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Preface

With increasing accuracy and higher time resolution, recent observa-
tions have revealed that nonradial oscillations and related phenomena
are inherent to most of the stars that are the main constituent of the
universe. There are two theoretical aspects of nonradial oscillations of
stars. In one sense, stars are musical instruments that are able to

oscillate with variation in wave length or in frequency. The modes of
oscillation differ from one star to another and change in a delicate way
as a star evolves. It is, however, the stars themselves which power and

control the oscillations. The second aspect, therefore, is the sense in

which stars function as heat engines to drive their own oscillations.

Our research group in the Department of Astronomy, University of
Tokyo, has been engaged in developing the theory of the above two
aspects and in interpreting observations. We wrote the first edition of
Nonradial Oscillations of Stars in 1979, summarizing the fundamental
concepts of nonradial oscillations and reviewing studies up to that time.
Nearly a decade has passed, and much progress has been made since
then in this field, so it seemed a good time to consider the publication of
a new, fully revised edition. In particular, a new field of research called
“helio- and astero-seismology” has been opened up, in which the
internal structures of the sun and stars can be probed using their
oscillations.

Hideyuki Saio has joined us in the new edition, which has been
revised to incorporate recent progress in this field; our intention is that
this monograph will remain useful not only to specialists but also to
nonspecialists as a textbook. It covers nonradial oscillations of stars
from the basics to the most recent developments. Special emphasis is
placed on the linear adiabatic and non-adiabatic theory of nonradial
oscillations of stars. However, the recent extension of the theory to
general relativity and the nonlinear problems are considered outside the
scope of the present monograph and they are not treated here. Three of
seven chapters are completely new, and the others have been revised in
order to update their contents. The newly added chapters are Chapter
IV, Nonadiabatic Oscillations; Chapter VI, Nonradial Oscillations in

Rotating Stars; and Chapter VII, Helio- and Asteroseismology. Major
authorial and editorial responsibility for the various chapters of the new
edition is as follows: Chapter I, Introduction: Unno and Osaki; Chapter
II, Observational Aspects of Nonradial Oscillations: Osaki, Ando, Saio,
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Shibahashi; Chapter III, Basic Equations and Adiabatic Oscillations:
Shibahashi, Unno, Osaki, Saio; Chapter IV, Nonadiabatic Oscillations:

Saio; Chapter V, Excitation and Damping of Oscillations: Ando, Unno,

Saio, Shibahashi; Chapter VI, Nonradial Pulsations in Rotating Stars:

Saio, Ando, Shibahashi; Chapter VII. Helio- and Asteroseismology,
Shibahashi. A list of symbols, reference list, and subject index are
included at the end of the volume. References include the section
numbers where the works are referred to. We hope that this volume will
contribute to future progress in the study of nonradial oscillations.

We thank Mr. M. Inoue of the University of Tokyo Press for
various editorial arrangements, Mrs. K. Sakurai for. her help in
preparing the manuscript, and Messrs. M. Hirose and T. Sekii for
preparing some figures. The publication of this book was supported in
part by the Grant-in Aid for Publication of Scientific Research Result
from the Ministry of Education, Science and Culture of Japan.

17 February 1989

Wasaburo Unno
Yoji Osaki



Chapter I

INTRODUCTION

1. What are Nonradial Oscillations ?

Every one of the stars, including our sun, is a self-gravitating gaseous
sphere that radiates an enormous amount of energy to its outer space.
Energy radiated from the surface of a star is generated in the deep
interior by thermonuclear reactions. A star, born out of an interstellar
cloud, spends most of its life in the hydrogen-burning main-sequence
stage. As a star consumes its nuclear fuel, it evolves by changing its
internal structure. A star is by no means a quiet object, but it is in a
sense a kind of heat engine exhibiting various activities. Some stars blow
out stellar winds from their surfaces with speeds ranging up to a few
thousand kilometers per second, while some others are pulsating
variables. A pulsating variable is a star that changes its brightness
periodically by changing its volume just as a human body breathes
rhythmically.

This monograph deals with one such stellar activity: nonradial
oscillations (or nonradial pulsations), the general type of stellar
eigen-oscillations. There exist two kinds of stellar oscillations: radial
and nonradial. The radial oscillation (or radial pulsation) is a simple
type of oscillation in which a star oscillates around its equilibrium figure,

by expanding and contracting, while keeping its spherical shape.
Nonradial oscillations are a more general type in which a star oscillates
in such a way as to deviate from its spherical shape. The radial
oscillation may be regarded as one of the special cases of nonradial
oscillations with the spherical harmonic index I = 0. (See Section 4 for
the definition of the spherical harmonic index.)

