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ABSTRACT
Through the solution of Laplace’s tidal equations, approximated to describe equatorially
trapped wave propagation, analytical expressions are obtained for the angular dependence
of pulsation modes in uniformly rotating stars. As the ratio between rotation and pulsation
frequencies becomes large, these expressions approach the exact solutions of the governing
low-frequency pulsation equations.

Four classes of asymptotic solution are found, corresponding to g (gravito-inertial), r
(Rossby), Kelvin and Yanai modes. The Kelvin modes arise through the conservation of spe-
cific vorticity, much like the r modes, but propagate in the same sense as the rotation; they are
found to be the equivalents of prograde sectoral modes. The prograde Yanai modes behave
like g modes, as do the retrograde ones if the rotation is sufficiently rapid; otherwise, the latter
exhibit the character of r modes.

Comparison between asymptotic and numerical solutions to the tidal equations reveals that
the former converge rapidly towards the latter, for g and Yanai modes. The convergence is
slower for Kelvin and r modes, as these become equatorially trapped only when the rotation
is very rapid. It is argued that the utility of the asymptotic solutions does not rest on their
accuracy alone, but also on the valuable physical insights that they are capable of providing.
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1 I N T RO D U C T I O N

The past 15 years’ research into non-radial pulsation (nrp) in ro-
tating stars have seen many qualitative insights obtained through
the adoption of the so-called ‘traditional approximation.’ Originat-
ing from the field of atmospheric and oceanographic geophysics
(Eckart 1960), this approximation was first applied in an astrophys-
ical context by Lee & Saio (1987), to analyse the influence of the
Coriolis force on low-frequency modes within massive, uniformly
rotating stars. It has subsequently been applied in many areas of stel-
lar pulsation, from modelling the nrp-originated line-profile varia-
tions seen in early-type stars (Lee & Saio 1990; Townsend 1997b),
to examining tidal forcing in massive binary systems (Papaloizou
& Savonije 1997), to investigating what role gravity modes might
play in the quasi-periodic oscillations exhibited by rotating neutron
stars (Bildsten, Ushomirsky & Cutler 1996).

Under the condition that a star is rotating with uniform angular
velocity Ω, the traditional approximation amounts to neglecting the
horizontal component of Ω when evaluating the inertial Coriolis
force in the linearized momentum equations. Such an approach is
valid in regions of the star where both � ≡ | Ω | and ω, the pulsation
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angular frequency in the corotating frame, are significantly smaller
than the Brunt–Väisälä frequency N (see, e.g. Lee & Saio 1997).
When combined with three other simplifying assumptions, namely

(i) that � � (GM/R3)1/2, where M and R are the mass and
radius of the star, respectively, such that centrifugal distortion of the
quiescent star may be neglected,

(ii) that perturbations to the specific entropy may be neglected
(the adiabatic approximation) and

(iii) that perturbations to the gravitation potential may be ne-
glected [the Cowling (1941) approximation],

the traditional approximation permits the separation of the pulsation
equations in all three spherical-polar coordinates (r , θ , φ). This
represents a great simplification, by transforming the nature of the
problem from a partial differential one into an ordinary differential
one.

Of the separated pulsation equations, that describing the az-
imuthal (φ) dependence of modes is the same as in the case without
rotation, and is trivial to solve. The polar (θ ) dependence is gov-
erned by Laplace’s tidal equations (Bildsten et al. 1996), whose
eigensolutions – satisfying the appropriate boundary conditions –
are named after their originator, Hough (1898). The Hough func-
tions constitute a one-parameter family in the ‘spin parameter’ ν ≡
2�/ω; associated with each is an eigenvalueλ, which is related to the
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effective horizontal wavenumber k⊥ of the pulsation via k2
⊥ = λ/r 2

(e.g. Townsend 2000). Although this latter expression suggests that
λ must be positive, negative values can also arise, and are identified
with convective modes stabilized by the Coriolis force (see Lee &
Saio 1986). Such modes are not considered in the present work, and
it is therefore assumed throughout that λ is positive.

At general values of the spin parameter ν, the solution of Laplace’s
tidal equations must be approached numerically. However, as the
present paper will demonstrate, approximate analytical solutions
may be obtained that become exact in the asymptotic limit of large
|ν|. This result is well-established in the geophysical literature (see,
e.g. Longuet-Higgins 1968; Gill 1982), but has yet to be applied
to stellar nrp. The format of the paper is as follows. The following
section reviews briefly the derivation of Laplace’s tidal equations; in
Section 3, approximations are then made to permit derivation of an-
alytical solutions to the equations. These are classified in Section 4,
and compared against numerical solutions to the tidal equations in
Section 5. A summary of the main results of the paper then follows
in Section 6.

