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Chapter 1

Overview

1.1 Introduction

The official course title of Astronomy 702 is ‘Basic Astrophysics II’ — but the real title should be ‘Dynamics’.
The topic of dynamics1 concerns the time evolution of physical properties and processes. So, most of the
equations we’ll be encountering over the fourteen weeks of the course involve a time derivative of one form
or another.

1.2 A Hierarchy of Models

Many branches of physics and astrophysics focus on phenomena occurring at a certain scale. Here, I use
‘scale’ in two senses — on the one hand, the physical size of the system under consideration, and on the other,
the number of interacting entities (particles, planets, etc.) composing the system. Scale in the former sense
will determine which forces play a dominant role, and whether a quantum or classical description is more
appropriate; while scale in the latter sense dictates what sort of tools are useful for modeling the dynamics
of a system. For instance, fluid (or ‘continuum’) models are useful in cases where there are large number
of interacting particles composing a system; whereas kinetic models are the appropriate choice when only a
few particles are present.

1From the Greek word ‘dynamikos’, meaning ‘powerful’
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Chapter 2

Small Numbers of Particles

2.1 Individual Particles

2.1.1 The Equation of Motion

The fundamental equation governing the dynamics of all particles in the classical (non-quantum) limit is
Newton’s Second Law, which relates the acceleration of an individual particle to the external forces acting
upon it. Although we usually learn this as the simple

F = ma,

the equation is in fact a differential equation involving time derivatives (remember, dynamics!), and is better
written as

m
dv

dt
= F. (2.1)

To allow for relativistic mass changes, this is also often written as

dp

dt
= F, (2.2)

where p ≡ mv is the relativistic momentum; but for the most part, we’ll be ignoring relativistic effects.
Newton’s Second Law, together with an appropriate prescription for calculating the force F is often

referred to as the ‘equation of motion’ (EOM), as it governs the time evolution of the particle’s position
and velocity — i.e., its movement. Solving the equation of motion in full typically requires two integrations
because, with the velocity itself being the time derivative of the particle’s position vector r,

v ≡ dr

dt
, (2.3)

the EOM is second-order differential in time. It’s not always possible to do these integrations analytically,
especially if the force has some complicated dependence on space and time (as it would, for instance, if it
represented the electrostatic or gravitational attraction of an ensemble of other particles). However, there
do exist special circumstances where we can always analytically integrate the EOM at least once, thereby
obtaining a closed-form expression for the velocity v.

2.1.2 Conservative Forces

These special circumstances arise when the force F is conservative. In moving a particle1 from one point ra

to another rb, the work done on the particle

W = −
∫ rb

ra

F · dr (2.4)

1In the most general sense; anything from a proton to a block of wood to a planet.
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by a conservative force does not depend on the route taken between the two points — only on the location
of the points. An immediate corollary of this definition is that the total work done in moving the particle
around a closed loop must vanish; that is, ∮

F · dr = 0. (2.5)

We can use Stokes’ theorem to transform the line integral in this equation into a surface integral, so that∫
S

∇× F · dS = 0, (2.6)

where S is any surface bounded by the closed loop. Because this equation holds irrespective of which closed
loop or surface we choose, it must be the case that

∇× F = 0 (2.7)

for all conservative forces. Since the curl of a gradient is zero, this leads to result that conservative forces
can always be expressed as the gradient of a scalar potential,

F = −∇φ. (2.8)

(the negative sign is a convention, so that the force is always directed toward lower potentials). Conversely,
any force which can be expressed as the gradient of a scalar must be conservative. Note that φ has units of
energy, so although we usually refer to it as the potential, more correctly it is the potential energy.

Examples of conservative forces are the electrostatic and gravitational forces, which — for a point charge
or point mass at the origin — both take the form

F(r) =
A

r2
er, (2.9)

where A is some constant, r ≡ |r|, and er is the unit basis vector in the radial direction at position r. The
corresponding potential energy is trivially found as

φ(r) =
A

r
+ C, (2.10)

where the constant of integration C is usually set to zero so that φ goes to zero as r →∞ (this is an arbitrary
but conventional choice).

An example of a non-conservative force is friction. When moving a particle subject to friction, F and dr
in eqn. (2.4) are anti-parallel (because friction always acts oppositely to the direction of motion); hence, the
net work done on the particle along any path is positive. In particular, the net work done around a closed
loop is positive, which violates eqn. (2.5) — demonstrating that friction is non-conservative.