The theory of stellar pulsation was originally developed in order to
explain the pulsations of classical variable stars such as the Cepheids and
RR Lyrae stars. These variables are thought to be radial pulsators.
However, in recent years, pulsatiOns and oscillation-related phenomena
have also been discovered in many stars that were regarded as

1



2 NONRADIAL OSCILLATIONS OF STARS

non-pulsating stars before. They include our sun itself, white dwarfs, Ap
stars, and early-type O and B stars with slow and rapid rotation. The
most important characteristics of oscillations in these stars are that they
are thought to be nonradial and are usually multi-periodic with several
modes of oscillations involved. In fact, the sun is oscillating in thousands
of nonradial eigenmodes. By using these oscillations, one can probe the
internal structure of the sun, just as one probes the interior of the earth
by using the data of seismic waves. This new field of research is thus
called “helioseismology.” As will be discussed in the last chapter,
heliose‘ismology is very successful in studying the internal structure of
the sun. The same method may in principle apply to stellar oscillations,
and it is in this case called “asteroseismology”. Asteroseismology is at
the present moment still in its infancy, but it has the potential to develop
into a major field of stellar physics.

Every one of the stars differs from all others in its mass and in its
evolutionary stage. From the standpoint of the theory of nonradial
oscillation, stars are like musical instruments that are able to oscillate in

modes which differ from one star to another and change in delicate ways
as a star evolves. Let us study stars as musical instruments.

2. Stellar Stability and Oscillations

Three types of stability are fundamental for the equilibrium configura-
tion of stars: dynamical stability, vibrational stability, and thermal
stability. For an arbitrary small contraction of a star as a whole, the
increment of the pressure gradient exceeds that of the gravitational
force, and then the equilibrium structure is restored. This is the state of
dynamical stability, in which stars should spend almost all their lives.
The dynamical instability, however, can be present locally inside a star.
In fact, convection in stars is the manifestation of a dynamical instability
against nonradial perturbations. Since the treatment of convection is
much the same as that of nonradial oscillations as far as the linear theory
is concerned, some consideration will also be given to convection in this
monograph.

Thermal stability is sometimes called secular stability, although the
definitions may differ slightly. The reason is that the thermal time scale
is much longer than the dynamical time scale in most stars. For instance,
the characteristic solar thermal energy divided by the solar luminosity is
about 3X107 years, while the characteristic solar dynamical time scale
(the free-fall time) is only about a half-hour. The ratio is quite large
even in supergiant stars. Hydrostatic equilibrium can, therefore, be
assumed in the study of thermal stability. Ordinarily, an excess input of
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thermal energy causes a perfect gas star to expand as the virial theorem
implies, and the temperature is normally decreased by the hydrostatic
adjustment. This is the state of thermal stability. Thermal instability is
found typically at the commencement of helium burning (or carbon
burning, etc.) in the degenerate helium core (carbon core, etc.). The
result is known as the helium flash (carbon detonation, etc.). Also, a
nondegenerate helium-burning shell can provide thermal instability
(thermal flicker). The reason is that the hydrostatic adjustment to a
temperature excess in a thin shell affects the pressure distribution within
a star by only a small amount. In general, however, the thermal
instability is not related to nonradial oscillations, because the hydrosta-
tic equilibrium restricts the pressure and density perturbations to
spherical symmetry in the absence of strong magnetic field or rotation.
Although a nonradial thermal instability may be possible with the
gradient in mean molecular weight, no important example of such a case
has been found. Only brief mention of thermal instability will be made
hereinafter.

A dynamically stable system undergoes oscillation if perturbation is
applied to it. Inversely, a system is said to be dynamically stable if it
oscillates under the influence of any arbitrary perturbation. An
oscillation of a system may or may not grow in time. If it grows, it is said
to be overstable or vibrationally (or pulsationally) unstable. In order for
an oscillatory stable system to maintain a regular periodic oscillation,
external force must be applied periodically. This is a forced oscillation
such as is found in the tidal oscillation of an ocean. On the other hand,

free oscillations will continue for at least some time once a perturbation
has been applied initially. The physical properties of nonradial free
oscillations of stars are the main subject of this monograph.

Stars are like musical instruments which have various modes of
oscillation and tones. As will be shown later, the normal modes in a

spherically symmetric stars are characterized by the eigenfunctions that

are proportional to the spherical harmonics: Yl’" (6,4)) (l = 0, 1, 2, ; m
= 0, i1, , :1). In particular, the radial modes are special cases of

1:0. The [=1 and 2 harmonics are called the dipole and the quadrupole
oscillations, respectively. The eigenfrequencies depend on I but are
degenerate by (2l+1)-folds in m. The normal modes belonging to the
harmonic index I are further distinguished by the number of nodes, n, in

the radial component of displacement from the center to the surface of a
star. The n-values are 0 for the fundamental mode, 1 for the first

overtone mode, 2 for the second overtone mode, etc. The normal

modes are classified by the radial quantum number n and the angular
quantum number I. When “Zeeman splitting” is introduced by rotation
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or by magnetic field, the azimuthal quantum number m has to be added.
In what follows, we call the quantum number 1 the harmonic

degree, the quantum number m the azimuthal order, and the quantum
number n the radial order.