2 L A P L AC E ’ S T I DA L E QUAT I O N S

In a uniformly rotating star, and under the assumptions (i)–(iii) given
in the preceding section (but not yet adopting the traditional approx-
imation), the linearized equations governing nrp may be written, in
the corotating frame, as

−ρω2ξr − 2iρω� sin θξθ = −∂p′

∂r
− gρ ′, (1)

−ρω2ξθ − 2iρω� cos θξφ = −1

r

∂p′

∂θ
, (2)

−ρω2ξφ + 2iρω� cos θξθ + 2iρω� sin θξr = − 1

r sin θ

∂p′

∂φ
, (3)

ρ ′ + 1

r 2

∂

∂r

(
ρr 2ξr

) + ρ

r sin θ

∂

∂θ
(sin θξθ ) + ρ

r sin θ

∂ξφ

∂φ
= 0, (4)

and

ρ ′

ρ
= 1

1

p′

p
+ ξr

N 2

g
(5)

(e.g. Lee & Saio 1997). Here, (ξ r , ξ θ , ξ θ ) are the (r , θ , φ) compo-
nents of the fluid displacement vector ξ; p is the pressure; ρ is the
density; g is the gravitational acceleration; and 1 ≡ (∂ln p/∂ln ρ)ad

is the first adiabatic exponent. The prime (′) denotes the Eulerian per-
turbation of the indicated quantity, and a periodic time-dependence
proportional to eiωt has been assumed for the pulsation.

Equations (1) and (3) each contain terms proportional to � sin
θ , arising from the horizontal component of the rotation angular
velocity vector Ω. These terms are discarded within the traditional
approximation, leading to

−ρω2ξr = −∂p′

∂r
− gρ ′, (6)

and

−ρω2ξφ + 2iρω� cos θξθ = − 1

r sin θ

∂p′

∂φ
, (7)

respectively. It is this modification which permits the separation of
the pulsation equations (2) and (4)–(7) in all three coordinates. The
general form of solutions is readily found by inspection. Together,
equations (5) and (6) indicate that ξ r , p′ and ρ ′ share the same polar
dependence. Likewise, equations (2), (4) and (7) require that ξ θ and
ξφ share the same radial dependence. Finally, the fact that all equa-
tions are homogeneous and first-order in φ leads to an eimφ azimuthal

dependence, where – in order to preserve the single-valued quality
of solutions under the transformation φ→ φ + 2π – the azimuthal
order m is constrained to integral values. The sign of m and of the
spin parameter ν combine to determine the propagation direction
of a mode in the corotating reference frame: mν < 0 corresponds
to prograde, and mν > 0 to retrograde, with axisymmetric modes
having m = 0.

Taking all of these points into consideration, general solutions
may be written as

ξr = Yr (r )�(θ )ei(mφ+ωt), (8)

p′ = Yp(r )�(θ )ei(mφ+ωt), (9)

ρ ′ = Yρ(r )�(θ )ei(mφ+ωt), (10)

sin θξθ = Y⊥(r )�̂(θ )ei(mφ+ωt), (11)

i sin θξφ = Y⊥(r )�̃(θ )ei(mφ+ωt), (12)

where the sin θ terms in the last two expressions have been intro-
duced as a convenience, to simplify subsequent developments. The
three functions �(θ ), �̂(θ ) and �̃(θ ), describing the polar depen-
dence of solutions, are identified with the Hough functions discussed
in the preceding section [although it should be remarked that some
authors – e.g. Lee & Saio (1997) – prefer to reserve the designation
‘Hough function’ for �(θ ) alone].

Substituting the general solutions (8–12) into the pulsation equa-
tions leads to

−ρω2Yr = −dYp

dr
− gYρ, (13)

Y⊥ = 1

ρω2r
Yp, (14)

Yρ + 1

r 2

d

dr

(
ρr 2Yr

) − ρλY⊥
r

= 0, (15)

Yρ

ρ
= 1

1

Yp

p
+ Yr

N 2

g
, (16)

for the radial functions Y ..., and

−�̂ − νµ�̃ = D�, (17)

−�̃ − νµ�̂ = m�, (18)

λ(1 − µ2)� − D�̂ + m�̃ = 0, (19)

as the corresponding equations for the Hough functions, where µ

≡ cosθ , ν is as defined in the preceding section, and the differential
operator D is introduced as

D ≡ sin θ
d

dθ
≡ (1 − µ2)

d

dµ
. (20)

As little confusion can arise, the dependence of the radial functions
on r alone, and of the Hough functions on θ alone, has not been
explicitly indicated. The eigenvalue λ appears in equations (15)
and (19) as a separation constant; its significance was discussed
previously in Section 1.

Equation (18) may be used to eliminate �̃ from equations (17)
and (19), leading, after rearrangement, to

(D − mνµ)� = (ν2µ2 − 1)�̂, (21)

(D + mνµ)�̂ = [λ(1 − µ2) − m2]� . (22)

In combination with the algebraic relation (18), these constitute
Laplace’s tidal equations in a first-order form; the further elimination
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of �̂ leads to the second-order form favoured by Bildsten et al.
(1996) and Lee & Saio (1997).

In the following section, it will be demonstrated how the tidal
equations can be solved analytically in the asymptotic limit |ν| �
1. Out of the continuum of possible solutions, only those which
satisfy the appropriate boundary conditions shall be retained. For
non-axisymmetric modes (i.e. m = 0), these conditions amount to
the requirement that solutions decay towards zero as the points µ =
±1 are approached; this ensures that the general solutions (8–12) are
(as near as possible) single-valued at the stellar poles. For the ax-
isymmetric modes, the same decay requirement is applied to the
polar gradient of the solutions, to maintain the smoothness of
the general solutions at the poles.

