian-

gular, the product Ũ
−1

ũ is evaluated trivially by back-substitution
(e.g. Golub & van Loan 1996). With u determined in this way, { yk}
can be unpacked using equation (9).

Non-trivial solutions to the pulsation equations cannot com-
pletely vanish at any point (otherwise, they would vanish every-
where). This means that the zero element Uj ′j ′ should be located in
the bottom-right corner of the matrix, such that j′ > (N − 1)n. GYRE

explicitly tests whether this condition is met, and flags violations
to indicate a problem with the solution. Our experience has been
that these violations arise when the grid spacing is too large in one
or more subintervals, preventing the Magnus expansion (22) from
converging. The fix is invariably to reduce �xk by increasing N.

Once the eigenfunctions are obtained on the shooting grid, GYRE

evaluates them on the separate reconstruction grid using a secant-
line approximation to the Magnus matrix within each subinterval.
In the kth subinterval this is

�(x; xk) ≈ wk(x)�(xk+1; xk), (34)

where the weight function

wk(x) ≡ x − xk

�xk
(35)

varies between 0 (x = xk) and 1 (x = xk + 1). The solution at any
point in the subinterval is then efficiently calculated as

y(x) = M	 exp[�	 wk(x)]M−1
	 yk, (36)

where �	 and M	 are the same eigenvalue and eigenvector ma-
trices obtained during the fundamental solution construction (cf.
Section 4.3); no further eigendecomposition is required.

Eigenfunctions resulting from this procedure are C∞ continu-
ous within subintervals and are C0 continuous at the edges. As
final steps GYRE normalizes the eigenfunctions to have a mode
inertia E = MR2 (see Aerts et al. 2010, their equation 3.139),
and then classifies them in the standard Eckart (1960)–Scuflaire
(1974)–Osaki (1975) (ESO) scheme by enumerating the acoustic-
and gravity-wave winding numbers np and ng. For dipole modes the
ESO scheme can fail in certain circumstances (see e.g. Christensen-
Dalsgaard & Mullan 1994), and so GYRE instead uses the modified
scheme developed by Takata (2006).

5 C A L C U L ATI O N S

5.1 Eigenfrequencies of the n = 0 polytrope

As an initial test of GYRE and the underlying MMS scheme, we
calculate radial and non-radial eigenfrequencies of the n = 0 poly-
trope model with �1 = 5/3 (the so-called homogeneous compress-
ible sphere). Because exact expressions exist for these frequencies
(Pekeris 1938) this exercise allows an assessment of how the code
and the scheme perform as the resolution of the shooting grid is
varied.

Fig. 1 illustrates typical results, plotting the absolute error
ε(ω) ≡ |ω − ωex| in the eigenfrequency (with ωex being the ex-
act value) as a function of the number of grid points N, for the
� = 1 mode with (np, ng) = (1, 0) (traditionally labelled the dipole
p1 mode). The three curves show data from runs using the GL2,
GL4 and GL6 Magnus integrators; in all cases the shooting grid is
the double geometric grid described in Section 4.2 with stretching
parameter s = 103.

The figure clearly reveals that the eigenfrequency error follows an
asymptotic scaling ∝ N−2, N−4 and N−6 for the GL2, GL4 and GL6
integrators, respectively. This is the expected behaviour: the GLo
integrator is o’th order accurate, leading to fundamental solutions
(cf. equation 23) with an error scaling as �xo + 1. Accumulated over
the N − 1 subintervals the global error of the shooting scheme is
then ε ∼ (N − 1)�xo + 1 ∼ N−o (where we have used �x ∼ N−1),
which is the scaling seen in the figure. (For N � 2 × 103 the GL6
integrator departs from the asymptotic behaviour described, because
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Figure 1. The absolute error in the dimensionless eigenfrequency of the
dipole p1 mode of the n = 0 polytrope, plotted as a function of the number
of grid points. The three curves correspond to GYRE’s GL2, GL4 and GL6
Magnus integrators, while the thick lines show the corresponding asymptotic
scalings ε(ω) ∝ N−2, N−4 and N−6, respectively.

numerical rounding becomes the dominant contributor towards the
error).