Of course, this analysis only applies at a macroscopic level. At the microscopic level, friction doesn’t
really exist; instead, there are just the electrostatic attractive and repulsive forces between atoms, via which
objects manifest the property of being solid. These forces are all conservative; but their effect is (in the
case of friction) to cause small-scale, microscopic motions of the atoms (i.e., heat) rather than large-scale,
macroscopic motion.

2.1.3 First Integral of the EOM

As mentioned above, an equation of motion featuring a conservative force can always be integrated at least
once. To see this, we use the chain rule to write the acceleration in the EOM as

dv

dt
=

dvx
dx

dx
dt

dvy
dy

dy
dt

dvz
dz

dz
dt

 =

dvx
dx vx
dvy
dy vy
dvz
dz vz

 . (2.11)
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where I’ve decomposed the velocity v into its Cartesian components vx, vy and vz. The second equality can
further be simplified to give

dv

dt
=

1

2


dv2x
dx
dv2y
dy
dv2z
dz

 =
1

2
∇|v|2. (2.12)

Substituting the latter result into the EOM for a conservative force gives

1

2
m∇|v|2 +∇φ = 0. (2.13)

This can always be integrated, to give
1

2
m|v|2 + φ = E (2.14)

where E is a constant of integration. Identifying the first term on the left-hand side as the particle kinetic
energy mv2/2, this equation indicates that the sum of kinetic and potential energies is a constant — that is,
the total energy E is conserved.

Thus, to summarize:

• An equation of motion involving conservative forces can always be integrated at least once.

• The resulting ‘first integral’ is a statement of conservation of energy.

2.1.4 Central Forces

A central force is one which is always directed toward a single point in space, conveniently defined to be the
origin, and moreover depends only on the distance r from this origin. Central forces are always conservative.
This can be seen by expressing a generic central force as

F(r) = f(r)er, (2.15)

for any integrable function f(r). This can always be derived from the potential

φ(r) = −
∫ ∞

r

f(r) dr, (2.16)

and so central forces are conservative. Note that the converse isn’t necessarily true; for instance, the gravi-
tational force from the (non-spherical) Earth is not precisely central, but it is still conservative.

In addition to satisfying conservation of energy, a system evolving under the action of a central force
also conserves angular momentum. To demonstrate this, we first note that the initial position and velocity
vectors of a particle acting under a central force serve to define a unique plane, and the force vector always
lies in this plane; therefore, we need only consider the 2-dimensional motion in the plane. Using the natural
choice of polar coordinates, the EOM for the particle is

m
d

dt
(vrer + vθeθ)− fer = 0. (2.17)

Here, vr and vθ are the velocity components in the radial and angular directions, and er and eθ are the
corresponding basis vectors. These basis vectors depend on the position of the particle, and therefore change
with time. It can readily be demonstrated2 that the time derivatives of the basis vectors are

ėr = θ̇eθ (2.18)

and
ėθ = −θ̇er, (2.19)

2This phrase is often used to dodge pages and pages of tedious algebra; but in this case, it is pretty straightforward; just
sketch how the basis vectors change over a time step δt, and take the limit δt→ 0.
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where to keep things compact, I’ve switched to the usual dot notation to indicate derivatives with respect
to time. With this switch, the velocity components become

vr ≡ ṙ (2.20)

and
vθ ≡ rθ̇; (2.21)

and the EOM (2.17) becomes (after some algebra)

m

[
r̈ − rθ̇2 − f(r)

m

]
er +m

[
rθ̈ + 2ṙθ̇

]
eθ = 0. (2.22)

Solutions to this equation require both terms in brackets to vanish. For the eθ term, we have

rθ̈ + 2ṙθ̇ = 0; (2.23)

multiplying through by r, and applying a little calculus-jitsu, this becomes

d

dt
(r2θ̇) = 0. (2.24)

Integrating,
r2θ̇ = j, (2.25)

where j is the constant of integration. This latter equation expresses conservation of angular momentum
(with j the angular momentum per unit mass). It can be used to eliminate θ̇ from the er term in the equation
of motion, to give

r̈ − j2

r3
− f(r)

m
= 0. (2.26)

The j-dependent term in this equation acts like an additional force, which tends to push the particle away
from the origin. An analogy can be drawn here to the centrifugal force which exists in a rotating frame
of reference; in both cases, the force exists to ensure that the motion of the particle in the absence of the
central force f(r) will be a straight line.