3 A S Y M P TOT I C S O L U T I O N S

The key to deriving asymptotic solutions to Laplace’s tidal equa-
tions (18) and (21)–(22) lies in noting that the spin parameter ν

always appears in product with the latitudinal coordinate µ. Intu-
ition suggests that, if the Hough functions are to remain finite in the
limit of large |ν|, these functions can differ appreciably from zero
only over a narrow equatorial region of small |µ|.

This supposition is lent support by numerical solutions of the
tidal equations. Bildsten et al. (1996) demonstrated that, towards
larger values of |ν|, the Hough functions remain close to zero out-
side the interval |µ| � |ν|−1. The possibility of such confinement
was first recognized by Yoshida (1959), who originated the idea of
a Coriolis-force originated ‘equatorial waveguide’ which prevents
low-frequency waves from propagating towards high latitudes.

For equatorially trapped waves, the fact that µ is small suggests
that terms of the order of µ2 in the tidal equations may be neglected,
in comparison to those of the order of unity. Under this approxima-
tion, the differential operator D, appearing on the left-hand side of
equations (21)–(22), becomes

D ≈ d

dµ
. (23)

To obtain corresponding approximate forms for the right-hand sides
of these equations, it is necessary to consider two separate cases,
depending on whether the eigenvalue λ is close, or otherwise, to m2.
The following subsections consider each case in turn, and obtain the
appropriate solutions to the approximated tidal equations.

3.1 The case when λλ == m2

Under the ab initio assumption that λ differs appreciably from m2,
the µ2 term on the right-hand side of equation (22) may be neglected.
The tidal equations then become(

d

dµ
− mνµ

)
� = (ν2µ2 − 1)�̂, (24)

(
d

dµ
+ mνµ

)
�̂ = (λ − m2)� , (25)

where D has been replaced by its approximate form (23). Eliminat-
ing � between this pair leads to a second-order differential equation
for �̂,

d2�̂

dµ2
+ (mν − m2 + λ − λν2µ2)�̂ = 0. (26)

By introducing the definitions

σ ≡ (Lν)1/2µ, (27)

L2 ≡ λ (28)

and

S ≡ mν − m2 + L2

Lν
, (29)

this equation further simplifies to

d2�̂

dσ 2
+ (S − σ 2)�̂ = 0. (30)

It is no coincidence that this latter equation bears a close resem-
blance to the time-independent Schrödinger equation for a quantum
harmonic oscillator (e.g. Arfken 1970) – both describe wave propa-
gation within a quadratic potential well, which in the present context
corresponds to the equatorial waveguide discussed above.

Solution of equation (30), subject to the boundary conditions
given previously, can only be achieved when S satisfies the relation

S = 2s + 1 (31)

for the integer ‘meridional order’ s � 0. The solutions are given by

�̂(σ ) = Hs(σ )e−σ 2/2, (32)

where H s is the Hermite polynomial of order s. From equations (18)
and (25), corresponding expressions for the other two Hough func-
tions follow immediately, as

�(σ ) = (Lν)1/2

L2 − m2

×
[

s
(m

L
+ 1

)
Hs−1(σ ) + 1

2

(m

L
− 1

)
Hs+1(σ )

]
e−σ 2/2

(33)

and

�̃(σ ) = m
(Lν)1/2

m2 − L2

×
[
s

(
L

m
+ 1

)
Hs−1(σ ) + 1

2

(
L

m
− 1

)
Hs+1(σ )

]
e−σ 2/2;

(34)

here, extensive use has been made of the recurrence relations be-
tween Hermite polynomials (e.g. Abrabowitz & Stegun 1964).

The parameter L appears explicitly both in the last two expres-
sions, and in the definition (27) of the independent variable σ . It can
be found by solving the characteristic equation

L2 − ν(2s + 1)L + (mν − m2) = 0 (35)

derived from eliminating S between equations (29) and (31). The
resulting roots are given by

L = 1

2
ν(2s + 1) ± 1

2

[
ν2(2s + 1)2 − 4(mν − m2)

]1/2
. (36)

From this relation, the eigenvalue λ is readily found as

λ± ≡ L2 = −(mν − m2) + 1

2
ν2(2s + 1)2

×
{

1 ±
[

1 − 4(mν − m2)

ν2(2s + 1)2

]1/2
}

, (37)

which – via a non-vanishing, lowest-order Taylor’s series expansion
in ν−1 – can be written in the approximate forms

λ+ ≈ ν2(2s + 1)2 + O(ν) (38)

C© 2003 RAS, MNRAS 340, 1020–1030



The angular dependence of pulsation modes 1023

and

λ− ≈ (mν − m2)2

ν2(2s + 1)2
+ O(ν−1). (39)

Each of these two eigenvalue branches is associated with a class
of equatorially trapped wave/mode. The λ+ branch corresponds to
gravito-inertial (g) modes (sometimes also known as Poincaré waves
– see Gill 1982), which arise from the influence on displaced fluid
elements of both buoyancy and Coriolis forces.

Likewise, the λ− branch corresponds to r modes (or Rossby
waves), which arise through the conservation of specific vorticity,
combined with the curvature of level surfaces. Unlike the g modes,
the r modes do not exist in non-rotating systems. The entire λ−
branch must be ruled out whenever mν � m2, because the prod-
uct Lν would otherwise be negative, and – via its definition (27) –
the independent variable σ imaginary, which is inadmissible on
physical grounds. An immediate corollary is that valid r-mode so-
lutions, for which mν > m2 � 0, are necessarily non-axisymmetric
and retrograde; this is a well-established result (e.g. Saio 1982).

