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1 Introduction

The official course title of Astronomy 702 is ‘Basic Astrophysics II’ — but the real title should be ‘Dynamics’.
The topic of dynamics1 concerns the time evolution of physical properties and processes. So, most of the
equations we’ll be encountering over the 14 weeks of the course involve a time derivative of one form or
another.

2 A Hierarchy of Models

Many branches of physics and astrophysics focus on phenomena occurring at a certain scale. Here, I use
‘scale’ in two senses — on the one hand, the physical size of the system under consideration, and on the other,
the number of interacting entities (particles, planets, etc.) composing the system. Scale in the former sense
will determine which forces play a dominant role, and whether a quantum or classical description is more
appropriate; while scale in the latter sense dictates what sort of tools are useful for modeling the dynamics
of a system. For instance, fluid (or ‘continuum’) models are useful in cases where there are large number
of interacting particles composing a system; whereas kinetic models are the appropriate choice when only a
few particles are present. The latter are generally

3 Individual Particles

3.1 The Equation of Motion

The fundamental equation governing the dynamics of all particles in the classical (non-quantum) limit is
Newton’s Second Law, which relates the acceleration of an individual particle to the external forces acting
upon it. Although we usually learn this as the simple

F = ma,

the equation is in fact a differential equation involving time derivatives (remember, dynamics!), and is better
written as

m
dv

dt
= F. (1)

1From the Greek word ‘dynamikos’, meaning ‘powerful’
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To allow for relativistic mass changes, this is also often written as

dp

dt
= F, (2)

where p ≡ mv is the relativistic momentum; but for the most part, we’ll be ignoring relativistic effects.
Newton’s Second Law, together with an appropriate prescription for calculating the force F is often

referred to as the ‘equation of motion’ (EOM), as it governs the time evolution of the particle’s position
and velocity — i.e., its movement. Solving the equation of motion in full typically requires two integrations,
because — with the velocity itself being the time derivative of the particle’s position vector r,

v ≡ dr

dt
, (3)

the EOM is second-order differential in time. It’s not always possible to do these integrations analytically,
especially if the force has some complicated dependence on space and time (as it would, for instance, if it
represented the electrostatic or gravitational attraction of an ensemble of other particles). However, there
do exist special circumstances where we can always analytically integrate the EOM at least once, thereby
obtaining a closed-form expression for the velocity v.

3.2 Conservative Forces

These special circumstances arise when the force F is conservative. In moving a particle2 from one point ra
to another rb, the work done on the particle

W ≡ −
∫ rb

ra

F · dr (4)

by a conservative force does not depend on the route taken between the two points — only on the location
of the points. An immediate corollary of this definition is that the total work done in moving the particle
around a closed loop must vanish; that is, ∮

F · dr = 0. (5)

We can use Stokes’ theorem to transform the line integral in this equation into a surface integral, so that∫
S

∇× F · dS = 0, (6)

where S is the surface bounded by the closed loop. Because this equation holds irrespective of which closed
loop we choose, it must be the case that

∇× F = 0 (7)

for all conservative forces. Because the curl of a gradient is zero, this leads to result that conservative forces
can always be expressed as the gradient of a scalar potential,

F = −∇φ (8)

(the negative sign is a convention, so that the force is always directed toward lower potentials). Conversely,
any force which can be expressed as the gradient of a scalar potential must be conservative.

Examples of conservative forces are the electrostatic and gravitational forces, which — for a point charge
or point mass at the origin — both take the form

F(r) =
A

r2
er, (9)

where A is some constant, r ≡ |r|, and er is the unit basis vector in the radial direction at position r. The
corresponding potential is trivially found as

φ(r) =
A

r
+ C, (10)

2In the most general sense; anything from a proton to a block of wood to a planet
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where the constant of integration C is usually set to zero so that the potential goes to zero as r →∞ (this
is an arbitrary but conventional choice).

An example of a non-conservative force is friction. When moving a particle subject to friction, F and dr
in eqn. (4) are anti-parallel (because friction always acts oppositely to the direction of motion); hence, the
net work done on the particle along any path is positive. In particular, the net work done around a closed
loop is positive, which violates eqn. (5) — demonstrating that friction is non-conservative.

