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Chapter 1

Overview

1.1 Introduction

The official course title of Astronomy 702 is ‘Basic Astrophysics IT’ — but the real title should be ‘Dynamics’.
The topic of dynamics! concerns the time evolution of physical properties and processes. So, most of the
equations we’ll be encountering over the fourteen weeks of the course involve a time derivative of one form
or another.

1.2 A Hierarchy of Models

Many branches of physics and astrophysics focus on phenomena occurring at a certain scale. Here, I use
‘scale’ in two senses — on the one hand, the physical size of the system under consideration, and on the other,
the number of interacting entities (particles, planets, etc.) composing the system. Scale in the former sense
will determine which forces play a dominant role, and whether a quantum or classical description is more
appropriate; while scale in the latter sense dictates what sort of tools are useful for modeling the dynamics
of a system. For instance, fluid (or ‘continuum’) models are useful in cases where there are large number
of interacting particles composing a system; whereas kinetic models are the appropriate choice when only a
few particles are present.

1From the Greek word ‘dynamikos’, meaning ‘powerful’



Chapter 2

Small Numbers of Particles

2.1 Individual Particles

2.1.1 The Equation of Motion

The fundamental equation governing the dynamics of all particles in the classical (non-quantum) limit is
Newton’s Second Law, which relates the acceleration of an individual particle to the external forces acting
upon it. Although we usually learn this as the simple

F =ma, (2.1)

the equation is in fact a differential equation involving time derivatives (remember, dynamics!), and is better
written as

— =F. 2.2
me (2.2)

To allow for relativistic mass changes, this is also often written as

dp
= =F, 2.3
I (2.3)
where p = mv is the relativistic momentum; but for the most part, we’ll be ignoring relativistic effects.
Newton’s Second Law, together with an appropriate prescription for calculating the force F is often
referred to as the ‘equation of motion’” (EOM), as it governs the time evolution of the particle’s position
and velocity — i.e., its movement. Solving the equation of motion in full typically requires two integrations
because, with the velocity itself being the time derivative of the particle’s position vector r,
dr
vV=—, 2.4
" (2.4)
the EOM is second-order differential in time. It’s not always possible to do these integrations analytically,
especially if the force has some complicated dependence on space and time (as it would, for instance, if it
represented the electrostatic or gravitational attraction of an ensemble of other particles). However, there
do exist special circumstances where we can always analytically integrate the EOM at least once, thereby
obtaining a closed-form expression for the velocity v.

2.1.2 Conservative Forces

These special circumstances arise when the force F is conservative. In moving a particle! from one point r,
to another ry,, the work done on the particle

rp
Wz—/ F.dr (2.5)

a

1In the most general sense; anything from a proton to a block of wood to a planet.



by a conservative force does not depend on the route taken between the two points — only on the location
of the points. An immediate corollary of this definition is that the total work done in moving the particle
around a closed loop must vanish; that is,

wah:Q (2.6)

We can use Stokes’ theorem to transform the line integral in this equation into a surface integral, so that
/VXF~dS:O, (2.7)
s

where S is any surface bounded by the closed loop. Because this equation holds irrespective of which closed
loop or surface we choose, it must be the case that

VxF=0 (2.8)

for all conservative forces. Since the curl of a gradient is zero, this leads to result that conservative forces
can always be expressed as the gradient of a scalar potential,

F=-Vo. (2.9)

(the negative sign is a convention, so that the force is always directed toward lower potentials). Conversely,
any force which can be expressed as the gradient of a scalar must be conservative. Note that ¢ has units of
energy, so although we usually refer to it as the potential, more correctly it is the potential energy.

Examples of conservative forces are the electrostatic and gravitational forces, which — for a point charge
or point mass at the origin — both take the form

Ze,, (2.10)

where A is some constant, 7 = |r|, and e, is the unit basis vector in the radial direction at position r. The
corresponding potential energy is trivially found as

¢®=§+Q (2.11)

where the constant of integration C' is usually set to zero so that ¢ goes to zero as r — oo (this is an arbitrary
but conventional choice).

An example of a non-conservative force is friction. When moving a particle subject to friction, F and dr
in eqn. (2.5) are anti-parallel (because friction always acts oppositely to the direction of motion); hence, the
net work done on the particle along any path is positive. In particular, the net work done around a closed
loop is positive, which violates eqn. (2.6) — demonstrating that friction is non-conservative.

Of course, this analysis only applies at a macroscopic level. At the microscopic level, friction doesn’t
really exist; instead, there are just the electrostatic attractive and repulsive forces between atoms, via which
objects manifest the property of being solid. These forces are all conservative; but their effect is (in the
case of friction) to cause small-scale, microscopic motions of the atoms (i.e., heat) rather than large-scale,
macroscopic motion.

2.1.3 First Integral of the EOM

As mentioned above, an equation of motion featuring a conservative force can always be integrated at least
once. To see this, we use the chain rule to write the acceleration in the EOM as

dvg, dz dvg v
dv dz dt da ©T
SV duwdy | duy, (2.12)
dt - dy dt - dy “Y | * .
dv, dz dv, v
dz dt dz "%




where I've decomposed the velocity v into its Cartesian components v,, vy and v,. The second equality can
further be simplified to give

dvi
dv 1| = 1 5
Y| = vy (2.13)
dt 2 ddvy3 2

dz

Substituting the latter result into the EOM for a conservative force gives
1 2
iva + V¢ =0. (2.14)

This can always be integrated, to give
1
5m|v|2 +¢=FE (2.15)

where E is a constant of integration. Identifying the first term on the left-hand side as the particle kinetic
energy muv?/2, this equation indicates that the sum of kinetic and potential energies is a constant — that is,
the total energy F is conserved.

Thus, to summarize:

e An equation of motion involving conservative forces can always be integrated at least once.

e The resulting ‘first integral’ is a statement of conservation of energy.

2.1.4 Central Forces

A central force is one which is always directed toward a single point in space, conveniently defined to be the
origin, and moreover depends only on the distance r from this origin. Central forces are always conservative.
This can be seen by expressing a generic central force as

F(r) = f(r)e, (2.16)

for any integrable function f(r). This can always be derived from the potential

o(r) =— /DO f(r)dr, (2.17)

and so central forces are conservative. Note that the converse isn’t necessarily true; for instance, the gravi-
tational force from the (non-spherical) Earth is not precisely central, but it is still conservative.