The foregoing discussion is applicable to both g and r modes of
meridional order s � 1. The s = 0 solutions comprise a special case,
as their eigenvalues reduce to the exact forms

λ+ =
{

m2 when 0 < mν < 2m2,

(ν − m)2 otherwise,
(40)

and

λ− =
{

(ν − m)2 when 0 < mν < 2m2,

m2 otherwise.
(41)

The λ = m2 cases must be ruled out, because they violate the a
priori assumption that λ differs appreciably from m2. Furthermore,
the remaining λ = (ν − m)2 cases must be disallowed over the
interval 0 < mν < m2, inasmuch that they arise from L = (ν − m)
solutions to the characteristic equation (35), and would therefore
lead to imaginary values of σ . Accordingly, it can be seen that the
s = 0 situation leads to at most one valid solution, rather than the
usual two. Where it exists, this solution has the character either of
an r mode mode (λ = λ−; m2 < mν < 2m2), or a g mode (λ = λ+;
mν > 2m2 or mν � 0), and for this reason it is sometimes termed
the mixed gravity–Rossby wave (e.g. Gill 1982). In honour of its
discovery in the Earth’s atmosphere by Yanai & Maruyama (1966),
this wave is also known as the Yanai wave, and the present work
will thus refer to the s = 0 solutions as Yanai modes.

The accuracy of the asymptotic expressions (32–34) will be inves-
tigated in Section 5, through comparison with numerical solutions
to the full tidal equations (18) and (21)–(22). Meanwhile, useful in-
sights can be gleaned from consideration of µ1/2, the half-width of
the equatorial waveguide. As the Hough functions reach apprecia-
ble amplitudes only within the waveguide, the error introduced by
the asymptotic analysis – where terms of order µ2 are neglected –
should scale with µ2

1/2.
Of the alternative µ1/2 definitions that might be adopted, a rel-

atively simple one comprises the loci µ = ±µ1/2 at which the �̂

Hough function changes from oscillatory to exponential. These loci
are where latitudinally propagating waves become evanescent, and
can be considered reflected by the waveguide boundaries. From a
mathematical stance, the loci can be identified as the points where
�̂ is non-zero, but its second derivative with respect to µ vanishes.
Under these conditions, equation (30) is satisfied only when σ 2 =
S, leading to the expression

µ1/2 =
(

2s + 1

Lν

)1/2

(42)

for the waveguide half-width. Through use of equation (28), and the
approximate forms (38–39) for λ, L may be eliminated from this
result, to give

µ1/2 ≈ 1

|ν| (43)

for the g modes, and

µ1/2 ≈
(

2s + 1

mν − m2

)1/2

(44)

for the r modes.
Recalling that the relative error varies with µ2

1/2, the former ex-
pression indicates that the g-mode solutions will converge approx-
imately quadratically (in ν) to the exact solutions of the full tidal
equations (18) and (21)–(22). In the case of the r modes, equa-
tion (44) reveals a closer-to-linear convergence, meaning that – for
modest values of mν > m2 – these solutions will provide poor ap-
proximations to their exact counterparts. For both types of mode,
µ1/2 must clearly be less than unity if the notion of equatorial trap-
ping is to hold any meaning; therefore, the g-mode solutions should
be considered valid only when |ν| � 1, and the r-mode solutions
only when mν � 2s + 1 + m2.

It should be remarked that Bildsten et al. (1996) adopt a different
definition of the waveguide half-width, based on the outermost (i.e.
largest-|µ|) extremum in the � Hough function. However, this def-
inition led them to find the empirical relationship µ1/2 ≈ |ν|−1, the
same as obtained above (cf. equation 43) for the g modes. The reason
why the two alternative half-width definitions lead to the same ex-
pression for µ1/2 can be understood by noting that, as the equatorial
waveguide grows ever-more narrow, the � Hough function neces-
sarily becomes eclipsed in amplitude by its latitudinal derivative.
Therefore, equation (24) may be approximated by

d�

dµ
≈ (ν2µ2 − 1)�̂. (45)

Clearly, the left-hand side will vanish (corresponding to a � ex-
tremum) either when µ = ±ν−1, or when �̂ is zero. The former
situations can be identified with the outermost extrema of �, by the
simple argument that all zeros of �̂ must lie equator-ward to µ =
±ν−1 – these points, as shown above, being where �̂ is non-zero, and
its character changes from oscillatory to exponential. Therefore, it
follows that the half-width definition adopted herein naturally leads
to the same value of µ1/2 predicted by the Bildsten et al. (1996)
definition.