The above equation admits a first integral, and therefore conservation of energy applies even though we
haven’t specified the precise form of the central force; this is simply a consequence of the fact that the force
is conservative. Conservation of angular momentum likewise followed from the fact that there the central
force has no component in the angular direction. Depending on other properties of the force (i.e., its precise
dependence on r), other conservation laws can exist.

2.2 Two Particles

2.2.1 Central Forces

Let’s now move on to the case of two particles. In principle, the equation of motion for each particle will
include forces due to the other particle, plus forces due to an external agent (e.g., the gravitational field of a
third body). For the moment, let’s ignore any external forces, and focus on the simple case of two particles
interacting by central forces.

Labeling the particles using the subscripts 1 and 2, the EOMs are

m1v̇1 − f1,2(r1,2)
r1,2

r1,2
= 0, (2.27)

m2v̇2 + f2,1(r1,2)
r1,2

r1,2
= 0, (2.28)

where f1,2 is the force exerted on particle 1 by particle 2 (positive if repulsive, negative if attractive), f2,1

is the force exerted on particle 2 by particle 1, and r1,2 ≡ r1 − r2 is the vector displacement from particle 2
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to particle 1. Newton’s Third Law3 requires that f2,1 = f1,2, and henceforth we shall therefore write them
both simply as f . So,

m1r̈1 − f(r1,2)
r1,2

r1,2
= 0, (2.29)

m2r̈2 + f(r1,2)
r1,2

r1,2
= 0. (2.30)

In the center-of-mass-reference frame4, the position vectors r1 and r2 are anti-parallel (since the particles lie
on opposite sides of the center of mass); moreover, the radial coordinates r1 and r2 are always related by

r2 =
m1

m2
r1. (2.31)

Hence, we can represent the position vectors of both particles in terms of a single vector r:

r1 =
m2

m1 +m2
r, (2.32)

r2 = − m1

m1 +m2
r.

Substituting these expressions into eqn. (2.29) gives two identical EOMs for r,

m1m2

m1 +m2
r̈− f(r)er = 0. (2.33)

This describes the motion of a single particle of ‘reduced mass’

µ ≡ m1m2

m1 +m2
(2.34)

subject to the central force f(r) — a problem we addressed in the preceding section.
Thus, to summarize: a system composed of two particles interacting by central forces can always be

reduced to a one-body problem involving a central force.

2.3 Three Particles

2.3.1 Central Forces and the Restricted Problem

Suppose we introduce a third body into the two-body central-force problem considered above. Generally
speaking, it is not possible to find a closed solution to the coupled equations of motion. However, a special
case is the so-called ‘restricted three-body problem’, where the third particle exerts a negligible force on the
first two. A good example is a test particle of vanishing mass moving in the vicinity of a binary star system.

Although the particle has no gravitational influence upon the stars (and they therefore follow standard
two-body central-force dynamics), the stars do exert an attractive gravitational force on the particle. The
equation of motion for the particle is, therefore,

mr̈− GMpm

|rp − r|3
(rp − r)− GMsm

|rs − r|3
(rs − r) = 0. (2.35)

Here, m is the mass of the particle; Mp and Ms are the masses of the primary and secondary stars, respec-
tively; and rp and rs are the corresponding position vectors of the stars. This equation is a little trickier to
solve than it appears, because the stars are not fixed in space — rather, they orbit their common center of
mass. Although we can obtain a first integral, expressing conservation of energy for the particle, it doesn’t
really tell us much about the particle’s motion.

3Actioni contrariam semper et æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales
et in partes contrarias dirigi.

4Always a good choice for multi-body problems.
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However, if the stars are in circular orbits, then we can always transform to a frame of reference rotating
uniformly at the orbital frequency Ω = 2π/P . Here, P is the period of the binary system, given in terms of
the orbital separation a as

P 2 =
4π2

G(Mp +Ms)
a3. (2.36)

Within this rotating frame of reference, the stars are at rest at distances

rp =
Ms

Mp +Ms
a (2.37)

and

rs =
Mp

Mp +Ms
a, (2.38)

respectively, from the center of mass (see eqn. 2.32).
But there’s a wrinkle in transforming to the co-rotating frame: the acceleration must be corrected to

account for the fact that this frame is not inertial. To figure out what the correction should be, note that
the velocity vector in an inertial frame is related to the the corresponding velocity in the co-rotating frame
by

vi = vc + Ω× r. (2.39)

