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ABSTRACT

This paper explores the effect of rotation on the k-mechanism instability of slowly pulsating B
stars. A new non-adiabatic code, which adopts the so-called traditional approximation to treat
the Coriolis force, is used to investigate the influence exerted by rotation over the stability of
stellar models covering the mass range 2.5Mn < M, < 13.0 M. The principal finding is
that, for all modes considered apart from the prograde sectoral (PS) class, rotation shifts the
k-mechanism instability toward higher luminosities and effective temperatures; these shifts are
accompanied by broadenings in the extent of instability strips. Such behaviour is traced to the
shortening of mode periods under the action of the Coriolis force. Instability strips associated
with PS modes behave rather differently, being shifted to marginally lower luminosities and
effective temperatures under the influence of rotation.

The implications of these results are discussed in the context of the observational scarcity
of pulsation in B-type stars having significant rotation; various scenarios are explored to
explain the apparent dichotomy between theory and observations. Furthermore, the possible
significance of the findings to Be stars is briefly examined.

Key words: methods: numerical — stars: early-type — stars: emission-line, Be — stars: oscilla-
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1 INTRODUCTION

The slowly pulsating B (SPB) stars are a homogeneous class of
mid-B-type, main-sequence objects that exhibit multiperiodic light
and line-profile variations over time-scales on the order of 1-5 d.
Waelkens (1991) was the first to classify these stars as a distinct
group of early-type non-radial pulsators, by combining under the
same aegis the photometric variables discovered by Waelkens &
Rufener (1985) and the 53 Per spectroscopic variables first observed
by Smith (1977). The theoretical pulsation characteristics of these
objects have since been studied extensively, resulting in a canonical
picture (see, e.g., Pamyatnykh 1999, and references therein) of high-
order g-mode pulsation, driven by the same iron-group ¥ mechanism
responsible for the instability of the B Cep pulsators (Dziembowski
& Pamyatnykh 1993).

One outstanding issue in the understanding of SPB stars is the
effect rotation has on their instability. Photometric surveys of open
clusters by Balona (1994), Balona & Koen (1994) and Balona &
Laney (1995, 1996) failed to find any evidence for SPB-like vari-
ability, but the authors did note that the stars observed were charac-
terized by moderate or rapid projected equatorial rotation velocities
(v sini > 100kms™!). This result has led some to suggest that
rotation suppresses the k-mechanism excitation of g modes (see,
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e.g., Balona 2000). However, an alternative interpretation has been
explored by Townsend (2003b), who examined the effect of the
rotation-originated Coriolis force on the flux perturbations produced
by low-frequency g modes. He demonstrated that the confinement of
these modes within an equatorial waveguide (e.g. Lee & Saio 1990;
Townsend 2003a) reduces the amplitude of the resulting photomet-
ric variations, possibly to below the sensitivity of the observations.

This paper addresses the SPB-rotation question from a more theo-
retical perspective, by examining the effect the Coriolis force has on
the k-mechanism instability of SPB stars. The high-order g modes
excited in these objects are characterized by low frequencies and
their dynamics can thus be expected to be influenced appreciably by
the Coriolis force (see Townsend 2004). For this reason, canonical
approaches that treat the rotation as a small perturbation to the pul-
sation (e.g. Carroll & Hansen 1982; Unno et al. 1989, their section
19 and references therein) are not well suited to SPB stars. Building
on a methodology originated by Lee & Saio (1987a,b), alternative
treatments have emerged over the past decade (see, e.g., Lee 1998,
2001); however, these are characterized by such a high degree of
mathematical and numerical complexity, that their large-scale ap-
plication is, with present-day computational resources, impractical.

The approach adopted herein aims at a compromise between so-
phistication and practicality, by employing an approximate method
to treat the pulsation—rotation interaction (Section 2) that is well
suited to the g modes found in SPB stars. This approach is applied
to a range of B-type stellar models (Section 3), with the results of
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these stability calculations presented in Section 4. The findings of
the analysis are then discussed and summarized in Section 5.

2 METHOD

2.1 Theoretical treatment

From a theoretical standpoint, the introduction of rotation signifi-
cantly complicates the analysis of stellar pulsation. The centrifugal
force tends to distort the equilibrium star away from a spherical
configuration, and the Coriolis force leads to mixing between the
radial and angular components of the fluid momentum. Both of these
processes mean that the linearized equations describing non-radial,
non-adiabatic pulsation are no longer separable in all coordinates,
leading to a significant increase in the computational effort neces-
sary for their solution (see, e.g., Lee 2001).

However, for the case of the low-frequency g modes found in SPB
stars, an approximate treatment of the Coriolis force can be used to
restore the separability of the pulsation equations and thereby ren-
der the problem tractable even with modest computing resources.
At the heart of this approach is the so-called traditional approxi-
mation, introduced in a geophysical context by Eckart (1960) and
first applied to stellar pulsation by Lee & Saio (1987a). The tra-
ditional approximation involves neglecting the polar component of
the rotation angular frequency vector €2, in the Coriolis terms of
the linearized momentum equation. As discussed by Lee & Saio
(1997), this approximation is reasonable throughout regions where
the pulsation frequency o (as measured in the corotating frame) and
the rotation frequency €2 are both very much less than the Brunt—
Viigsila frequency N associated with the gravitational stratification
of the medium. In the case of g modes in B-type stars, this condition
is fulfilled in almost all of the stably stratified, radiative envelope
where the modes are propagative.