In addition to satisfying conservation of energy, a system evolving under the action of a central force
also conserves angular momentum. To demonstrate this, we first note that the initial position and velocity
vectors of a particle acting under a central force serve to define a unique plane, and the force vector always
lies in this plane; therefore, we need only consider the 2-dimensional motion in the plane. Using the natural
choice of polar coordinates, the EOM for the particle is

d
ma (vrer + vgeg) — fe, =0. (2.18)

Here, v, and vy are the velocity components in the radial and angular directions, and e, and ey are the
corresponding basis vectors. These basis vectors depend on the position of the particle, and therefore change
with time. It can readily be demonstrated? that the time derivatives of the basis vectors are

é, = ey (2.19)

and .
&g = —be,, (2.20)

2This phrase is often used to dodge pages and pages of tedious algebra; but in this case, it is pretty straightforward; just
sketch how the basis vectors change over a time step 0t, and take the limit ¢ — 0.



where to keep things compact, I've switched to the usual dot notation to indicate derivatives with respect
to time. With this switch, the velocity components become

Vp =T (2.21)

and _
vg = r0; (2.22)

and the EOM (2.18) becomes (after some algebra)

m [r —rf? — fg)] e.+m {7"9 + 27"9} ep = 0. (2.23)

Solutions to this equation require both terms in brackets to vanish. For the ey term, we have
6 + 270 = 0; (2.24)
multiplying through by r, and applying a little calculus-jitsu, this becomes

d, 5
—(r*6) = 0. 2.2
%) =0 (2.25)
Integrating, )

20 = j, (2.26)

where j is the constant of integration. This latter equation expresses conservation of angular momentum
(with j the angular momentum per unit mass). It can be used to eliminate 6 from the e, term in the equation
of motion, to give ,

P

U e 0. (2.27)
The j-dependent term in this equation acts like an additional force, which tends to push the particle away
from the origin. An analogy can be drawn here to the centrifugal force which exists in a rotating frame
of reference; in both cases, the force exists to ensure that the motion of the particle in the absence of the
central force f(r) will be a straight line.

The above equation admits a first integral, and therefore conservation of energy applies even though we
haven’t specified the precise form of the central force; this is simply a consequence of the fact that the force
is conservative. Conservation of angular momentum likewise followed from the fact that there the central
force has no component in the angular direction. Depending on other properties of the force (i.e., its precise
dependence on ), other conservation laws can exist.

2.2 Two Particles

2.2.1 Central Forces

Let’s now move on to the case of two particles. In principle, the equation of motion for each particle will
include forces due to the other particle, plus forces due to an external agent (e.g., the gravitational field of a
third body). For the moment, let’s ignore any external forces, and focus on the simple case of two particles
interacting by central forces.

Labeling the particles using the subscripts 1 and 2, the EOMs are

L)

mivy — fi2(r1,2)—= =0, (2.28)
71,2
. ry,
MmaVa + f2,1(7’1,2)7r1'2 =0, (2.29)

)

where f1 9 is the force exerted on particle 1 by particle 2 (positive if repulsive, negative if attractive), fa1
is the force exerted on particle 2 by particle 1, and rj 2 = r; — ry is the vector displacement from particle 2



to particle 1. Newton’s Third Law® requires that fa;1 = fi 2, and henceforth we shall therefore write them
both simply as f. So,

ry2

mit — f(ri2) =0, (2.30)
1,2

mats + f(7”1,2)r1772 =0. (2.31)
1,2

In the center-of-mass-reference frame*, the position vectors r; and ry are anti-parallel (since the particles lie
on opposite sides of the center of mass); moreover, the radial coordinates 1 and r2 are always related by

re = Ly (2.32)
ma

Hence, we can represent the position vectors of both particles in terms of a single vector r:

ma

ry =——Tr, 2.33
! mi + mo ( )
mi
rp=————r.
mi + mo

Substituting these expressions into eqn. (2.30) gives two identical EOMs for r,
r— f(r)e. =0. (2.34)

This describes the motion of a single particle of ‘reduced mass’

mimso

1 (2.35)

mi + mo

subject to the central force f(r) — a problem we addressed in the preceding section.
Thus, to summarize: a system composed of two particles interacting by central forces can always be

reduced to a one-body problem involving a central force.

2.3 Three Particles

2.3.1 Central Forces and the Restricted Problem

Suppose we introduce a third body into the two-body central-force problem considered above. Generally
speaking, it is not possible to find a closed solution to the coupled equations of motion. However, a special
case is the so-called ‘restricted three-body problem’, where the third particle exerts a negligible force on the
first two. A good example is a test particle of vanishing mass moving in the vicinity of a binary star system.

Although the particle has no gravitational influence upon the stars (and they therefore follow standard
two-body central-force dynamics), the stars do exert an attractive gravitational force on the particle. The
equation of motion for the particle is, therefore,

GMym GMsm

(rp—r)— (rs —r)=0. (2.36)

mir —

rp —r? rs =’

Here, m is the mass of the particle; M, and My are the masses of the primary and secondary stars, respec-
tively; and r, and ry are the corresponding position vectors of the stars. This equation is a little trickier to
solve than it appears, because the stars are not fixed in space — rather, they orbit their common center of
mass. Although we can obtain a first integral, expressing conservation of energy for the particle, it doesn’t
really tell us much about the particle’s motion.

3 Actioni contrariam semper et equalem esse reactionem: sive corporum duorum actiones in se mutuo semper esse @equales
et in partes contrarias dirigi.
4 Always a good choice for multi-body problems.



However, if the stars are in circular orbits, then we can always transform to a frame of reference rotating
uniformly at the orbital frequency Q = 27/P. Here, P is the period of the binary system, given in terms of
the orbital separation a as

472
PP=_— — 4% 2.37
G(M, + M) ( )
Within this rotating frame of reference, the stars are at rest at distances
M;
T, = —————a (2.38)
P M, + M
and M
re=-—2%_a, 2.39
Mp +Ms ( )

respectively, from the center of mass (see eqn. 2.33).

But there’s a wrinkle in transforming to the co-rotating frame: the acceleration must be corrected to
account for the fact that this frame is not inertial. To figure out what the correction should be, note that
the velocity vector in an inertial frame is related to the the corresponding velocity in the co-rotating frame
by

vi=v.+Qxr. (2.40)

Here, € is the angular frequency vector describing the rotation, and the i’ and ’c¢’ subscripts denote inertial
and co-rotating, respectively. Note the absence of any subscript on the r term on the right-hand side. This is
deliberate; although observers at rest in the inertial and co-rotating frames will disagree about the velocity
vector of an object, they will both agree about its position vector®. One way of grokking this subtle point
is to re-write the above equation in operator form,

g.r = [ +Q><] r (2.41)

The subscripts now appear on the time derivatives, to denote rates of change as measured at rest in the
indicated reference frames. (As an aside: this expression applies to any vector, not just the position vector r,
and underscores that it is the time derivatives which change when switching frames, rather than the vector
itself).