Cepheid variables are known as pulsating stars. Most of them are
pulsating in the fundamental or the first overtone radial modes (n=0, 1;
1:0), but a few seem to be oscillating in the second overtone mode
(n=2; l=0). Nonradial oscillations are less prominent observationally,
because a portion of the star is in the opposite phase in brightness and in
velocity to the adjacent portion of the same star. Their astrophysical
importance, however, is by no means less than that of radial pulsation,
as will be demonstrated in detail in later chapters. The pulsation of
white dwarf variables and the solar five-minute oscillation are well-
known examples of nonradial oscillations. Perhaps, as theory and
observation make rapid progress in the near future, it will become more
difficult to find a star without nonradial oscillations than to find a star
with nonradial oscillations. The reason is that nonradial oscillations are
indeed rich in the variety of physical properties. A star is then likely to
have some nonradial modes which are favorably excited either in the
core or in the envelope, depending on the structure of the star.

The richness of nonradial oscillations compared with radial
pulsation is partly due to the degree of freedom in the horizontal wave
number represented by the harmonic degree 1. There is also the physical
reason that not only pressure but also gravity can act as the restoring
force causing nonradial oscillations. Since the change in the gravitation-
al force is inward in the compressed phase, or outward in the expanded
phase, gravity cannot be the restoring force for the radial pulsation. On
the other hand, as we can see by throwing a stone into a pond, gravity
can act through buoyancy as the restoring force for nonradial
oscillations. Thus, while the radial oscillation has only the spectrum of
the pressure mode (p-mode) or the acoustic (wave) mode, the nonradial
oscillation shows the spectrum of the gravity (wave) mode (g-mode) as
well. The behaviors of the p- and the g-mode oscillations as determined
by the internal structure of stars are among the main interests in this
monograph and will be discussed in detail in later chapters.

Since the p- and the g-mode spectra show the 002 normal modes
corresponding to different values of n and l, nonradial eigenfrequencies
can be found almost everywhere in the frequency space. However, they
are not necessarily self-excited. In order for an oscillation to be
overstable, some excitation mechanism is needed. According to
thermodynamics, such an excitation mechanism has to provide an
entropy increase or a heat input during the high temperature phase in an
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oscillation cycle. The positive temperature dependence of the opacity
and the high temperature sensitivity of the nuclear energy generation
are known to provide the excitation mechanisms called the K-
mechanism and the 8-mechanism, respectively. There are also other
mechanisms, operating particularly on nonradial oscillations, which will
be discussed in Chapter V. By those mechanisms, some oscillation
modes are selected among all the p- and g-mode spectra and maintained
in a finite amplitude at which some nonlinear energy dissipations should
work against the overstability. But a higher temperature normally
implies a larger radiation loss, leading to the damping of oscillations.
The stability is the result of the competition between the excitation and
damping mechanisms. In order for a mode to be excited, some
excitation mechanism must be operative in the region where the
amplitude of eigenfunctions is large. Numerical computations with an
electronic computer are usually required to find an overstable mode for
a given stellar model.

The role of the convection zone in oscillatory stability is rather
complicated. The turbulent viscosity should be effective for damping.
However, there are also efficient excitation mechanisms associated with

the superadiabaticity in the convection zone. Convection-pulsation
coupling will be discussed in Section 30. The semiconvection zone
surrounding the hydrogen-depleted convective core of a massive star is
another place of special interest in examining overstability. The
semiconvection zone is supposed to be superadiabatic but dynamically
stable because of the gradient of the mean molecular weight. These
properties are favorable for the trapping and excitation of some g-mode
oscillations. A similar situation may be expected in the rapidly rotating
cores of early type stars. In this case, convection will be stabilized by
rotation, resulting in an overstable oscillation. This problem will be
discussed in Chapter VI.

Stars have been thought in the past to be less susceptible to
nonradial oscillations than to radial oscillations because of the increased
dissipation of the oscillation energy by the lateral radiative heat
exchange. However, recent investigations show that much variety in the
geometrical and physical properties of nonradial oscillation should give
some nonradial oscillations a better chance to get excited. The
excitation mechanisms are also numerous for nonradial oscillations. The
purpose of this monograph is to show that variability is rather common
among stars although the observational detection may not be definitive
in some cases.
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3. Historical Background and Recent Development

The early history of studies on stellar pulsation was concisely described
by Rosseland (1949) in the introductory chapter of his famous textbook,
The Pulsation Theory of Variable Stars. It is interesting to see that the
theory of nonradial pulsation developed by Lord Kelvin (1863)
preceded the theory of radial pulsation developed by Ritter (1879).
However, the Cepheids have been the chief concern of pulsation theory,
which was founded by Eddington as summarized in The Internal
Constitution of the Stars (1926). In spite of the remarkable progress in
the development of the theory of radial pulsation, the theoretical study
of nonradial pulsation remained largely within academic circles until
recently. But the work of Pekeris and Cowling should be mentioned.
Pekeris (1938) obtained the exact analytic solution for adiabatic
nonradial oscillations in the homogeneous compressible model. Cowling
(1941) extended the study to the polytrope model. For a description of

these and other studies, readers can refer to the comprehensive article
by Ledoux and Walraven (1958).