Of course, this analysis only applies at a macroscopic level. At the microscopic level, friction doesn’t
really exist; instead, there are just the electrostatic attractive and repulsive forces between atoms, through
objects manifest the property of being solid. These forces are all conservative; but their effect is (in the
case of friction) to cause small-scale, microscopic motions of the atoms (i.e., heat) rather than large-scale,
macroscopic motion of the body composed by the atoms.

3.3 First Integral of the EOM

As mentioned above, an equation of motion featuring a conservative force can always be integrated at least
once. To see this, we use the chain rule to write the acceleration in the EOM as

dv

dt
=

dvx
dx

dx
dt

dvy
dy

dy
dt

dvz
dz

dz
dt

 =

dvx
dx vx
dvy
dy vy
dvz
dz vz

 . (11)

where I’ve decomposed the velocity v into its Cartesian components vx, vy and vz. The second equality can
further be simplified to give

dv

dt
=

1

2


dv2x
dx
dv2y
dy
dv2z
dz

 =
1

2
∇|v|2. (12)

Substituting the latter result into the equation of motion for a conservative force gives

1

2
m∇|v|2 +∇φ = 0. (13)

This can always be integrated, to give
1

2
m|v|2 + φ = E (14)

where E is a constant of integration. Identifying the first term on the left-hand side as the particle kinetic
energy mv2/2, this equation indicates that the sum of kinetic and potential energies is a constant — that is,
the total energy E is conserved.

Thus, to summarize:

• An equation of motion involving conservative forces can always be integrated at least once.

• The resulting ‘first integral’ is a statement of conservation of energy.

3.4 Central Forces

A central force is one which is always directed toward a single point in space, conveniently defined to be the
origin, and moreover depends only on the distance r from this origin. Central forces are always conservative.
This can be seen by expressing a generic central force as

F(r) = f(r)er, (15)

for any function f(r). This can always be derived from the potential

φ(r) = −
∫ ∞

r

f(r) dr, (16)
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and so central forces are conservative. Note that the converse isn’t necessarily true; for instance, the gravi-
tational force from the (non-spherical) Earth is not precisely central, but it is still conservative.

In addition to satisfying conservation of energy, a system evolving under the action of a central force
also conserves angular momentum. To demonstrate this, we first note that the initial position and velocity
vectors of a particle acting under a central force serve to define a unique plane, and the force vector always
lies in this plane; therefore, we need only consider the 2-dimensional motion in the plane. Using the natural
choice of polar coordinates, the equation of motion for the particle is

d

dt
(vrer + vθeθ)− fer = 0. (17)

Here, vr and vθ are the velocity components in the radial and angular directions, and er and eθ are the
corresponding basis vectors. These basis vectors depend on the position of the particle, and therefore change
with time. It can readily be demonstrated3 that the time derivatives of the basis vectors are

ėr = θ̇eθ (18)

and
ėθ = −θ̇er, (19)

where to keep things compact, I’ve switched to the usual dot notation to indicate derivatives with respect
to time. With this switch, the velocity components become

vr ≡ ṙ (20)

and
vθ ≡ rθ̇; (21)

and the equation of motion (17) becomes (after some algebra)

m
[
r̈ − rθ̇ − f(r)

]
er +

[
r ¨theta+ ṙθ̇ + rθ̇2

]
eθ = 0. (22)

Solutions to this equation require both terms in brackets to vanish. For the eθ term, we have

r ¨theta+ ṙθ̇ + ṙθ̇ = 0; (23)

multiplying through by r, and applying a little calculus-jitsu, this becomes

d

dt
(r2θ̇) = 0. (24)

Integrating,
r2θ̇ = j, (25)

where j is the constant of integration. This latter equation expresses conservation of angular momentum
(with j the angular momentum per unit mass). It can be used to eliminate θ̇ from the er term in the equation
of motion, to give

r̈ − j

r
− f(r) = 0. (26)

The j-dependent term in this equation acts like an additional force, which tends to push the particle away
from the origin. An analogy can be drawn here to the centrifugal force which exists in a rotating frame
of reference; in both cases, the force exists to ensure that the motion of the particle in the absence of the
central force f(r) will be a straight line.