By applying the above operator twice to r, we can easily obtain an expression for the relationship between
the particle accelerations in the two frames:

B =t +2Q X T+ Q@ x (U x1). (2.42)

Here, note the subscripts on time derivatives of r, but not r itself! Using this expression, the equation of
motion in the co-rotating frame becomes

GMym
Irp —rf?

GMsm

mie +2m X e + m x (Q xr)— | E
rs—r

(rp—r)— (rs —r)=0. (2.43)
The advantage of this equation is that, for circular orbits, the vectors r, and r; have fixed components
with respect to the co-rotating frame. Comparing against the inertial equation (2.36) two new terms have
appeared, corresponding to two ‘fictitious’ or ‘inertial’ forces which exist to correct for the fact that the
co-rotating frame isn’t inertial. The first, Coriolis term is non-zero only when the velocity . is non-zero,
whereas the second, centrifugal term is present whenever the particle is displaced from the rotation axis.

Equation (2.43) still doesn’t easily yield close-form solutions, but is nevertheless quite instructive. In
situations where the particle is at rest in the co-rotating frame, the net force on it is

GMym GMsm

F=-mQx(Q2xr)+ (rp —1) + (rs—r) (2.44)

rp —r? rs —r?

5That said, the components of the position vector in each frame will differ, due to the misalignment of the coordinate axes;
nevertheless, in both frames r points in the same direction in space, and has the same magnitude.

10



Figure 2.1: Surfaces of constant effective potential ¢ (cf. eqn. 2.46), for a binary system in which the
primary (small green sphere, center-right) has twice the mass of the secondary (small yellow sphere, center-
left). The surfaces are colored according to the effective potential value they represent (red is higher, blue
is lower), and the Lagrange points are shown as red spheres.

This force can be written as the gradient of an ‘effective’ potential,

F = —Voe, (2.45)
where CM GM
ot = — | x pf? — o2 TR (2.46)
2 lrp —r|  [rp — 1

combines the gravitational potential from the two stars (the second and third terms on the right-hand side)
with a centrifugal potential. At points where the gradient of the effective potential vanishes, the net force
on the test particle will vanish, meaning that these are points of equilibrium.

Fig. 2.1 is a 3-D rendering of the effective potential for a system in which M, = 2M;. Close to each of the
stars, the surfaces of constant ¢.g are nearly spherical, because one or the other of the gravitational terms
in eqn. (2.46) dominates. Far from the rotation axis, the centrifugal term dominates and the equipotential
surfaces are concentric cylinders. There are five points in total where V¢ vanishes, and these (four of which
are visible in the figure) are the famous Lagrange points, traditionally labeled as L1,...,L5. L1 through
L3 lie on the line joining the two stars, with L1 between the stars, and L2 and L3 outside the stars (the
convention being that L2 is closer to the smaller-mass star, and L3 to the larger-mass star). L4 and L5 lie
in the orbital plane, such that they each form equilateral triangles with the two stars.

It is clear from the figure that L1, L2 and L3 are not local minima of ¢.g, but rather saddle points:
the potential is mazimal along the line joining the stars, and minimal along perpendicular lines. Thus, a
particle at one of these points is not in stable equilibrium, and will drift away over time. How, then, do we
speak of parking a satellite at one of the Lagrange points?% Although the points themselves are not stable,

6For instance, the plan is to park the James Webb Space Telescope at 1.2.

11



it is possible to place an object in a stable, periodic orbit near (not exactly on) of one of the points — a
so-called ‘halo’ orbit. The orbit is maintained by the Coriolis force, which can’t be modeled as an effective
potential (and hence cannot be included in the definition of ).

The L4 and L5 points are local maxima of ¢eg, suggesting that they, also, are unstable. Surprisingly,
however, as a particle placed at one of these points begins to drift away, the Coriolis force will send it into a
stable orbit about the point, if the mass ratio of the system exceeds about 25 : 1. This underscores the fact
that the effective potential does not tell the whole story about the motion of a test particle in the restricted
three-body problem.

On a final note, as we shall see later in the course, the shapes of self-gravitating gaseous bodies — i.e.,
stars — are defined by equipotential surfaces (in just the same way that sea level on Earth is an equipotential
surface). In binary systems, these surfaces are known as Roche lobes, and correspond exactly to the surfaces
shown in Fig. 2.1. Clearly, as the radius of one star grows (e.g., due to evolutionary effects), its surface
becomes progressively distorted by the other star and the centrifugal force; until eventually the surface
reaches out to the L1 point, and star will begin to spill mass onto the other star. This phenomenon is ‘Roche
lobe overflow’, and we’ll be returning to it later in the course.

2.4 N Particles

2.4.1 The Virial Theorem

If dealing with three particles is tricky, what about an ensemble of N particles? Certainly, there are again no

neat closed solutions; but if we are dealing with certain types of central force, we can still obtain some useful

statements about the overall properties of the system once a certain type of equilibrium has been reached.
To see this, consider the scalar moment of inertia of the ensemble,

1= e, (2.47)

where 7 indexes the particle under consideration, and the sum is taken over all particles, i = 1,..., N. Taking
the time derivative,

dr

N :2zz:pi~ri =2G (2.48)

where p; = m;v; is the momentum of particle i, and the second equality defines the so-called ‘virial” of
Clausius G.
Things get interesting if we take the time derivative one more time, to find

d
d—(j = [t -1 mgt - 1] (2.49)

i

The second term in square brackets can be recognized as twice the total kinetic energy
1 .12
=35 Zmﬂr\ (2.50)
3

of the ensemble, so
dG

T > mif-r 42K, (2.51)

To handle the remaining summation, we make use of Newton’s second law to write

where F; is the net force on the i’th particle. Hence, we have
dG
T Z F, r+2K, (2.53)

"The word virial comes from the Latin vis, meaning force or energy

12



which is an exact (although still rather un-illuminating) result.
What happens when we average the time derivative of the virial over some time interval 77 Clearly,