Here, Ω is the angular frequency vector describing the rotation, and the ’i’ and ’c’ subscripts denote inertial
and co-rotating, respectively. Note the absence of any subscript on the r term on the right-hand side. This is
deliberate; although observers at rest in the inertial and co-rotating frames will disagree about the velocity
vector of an object, they will both agree about its position vector5. One way of grokking this subtle point
is to re-write the above equation in operator form,

d

dt i
r =

[
d

dt c
+ Ω×

]
r (2.40)

The subscripts now appear on the time derivatives, to denote rates of change as measured at rest in the
indicated reference frames. (As an aside: this expression applies to any vector, not just the position vector r,
and underscores that it is the time derivatives which change when switching frames, rather than the vector
itself).

By applying the above operator twice to r, we can easily obtain an expression for the relationship between
the particle accelerations in the two frames:

r̈i = r̈c + 2Ω× ṙc + Ω× (Ω× r) . (2.41)

Here, note the subscripts on time derivatives of r, but not r itself! Using this expression, the equation of
motion in the co-rotating frame becomes

mr̈c + 2mΩ× ṙc +mΩ× (Ω× r)− GMpm

|rp − r|3
(rp − r)− GMsm

|rs − r|3
(rs − r) = 0. (2.42)

The advantage of this equation is that, for circular orbits, the vectors rp and rs have fixed components
with respect to the co-rotating frame. Comparing against the inertial equation (2.35) two new terms have
appeared, corresponding to two ‘fictitious’ or ‘inertial’ forces which exist to correct for the fact that the
co-rotating frame isn’t inertial. The first, Coriolis term is non-zero only when the velocity ṙc is non-zero,
whereas the second, centrifugal term is present whenever the particle is displaced from the rotation axis.

Equation (2.42) still doesn’t easily yield close-form solutions, but is nevertheless quite instructive. In
situations where the particle is at rest in the co-rotating frame, the net force on it is

F = −mΩ× (Ω× r) +
GMpm

|rp − r|3
(rp − r) +

GMsm

|rs − r|3
(rs − r) (2.43)

5That said, the components of the position vector in each frame will differ, due to the misalignment of the coordinate axes;
nevertheless, in both frames r points in the same direction in space, and has the same magnitude.
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Figure 2.1: Surfaces of constant effective potential φeff (cf. eqn. 2.45), for a binary system in which the
primary (small green sphere, center-right) has twice the mass of the secondary (small yellow sphere, center-
left). The surfaces are colored according to the effective potential value they represent (red is higher, blue
is lower), and the Lagrange points are shown as red spheres.

This force can be written as the gradient of an ‘effective’ potential,

F = −∇φeff , (2.44)

where

φeff ≡ −
m

2
|Ω× r|2 − GMpm

|rp − r|
− GMpm

|rp − r|
(2.45)

combines the gravitational potential from the two stars (the second and third terms on the right-hand side)
with a centrifugal potential. At points where the gradient of the effective potential vanishes, the net force
on the test particle will vanish, meaning that these are points of equilibrium.

Fig. 2.1 is a 3-D rendering of the effective potential for a system in which Mp = 2Ms. Close to each of the
stars, the surfaces of constant φeff are nearly spherical, because one or the other of the gravitational terms
in eqn. (2.45) dominates. Far from the rotation axis, the centrifugal term dominates and the equipotential
surfaces are concentric cylinders. There are five points in total where ∇φeff vanishes, and these (four of which
are visible in the figure) are the famous Lagrange points, traditionally labeled as L1, . . . , L5. L1 through
L3 lie on the line joining the two stars, with L1 between the stars, and L2 and L3 outside the stars (the
convention being that L2 is closer to the smaller-mass star, and L3 to the larger-mass star). L4 and L5 lie
in the orbital plane, such that they each form equilateral triangles with the two stars.

It is clear from the figure that L1, L2 and L3 are not local minima of φeff , but rather saddle points:
the potential is maximal along the line joining the stars, and minimal along perpendicular lines. Thus, a
particle at one of these points is not in stable equilibrium, and will drift away over time. How, then, do we
speak of parking a satellite at one of the Lagrange points?6 Although the points themselves are not stable,

6For instance, the plan is to park the James Webb Space Telescope at L2.
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it is possible to place an object in a stable, periodic orbit near (not exactly on) of one of the points — a
so-called ‘halo’ orbit. The orbit is maintained by the Coriolis force, which can’t be modeled as an effective
potential (and hence cannot be included in the definition of φeff).