In addition to the traditional approximation, the treatment pre-
sented herein requires a number of other simplifications to permit
the separation of the pulsation equations in all three spherical-polar
coordinates {r, 0, ¢ }. These simplifications, which follow the anal-
ysis by Townsend (2003b), are as follows.

(i) The assumption that the rotation' is slow enough for both the
centrifugal force and the departures from sphericity engendered by
it to be neglected. In this context, slow may be interpreted as the
condition % < 2, where

8GM,
Q. = (1)
27K

defines the critical rotation frequency within the Roche model, with
M , and R, being the stellar mass and radius, and G the gravitational
constant.

(i1) The Cowling (1941) approximation, whereby perturbations
to the gravitational potential are neglected. This approximation is
reasonable for all but low-order, low-degree modes.

(iii) The non-adiabatic radial flux (NARF) approximation,
whereby the divergence of the horizontal Eulerian flux pertur-
bation is neglected in the energy equation. As demonstrated by
Townsend (2003b), this approximation, first introduced by Savonije,
Papaloizou & Alberts (1995), is valid under the same conditions
(0, Q < N) as the traditional approximation itself.

1 Assumed throughout to be uniform.

(iv) The steady-wave approximation, whereby the imaginary part
o of the pulsation frequency o is neglected in solving the angu-
lar parts of the pulsation equations. This approximation, which is
discussed by Townsend (2000), is appropriate when the growth rate
of the pulsation is slow, so that o; is very much smaller than the
corresponding real part o, of the pulsation frequency.

This collection of approximations and assumptions closely fol-
lows those employed by Ushomirsky & Bildsten (1998), with the
exception that their use of the quasi-adiabatic approximation is re-
placed herein by the adoption of the NARF approximation. This
replacement is particularly significant, in that the quasi-adiabatic
approximation can lead to incorrect results when applied to B-type
stars (see, e.g., Dziembowski, Moskalik & Pamyatnykh 1993); in
contrast, the NARF approximation is able to capture the essen-
tial physics of the non-adiabatic processes responsible for the «-
mechanism instability.

2.2 Pulsation equations

Within the approximations outlined in the preceding section, the
spatial and temporal dependence of perturbed variables is expressed
in the corotating frame as

fl(", W, ¢’ t) — f/(r) (~)’€”(,u) ei(m:}ﬁ-(—a[) (2)
and
8f(ry ¢, 1) = 8f(r) OF ()™, 3)

where: Eulerian and Lagrangian perturbations are represented by
primes (') and &, respectively; ¢ is the temporal coordinate; and
= cos 6. Here, the Hough function ®7' (i) is a solution to Laplace’s
tidal equation (see, e.g., Bildsten, Ushomirsky & Cutler 1996),
which depends implicitly on the spin parameter v = 22 /0, char-
acterizing the relative strength of Coriolis and buoyancy forces
(Townsend 2004). In the limit of no rotation, ®7 (1) approaches
the normalized Legendre function }_’e’"(u) (see Lee & Saio 1990)
having harmonic degree ¢ and azimuthal order m.

Inspired by the dimensionless formulations introduced by Saio &
Cox (1980) and Lee & Saio (1997), which themselves are built on
the seminal Dziembowski (1971) treatment, the radial dependencies
f'(r) and 8f (r) of perturbed variables are expressed in terms of a set
of eigenfunctions q;(i = 1,2, 5, 6),? such that

&:(r) _ -2 p'(r) P2

q X, =q@x 7, 4)
r ogr
8S(r ; SLg(r I
) = gs x*, () =gex". ®)]
Cp L,

Here, x = r/R, is the dimensionless radial coordinate, &, the ra-
dial fluid displacement, p’ the Eulerian pressure perturbation, S
the Lagrangian perturbation to the specific entropy and §Lg the
Lagrangian perturbation to the radial part of the radiative luminos-
ity. Other symbols appearing in these expressions are defined by
Unno et al. (1989), with the exception of the effective harmonic
degree

; I+ -1

R — (6)

2 The indices 3 and 4 are traditionally reserved for the perturbation to the
gravitational potential and its radial derivative; as a result of the adoption of
the Cowling (1941) approximation, they are not used in the present analysis.
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introduced by Townsend (2000) as the solution of the equation
€(€ + 1) = A In these relations, A?' is the eigenvalue of Laplace’s
tidal equation associated with the Hough eigenfunction ®} (u).
This eigenvalue depends implicitly on the spin parameter v, and
therefore on both the pulsation frequency o and the rotation
frequency 2.

The radial eigenfunctions ¢; are found as the solutions of four
coupled, first-order differential equations:

d 174 . Ll +1 Vv
ﬂ_<__1_4)q1+ { ¢ )——}qzwrxzqs, 1)

* dx - l"1 C](L)2 l"1
dq2 _ 2 * * 7 2
x—_(clw—A)q1+(A —U+3—Z)q2+vrxq5, 8)
dx
%—V[v (U= c10?) —4(Vas = V) + o) &
xdx = ad G ad 2 32
Ll+1) q
+v{ - (W—V)—q} =
clw X
- A%
+ [VV @ =) =T g5 = S —xas, ©
R
dgs ) _ U+1) dix] g
Xaz—é‘ad(,"jv;-l- €aaC3V + cla)z Xa ;