Results for other radial and non-radial modes are comparable to
those shown in the figure for the dipole p1 mode. This confirms that
the MMS scheme with the Magnus GL2, GL4 and GL6 integrators
yields eigenfrequencies whose departures from exact values scale
as the inverse second, fourth and sixth power of the grid size.

5.2 Inter-code comparison with ESTA model M4k

As a second verification exercise, we use GYRE to calculate eigen-
frequencies of the ‘M4k’ model described by Moya et al. (2008).
This model was produced with the ASTEC stellar evolution code
(Christensen-Dalsgaard 2008a) and represents a 1.5 M� star at an
age 1.35 Gyr, about half-way through its main-sequence evolution;
it was adopted by Moya et al. (2008) as the basis for their com-
prehensive comparison of oscillation codes2 from nine different
research groups participating in the CoRoT Evolution and Seismic
Tools activity (ESTA; see Lebreton et al. 2008). GYRE’s shooting
grid is cloned from the model grid without any oversampling (see
Section 4.2), and the gravitational constant is set to the same value
G = 6.6716823 × 10−8cm3 g−1 s−2 adopted by Moya et al. (2008).
As in the preceding section, we perform separate runs using the
GL2, GL4 and GL6 Magnus integrators.

Table 1 compares the GYRE linear eigenfrequencies against those
obtained with GRACO, which was used as the reference code in the
Moya et al. (2008) study. Across the range 20 ≤ ν ≤ 2 500 μHz
considered by these authors, the absolute error between the GYRE and
GRACO frequencies is �4 nHz for radial modes, rising to �14 nHz
in the � = 3 case. These values are comparable to the frequency
differences found by Moya et al. (2008) between GRACO and the other

2 All mentioned in Section 2.

Table 1. Maximum absolute differences, in nHz, between the GRACO and
GYRE linear frequencies for l = 0, . . . , 3 modes of the M4k model. Values
are tabulated for each of GYRE’s integrators and for the same low (20 ≤ ν ≤
80 µHz), medium (80 ≤ ν ≤ 500 µHz) and high (500 ≤ ν ≤ 2 500 µHz)
frequency regions adopted for discussion purposes by Moya et al. (2008).

GL2 GL4 GL6
� Low Med. High Low Med. High Low Med. High

0 – 0.44 3.39 – 0.39 0.49 – 0.39 0.48
1 0.67 3.61 4.39 0.64 3.39 0.64 0.64 3.39 0.64
2 1.15 7.83 3.90 1.10 7.72 0.38 1.10 7.72 0.38
3 1.63 13.11 3.55 1.57 13.12 0.34 1.57 13.12 0.34

oscillation codes. The GL4 and GL6 integrators produce almost
identical results, indicating that the frequency differences between
them are much smaller than their differences with GRACO.

To further illustrate the comparison between GYRE and GRACO,
Fig. 2 plots the differences between the � = 2 large separations
�ν2 and the � = 1, 3 small separations δν13, both as a function of
frequency (see e.g. Aerts et al. 2010, for a definition and discussion
of these asteroseismic parameters). These two plots are intended
for direct comparison against the middle panels of figs 12 and 15,
respectively, of Moya et al. (2008). They confirm that GYRE is in good
agreement with the other oscillation codes. (The zig-zag feature at
ν ≈ 350 μHz in the left-hand panel of Fig. 2 is also seen when
comparing GRACO against other codes, and therefore is not due to
GYRE).