The L4 and L5 points are local maxima of φeff , suggesting that they, also, are unstable. Surprisingly,
however, as a particle placed at one of these points begins to drift away, the Coriolis force will send it into a
stable orbit about the point, if the mass ratio of the system exceeds about 25 : 1. This underscores the fact
that the effective potential does not tell the whole story about the motion of a test particle in the restricted
three-body problem.

On a final note, as we shall see later in the course, the shapes of self-gravitating gaseous bodies — i.e.,
stars — are defined by equipotential surfaces (in just the same way that sea level on Earth is an equipotential
surface). In binary systems, these surfaces are known as Roche lobes, and correspond exactly to the surfaces
shown in Fig. 2.1. Clearly, as the radius of one star grows (e.g., due to evolutionary effects), its surface
becomes progressively distorted by the other star and the centrifugal force; until eventually the surface
reaches out to the L1 point, and star will begin to spill mass onto the other star. This phenomenon is ‘Roche
lobe overflow’, and we’ll be returning to it later in the course.

2.4 N Particles

2.4.1 The Virial Theorem

If dealing with three particles is tricky, what about an ensemble of N particles? Certainly, there are again no
neat closed solutions; but if we are dealing with certain types of central force, we can still obtain some useful
statements about the overall properties of the system once a certain type of equilibrium has been reached.

To see this, consider the scalar moment of inertia of the ensemble,

I =
∑
i

mi|ri|2, (2.46)

where i indexes the particle under consideration, and the sum is taken over all particles, i = 1, . . . , N . Taking
the time derivative,

dI

dt
= 2

∑
i

pi · ri ≡ 2G (2.47)

where pi ≡ mivi is the momentum of particle i, and the second equality defines the so-called ‘virial7 of
Clausius G.

Things get interesting if we take the time derivative one more time, to find

dG

dt
=
∑
i

[mir̈ · r +miṙ · ṙ] . (2.48)

The second term in square brackets can be recognized as twice the total kinetic energy

K ≡ 1

2

∑
i

mi|ṙ|2 (2.49)

of the ensemble, so
dG

dt
=
∑
i

mir̈ · r + 2K. (2.50)

To handle the remaining summation, we make use of Newton’s second law to write

mir̈i = Fi, (2.51)

where Fi is the net force on the i’th particle. Hence, we have

dG

dt
=
∑
i

Fi · r + 2K, (2.52)

7The word virial comes from the Latin vis, meaning force or energy
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which is an exact (although still rather un-illuminating) result.
What happens when we average the time derivative of the virial over some time interval τ? Clearly,〈

dG

dt

〉
≡ 1

τ

∫ τ

0

dG

dt
dt =

G(τ)−G(0)

τ
. (2.53)

There are two cases where this time average might evaluate to zero. First, if the system is strictly periodic,
such that it returns to its initial state after time τ , then the numerator on the right-hand side will vanish.
Second, if we are dealing with a stably bound system, then we can expect the numerator to remain finite;
then, over a suitably long time (i.e., τ →∞), it should be the case that 〈dG/dt〉 → 0. If either of these cases
hold, then eqn. (2.52) becomes 〈∑

i

Fi · ri

〉
+ 2〈K〉 = 0, (2.54)

which is the renowned Virial Theorem.
Suppose the force Fi can be decomposed into the sum of individual forces arising from pair-wise interac-

tions with other particles; that is,

Fi =
∑
j 6=i

Fij , (2.55)

where Fij denotes the force on the i’th particle due to the j’th particle. Then, the virial theorem becomes〈∑
i

∑
j 6=i

Fij · ri

〉
+ 2〈K〉 = 0. (2.56)

If we write out this double summation in full, we can always pair up terms involving Fi,j and Fi,j , for any
choice of i and j (so long as i 6= j). By Newton’s third law, Fi,j = −Fj,i, and so the virial theorem becomes

1

2

〈∑
i

∑
j 6=i

Fij · (ri − rj)