The above equation admits a first integral, and therefore conservation of energy applies even though we
haven’t specified the precise form of the central force; this is simply a consequence of the fact that the force
is conservative. Conservation of angular momentum likewise followed from the fact that there the central
force has no component in the angular direction. Depending on other properties of the force (i.e., its precise
dependence on r), other conservation laws can exist.

3This phrase is often used to dodge pages and pages of tedious algebra; but in this case, it is pretty straightforward; just
sketch how the basis vectors change over a time step δt, and take the limit δt→ 0.
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4 Two Particles

4.1 Central Forces

Let’s now move on to the case of two particles. In principle, the equation of motion for each particle will
include forces due to the other particle, plus forces due to an external agent (e.g., the gravitational field of a
third body). For the moment, let’s ignore any external forces, and focus on the simple case of two particles
interacting by central forces.

Labeling the particles using the subscripts 1 and 2, the equations of motion are

v̇1 − f1,2(r1,2)
r1,2
r1,2

= 0, (27)

v̇2 + f2,1(r1,2)
r1,2
r1,2

= 0, (28)

where f1,2 is the force exerted on particle 1 by particle 2 (positive if repulsive, negative if attractive), f2,1
is the force exerted on particle 2 by particle 1, and r1,2 ≡ r1 − r2 is the vector displacement from particle 2
to particle 1. Newton’s Third Law4 requires that f2,1 = f1,2, and henceforth we shall therefore write them
both simply as f . So,

m1r̈1 − f(r1,2)
r1,2
r1,2

= 0, (29)

m2r̈2 + f(r1,2)
r1,2
r1,2

= 0. (30)

In the center-of-mass-reference frame5, the position vectors r1 and r2 are anti-parallel (since the particles lie
on opposite sides of the center of mass); moreover, the radial coordinates r1 and r2 are always related by

r2 =
m1

m2
r1. (31)

Hence, we can represent the position vectors of both particles in terms of a single vector r:

r1 =
m2

m1 +m2
r, (32)

r2 = − m1

m1 +m2
r. (33)

Substituting these expressions into eqn. (29) gives two identical equations of motion for r,

m1m2

m1 +m2
r̈ − f(r)

r

r
= 0. (34)

This describes the motion of a single particle of ‘reduced mass’

µ ≡ m1m2

m1 +m2
(35)

subject to the central force f(r) — a problem we addressed in the preceding section.
Thus, to summarize: a system composed of two particles interacting by central forces can always be

reduced to a one-body problem involving a central force.

5 Three Particles

5.1 Central Forces and the Restricted Problem

Suppose we introduce a third body into the two-body central-force problem considered above. Generally
speaking, it is not possible to find a closed solution to the coupled equations of motion. However, a special

4Actioni contrariam semper et æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales
et in partes contrarias dirigi.

5Always a good choice for multi-body problems.
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case is the so-called ‘restricted three-body problem’, where the third particle exerts a negligible force on the
first two. A good example is a test particle of vanishing mass moving in the vicinity of a binary star system.

Although the particle has no gravitational influence upon the stars (and they therefore follow standard
two-body central-force dynamics), the stars do exert an attractive gravitational force on the particle. The
equation of motion for the particle is, therefore,

mr̈− GMpm

|rp − r|3
(rp − r)− GMsm

|rs − r|3
(rs − r) = 0. (36)

Here, m is the mass of the particle; Mp and Ms are the masses of the primary and secondary stars, respec-
tively; and rp and rs are the corresponding position vectors of the stars. This equation is a little trickier to
solve than it appears, because the stars are not fixed in space — rather, they orbit their common center of
mass. Although we can obtain a first integral, expressing conservation of energy for the particle, it doesn’t
really tell us much about the particles motion.

However, if the stars are in circular orbits, then we can always transform to a frame of reference rotating
uniformly at the orbital frequency Ω = 2π/P . Here, P is the period of the binary system, given in terms of
the orbital separation a as

P 2 =
4π2

G(Mp +Ms)
a3. (37)

Within this rotating frame of reference, the stars are at rest at distances

rp =
Ms

Mp +Ms
a (38)

and

rs =
Mp

Mp +Ms
a, (39)

respectively, from the center of mass (see eqn. 32).
But there’s a wrinkle in transforming to the co-rotating frame: the acceleration must be corrected to

account for the fact that this frame is not inertial.
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