3.2 The case when λλ ≈≈ m2

When λ is close to m2, the solutions of the previous section do not
apply, because the µ2 term on the right-hand side of equation (22)
cannot be discarded. However, because the whole bracketed term on
this side will be small, it is reasonable to expect � to be much larger
in magnitude than �̂. With this assumption, the tidal equations may
be approximated near the equator by(

d

dµ
− mνµ

)
� = 0, (46)(

d

dµ
+ mνµ

)
�̂ = [λ(1 − µ2) − m2]� , (47)

where, as before, D has been replaced by its approximate form (23).
With a change of independent variable to
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τ ≡ (−mν)1/2µ, (48)

the above equations become(
d

dτ
+ τ

)
� = 0, (49)

(
d

dτ
− τ

)
�̂ = 1

(−mν)1/2

[
λ − m2 + λτ 2

mν

]
� , (50)

respectively. The first of these is solved trivially, to give

�(τ ) = e−τ2/2. (51)

This solution can be identified with an equatorially trapped Kelvin
wave (e.g. Gill 1982). Much like Rossby waves, Kelvin waves arise
from the conservation of specific vorticity; however, it is the density
stratification of the star, rather than its curvature, which is impor-
tant in producing these waves. They propagate in a prograde rather
than retrograde direction, which explains why they have been re-
ferred to in the astrophysical literature (see Unno et al. 1989) as
low-frequency prograde waves. In the present context, the prograde
nature of Kelvin waves can readily be seen from the requirement
that τ be real, and therefore that mν < 0.

The tangential (�̂ and �̃) Hough functions associated with �

take a little more effort to obtain. Substituting solution (51) into
equation (50) yields(

d

dτ
− τ

)
�̂ = 1

(−mν)1/2

[
λ − m2 + λτ 2

mν

]
e−τ2/2, (52)

which is readily rewritten as

d

dτ

(
e−τ2/2�̂

)
= 1

(−mν)1/2

[
λ − m2 + λτ 2

mν

]
e−τ2

. (53)

Integrating the right-hand side by parts yields the general solution

�̂(τ ) = 1

(−mν)1/2

[√
π

2

(
λ − m2 + λ

2mν

)
eτ2/2erf(τ )

− λτ

2mν
e−τ2/2

]
+ T eτ2/2, (54)

where erf (τ ) is the error function, and T is a constant of integration.
If the boundary conditions are to be satisfied, T must be set to zero,
and the first term within the brackets must vanish, leading to the
characteristic equation

λ = m2 2mν

2mν + 1
. (55)

The solution for �̂ reduces to

�̂(τ ) = − 1

(−mν)1/2

m2

2mν + 1
τe−τ/2. (56)

Via equation (18), this result can be combined with expression (51)
for �, to give the azimuthal Kelvin-mode Hough function as

�̃(τ ) = −m

(
τ 2

2mν + 1
+ 1

)
e−τ2/2. (57)

Towards large |ν|, the Kelvin-mode eigenvalues (55) asymptote
towards m2, and ever more closely satisfy the eigenvalue equa-
tion (37) when s = −1. Accordingly, Kelvin modes are sometimes
attributed the notional meridional order s = −1 (e.g. Gill 1982),
a designation which will prove convenient when, in the following
section, the solutions to the tidal equations are classified.

As in the preceding section, it is useful to determine the half-
width µ1/2 of the Kelvin-mode equatorial waveguide. The second

derivative of the �̂ Hough function (56) vanishes at τ = ±√
3;

therefore, through the definition (48) of τ , the half-width follows as

µ1/2 =
(

3

−mν

)1/2

. (58)

In the limit |ν| � m2, this expression predicts for the Kelvin modes
the same linear-ν convergence found for the r modes, highlighting
further the close relationship between the two.

4 M O D E C L A S S I F I C AT I O N

In the preceding section, analytical expressions were obtained for the
Hough functions, via solution of Laplace’s tidal equations (18) and
(21)–(22) in the limit of large |ν|. Four types of equatorially trapped
solution were found, corresponding respectively to g, r, Yanai and
Kelvin modes. The purpose of the present section is to demonstrate
how these relate to historical classifications of low-frequency nrp in
rotating stars.

In the limit of no rotation, the � Hough functions of all prograde
modes, and of the retrograde g modes, reduce to associated Legendre
functions Pm

� (Lee & Saio 1997); here, m is the usual azimuthal
order, and the integer � � 0 is the harmonic degree. The (�, m)
pair of indices is often used to classify the Hough functions (e.g.
Townsend 1997a,b), as it provides a clear indication of their non-
rotating progenitors.

However, this classification scheme can encompass neither r
modes, nor retrograde Yanai modes. To address this deficiency, an
alternative scheme was devised by Lee & Saio (1997), centring
around the assignment of a unique integer index k to each solution
of the tidal equations. Positive or zero values of k indicate modes
which possess a counterpart, of harmonic degree � = |m| + k, in
the limit of no rotation; negative values denote the r modes and
Yanai modes, or – when λ < 0 – the convective modes neglected
in the present analysis. The k indexing of solutions is determined
by the requirement that the eigenvalues λk , at every m and ν, fall
into the sequence λk+1 > λk . Such an ordering is always possible,
because the eigenvalues of the tidal equation are guaranteed never
to be degenerate (see, e.g. Townsend 1997a,b).

Using this stratagem, it is straightforward to relate the meridional
order s of the solutions found herein to the k index of Lee & Saio
(1997). For prograde modes, the correspondence takes the simple
form s = k − 1, encompassing at a stroke the g modes (k � 2 ⇔
s � 1), the Yanai mode (k = 1 ⇔ s = 0) and the Kelvin mode (k =
0 ⇔ s = −1). Likewise, the correspondence for retrograde modes
is s = −k − 1 for the r modes (k � −2 ⇔ s � 1), and s = k + 1 for
the g modes (k � 0 ⇔ s � 1); either one of these gives the correct
relationship for the Yanai mode (k = −1 ⇔ s = 0).