The development of the study of nonradial pulsation may be
regarded to have started from the work of Ledoux (1951). He suggested
that nonradial oscillations could explain the double periodicity and the
large temporal variations in the broadening of spectral lines observed in
,B Canis Majoris (a prototype of ,B Cephei type variable stars). Osaki
(1971) examined Ledoux’s theory by calculating line profiles for a star
undergoing nonradial oscillations and compared the result with observa-
tions available at that time. He also suggested (Osaki, 1974) a possible
mechanism for the origin and maintenance of ,B Cephei pulsation based
on nonradial oscillation. However, the very question of whether

pulsation modes of 6 Cephei stars are radial or nonradial still remains
unsettled. There is an argument that the main pulsation of [3 Cephei

stars is radial (Smith, 1980a, b). Even so, some [3 Cephei stars show
multi-period beating, and this indicates that nonradial oscillations must

be involved as well in those [3 Cephei stars.
The discovery of the solar five-minute oscillation by Leighton,

Noyes, and Simon (1962) was also epoch-making. A number of
interesting theories had been proposed to explain this phenomenon (see
Stein and Leibacher, 1974). Some fifteen years later, Deubner (1975)
succeeded in resolving observed oscillations into discrete modes in the
so-called diagnostic diagram (see Section 11). A comparison between
his observation and theoretical eigenfrequencies of nonradial modes
calculated by Ando and Osaki (1975) has established that the solar
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five-minute oscillations are global nonradial p-modes of the sun with
high spherical harmonic degree I (l = 200 — 1000). Since the late 19705,
observations using integrated sunlight over the whole disk, both in
radial velocity variation and in total irradiance variation, by several
groups (Birmingham/Tenerife, Crimea, Nice, Stanford, and SMM

satellite) have revealed the existence of other p-mode oscillations with
low degree I (l=0—5). Furthermore, p-mode oscillations with in-
termediate degree I (l = 1 - 200) have also been detected. In addition,
full two-dimensional analyses of oscillation data over the solar disk have
been performed (Brown, 1985; Libbrecht, 1989) yielding eigenfrequen-
cy spectra with information on individual modal numbers of n, l, and m.
The sun must be regarded as one of pulsating stars, pulsating in many
p-modes with I: 0 - 1000. The most important and unique aspect of
solar oscillations is the possibility of a seismological approach, by which
one can probe the solar deep interior by using oscillations. A more
detailed description of the development of helioseismology will be given
in Chapter VII.

Since the late 19608 and early 19708, pulsations and oscillation-
related phenomena have been observed in many stars that were
regarded as non-pulsating stars before. They include white dwarfs, Ap
stars, and early type 0 and B stars. It is now believed that nonradial
oscillations are responsible for variability observed in these stars in most
cases. Observational aspects of nonradial oscillations in these stars will
be presented in detail in the next chapter.

Along with these observational developments, much progress has
been made in the theoretical side of nonradial oscillations in the sun and
stars. Since the middle of the 19705, full equations of linear adiabatic
and linear non-adiabatic nonradial oscillation have been solved numer-
ically for realistic stellar models with the help of electronic computers,
and the variations in nature of nonradial oscillation modes along an
evolutionary sequence of a star have been discussed (e.g., Osaki, 1975;

Saio and Cox, 1980). The basic method of these calculations is now well

established and it will be described in detail in later chapters. The
eigenvalue problem of nonradial oscillations is not described by that of
the standard Strum-Liouville type, as is the case for the radial
oscillation, and this brings about various peculiarities of nonradial

oscillations. The introductions of the so-called propagation diagram and
phase diagram and of the concept of “wave trapping” (Scuflaire, 1974;
Unno, 1975a; Osaki, 1975; Shibahashi and Osaki, 1976a) have greatly

improved our understanding of nonradial oscillations in stars.
Some curious behavior of nonradial eigenmodes (i.e., the “mode

bumping” phenomenon) along the evolutionary sequence of a 10 M0
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star was first noticed by Osaki (1975) and was interpreted as a coupling
of oscillations of different nature in the core and the envelope
(Aizenman, Smeyers, and Weigert, 1977). Modal analysis by the
WKBJ-type asymptotic method has been made to clarify the nature of
nonradial oscillations (Shibahashi, 1979; Wolff, 1979), and such a

method yielded a convenient analytic formula for eigenfrequencies of
higher order nonradial modes (Tassoul, 1980). As for the theoretical
investigation of some particular stars, excitation mechanisms of nonra-
dial oscillations in white dwarf variable stars were explored, and it has
been confirmed that the white dwarf stars are indeed unstable against
nonradial g-modes due to the K-mechanism of the hydrogen and helium
ionization zones (Dziembowski and Koester, 1981; Dolez and Vauclair,

1981; and Winget, Van Horn, Tassoul, Hansen, Fontaine, and Carroll,

1982a). In the field of helioseismology, some ingenious inversion
methods were devised (Gough, 1984a; Shibahashi, 1988) that could
yield the information of the solar interior directly from the observed
oscillation frequency spectrum. Theoretical investigations of nonradial
oscillations in rotating stars have also been made, yielding some
interesting results (Berthomieu, Gonczi, Graff, Provost, and Rocca,

1978; Lee and Saio, 1986, 1987a).