+ (E‘3€s—ia)54)ﬁ - (2+1)q6 (10)
X
Here, the dimensionless pulsation frequency « has the usual
definition
R:
GM,

and all other symbols follow the nomenclature of Unno et al. (1989),
with the exception of the introductions

w=0o

an

R = L (12)
4 3
G = cylg = L PEN (13)
L,
and

_47'tr3pTc,, GM,
a L, R’

*

Cs =cylr

(14)

In the limit v — 0, the effective harmonic degree ¢ approaches
the true harmonic degree ¢ and the governing equations (7)—(10)
reduce to those describing non-radial, non-adiabatic pulsation of a
non-rotating star, within the NARF and Cowling (1941) approxi-
mations. However, even allowing for the alternative nomenclature,
the energy conservation equation (10) in this limit appears rather
different than in other non-adiabatic treatments (compare with, e.g.,
Unno et al. 1989, their equation 24.12%). In particular, the derivative
of the dimensionless radiative luminosity /g appears in the present
treatment as a result of the choice of frozen convection approxi-
mation; this choice centres around neglecting perturbations to the
convective source term in the linearized energy equation, as per
equation (21.7) of Unno et al. (1989). Although Pesnell (1990) has
argued that such an approach is unphysical, it is required to ensure
the pulsation equations remain self-consistent at the origin. In any

3 Note that the sign of the ¢3/c1? term in their equation is incorrect.
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case, because g modes do not penetrate far into convective regions,
any errors introduced by this convection-freezing choice should be
minimal.

Solutions of the pulsation equations (7)—(10) are required to sat-
isfy boundary conditions at the centre and at the surface. The inner
conditions

) -
o qr— g =0 .
3e g —x3q6=0} asx — 0 (15)

ensure that solutions remain finite and regular at the origin. Like-
wise, the outer boundary conditions

a—q=0_
(2—4vadv>q1+4vaquz+4qs—q6=0}“”‘1 (10

follow from the assumptions that the surface pressure tends to zero
and that there is no flux incident from outside the star (see, e.g.
Unno et al. 1989). Finally, the arbitrary overall scaling of solutions
is constrained by the normalization condition

G=1 atx=1. an

2.3 Implementation

To solve the pulsation equations (7)—(10) and accompanying bound-
ary conditions (15)—(17), a wholly new Fortran 95 code was devel-
oped. The code, named BoosuM, follows the root-finding approach
pioneered by Castor (1971) and Osaki & Hansen (1973): one of the
boundary conditions is set aside, allowing solution of the equations
to be achieved at arbitrary dimensionless frequency w. The sup-
pressed boundary condition is then used to construct a discriminant
D(w), whose roots correspond to the eigenfrequencies of the full
system of equations.

In the present case, the outer mechanical boundary condition is
used to form the discriminant

(g1 — q2)x=1

D = .
@) (g1 + g2)x=0

(18)
The numerator is the boundary condition itself, while the denom-
inator, which is guaranteed by the inner boundary conditions (15)
never to be zero, ensures that the discriminant remains well behaved
(see Townsend 2000). To calculate the solution vector g; required
to evaluate this discriminant, BOOJUM uses a standard relaxation
approach (e.g. Press et al. 1992); because the pulsation equations
are linear in ¢g;, only a single iteration is required at each value of
w. The Z-dependent scalings, adopted in the definitions (4) of the
eigenfunctions, successfully prevent the loss of precision near the
centre discussed by Takata & Loffler (2004). For improved accu-
racy, centred finite differences are used in the relaxation algorithm;
however, in regions where ¢4 > 10*, BooyuM switches to one-sided
differences for the thermal equations (9)—(10), in accordance with
the Sugimoto (1970) prescription for avoiding numerical stability
(and see also Unno et al. 1989, their section 24).
Solution of the characteristic equation

D(w) =0, (19)

defining the eigenfrequencies of the pulsation equations, is accom-
plished in BOOJUM using the robust Traub (1964) implementation
of the root-finding algorithm devised by Muller (1956); this algo-
rithm is a generalization of the complex secant approach favoured
by Castor (1971). Note that the latter author used approximate roots
of the characteristic equation to find starting points for the solution,
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via iterative relaxation, of the full pulsation equations. A somewhat
simpler approach is adopted by Boojum, whereby equation (19) is
solved to the desired fractional tolerance in w (in the present work,
10719 for both real and imaginary parts) and no additional calcula-
tions are performed.

For calculation of the A}’ eigenvalue, required (cf. equation 6)
to evaluate the ¢ terms appearing in the pulsation equations and
boundary conditions, BOOJUM uses the matrix-mechanical approach
pioneered by Lee & Saio (1987a). The implementation largely fol-
lows the procedure described by Townsend (2003b); however, the
truncation dimension N is determined dynamically, by repeatedly
doubling N until the fractional change in A}’ drops below some
specified threshold (taken to be 10~ throughout the present work).
Furthermore, the algorithm due to Kahan (1966), as implemented
by the LAPACK subroutine library (Anderson et al. 1999), is used
for calculating the matrix eigenvalues; this algorithm performs sig-
nificantly better at finding isolated eigenvalues than the previously
adopted QL approach.

As input, BOOJUM is supplied with the desired mode parame-
ters (¢, m), the rotation angular frequency €2 and an indication of
the region over which to search for eigenfrequencies satisfying the
characteristic equation (19). The coefficients appearing in the pul-
sation equations and boundary conditions are evaluated using a pre-
computed stellar model (see Section 3); the model, typically com-
posed of ca. 1000 radial points, is interpolated onto a new grid having
10 000 points, distributed non-uniformly via an approach similar to
that described by Christensen-Dalsgaard & Mullan (1994, their ap-
pendix A3). Cubic splines are used for interpolating all variables
apart from the Brunt-Viidsila frequency A/; the latter is interpo-
lated linearly, to avoid the introduction of spurious oscillations in
the molecular weight gradient zone situated outside the convective
core.