To clarify the foregoing exposition, Table 1 indicates how the
m = −2, k = −2, . . . , 2 modes fit into the s- and �-based indexing
schemata. Also shown in the table is the type of each mode. Clearly,
what has historically been designated as the prograde sectoral mode,
with � = −m, can now be identified as an instance of a Kelvin mode;
likewise, the lowest-order retrograde g mode can also be recognized
as a sectoral mode (� = m). However, the latter terminology is rather
misleading: although, when |ν| < 1 the � Hough functions of the �

= m modes exhibit no latitudinal nodes over the range −1 < µ <

1, an extra pair of nodes appears when |ν| exceeds unity (e.g. Lee
& Saio 1997). Therefore, in the limit of large |ν|, the s = 1 (k = 0)
retrograde g mode is not actually sectoral.

Comparing the alternative indexing schemes presented in Table 1,
it can be seen that only the k-based one is capable of identifying
all modes uniquely; the s scheme suffers from the drawback that,
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Table 1. The correspondence between the k-based indexing
scheme (Lee & Saio 1997) and the s- and �-based schemes,
for prograde and retrograde m = −2 modes. Situations where
there is no valid index are denoted by ellipses (. . .).

Prograde (ν > 0) Retrograde (ν < 0)
k s � Mode type s � Mode type

2 1 4 g 3 4 g
1 0 3 Yanai 2 3 g
0 −1 2 Kelvin 1 2 g
−1 . . . . . . . . . 0 . . . Yanai
−2 . . . . . . . . . 1 . . . r

without supplementary information, there is no way of distinguish-
ing between g and r modes. However, it benefits from the fact that it
provides a clear indication of the character of a given mode, which
neither of the other schemes can achieve.

Equipped with the correspondence between the s, k and � index-
ing schemes, it is straightforward to compare the results presented
herein with those found by other authors. For instance, Lee & Saio
(1997) have noted that lµ, the number of latitudinal nodes in �, is
given by lµ = k for prograde g modes, and by lµ = k + 2 for retro-
grade g modes, the extra pair of nodes in the latter case appearing
– as mentioned above – when |ν| > 1. Expressed in the s-based
scheme, this relationship becomes lµ = s + 1 for both prograde
and retrograde modes; therefore, the approximate expression (38)
for λ+ may be written in terms of lµ, as

λ+ ≈ ν2(2lµ − 1)2. (59)

This is identical to the asymptotic behaviour found by (Bildsten
et al. (1996, their equation 14); however, they arrived at their result
empirically, in contrast to the analytical approach herein.

To provide another example, Lee & Saio (1989) have demon-
strated, via asymptotic solution of the radial parts of the pulsation
equations (cf. 13–16), that the eigenfrequencies of low-frequency g
modes satisfy

ω =
(

λ

2

)1/2

ω1, (60)

in the case of early-type stars with convective cores and radiative
envelopes. The quantity ω1 is the frequency of the � = 1 mode of
radial order n in a non-rotating star, defined as

ω1 =
√

2

(ηe/2 + n)π

∫ R

Rc

N

r
dr, (61)

where Rc is the radius of the core boundary, and ηe is the effective
polytropic index at the stellar surface. Through use of the approxi-
mate form (38), λ may be eliminated from equation (60), to yield

ω = ν(2s + 1)ω1√
2

. (62)

Using the definition ν ≡ 2�/ω of the spin parameter, and the above
identification lµ = s + 1, the latter expression can also be written
as

ω2 =
√

2(2lµ − 1)�ω1. (63)

In the limit lµ � 1, this result is in agreement with the findings of
Papaloizou & Pringle (1978), in their study of equatorially trapped
g modes (see also Ushomirsky & Bildsten 1998).

5 C A L C U L AT I O N S

In this section, the asymptotic solutions to the tidal equations (18)
and (21)–(22) are compared with ‘exact’ numerical solutions. This
comparison is not intended to be exhaustive, but rather to illustrate
the validity and accuracy of the analysis presented in the foregoing
sections. The technique adopted for calculation of the numerical so-
lutions was Townsend’s (2003) implementation of the matrix-based
formalism introduced by Lee & Saio (1990). Where appropriate,
Hough functions were normalized using the approach of Lee &
Saio (1997): those of even k were scaled so that � = 1 at µ = 0,
and those of odd k so that d�/dµ = 1 likewise.

5.1 Eigenvalues

Fig. 1 shows the asymptotic [λ(a)] and numerical [λ(n)] Hough eigen-
values for m = −2, k = −2, . . . , 2 modes, plotted as a function of
the spin parameter ν. Each curve has been labelled with its k index,
and the s index predicted by the correspondences discussed in the
preceding section. In light of the fact that the asymptotic solutions
are valid only when the waveguide half-width is less than unity
(cf. Section 3.1), the λ(a) data have not been plotted for µ1/2 < 1;
throughout, µ1/2 was determined using one of either equations (42)
or (58).

From the figure, it is immediately clear that the λ(a) curves ap-
proach the corresponding λ(n) ones as |ν| increases. This occurs
most rapidly for the g modes; by |ν| = 2, the differences between
the two are already quite small. As anticipated by the analysis of
Section 3.1, the convergence is much slower for the r mode (k =
−2). The Yanai mode (k = −1) is an intermediate case, converging
slowly at first, but more rapidly once its character switches towards
that of a g mode.