<dG>_/O dé ,, _ G — GO} (2.54)

dt T dt T

There are two cases where this time average might evaluate to zero. First, if the system is strictly periodic,
such that it returns to its initial state after time 7, then the numerator on the right-hand side will vanish.
Second, if we are dealing with a stably bound system, then we can expect the numerator to remain finite;
then, over a suitably long time (i.e., 7 — 00), it should be the case that (dG/dt) — 0. If either of these cases

hold, then eqn. (2.53) becomes
<Z F; - ri> +2(K) =0, (2.55)

which is the renowned Virial Theorem.
Suppose the force F; can be decomposed into the sum of individual forces arising from pair-wise interac-
tions with other particles; that is,
F, = Z Fij, (2.56)

J#i
where F;; denotes the force on the ¢’th particle due to the j’th particle. Then, the virial theorem becomes

<ZZF3 ~ri> + 2(K) = 0. (2.57)
i g
If we write out this double summation in full, we can always pair up terms involving F; ; and F; ;, for any

choice of i and j (so long as 7 # j). By Newton’s third law, F; ; = —F; ;, and so the virial theorem becomes

1

3 <ZZFJ - (r —rj)> +2(K) =0, (2.58)
i A

where the factor of 1/2 corrects for the fact that a summation over pairs will end up double counting.

Let’s now focus on a case of particular astrophysical interest: forces arising due to mutual gravitational

interactions,

Gm;m;
F, = I (e — 1), 2.59
J |I‘ r]|3( r]) ( )

Substituting this into eqn. (2.58), we find after a little algebra that

- <ZZ |im721|> +2(K) = 0. (2.60)

)
The summation term can be recognized immediately as the gravitational potential energy of the system,
Gm;m;
Lyy G 20
p v —r;]’
J#i
where, again, the factor 1/2 appears to correct for double counting. So, the final result is
(U)+2(K) =0, (2.62)

which is the virial theorem for a self-gravitating system.
This result looks rather trivial, but in fact is quite profound. If we consider the total energy for the
system,

E=U+V (2.63)
, then it must be the case that
1
E:—<K>:§<U>. (2.64)

A few points to note here:

13



e The total energy is negative; this is consistent with our requirement that the system is bound.

e As the system loses energy (i.e., E becomes more negative), (U) must become more negative also —
i.e., the system contracts.

e Likewise, as the system loses energy, (K) must become more positive — i.e., the system becomes
‘faster’ or ‘hotter’.

14



Chapter 3

Large Numbers of Particles

3.1 The Fluid Picture

At the most basic level, a fluid! is any substance which can continuously deform (i.e., flow) under an applied
shear stress. Liquids are the most obvious examples of fluids, but gases also fall into this category, as do
certain esoteric substances such as silly putty (classified as a viscoelastic fluid). Indeed, the distinction
between a fluid and a solid is not always clear cut, and finding a rigorous definition can require quite a bit
of effort.

With this in mind, at this stage I'm not going to formally define what a fluid is — instead, I'm going to
invoke our experiences and intuition concerning everyday fluids such as water, oil and air. When describing
these substances, we don’t think in terms of the positions and velocities of individual atoms and molecules
making up the fluid (i.e., microscopic properties). Rather, we view the fluid as a continuum characterized by
macroscopic properties such as density p(r, t), velocity v(r, ) and pressure p(r,t), all of which are functions
of location in the fluid r and time ¢; that is, the fluid is described by a set of scalar and vector fields?. The
time evolution of these fields is governed by a set of partial differential equations known variously as the
fluid equations, the hydrodynamic equations (or ‘hydro equations’ for short), the Navier-Stokes equations
and/or the Euler equations. We’ll derive these equations in the following sections.

3.2 Fluid Mass Conservation

3.2.1 Integral Form

Consider a finite volume of space V, which can in principle have any shape or size. Suppose this ‘control
volume’ is fixed in space; then, as fluid flows through the walls of the volume, the total mass contained,

M= /V pdr, (3.1)

(where dr is the differential volume element) will evolve over time. More specifically, because mass must be
conserved, the rate of change of M must balance the rate at which mass is entering or leaving the control
volume through its boundaries. For a boundary element dS? of V, the amount of mass passing out of V per
second is

dM = pv - dS. (3.2)

To understand this expression, note that the volume of material passing through dS per second is v - dS;
multiplying by the density of this material then gives the mass flowing through per second.

1From the Latin fluidus, that which flows.

2‘Field’ in the most general sense — a physical quantity associated with each point of spacetime.

3Defined in the usual manner; the magnitude of dS is the area of the element, and its direction is normal to the boundary
and pointing outward.

15



If we integrate over all elements composing the boundary surface S of the control volume, then we end
up with an expression for the change in the mass contained in V per second,

dM

(here, the minus sign appears because the expression derived above was for the mass lost from the volume).
Replacing M by its definition (3.1, and bringing the right-hand side over to the left, we have

(i[/vpdT} +/Spv-dS:O. (3.4)

Since the boundaries of V are fixed (i.e., they don’t change with time), we can bring the time derivative
inside the volume integral, to find
@dT—l—/pv-dS:O (3.5)
v Ot s
(note that the time derivative now becomes a partial derivative, because p is a function of time and space).
This is one of the hydro equations — the mass conservation equation — expressed in integral form. A variant
on this equation, which is conceptually useful, is

@dTJr/Fp-dszo; (3.6)
y Ot S
here,

F,=pv (3.7)

is the mass flux vector, which specifies the mass flow per unit area (perpendicular to the vector) per unit
time. When the mass conservation equation is written in terms of F,, it becomes clear how the changes in
the mass within V are due to the flow of mass through S.