3 STELLAR MODELS

The Warsaw—New Jersey stellar evolution code is used to calcu-
late 115 tracks of stellar models, sampling the initial mass range
M, = 2.5-5.2Mg at a resolution 0.05 M), the range M, = 5.2—
9.2M( at a resolution 0.1 M and the range M, = 9.2-13.0M@p
at a resolution 0.2 M; each track extends from zero-age main se-
quence (ZAMS) to terminal-age main sequence (TAMS). Details
of the code have already been given by Dziembowski & Pamyat-
nykh (1993) and Dziembowski et al. (1993); the only significant
difference in the present work is the adoption of more-recent OPAL
tabulations for opacity (Iglesias & Rogers 1996) and the equation
of state (Rogers, Swenson & Iglesias 1996). In all cases, the initial
hydrogen and metal mass fractions are set at the canonical values
X = 0.7 and Z = 0.02, with a heavy-element mixture taken from
Grevesse & Noels (1993). No account is taken of the effect of ro-
tation on the stellar evolution; although Pamyatnykh (1999) has
demonstrated that rotation-induced mixing can shift the red edge of
the SPB instability strip to lower effective temperatures, the present
analysis is more concerned with the dynamical influence of rotation
on SPB pulsation.

Each of the calculated evolutionary tracks is composed of approx-
imately 42 stellar models, with a grand total of 4876 models for the
entire set. Fig. 1 plots the positions of these models in the theoreti-
cal Hertzsprung—Russell (HR) diagram, along with the loci defining
the ZAMS and TAMS boundaries. The dense model coverage of the
main-sequence band is to facilitate the accurate positioning of in-
stability strips (Section 4.2) in the T .q—L, plane.
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Figure 1. The theoretical Hertzsprung—Russell (HR) diagram for the stellar
models introduced in Section 3; these are plotted as points in the effective
temperature (7 o) versus stellar luminosity (L) plane. The dashed lines
running diagonally from top left to bottom right indicate the zero-age main
sequence (ZAMS) and terminal-age main sequence (TAMS) limits, while
the asterisk shows the location of the 53 Per-like model analysed in Sec-
tion 4.1. Full evolutionary tracks for four selected models are also shown
in the diagram, plotted as solid lines and labelled by their corresponding
stellar masses, in solar units. The two higher-mass tracks do not reach the
low-temperature boundary of the diagram, because the Warsaw—New Jersey
evolutionary code is unable to follow these models beyond the ignition of
core helium burning.

Table 1. Fundamental parameters of the 53 Per-like stellar model analysed
in Section 4.1.

Terr/K log g/cms > Li/Lo M./Mg R./Ro

15300 4.04 600 4.80 3.48

4 STABILITY CALCULATIONS

4.1 53 Per model

From the models introduced in the preceding section, one is selected
as having parameters close to the values inferred by De Ridder et al.
(1999) for 53 Per, the archetypal SPB star; these parameters are
documented in Table 1 and the corresponding position in the HR
diagram is shown in Fig. 1 by an asterisk. This 53 Per-like model is
employed to examine the general influence the Coriolis force exerts
over ¢ = 1 and ¢ = 2 non-radial g modes. Eigenfrequencies of these
modes are calculated using BOoJuM, for all possible values —¢ <m <
¢ of the azimuthal order and over a range of angular frequencies
from the non-rotating case up to the intermediate rate 2/, =
0.5. This upper limit corresponds to a rotation period IT = 1.26d,
with an equatorial velocity v, that is 35 per cent of the critical
velocity v, = 419kms~! of the star; by way of comparison, the
most rapidly rotating SPB star known to date, HD 1976, rotates at
~32 per cent of its critical velocity (Mathias et al. 2001).

The results from these calculations are shown in Fig. 2, where
the corotating frame period P = 27m/o, of each mode is plotted
as a function of rotation angular frequency. Points associated with
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Figure 2. Pulsation periods for £ = 1 and £ = 2 g modes of the 53 Per-like model, plotted as a function of rotation frequency up to a maximum 2 = 0.5 €. Each
curve corresponds to a particular radial order i; the line weight is used to indicate whether modes are stable (thin) or unstable (thick) against the x-mechanism
instability. To improve the clarity of the figure, only radial orders |7i| < 75 are plotted.

eigenfunctions ¢; having the same radial order /i* are linked together
into a single, continuous curve; the weight of the curves, at each
value of €2, is used to indicate whether a mode is stable (o; > 0) or
unstable (o; < 0) against k-mechanism excitation.

At Q =0, the eigenfrequencies are degenerate in azimuthal order
m, owing to the arbitrariness of the polar axis of the model. This
degeneracy is lifted upon the introduction of rotation, with a splitting
initially following the first-order relation

Ao, & mQC; (20)

4 As defined by Unno et al. (1989, their equation 17.5), within the general-
ization to the Cowling (1941) nomenclature introduced by Scuflaire (1974)
and Osaki (1975).