A number of theoretical problems remain to be studied. Among
them are nonlinear problems, including the mixing of matter due to
finite amplitude oscillations, oscillations in the presence of a strong
magnetic field or rotation, and energy and momentum transport by
waves. Both theory and observation are still in progress, but further
developments can be expected in the near future.

4. Basic Properties of Nonradial Oscillations

We consider a spherically symmetric star as an unperturbed state upon
which small perturbations of oscillation are superimposed. The effects
of rotation or of magnetic field will be neglected or regarded as small
perturbations in most cases. In this section, we explain the basic
properties of nonradial oscillations and introduce the symbols related to
them; these symbols will be used in the expanded presentation in later
chapters.

Assuming that the unperturbed state is in time-independent
equilibrium, we take the perturbations of the physical variables to be
proportional to Y{"(6,¢)e’°’, where Y["(6,¢) denotes the spherical
harmonics, 6 the colatitude and 4) the azimuth angle in the spherical
polar coordinate, a the angular frequency, and t the time. The function
YI"(6,¢) is expressed explicitly by
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Y,’"(6,¢) = N,’" P)’”'(cos9)e""¢, (4.1)

where P)’"'(x) denotes the associated Legendre polynomial of degree I
and order m, andl(= 0,1, 2, ...) and m(= —l, —l+1,..., 0, ...,l—1,l)

are integers, and NI" is the normalization constant, which will be given

in Chapter 111. As will be shown explicitly in Chapter 111, all the
coefficients in the linearized basic equations are functions of the radial
distance r from the center of a star. In other words, the radial

component 5, of a small displacement is governed by the following
equafion:

5615] = 0, (42)
where 55 [5,] is a linear operator in which the scalar functions appearing
as the coefficients are independent of t, 6, and 4). Thus, we can express

3, of an arbitrary displacement by

5. = Z 5...,(r)Yi"(9.¢)exp(io.,t). (4.3)
n.l.m

where n is an integer ordering the radial eigenfunctions. In a simple
stellar model, n corresponds to the number of nodes satisfying

§,~,,,(r,-) = 0 (i = 1, 2,..., n) (4.4)

except when r = 0. As will be discussed in detail in Chapter III,
one-to-one correspondence between the number of nodes and the
ordinal number n ceases to exist in complicated stellar models, but we

can still assign an ordinal number to each eigenmode. Since each mode
does not interact with the other modes differing in n, l, or m in the linear

theory, we can study each mode separately, dropping the summation in
equation (4.3). This procedure is called the normal mode analysis. The
symbol odenotes the (angular) frequency of oscillation in general, but it
will often be used to represent an eigenfrequency.

When we express eigenfunctions of nonradial oscillations, we use
complex forms like equation (4.3) throughout this book because of the
mathematical convenience. It should be understood that we take the
real part of complex expressions if we need real physical quantities. For
instance, the expression of real physical displacement is

55sz PJmI(C056)[Re(§r.nl(r)) COS(0Rt+m¢)

‘Im(§r.nl(’)) sin(oRt+m¢)]exp(—o.t)

= |§r.nz(r)l NI" lel(0089) c08(012t+m¢+5,5”)6XP(—01t) (4-5)
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where Re and Im indicate the real and imaginary parts of complex
numbers, OR and 01 are the real and imaginary parts of eigenfrequency
o, and 6"“) is the argument of complex variable S,M(r). In what follows,
subscripts n and l are sometimes omitted, if there is no confusion.

For a given spherical equilibrium model (hence for the boundary
conditions as well), the eigenfrequency 0, which is complex in the

nonadiabatic oscillation, is a function of n and 1. Both the radial

eigenfunction and the eigenfrequency o of a normal mode are
independent of m and show the (2l+1)-fold degeneracy. The harmonic
degree 1 represents the number of border lines by which the stellar
surface is divided to oscillate in the opposite phase, and the azimuthal
order m is the number of roots of cos(m¢) = 0 in the region 0 s <19 <77.
The radial modes correspond to the case of l = 0. The normal modes
belonging to a given I for a spherical star without rotation may be
written either in the form of equation (4.1) or in the form

m m COS(Wfi)Y, (M) «P, (cose) { simm), (4.6)
where m = 0, 1, 2, ..., l is a natural number from zero up to l. The

former representation with cos(ot+m¢) expresses a normal mode as a
wave traveling around the equator (the equator of the symmetry axis of
oscillation) with phase velocity (8¢/8t)phm =—o/m; a mode with
positive m represents a wave traveling in one direction while a mode
with negative m does that in its opposite direction. The latter
representation of equation (4.6) with cos(m¢)cos(0t), on the other
hand, expresses a mode as a standing wave in longitude. The two
expressions are equivalent insofar as the unperturbed state is spherically
symmetric because one can form, for instance, a standing wave of the
form cos(m¢)cos(ot) by superposing two traveling wave modes of
positive and negative m.