3.2.2 Differential Form

Equations (3.5 and 3.6) are the most generally valid form for the mass conservation equation (also known as
the continuity equation). A somewhat more restrictive form, but also one that can be more practically useful
(since it doesn’t require us to consider a finite control volume), can be derived if we assume that the fluid
has no discontinuities in the density or the velocity. Then, the spatial derivatives of these latter quantities
are well defined, and we can make use of the divergence theorem to rewrite the surface integral in eqn. (3.6)
as a volume integral,

/%dr+/V~F,,dT:O. (3.9)
y Ot v

Over a sufficiently small volume, the integrands in this equation can be assumed constant, and therefore it
must be the case that at each point in space,

dp
—+V.F,=0. 3.9
ot P ( )
This is again the continuity equation, but now expressed in differential form. Using the definition (3.7) of
the mass flux, we can also write

adp B
% +V-(pv)=0. (3.10)

3.2.3 Alternative Lagrangian Derivation

The derivations presented above are from the standpoint of a fixed control volume, through which the fluid
flows. This is known as an ‘Eulerian’ framework. An alternative way of arriving at the fluid equations is
a ‘Lagrangian’ framework, in which the control volume V is assumed to move with the fluid. The mass
contained within V is

M = pdT; (3.11)
V(1)
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this almost identical to eqn. (3.11), but the volume now has an explicit time dependence, indicated as V(t).
Because the control volume moves with the fluid, no material crosses its boundaries*, and therefore M

must remain constant:
d d
M = — / pdr| =0. (3.12)
dt dt V()

Can we simplify the above expression by taking the time derivative under the integral sign, as we did
before? The answer is generally no, because V(¢) now depends on the time. However, we can make use of
a mathematical result, the Reynolds Transport Theorem, which — for any quantity f — expands out the
time derivative of a volume integral as

d of
— de:/ —dT—&—/ fv-ds. 3.13
dt Jy) v(r) Ot S(t) (313)

Setting f = p, and combining this with eqn. (3.12), we obtain

/ 9p dr + / pv-dS =0. (3.14)
V() Ot S()

This is essentially identical to eqn. (3.5), apart from the appearance of V(t) instead of V, and likewise for
S(t). If the density and velocity are continuous, then the divergence theorem can be used as before to convert
this into differential equation identical to eqn. (3.10).

3.2.4 The Advective Derivative

The Reynolds Transport Theorem can be used to derive another useful result. Setting f =1 in eqn. (3.12),
we obtain an expression for the volume rate of change of the moving control volume,

d dv(t
—/ dr = ) = / v -dS. (3.15)
If we assume as before that the fluid has no discontinuities, then the divergence theorem gives
d
v _ / V.vdr. (3.16)
dt v

In an incompressible fluid, the left-hand side of this expression vanishes — although any arbitrary control
volume may become distorted as it is carried along with the incompressible fluid, its overall volume remains
constant. This means that an incompressible fluid must satisfy

V-v=0 (3.17)

everywhere. Combining this restriction with eqn. (3.10), the continuity equation for an incompressible fluid
becomes

%+V~Vp:0. (3.18)
This can also be written
Do _ 0 (3.19)
Dt ‘
where we have introduced the differential operator
D 0
Di = a1 +v-V. (3.20)

This time-derivative operator is known by many names: the Stokes derivative, the Lagrangian derivative,
the advective derivative, the material derivative. When applied to any variable, it gives the temporal rate
of change of that variable as experienced by a test particle (or small control volume) which moves with the
flow. So, eqn. (3.19) tells us that the density experienced by a test particle moving with the flow must be
constant, if the fluid is incompressible.

4 At least, at the macroscopic level; there are still microscopic motions across the boundary, but with no net effect on the
fluid properties.
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3.3 Fluid Momentum Conservation

3.3.1 Integral Form

The next hydro equation we're going to derive describes the conservation of momentum; so, this will be the
fluid version of Newton’s second law, a.k.a. the equation of motion. In an Eulerian framework, the total
momentum of a fixed control volume is

PZ/deT; (3.21)
v

that is, the volume integral of the momentum per unit volume pv. As in the preceding section, the rate of
change of P must balance the rate at which momentum is entering or leaving the control volume through its
boundaries. The transfer of momentum into or out of the volume happens at two levels — macroscopically
due to the actual fluid flow, but also microscopically due to pressure forces. Thus, we write

dP 0 dP

The macroscopic transfer rate is given, analogously to eqn. (3.3), by

dp

o . (3.22)

micro

macro

ar
dt

= —/ pvv - dS. (3.23)
macro S

In much the same way we defined the mass flux vector F, (cf. eqn. 3.7), we can define the momentum flux
dyad as
Fov = pvv. (3.24)

A dyad is formed via a special kind of product — the dyadic product® — between a pair of vectors. Dyadic
notation is a simplified approach to dealing with rank-2 tensors; it is discussed more fully in the supplemen-
tary notes (Vector and Dyadic Analysis) I've provided online. Some highlights:

e ab # ba — the dyadic product is not commutative.
e (ab)-c = a(b-c) — the dyadic and scalar product are associative.

e The scalar product between a dyad and a vector is another vector; this follows directly from the
associative property above.

e The scalar product between two dyads is another dyad; this again follows from the associative property.
e There exists an identity dyad, |, for which | - a = a for any vector a, and | - A = A for any dyad A.
With the definition above of F ., the macroscopic momentum transfer rate in/out of the control volume

becomes

aP
dt

= —/ F,v-dsS. (3.25)
macro S
In the absence of viscosity (which we’re neglecting for the moment), the corresponding microscopic transfer
rate is given by the net effect of pressure forces acting on the boundary S of the control volume (recall that

a force is entirely equivalent to the rate of change of volume). The force exerted on a surface element dS by
a pressure p is —pdS°. Integrating over the whole of S, we obtain the microscopic momentum transfer rate

= —/SpdS. (3.26)
micro

P=pl, (3.27)

ar
dt

Defining the dyadic pressure as

5Known in tensor algebra as the ‘outer product’.
6That is, the force is directed normal to the surface and inward, and has magnitude pdsS.
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where | is the identity dyad introduced previously, we can alternatively write

= —/ P.ds. (3.28)
micro S

Combining this expression with eqns. (3.22) and (3.25), we arrive at the result

4P
dt

/v %(pv) dr + /8 (Fpy +P)-dS =0 (3.29)

This is the fluid momentum conservation equation, written in integral form.