5.3 Asteroseismology through the RGB Bump

As a ‘first science’ experiment using GYRE we now explore how the
seismic properties of a 1.5 M� star change as it passes through the
so-called red giant branch (RGB) bump. During this evolutionary
phase the hydrogen-burning shell encounters the abundance dis-
continuity left by the convective envelope during first dredge-up,
causing a temporary reversal in the star’s luminosity growth as it as-
cends the RGB. This reversal shows up in the Hertzsprung–Russell
diagram (HRD) as a narrow zig-zag in a single star’s evolutionary
track, and it causes a bump in the luminosity function of clus-
ter members on the RGB, hence the name (see Salaris, Cassisi &
Weiss 2002, for a more detailed discussion). Our decision to focus
on the red bump has two motivations: on the one hand RGB stars
are an area of especial recent interest (see Section 1) and on the
other they are a challenge for any oscillation code to model due to
the extremely short spatial scale of eigenfunctions in their radiative
cores.

Models for the 1.5 M� star spanning the bump phase are obtained
by running the 1.5M_with_diffusion test-suite calculation of
the MESA STAR stellar evolution code, revision 4930 (see Paxton
et al. 2011, 2013). The resulting track in the HRD is plotted in
Fig. 3, with the inset magnifying the RGB bump phase. For each
of the ∼300 models spanning this phase we use GYRE to find � = 1
modes in the frequency range 30 ≤ ν ≤ 40 μHz, chosen to loosely
correspond to the frequency of maximum power νmax predicted by
the standard scaling relation for solar-like oscillations (e.g. Brown
et al. 1991; Kjeldsen & Bedding 1995). Fig. 4 illustrates results from
this exercise, plotting linear frequencies as a function of model age.
The figure also shows the frequency dependence of the normalized
mode inertia E (as defined by Aerts et al. 2010, their equation 3.140;
not to be confused with the un-normalized inertia E) for a single
model with an age ≈2.705 Gyr which places it near the minimum
luminosity encountered during the bump phase.
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Figure 2. Differences between the GRACO and GYRE � = 2 large frequency separations (left) and � = 1, 3 small-frequency separations (right) of the M4k model,
plotted as a function of linear frequency. The three curves correspond to GYRE’s GL2, GL4 and GL6 Magnus integrators; in the left-hand panel, all three curves
sit atop each other, while in the right-hand panel the GL4 and GL6 curves overlap. The panels should be compared against figs 12 and 15, respectively, of
Moya et al. (2008).

Figure 3. The evolutionary track of the 1.5 M� star plotted in the HRD.
The inset magnifies the RGB bump phase (shown in the main diagram by the
dotted rectangle), where the star’s luminosity growth undergoes a temporary
reversal; tick marks indicate the stellar age.

The figure depicts many of the features characteristic to red-
giant oscillations. The frequency spectrum is dominated by a dense
forest of g modes with radial orders n ≡ np − ng in the range
−577 ≤ n ≤ −401. These modes are trapped in the radiative interior
of the star where the Brunt–Väisälä frequency is large. A small
subset of the modes have frequencies close to those of envelope
p modes, and coupling between the two leads to the distinctive

pattern of avoided crossings (Aizenman, Smeyers & Weigert 1977)
displayed in the left-hand panel of the figure. During an avoided
crossing, the greatly enhanced mode amplitude in the low-density
stellar envelope leads to a much-reduced normalized inertia, as can
be seen in the right-hand panel. It is these low-inertia modes which
dominate the observed frequency spectra of RGB stars, as they are
easiest to excite to measurable amplitudes by stochastic processes
(see e.g. Chaplin & Miglio 2013).

To further illustrate the change in mode properties during an
avoided crossing, Fig. 5 plots the differential inertia dE/dx (which is
proportional to the kinetic energy density) as a function of fractional
radius x for the modes labelled ‘A’ and ‘B’ in the right-hand panel
of Fig. 4. Mode A is involved in an avoided crossing and has an ap-
preciable amplitude in both core and envelope. In contrast, Mode B
is confined to the radiative core and has a negligible amplitude at
the surface, accounting for its much enhanced normalized inertia
compared to mode A. For both modes the radial wavelength in
the radiative interior is very short due to the large Brunt–Väisälä
frequency there, leading to the highly oscillatory behaviour (well
resolved by GYRE) seen in the inset of the figure.