© 2005 RAS, MNRAS 360, 465-476

or alternatively
AP~ —mIlCy , (21)

derived by Ledoux (1951); here, IT = 27t/<2 is the rotation period
and A denotes the change in the indicated quantity. In the case of the
high-order g modes considered herein, the term Cj; ¢ approximates
to 1/€(¢ + 1), explaining why the ¢ = 1 modes exhibit steeper
gradients AP /A around Q ~ 0.

Toward larger values of €2, departures from the above linear re-
lations are increasingly apparent in Fig. 2. For all apart from the
prograde sectoral (PS) modes having ¢ = —m, these departures pro-
duce an overall trend of decreasing pulsation period with increasing
rotation rate, irrespective of whether the mode is prograde (m < 0),
retrograde (m > 0) or zonal (m = 0). Such behaviour comes from
the influence of the Coriolis force and can readily be understood by
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Figure 2 — continued

recalling that, at the most general level, the frequency of a wave may
be expressed as the square root of the ratio between a generalized
stiffness and a generalized inertia (see, e.g., Lighthill 1978). With the
introduction of rotation, the stiffness® usually resulting from buoy-
ancy is augmented by the Coriolis force; this leads to an increase in
frequency and thence a corresponding decrease in mode period.

Because the strength of the Coriolis force varies with spin pa-
rameter v, the effects described are differential: the periods of long-
period, larger-v modes are shortened by a far greater degree than
those of short-period, smaller-v modes. Accordingly, the density of
the pulsation spectrum, as measured by the number of modes either
per period interval or per frequency interval, increases markedly
with rotation rate. As can be seen in Fig. 2, this spectral compres-
sion is especially pronounced for the m = 1 modes.

5 That is, the restoring force on displaced fluid elements.

This latter result warrants some explanation. For non-PS modes
in the inertial regime |v| > 1, the Coriolis force acts to confine
the modes within an equatorial waveguide, whose boundaries are
situated at u = £1/|v| (see, e.g., Bildsten et al. 1996). A requirement
of the trapping is that the s 4 1 nodes of the Hough function ®} be
fitted within these waveguide boundaries, where

s=0—|ml %1 (22)

is the meridional order introduced by Townsend (2003a). In this
expression, the difference between the prograde and zonal modes
(m < 0; minus sign) and the retrograde modes (m > 0; plus sign)
comes about because an extra pair of nodes appears in the lat-
ter when |v| > 1 (see Lee & Saio 1990). In the limit [v]| > 1,
the fitting requirement is embodied in the angular characteristic
equation

A A V2 (2s + 1) (23)
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Table 2. Instability ranges for g modes of the 53 Per-like model; for each
(¢, m) pair considered and at three differing rotation rates, the range of ||
spanned by unstable modes is tabulated, along with the corresponding values
of the corotating frame period P, the inertial frame period P; (negative values
in parentheses) and the harmonic degree ratio £/¢. The absolute value of 7i
is used, because this radial order is negative for g modes.

€, m) I P (days) P; (days) i/t
Q/SQ = 0.00
(1,-1) 12-22 1.10-1.93 1.10-1.93 1.00-1.00
(1,0) 12-22 1.10-1.93 1.10-1.93 1.00-1.00
(1,1 12-22 1.10-1.93 1.10-1.93 1.00-1.00
2,-2) 12-29 0.64-1.46 0.64-1.46 2.00-2.00
@1 12-29 0.64-1.46 0.64-1.46 2.00-2.00
(2,0) 12-29 0.64-1.46 0.64-1.46 2.00-2.00
@1 12-29 0.64-1.46 0.64-1.46 2.00-2.00
2,2) 12-29 0.64-1.46 0.64-1.46 2.00-2.00
Q/Qc = 0.25
(1,-1) 13-19 1.40-2.07 0.90-1.14 0.79-0.75
(1,0) 12-25 1.03-1.77 1.03-1.77 1.09-1.32
(11 12-31 0.85-1.40 1.27-3.16 1.40-2.26
(2,-2) 12-28 0.68-1.58 0.44-0.70 1.84-1.74
@,-1) 12-30 0.64-1.40 0.51-0.90 1.99-2.18
(2,0) 12-33 0.61-1.28 0.61-1.28 2.13-2.70
@1 12-35 0.58-1.18 0.76-2.21 2.22-3.18
2,2) 12-33 0.58-1.23 1.07-46.50 2.25-2.83
Q/S = 0.50
(1,-1 13-18 1.51-2.10 0.69-0.79 0.72-0.69
(1,0) 12-29 0.89-1.46 0.89-1.46 1.32-2.00
(1,1 12-38 0.64-1.04 1.30-5.76 1.99-4.02
2,-2) 12-27 0.71-1.59 0.33-0.45 1.75-1.66
@,-1 12-33 0.61-1.25 0.41-0.63 2.12-2.77
(2,0) 12-38 0.54-1.00 0.54-1.00 2.46-4.17
@1 12-42 0.50-0.85 0.82-2.59 2.71-5.58
2,2) 12-38 0.51-1.00 2.73-(1.71) 2.60-4.18

for the Hough-function eigenvalue (Townsend 2003a, his equation
38), corresponding to an effective harmonic degree

7 A~ m . (26—2|m|—1)v (m <0),
K”W”{(ze—2|m|+3)v (m > 0). 29
Regarding the ratio /¢ as a measure of the severity of equatorial
confinement, this latter expression indicates m = 1 modes, for each
value of ¢, are the most affected by the Coriolis force. This result
can be seen in the right-most column of Table 2 introduced below;
physically, it follows directly from the fact that these modes have
the largest meridional orders (s = 1 for ¢ = 1 and s = 2 for ¢ = 2)
and are therefore the most compressed in the polar direction when
squeezed into the equatorial waveguide.