3.3.2 Differential Form

As before, if there are no discontinuities in the fluid, then we can also derive a differential version of the
equation. Here, we make use of the divergence theorem for any dyadic quantity A,

/A-dS:/V-AdT. (3.30)
S %

(here, note that the divergence of A is a vector). Applying this to the conservation equation, it follows that

/v %(pv) dr + /v V.- (F, +P)dr =0. (3.31)

Over a sufficiently small volume, the integrands in this equation can e assumed constant, and therefore it
must be the case that at each point in space,

%(pv) +V.-(F,v+P)=0. (3.32)

Expanding out the momentum flux dyad,

%(pv) +V-(pvv+pl)=0. (3.33)

This is the fluid momentum conservation equation, written in differential form.
Other forms of this equation can be derived by expanding out the divergence term. From eqn. (A.142)

of Vector and Dyadic Analysis,
V.- (pvv) =V (pv)v+pv Vv (3.34)

(this is just the chain rule), and likewise from eqn. (A.156),
V- (pl) = Vp. (3.35)

Therefore, the momentum conservation equation becomes

0
a(pv) + V. -(pv)v+pv-Vv+Vp=0. (3.36)

Combining this with the continuity equation (3.10), we obtain

ov

Por +pv-Vv+Vp=0; (3.37)

or, using the Stokes time derivative introduced above in (3.20),

Dv

which is basically Newton’s second law for a control volume being acted upon by pressure forces.
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3.4 Fluid Energy Conservation

3.4.1 Integral Form

The third and final hydro equation describes conservation of energy. There are in fact two versions of this
equation, depending on whether we're interested in the specific’ total energy e or the specific internal energy
u. These two quantities can be related via

1
e:u+§|v\2, (3.39)

where the second term on the right-hand side can be recognized as the specific kinetic energy.

We'll focus initially on the total energy equation. Conceptually, it’s easier to derive this equation within
the Lagrangian framework; therefore, we consider a control volume V(t) which moves with the fluid. The
total energy contained within the volume is

& :/ pedr, (3.40)
V(t)

There are two processes which can change £: heat flows into/out of the control volume, and work done on
the volume. For the moment, we're going to ignore the possibility of heat flows. In the absence of external
forces, the work done on the volume comes about through the pressure forces acting on the boundary S.
For a surface element dS, the rate of work done on the volume by a pressure p is —pv - dS®, and so the total
rate of change of £ is

e _ —/ pv - dS. (3.41)
dt S(t)
The left-hand side can be expanded out using the Reynolds Transport Theorem (3.13), and we have
0
—(pe)dr + / pev -dS = —/ pv - dS. (3.42)
V() Ot S(t) S(t)
Rearranging,
0]
/ —(pe)dr + / (pe +p)v-dS =0, (3.43)
V() Ot s(t)

which is the integral form of the total energy conservation equation.

3.4.2 Differential Form

In the absence of discontinuities, the energy conservation equation can be written as

0
/ —(pe)dr +/ V- [v(pe +p)ldr = 0. (3.44)
V() Ot V()
As before we take V(¢) to be infinitesimal, to obtain
0
2 (0e) + V- l(pe 2] =0, (3.45)

which is the differential form of the total energy conservation equation. If we substitute in the expres-
sion (3.39) for the total energy e, we can split up the equation as

%w) + V- [puv] +

% <;p|v|2> +V- Bp|v2v} + (3.46)
V- [pv]=0.

This separates out the internal energy terms (first line), kinetic energy terms (second line) and work terms
(last line) — a form which will prove useful in the subsequent sections.

"Here, ‘specific’ means per unit mass.
8This is the scalar product of the force —pdS and the distance moved per second v.
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3.4.3 Kinetic Energy Evolution

From the differential form of the momentum conservation equation, we can derive an equation governing
the time evolution of the kinetic energy. This equation is completely independent from the total energy
equation (3.45 derived above — in fact, it’s rather analogous to the first integral of the equation of motion,
which we encountered when dealing with individual particles. The starting point is to take the scalar product
of v and eqn. (3.38) to give

D
pV-Df‘t,—I—V-Vp:O. (3.47)

Likewise, we multiply the continuity equation (3.10) by |v|?/2 to give

1, wDp 1 .,
N — + = -v=0. 3.48
SVPDE + Splv?Y v (3.45)
Adding these two equations together,
D /1 1
Di <2pv|2> + §p|v|2V-v—|—v~Vp: 0. (3.49)

Expanding out the Stokes time derivative using eqn. (3.20),

0 (1 1 1
ot (2ﬂvl2> tv.V (2:0|v|2> + 5 APV v v Vp =0, (3.50)

which further simplifies to

0 (1 1

This is the desired equation for the evolution of the kinetic energy per unit volume p|v|?/2.

3.4.4 Internal Energy Evolution
Using eqn. (3.51), we can eliminate the kinetic energy terms from eqn. (3.46) to find an equation governing

the time evolution of the internal energy:

0
g(pu) + V- [puv] +pV-v =0. (3.52)

If we combine this with the continuity equation (3.10), after a little algebra we arrive at the compact form

Du D /1
— — (-]l =0. 3.53
g [Dt TPy <p>] (3.59)
Clearly, because p is typically non-zero, the term in the brackets must vanish,
Du D /1
— — | -] =0. 3.54
Dt * PDi < p> (3:54)

The significance of this equation becomes clear if we define v, = 1/p as the specific volume (i.e., the volume
per unit mass), so that
Du Dv,
Di D
Recalling that the Stokes derivative is the rate of change experienced when moving with the fluid, it’s clear
that this latter expression is an expression of the first law of thermodynamics in the absence of heat transfers!

=0. (3.55)
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3.5 The Euler Equations

The differential mass, momentum and energy conservation equations we’ve derived in the preceding sections
are together known as the Fuler Equations”; they are a specific case of the more-general Navier-Stokes
Equations in the limit of no viscosity or heat flow. There are a number of different ways of writing the Euler
Equations, which we’ll review here.

3.5.1 Conservation Form

In conservation form, the Euler equations read

dp

o TV =0, (3.56)
%(pV) + V- (pvv+pl) =0, (3.57)
2 (0e)+ V- [(pe + )V = 0. (3.58)
Each of these equations has the same structure
%—?+V~FQ:0 (3.59)

where @ is the volume density of some quantity'®, and F is the (vector or dyadic) flux of the conserved
quantity — i.e., the amount flow per second through a unit area. Over any region of space whose boundaries
are impermeable (i.e., Fg - dS = 0 for any surface element dS on the boundary), the divergence theorem
indicates that the volume integral of ) must be constant — that is, the quantity under consideration is
conserved.