Returning to Fig. 4, the evolution through the RGB bump phase
reveals itself by a temporary increase in the otherwise-decreasing
frequencies of the avoided crossings. This is a direct consequence
of contraction of the star’s envelope during the bump luminosity
reversal, which shortens the sound crossing time and therefore ele-
vates p-mode frequencies. The frequencies of g modes are largely
unaffected, as the radiative interior of the star changes only slowly
during bump passage.

The same general behaviour can also be seen in Fig. 6, which plots
asteroseismic observables – the p-mode large frequency separation
�ν1 and the g-mode period separation �
1 – as a function of stellar
age for the same � = 1 modes. The frequency separations closely
follow the scaling �ν ∝ τ−1 predicted by asymptotic relations (e.g.
Aerts et al. 2010), where τ ≡

√
R3/GM is the star’s dynamical

time-scale. The gradual decrease in the period separation arises due
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Figure 4. Linear eigenfrequencies of dipole modes of the 1.5 M� model plotted as a function of stellar age (left), together with the normalized mode inertia
of the 2.705 Gyr model (right; also highlighted in the left-hand panel by the vertical line). The differential inertia of the modes labelled A and B is shown in
Fig. 5.

Figure 5. The differential inertia of the two modes labelled in the right-hand panel of Fig. 4, plotted as a function of fractional radius. The formal classifications
are (np, ng) = (8, 476) for mode A and (np, ng) = (7, 505) for mode B. The inset magnifies the centremost region, illustrating the very small spatial scale of
the modes there.

to the growing mass and shrinking radius of the degenerate helium
core, which together raise the gravitational acceleration and hence
Brunt–Väisälä frequency there.

Motivated by this analysis, we can speculate whether the RGB
bump manifests itself in asteroseismic observables. In their presen-
tation of initial Kepler observations, Kallinger et al. (2010) discuss
a distinct subpopulation of RGB stars which they identify as bump
stars. However, it might be argued that these stars (seen e.g. as the
‘B’ feature in their fig. 9b) are simply an extension of the core-
helium-burning red clump stars to lower effective temperatures. To
explore this issue further, it is necessary first to disentangle the
RGB and the red clump. As demonstrated by Bedding et al. (2011),
this separation can be achieved on the basis of measured period

separations, which are now becoming available for large numbers
of stars (Stello et al. 2013).

5.4 Parallel scaling

To explore how the performance of GYRE scales on parallel ar-
chitectures, we measure the execution time T of the initial root
bracketing calculations (see Section 4.5) for � = 1 modes of the
M4k model introduced in Section 5.2. These calculations are under-
taken on a cluster of 24 nodes, each containing two four-core AMD
Opteron processors, networked on an Infiniband switched fabric.
Fig. 7 illustrates results from calculations using different numbers
of nodes nnode and cores per node ncore, plotting the speedup and
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Figure 6. The p-mode large frequency separation (left) and g-mode period separation (right) of dipole modes of the 1.5 M� model, plotted as a function of
stellar age. The large separation is measured between the minima of the normalized inertia arising from avoided crossings with the np = 7 and 8 envelope p
modes, while the period separation is taken as the maximum period spacing of modes situated between these two minima. The solid curve in the left-hand
panel follows the scaling �ν ∝ τ−1 and is normalized to pass through the initial data point.

Figure 7. The speedup (left) and efficiency (right) of the root bracketing calculations, plotted as a function of the total number of processors for different
combinations of cores and nodes. Each point is based on an average over five separate runs. The dotted lines show the ideal linear speedup and unity efficiency
cases.

efficiency against the total number of processors nproc ≡ nnode ×
ncore. The speedup T(1)/T(nproc) measures the overall performance
of the code relative to the single-processor case, while the efficiency
T(1)/[nprocT(nproc)] indicates how effectively individual processors
are utilized, again relative to the single-processor case.