To appreciate better the differences between the asymptotic and
numerical eigenvalues, Fig. 2 plots the relative error

Figure 1. The asymptotic [λ(a); solid] and numerical [λ(n); dotted] eigen-
values for m = −2, k = −2, . . . , 2 modes, plotted as a function of the
spin parameter ν. Each pair of curves is labelled by the appropriate k and s
indices.
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Figure 2. The relative error �λ between asymptotic and numerical eigen-
values, plotted as a function of ν, for m = −2, k = −2, . . . , 2 modes. Each
curve is labelled by the appropriate k and s indices; the dashed line indicates
the relation �λ = (2ν)−2.

�λ ≡
∣∣∣∣λ(n) − λ(a)

λ(n)

∣∣∣∣ (64)

as a function of the spin parameter. Also shown in the figure is the
curve �λ = (2ν)−2, which illustrates an interesting finding: that the
relative error for the g modes (s � 1) and the Kelvin wave (s = −1)
exhibits an approximate upper bound �λ ≈ (2ν)−2. The retrograde
modes all lie quite close to this bound, whilst the prograde modes
fall well below it with increasing ν.

Supplementary calculations revealed such behaviour is not re-
stricted to the modes plotted in Fig. 2, but applies also to (at least)
the Kelvin and g modes of azimuthal orders 0 � |m| � 8. It therefore
appears reasonable to advance the empirically-driven hypothesis,
that the error associated with such modes obeys �λ � (2ν)−2 uni-
versally. A corresponding hypothesis can be put forward regarding
the prograde Yanai (s = 0) mode; when ν � 3, the error in its case
was found to follow �λ ≈ (4/3 ν)−2 for the range of azimuthal
orders indicated above. Interestingly, both of these hypotheses fol-
low the ν−2 error scaling predicted for g modes in the latter parts of
Section 3.1.

5.2 Hough functions

Moving now to an examination of the Hough functions, Fig. 3 shows
theµ-dependence of both the asymptotic functions {�(a), �̂(a), �̃(a)},
and their numerical counterparts {�(n), �̂(n), �̃(n)}, for the m = −2,
k = −2, . . . , 2 modes considered previously. The k � 0 modes
are shown at spin parameters ν = ±3, while the k = −2, −1 ones
are considered only for ν = −6, since they do not possess prograde
counterparts. Each plot has been labeled with the s index correspond-
ing to the appropriate value of k, and the location of the waveguide
boundary at µ = µ1/2 – as dictated by equations (42) and (58) – has
been indicated with a dashed vertical line.

For the g modes, the agreement between the asymptotic and nu-
merical Hough functions is quite good. Generally speaking, the

greatest degree of discrepancy between the two sets of functions
arises in the mid-latitudes (0.2 � µ � 0.8). This is because the ap-
proximations adopted for the asymptotic solutions hold to a high
degree of accuracy near the equator; likewise, near the poles, the
exponential dependence of these solutions forces them to decay
rapidly towards zero, in accordance with the behaviour of the nu-
merical solutions dictated by the boundary conditions. Apart from
a difference in sign for the �̃ functions, the prograde and retrograde
s = 1 Hough functions appear very similar, again highlighting the
ability of the meridional order to represent the character of a given
mode.

The Yanai modes, prograde and retrograde, also show good agree-
ment between asymptotic and numerical results. For both these and
the g modes, the waveguide boundaries lie interior to |µ| = 0.3,
which translates into a latitude ∼20◦. Consistent with their defini-
tion, the boundaries fall at the points where both �̂ is non-zero, and
its second derivative vanishes. Furthermore, they are in approximate
coincidence with the outermost extrema of �, confirming the em-
pirical finding of Bildsten et al. (1996) which was explained in the
latter part of Section 3.1.

The waveguide boundaries for the Kelvin and r modes are located
at much higher latitudes than those of the g and Yanai modes. Indeed,
equation (42) formally gives µ1/2 = 1.05 for the r mode, such that it
is not actually equatorially trapped. It is unsurprising, therefore, that
the agreement between asymptotic and numerical Hough functions
is very poor for this mode, especially towards the stellar poles.
The situation is not quite so bad for the Kelvin mode, because a
waveguide does exist; however, the asymptotic Hough functions
differ sufficiently from zero at µ = 1 that they cannot be considered
to fulfill the boundary condition imposed there.

As with the preceding section, a comparison of asymptotic and
numerical results is facilitated through consideration of the relative
error between them. In the present context, the error will be defined
as

�� =
{∫ 1

0

[
�(a) − �(n)

]2
dµ∫ 1

0

[
�(n)

]2
dµ

}1/2

(65)

for the � Hough functions, and similarly for the �̂ and �̃ functions;
this definition provides a normalized measure of the root mean-
square deviation between asymptotic and numerical results. Fig. 4
plots the error data {��, ��̂, ��̃} as a function of ν, for the m =
−2, k = −2, . . . , 2 modes considered previously.