〉
+ 2〈K〉 = 0, (2.57)

where the factor of 1/2 corrects for the fact that a summation over pairs will end up double counting.
Let’s now focus on a case of particular astrophysical interest: forces arising due to mutual gravitational

interactions,

Fij = − Gmimj

|ri − rj |3
(ri − rj). (2.58)

Substituting this into eqn. (2.57), we find after a little algebra that

− 1

2

〈∑
i

∑
j 6=i

Gmimj

|ri − rj |

〉
+ 2〈K〉 = 0. (2.59)

The summation term can be recognized immediately as the gravitational potential energy of the system,

U = −1

2

∑
i

∑
j 6=i

Gmimj

|ri − rj |
, (2.60)

where, again, the factor 1/2 appears to correct for double counting. So, the final result is

〈U〉+ 2〈K〉 = 0, (2.61)

which is the virial theorem for a self-gravitating system.
This result looks rather trivial, but in fact is quite profound. If we consider the total energy for the

system,
E = U + V (2.62)

, then it must be the case that

E = −〈K〉 =
1

2
〈U〉. (2.63)

A few points to note here:
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• The total energy is negative; this is consistent with our requirement that the system is bound.

• As the system loses energy (i.e., E becomes more negative), 〈U〉 must become more negative also —
i.e., the system contracts.

• Likewise, as the system loses energy, 〈K〉 must become more positive — i.e., the system becomes
‘faster’ or ‘hotter’.
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Chapter 3

Large Numbers of Particles

3.1 The Fluid Picture

At the most basic level, a fluid1 is any substance which can continuously deform (i.e., flow) under an applied
shear stress. Liquids are the most obvious examples of fluids, but gases also fall into this category, as do
certain esoteric substances such as silly putty (classified as a viscoelastic fluid). Indeed, the distinction
between a fluid and a solid is not always clear cut, and finding a rigorous definition can require quite a bit
of effort.

With this in mind, at this stage I’m not going to formally define what a fluid is — instead, I’m going to
invoke our experiences and intuition concerning everyday fluids such as water, oil and air. When describing
these substances, we don’t think in terms of the positions and velocities of individual atoms and molecules
making up the fluid (i.e., microscopic properties). Rather, we view the fluid as a continuum characterized by
macroscopic properties such as density ρ(r, t), velocity v(r, t) and pressure p(r, t), all of which are functions
of location in the fluid r and time t; that is, the fluid is described by a set of scalar and vector fields2. The
time evolution of these fields is governed by a set of partial differential equations known variously as the
fluid equations, the hydrodynamic equations (or ‘hydro equations’ for short), the Navier-Stokes equations
and/or the Euler equations. We’ll derive these equations in the following sections.

3.2 Fluid Mass Conservation

Consider a finite volume of space V, which can in principle have any shape or size. Suppose this ‘control
volume’ is fixed in space; then, as fluid flows through the walls of the volume, the total mass contained,

M =

∫
V
ρdτ, (3.1)

(where dτ is the differential volume element) will evolve over time. More specifically, because mass must be
conserved, the rate of change of M must balance the rate at which mass is entering or leaving the control
volume through its boundaries. For a boundary element dS3 of V, the amount of mass passing out of V per
second is

dM = ρv · dS. (3.2)

To understand this expression, note that the volume of material passing through dS per second is v · dS;
multiplying by the density of this material then gives the mass flowing through per second.

1From the Latin fluidus, that which flows.
2‘Field’ in the most general sense — a physical quantity associated with each point of spacetime.
3Defined in the usual manner; the magnitude of dS is the area of the element, and its direction is normal to the boundary

and pointing outward.
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If we integrate over all elements composing the boundary surface S of the control volume, then we end
up with an expression for the change in the mass contained in V per second,

dM
dt

= −
∫
S
ρv · dS (3.3)

(here, the minus sign appears because the expression derived above was for the mass lost from the volume).
Replacing M by its definition (3.1, and bringing the right-hand side over to the left, we have

d

dt

[∫
V
ρdτ

]
+

∫
S
ρv · dS = 0. (3.4)

Since the boundaries of V are fixed (i.e., they don’t change with time), we can bring the time derivative
inside the volume integral, to find ∫

V

∂ρ

∂t
dτ +

∫
S
ρv · dS = 0 (3.5)

(note that the time derivative now becomes a partial derivative, because ρ is a function of time and space).
This is one of the hydro equations — the mass conservation equation — expressed in integral form. A variant
on this equation, which is conceptually useful, is∫

V

∂ρ

∂t
dτ +

∫
S

Fρ · dS = 0; (3.6)

here,
Fρ ≡ ρv (3.7)

is the mass flux vector, which specifies the mass flow per unit area (perpendicular to the vector) per unit
time. When the mass conservation equation is written in terms of Fρ, it becomes clear how the changes in
the mass within V are due to the flow of mass through S.