The foregoing analysis does not apply to the PS modes, (¢,m)
= (1, —1) and (¢, m) = (2, —2), whose periods lengthen somewhat
toward larger Q2. As discussed by Townsend (2003a), this class of
mode is transformed by the Coriolis force into equatorial Kelvin
waves. Such waves have different properties than the usual gravito-
inertial waves found in a rotating, stratified system; in particular,
they are characterized by geostrophic balance, whereby the Coriolis
force arising from azimuthal fluid motions is countered by polar
pressure gradients (see, e.g., Gill 1982). As a result of this balance,
the Coriolis force makes relatively little difference to the generalized
stiffness of PS modes and therefore does not produce the marked
period decrease seen for the other modes.

As a prelude to the analysis presented in the following section,
the focus now turns briefly toward the stability of the modes plotted
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in Fig. 2. Once again, there is a dichotomy between the PS modes
and the others: the former are partly stabilized by rotation and the
latter partly destabilized. However, in both cases the rotation does
not alter the property that a contiguous sequence of modes is un-
stable toward the ¥ mechanism. With this result in mind, Table 2
succinctly summarizes the data shown in the figure, by indicating
the range of the instability, at three differing rotation rates, for each
(€, m) pair considered. This range is expressed in terms of the ra-
dial orders of the highest- and lowest-frequency unstable modes;
the corresponding corotating frame period P, inertial frame period®
P; =2m/(c — m ) and harmonic degree ratio £/¢ are also tabu-
lated. From the table, it is evident that a grand total of seven out of
the 29 initially unstable PS modes are stabilized by the rotation. In
the same way, the 94 non-PS modes that are initially unstable are
augmented, upon the introduction of rotation, by the destabilization
of a further 58; the largest gains, of 16 additional unstable modes,
are accorded to the (¢,m) = (1, 1) group.

Animportant result clearly seen in Fig. 2 is that the stabilization or
destabilization of modes, with varying rotation rate, does not suffice
to maintain the boundaries of the instability at a constant frequency
or period. For instance, the (¢,m) = (1, 1) modes mentioned above
exhibit instability over the period range ~1.05-1.95 d in the non-
rotating case; but this range is narrowed and shifted to ~0.65-1.05
d in the rapid-rotation limit. Thus, even though more modes are
unstable in this limit, they occupy a narrower region of the pulsation
spectrum; such behaviour is a direct consequence of the spectral
compression discussed previously.

The processes selecting which modes are unstable are similar
to those operative in a non-rotating star. As discussed by Dziem-
bowski et al. (1993), one requirement for the k mechanism to work
efficiently is that the relative Lagrangian pressure perturbation é p/ p
be large and slowly varying with radius within the excitation zone.
This condition establishes the short-period limit of the instability
at |7i] ~ 12 (cf. Table 2); because the shape of radial eigenfunc-
tions is insensitive to the strength of the Coriolis force (see, e.g.,
Ushomirsky & Bildsten 1998), this limit does not vary appreciably
with rotation rate.

The corresponding long-period limit is determined not so much
by the efficiency of the x-mechanism driving, but more by the onset
of significant thermal damping. This damping arises as a result of
radiative diffusion between neighbouring fluid elements, operating
primarily in a region of the envelope (log T ~ 5.9) situated below
the excitation zone. For the diffusion to be effective in stabilizing the
pulsation requires a combination of long pulsation periods and high
radial orders, the latter serving to steepen the temperature gradients
driving the diffusion. The interplay between these two factors leads
to a long-period instability limit that is quite sensitive to the rotation
rate, as Fig. 2 attests.

4.2 Instability strips

The focus is now broadened, from the 53 Per-like model consid-
ered in the preceding section, to the complete set of stellar models
introduced in Section 3. At three differing rotation rates, /2, =
0.0, 0.25 and 0.5, BooJuM is used to search for unstable £ = 1 and
¢ = 2 g modes; the results of these calculations are presented in
Fig. 3, where the same HR diagram shown in Fig. 1 is overplotted
by the instability strip associated with each (¢, m) combination at
each rotation rate. These instability strips enclose all models that

6 For retrograde modes, negative values of P; (e.g. in the final row of Table 2)
indicate the mode is prograde in the inertial frame.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2005MNRAS.360..465T