The errors for the g-mode Hough functions decrease rapidly
with increasing |ν|, and is in reasonable agreement with the
approximately-quadratic convergence suggested by the analysis of
Section 3.1. Generally-speaking, the convergence is most rapid for
the � functions, and slowest for the �̃ functions. Similar behaviour
is exhibited by the Yanai mode, if |ν| is sufficiently large that it
has the character of a g mode. The kink in the Yanai-mode ��̃

curve, at ν ≈ −3, arises because there the numerical eigenvalue
λ(n) passes through zero and becomes negative. As mentioned in the
introduction, negative eigenvalues correspond to rotationally stabi-
lized convective modes; because the asymptotic analysis neglected
these modes, it is unsurprising that the Hough functions obtained
through it, when ν > − 3, provide very poor representations of the
exact tidal-equation solutions.

The convergence of the r- and Kelvin-mode asymptotic solutions
lies somewhere between the linear rate predicted in Sections 3.1 and
3.2, and the quadratic rate found for the g and Yanai modes. Even
by ν = −10, the error for the r-mode Hough functions is greater
than ∼10 per cent, further highlighting the fact that the asymptotic
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Figure 3. The asymptotic ({�(a), �̂(a), �̃(a)}; solid) and numerical ({�(n), �̂(n), �̃(n)}; dotted) Hough functions for m = −2, k = −2, . . . , 2 modes, plotted as
a function of the latitudinal co-ordinate µ at selected values of the spin parameter ν. In each case, the dashed vertical line indicates the location of the equatorial
waveguide boundary.

approach is not good at reproducing these functions. The error is
rather more acceptable for the Kelvin mode, dropping at ν = 10 to
∼4 per cent for the �̃ function, and to even less for � and �̂.

6 D I S C U S S I O N A N D S U M M A RY

In the preceding sections, analytical expressions for the Hough func-
tions {�, �̂, �̃} were obtained, by solving approximate forms of

Laplace’s tidal equations (18) and (21)–(22). These forms were
derived by neglecting terms of order µ2 (relative to those of the
order of unity) in the equations – an approach pioneered, indepen-
dently, by Matsuno (1966) and by Lindzen (1967), and since labelled
the ‘equatorial beta-plane approximation’. This nomenclature orig-
inates from the definition β ≡ � sin θ in the geophysical litera-
ture, representing the latitudinal derivative of the radial component
� cos θ of the rotation vector Ω. The equatorial beta-plane
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Figure 3 – continued

approximation refers to the assumption that β is constant (and equal
to its equatorial value) across the Earth’s surface, which is entirely
equivalent to replacing by unity the (1 − µ2) terms in the tidal
equations.

From the foregoing discussion, it is apparent that the asymptotic
solutions found herein are familiar to those investigating terrestrial
wave phenomena. However, these solutions are completely novel
in an astrophysical context, which teaches a valuable lesson: that
there exists a great body of knowledge in the domain of geophysics,

which is ripe for application towards the understanding of rotating-
star nrp. Certainly, the two fields differ greatly in terminology and
approach; nevertheless, the fundamental physical principles remain
the same, and – as demonstrated herein – the problem of translating
material from one field to the other is by no means insurmountable.

On more prosaic grounds, the utility of the asymptotic Hough
functions rests, by one measure, on their ability to represent accu-
rately the exact solutions to the tidal equations. Fig. 4 demonstrated
that the g-mode functions fulfill this brief: even at values of the
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Figure 4. The relative error {��, ��̂, ��̃} between asymptotic and numerical Hough functions, plotted as a function of ν, for m = −2, k = −2, . . . , 2
modes. Each curve is labelled by the appropriate k and s indices.

spin parameter as small as |ν| = 2, they manage to reproduce well
the exact solutions. However, the situation is less favourable for the
other modes: the solutions for the Kelvin and Yanai modes only be-
come accurate when |ν| becomes large – in fact, larger than has ever
been inferred from observations of pulsating stars. Furthermore, the
convergence of the r-mode solutions is so poor that they are all but
useless.

Nevertheless, to dismiss the asymptotic Hough functions on such
grounds would miss a fundamental point: that they functions offer
novel insights into nrp in rotating stars. One example is the recogni-

tion of prograde sectoral modes as instances of equatorially trapped
Kelvin waves, which – unlike the g modes – owe their existence to
the conservation of specific vorticity. This alternative propagation
mechanism manifests itself in the behaviour of the Kelvin-mode
eigenvalues λ, which change little with varying spin parameter (cf.
equation 55), in contrast to the strong ν-dependence exhibited by g
modes (cf. equation 38).

Furthermore, the approximate expressions (43–44, 58) for the
half-width of the equatorial waveguide may explain the long-
standing conundrum of why prograde sectoral (i.e. Kelvin) modes
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appear to dominate the line-profile variations of the rapidly-rotating
ζ Oph pulsators (see Unno et al. 1989). The half-width scales as
ν−1 for g modes, but as ν−1/2 for the Kelvin modes. Therefore, at
a given value of the spin parameter, the latter will reach apprecia-
ble amplitudes over a larger fraction on the stellar surface than the
former, and should be easier to detect.

On a final note, the eigenvalues obtained through the asymptotic
analysis are in themselves useful. As demonstrated towards the end
of Section 4, these eigenvalues allow analytical dispersion relations
to be obtained for the pulsation frequency ω, which can be used
to investigate how equatorially trapped modes transport energy and
momentum in an azimuthal direction – possibly helping to clarify
the rôle played by nrp in the disc-ejection episodes characteristic
to Be stars (see e.g. Baade & Balona 1994). A follow-up paper is
planned, to explore these issues.
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