BRITE's role in stellar physics

Rich Townsend University of Wisconsin-Madison & University of Exeter (sabbatical visit until 30 Dec 2015)

Space Mission Flowchart

"...tell us what we in your opinion can do with this instrument."

(instructions from Gerald)

BRITE-Constellation Flowchart

404: Not Found

BRITE-Constellation Goals

- Measure p- and g-mode pulsations to probe the interiors and ages of stars through asteroseismology;
- 2. Look for varying spots on the stars surfaces carried across the stellar disks by rotation, which are the sources of co-rotating interaction regions in the winds of the most luminous stars, probably arising from magnetic subsurface convection;
- 3. Search for planetary transits.

BRITE-Constellation Capabilities

- (All) stars brighter than V = 4
- Photometric precision @ sub-mmag levels
- Continuous monitoring up to ≈ 150 d
- All-sky coverage
- Two filters (red, blue)
- 24deg × 24deg FOV
- Up to 18 targets simultaneously

Bright Stars for BRITE

Weiss+2013 (Proc. IAUS 301), fig.1

Oscillations Across the HRD

http://www.univie.ac.at/brite-constellation/html/additional_science.html

Stochastic Pulsations

Stochastic Mixed Modes on the Lower RGB

Montalban & Noels 2013 (EPJWC), figs. 2 & 3

Period-Luminosity Relations Near & Above the TRGB

Tabur+2010 (MNRAS 409), fig. 9

P-L Relations Consistent with Solar-Like Oscillations

Mosser+2013 (A&A 559), fig. 10

Outstanding Questions

- What causes the change around $\nu_{\max} \approx 1$?
- Can we reliably
 distinguish between
 RGB and AGB stars?
- What about other types of variability, e.g. granulation?

Mosser+2013 (A&A 559), fig. 5

Stochastic Oscillations in β Cepheids?

See also Degroote+2010 (A&A 519)

Theoretical Prognostications

- Belkacem+2010:
 - p modes excited by both core and Fe convection zones
 - amplitudes 10 ppm @ ${>}100~\mu\text{Hz},\,100$ ppm @ ${<}100~\mu\text{Hz}$
- Samadi+2010:
 - low-order g modes excited by core convection
 - high-order g modes excited by Fe convection
 - $\bullet\,$ amplitudes 10 ppm @ 3 μHz
- Shiode+2013:
 - g modes excited by core convection
 - <u>ensemble</u> brightness variations 10 ppm @ 10 μHz
- Aerts & Rogers 2015:
 - g modes excited by core convection (2-D hyro)
 - amplitudes 100 ppm @ 3 µHz (may be over-estimated)
 - link with macroturbulence?

Evidence for a Link with Macroturbulence

Grassitelli+2015 (ApJ 808), fig. 5

Heat-Driven Pulsations

Massive-Star Instability Strips

Post-MS Extension of Instability Strips

Saio+2006 (ApJ 650), figs. 4 & 7

Fine Structure in Instability Strips

Paxton+2015 (ApJS, in press), fig. 9

Mode Selection in SPB Stars: Still a Mystery

0

Szewczuk & Daszynska-D. 2015 (MNRAS 450), figs. 5 & 7

What Sets the Core Boundary?

Period Spacing Modulation due to Features in the Buoyancy

Frequency

Miglio+2008 (MNRAS 386), fig. 16

Effects of Overshoot & Rotation on PS Modulation

No overshoot (thin) 0.2 H_p overshoot (thick)

Rotation

Miglio+2008 (MNRAS 386), figs. 17 & 21

Application to an SPB Star: KIC 7760680

Papics+2015 (ApJ 803), Fig. 4

Overstable Convection Modes

Diagnostic Techniques

Method of Photometric Amplitudes

Light and Radial Velocity Variations in a Nonradially Oscillating Star

by

W. Dziembowski

Copernicus Astronomical Center, Warsaw Received March 24, 1977

NB: Phase data require non-adiabatic models

Complication: Rapid* Rotation

Townsend 2003 (MNRAS 343), fig. 5

"...it will be very difficult to ascertain, from multi-color photometry alone, the identity of modes excited in a given rotating star."

*In the sense that $\nu = 2\Omega/\omega_c > 1$

"Loaded for Bear"

- Fit multiple modes with consistent set of stellar parameters
- Fit radial velocity data in addition to photometry
- Only consider modes which are unstable
- Only consider modes which have reasonable amplitudes

Daszynska-Daszkiewicz+2015 (MNRAS 446), fig. 3

μ Eri

Mode Identification from LPV

Maintz+2003 (A&A 411), fig. 1

- Moment method
- Pixel-by-pixel
- Fourier coefficients
- Direct modeling

Interior Modeling: MESA & GYRE

- 1-D hydrodynamical evolution
- Comprehensive microphysics
- Modern numerical techniques
- Wide applicability
- High performance
- Extensive test suite

- Adiabatic or non-adiabatic pulsations
- Rotation via traditional approximation
- Reads many model types
- Robust & accurate
- User friendly
- Integrates with MESA for auto-astero

http://mesa.sourceforge.net/

https://bitbucket.org/rhdtownsend/ gyre/wiki/Home

Open Source, Open Knowledge!

Magnetic Fields & Spots

Magnetic OB Stars

Oksala+2015 (MNRAS), fig. 7

Wade+2011 (MNRAS 416), fig. 3

<u>τ Sco: Field Extrapolations</u>

 $R_{\rm s} = 4 R^*$

 $R_{\rm s} = \infty R^*$

Small-Scale Fields?

Cantiello & Brathwaite 2011 (A&A 534), figs. 2 & 3

Brightness Spots in ξ Per

Ramiaramanantsoa+2014 (MNRAS 441), fig. 1

Abundance Spots

Spots as Seeds of Wind Structure

Massa & Prinja 2015 (ApJ, submitted), fig. 3

Summary: What Can BRITE Do?

- Thermal oscillations in traditional instability strips (β Cep, SPB, δ Sct, γ Dor)
- Stellar spots in abundance(Ap/Bp) & temperature (OB stars)
- Stochastic oscillations of RGB/AGB stars in 'Goldilocks' zone: luminous but short periods (maybe)
- Stochastic oscillations of OB stars (maybe)
- All the other stars... (esp. the "constant" ones)