Figure 4.1 illustrates what patterns of several nonradial oscillation
modes look like over the stellar surface. At any given instant of time,
the pattern of an individual mode is one of alternating regions of
opposite signs (e.g., approaching or receding flows, or higher or lower
temperatures). Modes with m=0, such as an [=3 and m=0 mode, are

called zonal modes, and all the nodal lines of the spherical harmonics
are lines of latitude, while modes with m=l are called sectoral modes

and all the nodal lines are lines of longitude. Modes other than the
above two are called tesseral modes, and their nodal lines are lines of

both latitude and longitude.
The degeneracy in m arises from the rotational symmetry of the

equilibrium structure around an arbitrary axis. Therefore, if a slow
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l=3. m=2 I=3_ m=3

Fig. 4.1 Modal patterns of nonradial oscillations for four normal modes of degree I = 3
and order m = 0, 1, 2 and 3. Figure shows four modes viewed from an
inclination i = 60°. The regions shown in blue are expanding while regions in
red are contracting. The border lines dividing blue regions and red regions are
nodal lines on which there are no motions. There are three nodal lines in the
case of I = 3 mode irrespective of its m-value, while the m-value represents the
number of nodal lines in longitude. When we can directly resolve the stellar
image like in the case of the sun, these modal patterns are observable as

Doppler shifts of spectral lines at each point of the surface. In the real sun,
thousands of such eigenmodes are superimposed.

rotation or a weak magnetic field is introduced, the degeneracy is

resblved much as in the Zeeman effect of the spectral lines. The
perturbation theory (see Section 19) gives, for a star of uniform angular

frequency 0 of rotation (in the rotating frame),

0 = 00 — MQCNI, (4.7)

where 00 denotes oof the nonrotating case and the constant C", depends

on the equilibrium structure and the mode considered. Thus the
degeneracy is lifted by slow rotation, giving (2l+1) separate eigenfre-
quencies with equal spacing just like Zeeman levels of atomic spectra.
In this case, eigenfunctions of normal modes are only described by those
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of equation (4.1), that is, those of traveling wave type, and those of
standing waves of equation (4.6) are no longer normal modes. With
rapid rotation (or strong magnetic field), a normal mode cannot be
expressed by a single term in equation (4.3) but is expressed as the sum
of an infinite number of terms if the expansion in Y,’" is still used
(Section 34).

In stars the dynamical time scale is much shorter than the thermal
time scale (by a factor of 1010 for the sun), the exact amount depending

on the stellar structure and on the local position in a star under
consideration. Therefore, we can adequately study the adiabatic
oscillations as a first approximation, neglecting the nonadiabatic effects
and viscosity. The eigenfunctions and the eigenfrequencies thus
obtained are not much different from the nonadiabatic values in most
cases, although the difference is essential in the consideration of the
overstability problem.

The general properties of adiabatic radial and nonradial oscillations
have been discussed extensively by Ledoux and Walraven (1958), by
Ledoux (1974), and by Cox (1976, 1980). The peculiarity of the
nonradial oscillations compared with the radial oscillations is that the
adiabatic oscillation described by

gadlgr] = 0 (4.8)

together with the boundary conditions does not form an eigenvalue
problem of the Sturm-Liouville type. Equation (4.8) becomes bilinear in
02 and 0‘2 and tends to be the Sturm-Liouville type only for o2 —> 00 or
02—) 0. This property corresponds physically to the existence of two
kinds of restoring forces, pressure and gravity.

As will be discussed extensively in Chapter III, the local vibrational
property is characterized by two characteristic frequencies. One of them
is the frequency corresponding to a reciprocal of the time scale of one
horizontal wave length divided by the local sound speed. This frequency
will be called the Lamb frequency and denoted by L,, given by

[(1 + 1)c2
L12 = (khc)2 = r2 1 (4.9)

where c denotes the velocity of sound,

C2 = rlpo/p09 F1 = (dlnp/dlnp)ad, (4'10)

p0 and p0 are the pressure and the density of the unperturbed state, and
1"] is the adiabatic exponent. Here kh= [l(l+1)]1/2/r= l/r stands for
horizontal wave number and is related to horizontal wavelength 11,, by
kh=2rr//1,,. A sound wave travels a wavelength Ah=2nr/l horizontally in a
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period 27r/L,. The other characteristic frequency is the Brunt-Vaisala
frequency (denoted by N) with which a bubble of gas may oscillate
vertically around its equilibrium position under gravity. The Brunt-
Vaiséila frequency is given by

1 dln dln2 _ __ Po _ Po
N _ g(F. dr dr )’

where g(=GM,/r2) is the local gravitational acceleration, G is the
gravitational constant, and M, is the stellar mass contained inside the

spherical volume of radius r. A small parcel of gas oscillates vertically
with positive or negative buoyancy under local pressure balance with its
surrounding gas with the angular frequency N.