Equations (3.5 and 3.6) are the most generally valid form for the mass conservation equation (also known
as the continuity equation). A somewhat more restrictive form, but also one that can be more practically
useful (since it doesn’t require us to consider a finite control volume), can be derived if we assume that
the fluid has no discontinuities in the density or the velocity. Then, the spatial derivatives of these latter
quantities are well defined, and we can make use of the divergence theorem to rewrite the surface integral in
eqn. (3.6) as a volume integral, ∫

V

∂ρ

∂t
dτ +

∫
V
∇ · Fρ dτ = 0. (3.8)

Over a sufficiently small volume, the integrands in this equation can be assumed constant, and therefore it
must be the case that at each point in space,

∂ρ

∂t
+∇ · Fρ = 0. (3.9)

This is again the continuity equation, but now expressed in differential form. Using the definition (3.7) of
the mass flux, we can also write

∂ρ

∂t
+∇ · (ρv) = 0. (3.10)

The derivations presented above are from the standpoint of a fixed control volume, through which the
fluid flows. This is known as an ‘Eulerian’ framework. An alternative way of arriving at the fluid equations
is a ‘Lagrangian’ framework, in which the control volume V is assumed to move with the fluid. The mass
contained within V is

M =

∫
V(t)

ρdτ ; (3.11)

this almost identical to eqn. (3.11), but the volume now has an explicit time dependence, indicated as V(t).
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Because the control volume moves with the fluid, no material crosses its boundaries4, and therefore M
must remain constant:

dM
dt

=
d

dt

[∫
V(t)

ρdτ

]
= 0. (3.12)

Can we simplify the above expression by taking the time derivative under the integral sign, as we did
before? The answer is generally no, because V(t) now depends on the time. However, we can make use of
a mathematical result, the Reynolds Transport Theorem, which — for any quantity f — expands out the
time derivative of a volume integral as

d

dt

∫
V(t)

f dτ =

∫
V(t)

∂f

∂t
dτ +

∫
S(t)

fv · dS. (3.13)

Setting f = ρ, and combining this with eqn. (3.12), we obtain∫
V(t)

∂ρ

∂t
dτ +

∫
S(t)

ρv · dS = 0. (3.14)

This is essentially identical to eqn. (3.5), apart from the appearance of V(t) instead of V, and likewise for
S(t). If the density and velocity are continuous, then the divergence theorem can be used as before to convert
this into differential equation identical to eqn. (3.10).

The Reynolds Transport Theorem can be used to derive another useful result. Setting f = 1 in eqn. (3.12),
we obtain an expression for the volume rate of change of the moving control volume,

d

dt

∫
V(t)

dτ ≡ dV
dt

=

∫
S(t)

v · dS. (3.15)

If we assume as before that the fluid has no discontinuities, then the divergence theorem gives

dV
dt

=

∫
V
∇ · v dτ. (3.16)

In an incompressible fluid, the left-hand side of this expression vanishes — although any arbitrary control
volume may become distorted as it is carried along with the incompressible fluid, its overall volume remains
constant. This means that an incompressible fluid must satisfy

∇ · v = 0 (3.17)

everywhere. Combining this restriction with eqn. (3.10), the continuity equation for an incompressible fluid
becomes

∂ρ

∂t
+ v · ∇ρ = 0. (3.18)

This can also be written
Dρ

Dt
= 0, (3.19)

where we have introduced the differential operator

D

Dt
≡ ∂

∂t
+ v · ∇. (3.20)

This operator is known by many names: the material time derivative, the Lagrangian derivative, the advective
derivative, the Stokes derivative. When applied to any variable, it gives the temporal rate of change of that
variable as experienced by a test particle (or small control volume) which moves with the flow. So, eqn. (3.19)
tells us that the density experienced by a test particle moving with the flow must be constant, if the fluid is
incompressible.

4At least, at the macroscopic level; there are still microscopic motions across the boundary, but with no net effect on the
fluid properties.
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