BVNRAS, 360- 4651

rz

472  R. H. D. Townsend

=1, m=-1 (=1, m=0
45 TIIHH|]||I\lHHI|HH||||[‘|IHTIIH‘II|||HII TTTTTTTTT 45 |]|||[||I“I\IHI||||H|IIHIlIHIIIlH“IIHIII] TTTTTTTTT
N . N 8
LN\ \ ] B ]
\
4.0— — 4.0 —
L1227 i B ]
L \ N ] B ]
L \ i L i
3.5 9N — 3.5 —
L N i B ]
o C \ T C i
=2 L \ i L _
3 3.0_— 6 ] 3.0_— ]
w [ ] B ]
L L i L _
2.5 — 2.5 —
2.0 — 20 o —
L ] B 5, ]
r ] C £Q .
L N L Y
15 HIHJII]|II[IIH\IlJHIIIII[lIIH\IIH‘IIIIIH\{IlHllHlll 15 I]III[IIIl\IIIHIIIlIHIII\\I|IJ]IIIIHlHIHII\]lII[IIH\I
450 440 430 420  4.10  4.00 450 440 430 420 410  4.00
t=1, m=1 =2, m=-2
45 \II\\\Il\lll\ll\\\II\\\IIIII\‘IIH\II\WIIIIIHII TTTTTTTTT 4'5 I\III\III‘\I\I\\Illll\\III\\IIIHIIIII\‘\IIHIII\ TTTTTTTTT
N - I .
(N \\ ] C N\ \ ]
4.0 \ — 40 —
C127 ] 127 ]
L \ LR ] B N ]
L v\ ] L ]
35 N — 35 9\ —
3 \ : N L ]
s L N N C ]
2 [ N C
3 3-Oj 6 3.0_—
1] | -
S L L
25— — 25 N ]
L i C AN ]
L 4 - \%, _
L NG i - NG i
- Q/Q,=0.00 « - N
2.0 — 20 —
L ovrennnnns 0/0.=0.25 S N4 L N4
- 7, \ - g2 \
_ 5 N
F = — = 0/0.=0.50 g L g
“.5_HIHJII]|II[IIlHIlJJJIIIII[llIHHIJJ]IIIIIH\IlHIIJ]III_ 1.5_I]III[IIIllIIIJJIII|I[HIIHIlIJ]IIIIHllllHII\]lll[IHHl_

4.50 4.40 4.30 4.20 4.10 4.00
log Te" (K)

4.50 4.40 4.30 4.20 4.10 4.00
log Teﬂ (K)

Figure 3. Instability strips in the Hertzsprung—Russell (HR) diagram, for £ = 1 and ¢ = 2 g modes of the stellar models introduced in Fig. 1. In each panel,
corresponding to a particular combination (¢, m) of mode parameters, the extent of the x-mechanism instability is indicated using thick lines, at the three
differing rotation rates €2/, = 0.0 (solid), 0.25 (dotted) and 0.5 (dashed) considered. The uneven boundaries of the instability strips, evident in some panels,

are the result of the discrete spacing of the stellar models in the T of—L , plane.

are unstable (o; < 0) toward the excitation of one or more modes
of the indicated type.

As with the preceding section, there is a clear division between
the PS and the non-PS modes. The effect of rotation on the former is
to shift their instability strips along the main sequence, toward lower
temperatures and luminosities. The converse behaviour is exhibited
by the latter, for which instability strips are shifted toward higher
temperatures and luminosities. These shifts affect the blue edges of
the instability to a greater degree than the corresponding red edges.
For instance, the stellar models lying along the ZAMS are, in the
absence of rotation, unstable toward (¢,m) = (1, 1) modes over the
temperature range 4.06 < log T ¢ < 4.21. Upon the introduction of
rotation, at the rate 2/, = 0.5, this range shifts and broadens to
4.08 <log Teir < 4.28.

The behaviour of both classes of mode can be understood
with reference to the prerequisites for excitation discussed by
Dziembowski et al. (1993). In addition to the aforementioned
restriction on the pressure eigenfunction (cf. Section 4.1), it is
necessary that the thermal time-scale in the excitation zone be
comparable to, or longer than, the pulsation period. This latter
condition is the key to the behaviour seen in Fig. 3. The thermal
time-scale

[ Te,dm,

L. , (25)

Tn(r) =

evaluated at the radius where the opacity derivative 7 is maximal, is
a strong function of stellar effective temperature; it declines rapidly
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Figure 3 — continued

toward larger values of T, because the excitation zone’ is situated
ever closer to the surface. Consequently, for the non-PS modes,
whose periods become shorter under the influence of the Coriolis
force, the effect of rotation is to shift the instability toward stars
having higher Ty, so that the t—P matching condition can still
be met. Conversely, for the PS modes, the marginal lengthening in
periods as a result of rotation pushes the instability toward slightly
lower T .

Fig. 4 illustrates these processes, by plotting instability regions
in the T P plane for stellar models situated along the ZAMS and
TAMS boundaries. These regions, the complements of the instabil-
ity strips shown in Fig. 3, indicate how the range of unstable-mode
periods evolves with changing effective temperature; also shown in
the figure, as separate curves for the ZAMS and the TAMS models,

7 Typically occurring at a temperature log T & 5.3.
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is the thermal time-scale within the excitation zone. For the non-PS
modes, the period shortening caused by rotation is evidently respon-
sible for the shift of the k-mechanism instability toward higher ef-
fective temperatures, in order to maintain the loose correspondence
between ty, and P. Likewise, for the PS modes, the period length-
ening causes the instability to shift to lower effective temperatures,
once again to keep ty, in step with P.

It is instructive to relate the foregoing analysis to previous studies
(e.g. by Balona & Dziembowski 1999) of the effect that a varying
harmonic degree ¢ has on the instability of SPB stars. It can be rec-
ognized that the pulsation equations (7)—(10) are, modulo a number
of approximations, no different than those describing modes of har-
monic degree ¥ in a non-rotating star. Accordingly, the influence of
the Coriolis force on the period and stability of an individual mode
can be followed simply by allowing ¢ to vary in some specified man-
ner. For non-PS modes, this variation assumes the asymptotic form
given in equation (24); clearly, any increase in v, corresponding to
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Figure 4. Instability regions in the 7 ¢x—P plane, for £ = 1 and ¢ = 2 g modes of stellar models lying along the zero-age main sequence (ZAMS) and
terminal-age main sequence (TAMS) boundaries (cf. Fig. 1). In each panel, corresponding to a particular combination (¢, m) of mode parameters, the extent of
the x-mechanism instability is indicated using thick lines, at the three differing rotation rates 2/Q. = 0.0 (solid), 0.25 (dotted) and 0.5 (dashed) considered.
The points, comprising separate curves for the ZAMS and the TAMS models, indicate the thermal time-scale 7, within the excitation zone.