For high-frequency oscillations (02>L,2, N2), the relative Eulerian
pressure perturbation p'/p0 dominates the relative radial displacement
EJHP where Hp denotes the pressure scale height. Thus, the restoring
force is due mainly to the excess pressure, and the oscillation shows
locally the characteristics of the acoustic wave. For low-frequency
oscillations (02<L,2, N2), p’/p0 is less than E, /H,,, the restoring force is
due mainly to buoyancy, and the oscillation shows the characteristics of

  (4.11)

 T I I I l j I I I

102 — L2

(pa-mode) 1
p-prop. zone    

 

 

   
 

“Z ~2
3 10 — /.._\ p-prop.zone (f-mode) _

8 b - - -
- -

N: g-prop.zone

1- — ——————— ..

g-prop.zone
1 — d

1 1 1 1 l 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

r/R

Fig. 4.2 Variations of N2 and L3 (normalized by GM/R3) with respect to r/R for a
polytrope (with the polytropic index 3) model. Three horizontal lines show the
wave propagation zones (thin full lines) for the p3-mode, the f-mode, and
g3-mode of spherical harmonic degree I = 2.
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the gravity wave. In the other regions (L,2>02>N2 or L12<02<N2), the
eigenfunction does not show spatial oscillation but decreases exponen-
tially with the distance from the wave propagation region. The temporal
oscillation in such a region is called the evanescent wave. Two
propagation regions separated by an evanescent zone are generally
coupled with a “tunnel effect” as in the wave mechanics of thermonuc-
lear reactions. The two propagation regions can behave almost
independently if the potential wall (the evanescent zone) is thick and
high.

Figure 4.2 shows the propagation diagram given essentially by
Scuflaire (1974) for a polytrope (index 3) model. The value of N2 is zero
at the center (r= 0), has a maximum and a minimum in the envelope,

and then increases very rapidly toward the surface, r=R. On the other
hand, the value of L} is infinite at r=0 and decreases monotonically
toward the surface. The Lf—curve must be shifted vertically for different
values of l proportionally to a factor of [(1+ 1). Only the Lzz-curve is
shown in Fig. 4.2. These behaviors of N2 and L,2 determine the general
properties of oscillations. The p-mode spectra occupy the high
frequency domain, while the g-mode spectra occupy the low frequency
domain. The propagation zone where the amplitude of oscillation is
generally large is situated in the envelope for the p-modes and in the
interior for the g-modes, as shown in the figure. The number of radial
nodes, n, increases with increasing a for the p-modes, but it increases

with decreasing o for the g-modes. This is because a higher frequency —
a larger restoring force — requires a shorter wavelength for acoustic
waves and a longer wavelength for gravity waves. Between the p-mode
and g-mode spectra, there is a fundamental mode (f-mode') whose
frequency 0 takes roughly the maximum value of N but increases slowly
with increasing 1. The f—mode can be regarded as the p- or g-mode
without nodes, viz., the po- or gO-mode.

The classification of modes, however, is not so simple in reality as

outlined above. If a convection zone (N2 < 0) exists within a star, the

spectra of unstable modes appear. Since the ordinary g-modes and the
convective modes have a common physical origin except that the sign of
the buoyancy is reversed, they are often designated by the g+-modes
and the g'-modes, respectively (e.g., Ledoux, 1974). For the g"-modes,
02< 0 and Iozl decreases as n increases. Complications arise when N2(r)
changes in a complicated way, especially because of the evolutionary
inhomogeneity in the mean molecular weight distribution. Even in the
zero-age main-sequence star of one solar mass, N2(r) increases from
zero at the center to a maximum and decreases in the envelope,

becomes negative in the convection zone, then increases rapidly,
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fluctuates in the photosphere-chromosphere-corona transitions, and
decreases slowly in the corona (see Figs. 15.8 and 15.10 below). The
value of L12 decreases monotonically from infinity at the center to the
temperature minimum in the chromosphere, then increases rapidly
toward the corona and decreases slowly. A single mode having an
intermediate frequency has characteristics of acoustic, gravity, and
evanescent waves in different regions within a star. Then, for some stars
with high central condensation, the one-to-one correspondence does not
exist between'the modes and the number of nodes n. Even in such a
case, however, the mode number can be identified in an unambiguous

way by distinguishing the nodes in the p-propagation region (or simply
the P-region) from the nodes in the G-region, as we shall argue in detail
in Chapter 111 (Section 17). The p- and g-characteristics can be
distinguished conveniently in the phase diagram to be discussed later
(see also Eckart, 1960).

We will adopt the simple nomenclature p, f, g mainly in Chapters I
and II, and discussions of mode classification in complicated stellar
models will be deferred to Chapter III.

In order for a particular mode to be excited, some excitation

mechanism must be present in the main trapping zone or in the outer
envelope where the amplitudes of eigenfunctions are large, as empha-
sized previously. The general properties of the excitation mechanisms
will be discussed in Chapter V.





Chapter II

OBSERVATIONAL ASPECTS OF
NONRADIAL OSCILLATIONS

5. General Remarks

Let us now turn to the observational side of nonradial oscillations. It has
been well established that variable stars such as Cepheids, RR Lyrae,
and Mira variables are pulsating stars and that their pulsations are
explained in terms of simple radial, spherically symmetric pulsations —
that is, their variations in light and radial velocity are caused by
alternate expansion and contraction of a star as a whole. On the other
hand, for nonradial oscillations in which the stellar form periodically
deviates from the spherical shape, observational evidence for their

existence was rather meager. In fact, before 1970, the pulsation of ,B
Cephei stars was the only case in which nonradial oscillation was
suspected as a possible cause of stellar variability. However, the
situation has since changed drastically: new observations and new
interpretations have been accumulated for various stars and for various
phenomena—for example, the discovery of many variable white dwarfs
and an interpretation of the solar five-minute oscillation in terms of the
nonradial p-mode oscillations of the sun.