3.5.2 Primitive Form

Although conservation form most clearly expresses the fundamental physical laws underpinning the Euler
equations, it is sometimes more convenient to use the primitive form of the equations, which give the time
rates of change of the primitive variables p, v and u (note: internal energy, not total energy!):

)
£+V-Vp+pv-v:0, (3.60)
ov 1
E"FV-VV-F ;Vp—O, (3.61)
%-l-V-Vu—i—%V-V:O (3.62)

(note that the continuity equation has remained essentially unchanged, although the divergence term is now
expanded out). We can also express the primitive-form equations using Stokes derivatives

Dp

V-v=0 3.63
Dy TPV V=0, (3.63)
Dv 1

— 4+ -Vp=0, 3.64
pr T, VP (3.64)
Du »p

— +=V-v=0. 3.65
Dt-l—pv v (3.65)

9From Wikipedia: Historically, only the continuity and momentum equations have been derived by Euler. However, fluid
dynamics literature often refers to the full set — including the energy equation — together as “the Fuler equations”.
10E.g., Mass per unit volume p; momentum per unit volume pv; total energy per unit volume pe.
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3.5.3 Thermodynamic Equations

Whichever form we chose to adopt, the Euler equations require additional information for them to be solved,
because there are four unknowns but only three equations. This information comes from the (algebraic)
thermodynamic equations which link the pressure (i.e., microscopic momentum) of a fluid to its internal
energy (i.e., microscopic kinetic energy). One of these, the equation of state (EOS), gives the pressure of the
fluid in terms of its density. Familiar examples are the ideal-gas EOS,

_ pkT

- : 3.66
. (3.66)

where k is Boltzmann’s constant and p is the mean molecular weight in units of the hydrogen atomic mass
myr; and the ideal gas plus radiation pressure EOS,

kT aT*
P = Pgas + Prad = PR + —, (367)

Hmy 3
where « is the radiation constant. Both of these expressions introduce a new unknown, the temperature
T'; therefore, we need an additional equation to relate T back to other state variables. This is the internal
energy equation, which for an ideal gas with a ratio of specific heats v = ¢, /cy is

1 kT
U= ——-—- 3.68
v—1pmy (3.68)

and for the corresponding ideal gas plus radiation pressure is

1 kT aT*
= (3.69)
y—lpmg  p

3.5.4 Primitive Form with Pressure

For an ideal gas, we can easily eliminate the temperature between the EOS and internal energy equation, to
find 1
u=—" (3.70)
v—1p
(in principle this can also be done for the ideal gas plus radiation pressure, but the resulting expression is
too unwieldy to be useful). Using this expression, the Euler equations in their primitive Stokes-derivative
form become

Dp
— -v=0 3.71
oy TPV V=0, (3.71)
Dv 1
— +-Vp=0 3.72
e+, VP =0 (3.72)
Dp
Di +vpV v =0. (3.73)

where I've assumed that ~ is constant throughout the fluid (generally a reasonable assumption, unless
something ‘interesting’ like ionization is occurring). The pressure equation can also be written as
Dlnp Dlnp
-7 = 01
Dt Dt

(3.74)

which means that for a control volume moving with the fluid, pp™ = const. This is of course the relation
for adiabatic changes.
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3.6 External Forces

We’ve assumed so far there are no external body forces acting on the fluid. In astronomy, this is often not
the case — fluids are acted on by gravitational and radiative forces. To include these forces, we must modify
the momentum and energy fluid equations. The momentum equation in conservation form becomes

0

g(pv) + V- (pvv + pl) = pf, (3.75)
where f is the specific force — i.e., the force per unit mass of fluid. The units of f are length/ time?, and so
we can also refer to f as the externally-imposed acceleration. In the case of a gravitational field, we have

f=g=-Vd (3.76)

where ® is the gravitational potential. The energy equation in conservation form likewise becomes

2 (00) 4V - [(pe +p)v] = pf v, (3.77)
where the term on the right-hand side can be interpreted as arising from the work done on the fluid by the
external force.

Now that the conservation-form fluid equations have terms on the right-hand side, it’s clear that momen-
tum and energy are no longer conserved in the fluid. This isn’t surprising — if an external agent is doing
work on a system, then the system’s total momentum and energy are bound to change.

3.7 Static Solutions

The simplest solutions to the equations of hydrodynamic are static ones, in which all time derivatives plus
the velocity v vanish. The mass and energy conservation equations are identically zero, and the momentum
conservation equation becomes

Vp = pf (3.78)

In the case where the external acceleration f is due to gravity, we have
Vp = pg = —pVo; (3.79)

if, moreover, the gravitational field is spherically symmetric, then we obtain a scalar equation relating the
pressure and the potential gradient,

op 0P

ar = —plg| = “or

This can be recognized as the equation of hydrostatic equilibrium for a spherical fluid distribution — which
in astrophysics corresponds to a star (or gas-giant planet).

(3.80)

3.8 Steady-State Solutions

Steady-state solutions are ones where the explicit Eulerian (0/0¢) time derivatives vanish, but the velocity
does not. Then, the equations of hydrodynamics in primitive-pressure form are

v-Vp+pV-v=0, (3.81)
1

ViUV oVp=f (3.82)

v-Vp+pV-v=0 (3.83)
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(note that the work term due to the external force doesn’t appear in the internal energy equation, because
the work is converted to bulk kinetic energy rather than internal energy). This is still a tough system of
equations to solve. However, a further simplification can be found if the fluid is incompressible (V - v = 0):

v-Vp=0, (3.84)

1
v-Vv+ ;Vp =f (3.85)
v-Vp=0. (3.86)

The continuity and internal energy equations indicate that the flow must be perpendicular to any density
and pressure gradients. This flow configuration is something we see every day in terrestrial weather patterns:
wherever there is a low-pressure system, the resulting pattern of winds does not flow directly toward the
low, but instead circulates around the low in such a way that v - Vp = 0.

A subtle point here is that such ‘cyclonic’ motion, on Earth, owes its existence to rotation. In order
to satisfy the momentum equation, the external force must be in balance with the pressure-gradient force
p~1Vp; otherwise, the steady state cannot be maintained. Because Vp is itself perpendicular to v, the
external force must also therefore be perpendicular to v — but in the opposite direction to Vp. The Coriolis
force in the co-rotating reference frame, given by

for = 20 X v (3.87)

fits this bill. This can be seen most easily by considering a low pressure system centered on the north
pole, flowing counter-clockwise as seen from above. The pressure gradient force is directed toward the pole,
and the Coriolis force is directed away from the pole; in steady-state, the flow velocity will be set by the

requirement that the two balance:''.

1
;Vp =20 xvVv (3.88)

Note that only counter-clockwise flow can achieve this balance'? in the Northern hemisphere — and vice
versa in the Southern hemisphere. This is why hurricanes (extreme low-pressure systems) which encounter
the USA always rotate counter-clockwise.