more-rapid rotation, leads to a proportional increase in €. However,
as the instability strips presented by Balona & Dziembowski (1999,
their fig. 5) reveal, the result of raising the harmonic degree is to
shift the g-mode instability toward higher luminosities and effective
temperatures: exactly the behaviour manifested in the blueward dis-
placement, at higher rotation rates, of the instability strips plotted in
Fig. 3. A similar line of reasoning can be applied to the PS modes.

Although these parallels to the non-rotating case are instructive,
an important caveat should be made regarding their use. Reiterating
the fact that the spin parameter v is itself a function of the pulsation
frequency o, it is clear that the effective harmonic degree £ assumes
different values even among modes having the same true harmonic
degree ¢ and azimuthal order m. This result, already discussed in
Section 4.1 under the guise of spectral compression, is why the

Coriolis force tends not only to shift the k-mechanism instability
strips for SPB stars, but also acts to broaden them.

5 DISCUSSION AND SUMMARY

In the preceding sections, an approximate method for treatment of
the Coriolis force (Section 2.1) is used to devise equations gov-
erning non-adiabatic, non-radial pulsation of rotating stars (Sec-
tions 2.2). These equations are solved (Section 2.3) for a range of
mid-B-type stellar models (Section 3); the general finding (Section
4) is that the Coriolis force shifts the instability strip associated
with k-mechanism excitation of g modes toward higher luminosi-
ties and effective temperatures for non-PS modes, and toward lower
luminosities and effective temperatures for PS modes.
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Figure 4 — continued

An immediate corollary of this result is that the Coriolis force
is unable to stabilize all B-type stars against g mode pulsation;
rather, it can only alter which particular stars, at a given rotation rate,
are unstable. Similar conclusions were reached by Ushomirsky &
Bildsten (1998) in their quasi-adiabatic analysis, and by Lee (2001)
in his complete treatment of the Coriolis force. However, as dis-
cussed in Section 1, observations of SPB stars reveal an apparent
paucity of objects rotating at significant rates. How might this dis-
crepancy between theory and observations be resolved?

One possibility is that the centrifugal force, neglected in the
present treatment and by Lee (2001), can act to stabilize modes.
Certainly, not taking this force into account will introduce a certain
level of error in the results, especially at the upper limit /2 = 0.5
adopted herein, which comes very close to violating the assumption
(cf. Section 2.1) that Q2 < Q2. However, Lee & Baraffe (1995) and
Lee (1998) have demonstrated that the centrifugal force has little
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effect on the stability of the g modes characteristic to SPB stars. Per-
haps a more plausible scenario is that resonant coupling, between
modes of differing harmonic degree (see, e.g., Chandrasekhar &
Lebovitz 1962), may act to suppress the x-mechanism instability.
These couplings, which are neglected in the present analysis be-
cause of the adoption of the traditional approximation, were shown
by Lee (2001) to inhibit the excitation of selected modes that would
otherwise be unstable in rotating SPB stars.

Nevertheless, it is highly unlikely that resonant coupling could
suppress the instability of all modes. With this in mind, it appears
increasingly probable that, as the theoretical analysis indicates, g
modes are excited in rotating SPB stars; but that the equatorial-
confinement effects demonstrated by Townsend (2003b) render
them very difficult to detect observationally. In support of this in-
terpretation for the observational scarcity of rotating SPB stars, two
of the open clusters originally thought to be devoid of SPB stars,
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NGC 4755 (Balona & Koen 1994) and NGC 6231 (Balona & Laney
1995), have, upon closer scrutiny, been found to contain a number
of candidate-SPB objects (see Stankov et al. 2002; Arentoft et al.
2001).

In addition to their direct applicability to SPB stars, the results
presented herein are highly relevant to the understanding of the
Be phenomenon. The multiperiodic spectroscopic and photometric
variations exhibited by many Be stars (e.g.  Cen, Rivinius et al.
1998; w CMa, Stefl et al. 2003) are usually interpreted as arising
from non-radial g modes (see Rivinius, Baade & Stefl 2003, and
references therein). It is not unreasonable to suppose the excitation
of these modes to be the result of the same x mechanism operative
in the SPB stars. However, a historical problem with this stance has
been that many variable Be stars have early spectral types BO-B3,
falling bluewards of the high-temperature limit of the SPB instabil-
ity strip for low-degree pulsation (Balona & Dziembowski 1999).
Furthermore, periodic variations are not seen in Be stars with types
later than B5 (e.g. Baade 1989a,b, and references therein), even
though the SPB instability strip extends all the way down to types
B8 or BO.

Both of these difficulties are resolved by allowing for the influence
of the Coriolis force, which, as the present analysis demonstrates,
has the effect of shifting «-mechanism instability toward earlier
spectral types. Of course, this rationalization can only work if the
modes seen in Be stars are not PS; however, in light of the analysis
presented by Rivinius et al. (2003), who found at least 16 of the
27 Be stars in their sample to pulsate in retrograde (¢,m) = (2,2)
modes, this latter restriction does not appear to be problematic.
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