As discussed in Section 4, GYRE implements a hybrid approach to
parallelization: OpenMP directives allow multiple cores to partici-
pate in the construction and subsequent LU factorization of a single
system matrix, while MPI calls allow cluster nodes to evaluate
multiple discriminants concurrently. The figure confirms that this
approach is largely successful, with the speedup increasing mono-
tonically with nproc. While a modest decline in efficiency can be seen

towards larger ncore, this is not much cause for concern when run-
ning GYRE on today’s commonly available multi-core architectures.
That said, to take full advantage of next-generation architectures
such as Intel’s many-core Xeon Phi co-processor (used in the NSF
Stampede cluster at the Texas Advanced Computing Center) it will
be necessary to further improve the code’s efficiency, presumably
via increased OpenMP parallelization.

6 D I SCUSSI ON AND SUMMARY

In the preceding sections we introduce a new MMS scheme for
solving linear homogeneous BVPs (Section 3), together with an
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oscillation code GYRE that implements this scheme to calculate
eigenfrequencies and eigenfunctions of stellar models (Section 4).
Initial test calculations indicate that the code is accurate, robust and
makes efficient use of computational resources (Section 5).

GYRE debuts in an arena which is already well populated with
oscillation codes (cf. Section 2). However, of all these codes only
ADIPLS is freely available, and it is restricted to adiabatic pulsa-
tion – clearly not an optimal arrangement given the data anal-
ysis challenges now facing the field (Section 1). We are there-
fore pleased to make the GYRE source code open.3 for use and
distribution under the GNU General Public License. Our hope is
that a community of practice (e.g. Turk 2013) will arise around
the code, bringing together users and developers to shape the
code’s future evolution in ways that best serve the field and its
participants.

As we mention in Section 4, although the present paper fo-
cuses primarily on adiabatic pulsation, GYRE can also address non-
adiabatic problems. This capability requires a few minor adjust-
ments to the MMS scheme, already implemented in GYRE, which
we plan to describe in detail in a forthcoming science-oriented pa-
per. Looking further into the future, we intend to extend GYRE to
include the effects of stellar rotation – first within the traditional
approximation (e.g. Townsend 2005) and then using the spherical
harmonic expansion approach pioneered by Durney & Skumanich
(1968) and recently adopted by various groups (e.g. Lee 2001;
Reese et al. 2006; Ouazzani, Dupret & Reese 2012). The expansion
approach results in BVPs with large numbers of unknowns (4 h in
the adiabatic approximation when h spherical harmonics are used),
and will therefore be a particularly appropriate target for testing the
robustness and performance scalability of the MMS scheme and
GYRE.

Alongside these code development activities, we plan to inter-
face GYRE with the MESA STAR evolution code. GYRE can already
natively read models produced by MESA STAR (cf. Section 5.3); the
next step is to wrap GYRE in a callable interface and integrate it into
MESA STAR’s asteroseismic module. This will open up the possibility
of large-scale, automated adiabatic and non-adiabatic asteroseismic
analyses, in turn facilitating investigation of issues such as core rota-
tion in RGB stars (e.g. Mosser et al. 2012), instability strips in white
dwarfs (e.g. Fontaine & Brassard 2008) and the surprising incidence
of opacity-driven oscillations in low-metallicity environments (e.g.
Salmon et al. 2012).
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APPEN D IX A : PULSATION EQUATIONS

This appendix briefly summarizes the pulsation BVP solved by
GYRE in the adiabatic case. The independent variable is the fractional
radius x = r/R, with r being the radial coordinate and R the stellar
radius, while the components of the dependent variable vector y
are

y1 = ξr

r
x2−�, y2 = 1

gr

(
p′

ρ
+ �′

)
x2−�,

y3 = 1

gr
�′x2−�, y4 = 1

g

d�′

dr
x2−�. (A1)

Here, the symbols have the same meaning as in Unno et al. (1989);
specifically, ξ r is the radial displacement perturbation and p′ and
�′ are the Eulerian perturbations to the pressure and gravitational
potential, respectively. These definitions mirror the dimensionless
variables introduced by Dziembowski (1971), except that we intro-
duce the scaling x2 − � to ensure that the variables approach constant
values at the origin x = 0 – desirable behaviour from a numerical
perspective.