HHere, I'm neglecting the v - Vv ‘inertia’ term in the momentum equation; this is valid in situations without strong flow
gradients
12Known in atmospheric physics as ‘geostrophic balance’.
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Chapter 4

Waves and Instabilities

4.1 Linearizing the Hydrodynamical Equation

To move beyond the static and steady-state hydrodynamical equations, let’s now look at time-dependent
motions, but ones which can be represented as a small perturbation to a known background state. We
decompose the density, velocity and pressure in the perturbed system into two components:

p=po+p, (4.1)
vV =vg+ v/7
p=po+p; (4.3)

here, the subscript 0 denotes the background state, while the prime (’) indicates the fixed-position perurba-
tion!.

We assume that the perturbations are small, so that we can neglect any and all terms of second- or higher-
order in perturbed variables. We also assume that the background state is steady, so that the time-derivatives
of O-subscript quantities vanish. Then, substituting the above expressions into the hydro equations, we find

6/
S H Y (oov) + V- (p'v) = 0 (4.4)
ov' 1., o
ap/ / / / /
E+v0~Vp+v~Vp+7[pV-v0+pV-v]:O (4.6)

In situations where the background state is not only steady but also static, these simplify to

/

Ip

ovi 1 o
-+ —Vp' = 5Vp =1 48
at  po g (48)
/
%—2+V'-Vp+’ypV~V':O (4.9)

In many cases, the perturbation to the external force f’ vanishes, and so this term can be dropped from the
momentum equation.

1 Also known as the ‘Eulerian’ perturbation, to distinguish it from the ‘Lagrangian’ perturbation experienced by a given fluid
element.
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4.2 Acoustic Waves in Uniform Medium

Let’s now consider a uniform rest state, where all gradients of background quantities vanish. Then, the
linearized hydro equations become

8 /
FZJFW.V/ =0 (4.10)
/
1
%—:+;Vp’ =0 (4.11)
8 /
a—i +9pV v =0 (4.12)

For notational convenience, I've dropped the subscripts on the background quantities, since little confusion

can arise (i.e, if you don’t see a prime, it must be a background quantity), and moreover the substitution

po — p ete. is correct to first order. Also, I've assumed that the perturbation to the external force is zero.
To solve these equations, we rearrange the momentum equation to read

ov 1
— =—-Vy. 4.13
p SVp (4.13)
Then, taking the time derivative of the energy equation, we have
82p/ av/ 32p' yp
V. — = — g2y = 0. 4.14
ot? TP ot ot? p P (4.14)
This can be written as 92y
1 0%p
Vi = = —, 4.15
V= —=7p (4.15)

which can immediately be recognized as a three-dimensional equation governing acoustic (pressure) wave

propagation, with sound speed?
[P
a=,/—. (4.16)
p

Because the wave equation is linear, any pair of valid solutions can be added to give another solution —
this is the famed principle of superposition. Solutions are therefore typically expressed as sums — or, in the
continuous case, integrals — of ‘monochromatic’ plane-wave solutions

P (r,t) = Apelter—«t), (4.17)

Here, A, is a constant setting the wave amplitude, k is the wavevector and w is the angular frequency. The
wavevector points in the direction of propagation, and its modulus satisfies

w? = [k*a®. (4.18)

From a mathematical perspective, this latter expression is the solution of the characteristic equation associ-
ated with the differential wave equation. However, in the framework of wave propagation it is known as the
dispersion relation of the waves. Finding the dispersion relation of a given system (not necessarily static or
uniform) can often tell us a lot about the way the system will behave.

Given the pressure solution (4.17), it is trivial to show that the corresponding density perturbation is

1 A,
/ r,t) = _ Jel(k.r—wt) 4.19
and likewise the velocity perturbation is
v kwpp'(r,t) Apkkei(k.rfwt)
= wp ’
We therefore see that the (periodic, back-and-forth) fluid motions are parallel to k, and hence in the direction
of propagation — so acoustic waves are longitudinal rather than transverse.

(4.20)

2Note that the expression for a is the adiabatic sound speed. For acoustic waves in air, the fluid motions are closer to
isothetmal than adiabatic, and therefore the waves propagate at the isothermal speed of sound aiso = /p/p-
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4.3 Gravity Waves in A Stratified Medium

While the assumption of uniformity allows the simple derivation of the acoustic wave equation (4.15), it is
not often physically realistic — especially in the gravitational potential well of a star, where (in hydrodyatic
equilibrium) pressure gradients must exist to balance the pull of gravity. Accordingly, we now consider the
linearized hydro equations in the case where the background state is static but not constant.

Specifically, let’s consider a static medium which is stratified in the vertical (z) direction — that is, the
background state depends only on z. For simplicity, let’s also assume that stratification is uniform, so that
the gradients of the pressure and density are constant. Then, with

dp
Vp=—e, = t. 4.21
p= g, € = cons (4.21)
and d
Vp = d—z e, = const., (4.22)
with e, the unit vector in the vertical direction, the linearized hydro equations become
ap’ dp
—_— Vv — =0 4.23
ot TV VA dr ’ ( )
ov' 1 p dp
— 4+ -Vp - =L, =0, 4.24
ot * p b p?dz © (4.24)
ap' dp /
et L — V-v =0, 4.25
ot v dz tapvev ( )

where v, = v - e,. Inspired by the solutions we found previously for the uniform case, we assume that all

perturbed quantites have a space and time dependence of the form e!®*=«*_ Making use of the identitis
Vo' =ikp, (4.26)
Vp' = ikp/, (4.27)
and
Vv =ik v/, (4.28)
the linearized equations become
d
—iwp’ +ik-vp + vzd—p =0 (4.29)
z
. 1, p dp
/ /
—iwv’ + ;1kp - E&ez =0 (4.30)
Ly dp . r_
—iwp" + v, — + ypik - v = 0. (4.31)

dz

This set of equations is now algebraic rather than partial differential. To solve, first note that the
horizontal (z and y) components of the momentum equation give

/ /

WUy = gkm, Wy = ]ik;y. (4.32)
p

These two expressions allow us to write the dot product k - v as
/

kv = kv, + kyoy + kv, = 2 (k2 + k2) + k.o, (4.33)
wp

With
k= [k|? = k2 + k. + k2, (4.34)
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we have ,

p
wp
Substiting this expression into the linearized equations, we finally eliminate any mention of the vector velocity
v:

k-v="(k—£k2) + k.v.. (4.35)

d
—iwp +ik Vo, =0 (4.36)
1 'd
v’ + ik’ %d—lz)ez —0 (4.37)
oy dp e
—iwp’ + v, + vypik - v/ = 0. (4.38)
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