Given the definitions above, the differential equations govern-
ing linear, adiabatic non-radial oscillations can be written in the
canonical form (1) with a Jacobian matrix

A = x−1Ã, (A2)

where

Ã =

⎛
⎜⎜⎜⎜⎜⎝

V
�1

−1−� �(�+1)
c1ω2 − V

�1

V
�1

0

c1ω
2−A∗ A∗−U+3−� −A∗ 0

0 0 3 − U − � 1

UA∗ UV
�1

�(� + 1) − UV
�1

−U+2−�

⎞
⎟⎟⎟⎟⎟⎠.

(A3)

The dimensionless oscillation frequency ω is related to the linear
frequency ν via

ω = 2πν

√
R3

GM
, (A4)

and the other variables again have the same meaning as in Unno
et al. (1989).

The requirement that solutions remain regular at the centre leads
to the inner boundary conditions

Ba =
⎛
⎝ c1ω

2 −� 0 0

0 0 � −1

⎞
⎠, (A5)

evaluated at x = xa = 0. Likewise, the requirement that the
Lagrangian pressure perturbation δp vanishes at the stellar sur-
face, and that �′ vanishes at infinity, leads to the outer boundary
conditions

Bb =
(

1 −1 1 0

U 0 � + 1 1

)
(A6)

evaluated at x = xb = 1. GYRE offers the option of outer boundary
conditions based on more-sophisticated treatments of the stellar
atmosphere; these include the prescriptions by Dziembowski (1971)
and Unno et al. (1989). However, for all calculations presented in
Section 5 the zero-δp condition incorporated in equation (A6) is
adopted.

A P P E N D I X B : MAG N U S M AT R I C E S

For convenience, this section presents expressions for the Magnus
matrices (taken from Blanes et al. 2009) which are used by GYRE’s
GL4 and GL6 Magnus integrators.

B1 GL4 Magnus integrator

Using a fourth-order Gauss–Legendre quadrature, the Magnus ma-
trix in the kth subinterval is approximated as

�(xk+1; xk) ≈ α4,1 − 1

12
[α4,1, α4,2] + O[(�xk)5]. (B1)

Here,

α4,1 = �xk

2
(A1 + A2), α4,2 = �xk

√
3(A2 − A1) (B2)

and Ai ≡ A(xk
i ) (i = 1, 2) are the Jacobian matrices evaluated at

the two Gauss–Legendre nodes within the subinterval,

xk
1 = xk +

(
1

2
−

√
3

6

)
�xk, xk

2 = xk +
(

1

2
+

√
3

6

)
�xk.

(B3)

Note that the above expression for α4,2 corrects an error in
equation (253) of Blanes et al. (2009).
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B2 GL6 Magnus integrator

Using a sixth-order Gauss–Legendre quadrature, the Magnus matrix
in the kth subinterval is likewise approximated as

�(xk+1; xk) ≈ α6,1 + 1

12
α6,3

+ 1

240
[−20α6,1 − α6,3 + C1, α6,2 + C2] + O[(�xk)7]. (B4)

Here,

α6,1 = �xkA2, α6,2 = �xk
√

15

3
(A3 − A1),

α6,3 = 10�xk

3
(A3 − 2A2 + A1), (B5)

while

C1 = [α6,1, α6,2], C2 = − 1

60
[α6,1, 2α6,3 + C1] (B6)

and Ai ≡ A(xk
i ) (i = 1, 2, 3) are the Jacobian matrices evaluated at

the three Gauss–Legendre nodes within the subinterval,

xk
1 = xk +

(
1

2
−

√
15

10

)
�xk, xk

2 = xk + �xk

2
,

xk
3 = xk +

(
1

2
+

√
15

10

)
�xk. (B7)
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