We summarize in Table 5.1 various observational phenomena for
which nonradial oscillations have been either claimed or suggested. The
meaning of individual terms in Table 5.1 will become clear later as
details of various phenomena and of individual stars are discussed. Also
shown in Fig. 5.1 is the location of the relevant stars together with some
other stars on the Hertzsprung-Russel (HR) diagram. Although all of
the evidence for nonradial oscillations in these stars is not firmly
established, the variety of phenomena and the widespread incidence of
nonradial oscillations in stars over the HR diagram are remarkable.

In the following two sections, we will discuss how nonradial
oscillation manifests itself observationally and how it can be distin-
guished from simple radial pulsation. Data on the pertinent observa-
tions of individual stars will be given in subsequent sections. That is,
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Fig. 5.1 Location of the stars given in Table 5.1 for which nonradial oscillations are
suspected to be involved and other related stars.

observations of early-type O,B variables, rapidly oscillating Ap stars,
and white dwarf variables will be presented in Sections 8, 9, and 10,

respectively, while solar oscillations will be discussed in Section 11.
Except for those stars mentioned above, observational evidence for

the existence of nonradial oscillations is still meager. This does not
necessarily mean that nonradial oscillations are not present in most of
other stars. Instead, it is quite possible that nonradial oscillations are
quite prevalent and that they form underlying causes for various
activities. In particular, nonradial oscillations with high spherical
harmonic degree I, such as observed in the sun as the five minute
oscillations, could never be directly identified as such in distant stars.

Although not discussed in a separate section, the existence of
nonradial oscillations is claimed or suspected in several stars other than
mentioned above. The first case to be mentioned concerns the
semiregular variability of the supergiant star on Cygni that was
extensively studied by Lucy (1976). By analyzing large numbers of
radial velocity observations of a Cyg (spectral type A21a), he showed
that the variability might be due to the simultaneous excitation of as
many as sixteen discrete pulsation modes. He has suggested that most of
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them are nonradial modes because of the length of periods and because
these modes tend to occur in close pairs, implying rotational splitting of
nonradial modes. He has further suggested that the “macroturbulence”
required for large line-broadening can be explained by superposition of
numerous nonradial modes. The semiregular variability in radial
velocity and the large macroturbulence velocities observed in many
early- and intermediate-type supergiants (Abt, 1957; Rosendhal, 1970)
may also be explained by the same mechanism.

It has been suspected that nonradial oscillations are involved in
light variations in pulsating variables of (5 Scuti type (Shobbrook and
Stobie, 1974), but Walker, Yang, and Fahlman (1987) have recently
discovered, in four rapidly rotating 6 Scuti variables, line-profile
variations of traveling signature which are characteristic of Z; Ophiuchi
variables (high degree I nonradially pulsating stars).

There exist a small group of hot extreme helium stars (or extreme
hydrogen-deficient stars), and low-amplitude light variations have been
reported in several members of them. Jeffery, Skillen, Hill, Kilkenney,
Malaney, and Morrison (1985) and Lynas-Gray, Kilkenny, Skillen, and
Jeffery (1987) have recently claimed that variations in the two member
stars BD—9°4395 and HD160641 are due to nonradial g-mode pulsations
because of length of periods and because of no detectable colour
change.

6. Observational Evidence for Nonradial Oscillations

6.1 Resolved Stellar Images

If the stellar image is resolved to a finite disk and if we observe directly a
stellar pulsation such that one part of the stellar surface is expanding
while the other part is contracting as illustrated schematically in Fig. 6.1,
then we can evidently claim the existence of nonradial oscillation in

preference to radial pulsation. This is impossible for most of the distant

stars. But it should be possible in the case of the sun, if the sun
undergoes nonradial oscillation. In fact, the five-minute oscillation seen
over the solar surface is now considered a superposition of thousands of
nonradial eigenmodes.

Except for the sun, the resolution of the stellar image into a disk is
difficult, and there are only a few situations in which the image
resolution plays an essential role in inferring nonradial oscillation. One
of the possibilities is to use an interferometer to resolve the stellar image
into a disk for nearby giants and supergiants. One observation with a
speckle interferometer has shown that the interferometric image of (x
Ori, a star with the largest angular diameter in the sky, has barely visible
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Fig. 6.1 Higher-harmonic nonradial oscillation with a tesseral pattern.

fine structures (Lynds, Worden, and Harvey, 1976). The most likely
interpretation for this is that the fine structures seen by the interfero-
meter may be a manifestation of the giant convective cells which are
presumed to exist in the atmosphere of later-type supergiants like or Ori
(Schwarzschild, 1975). However, at present, the origin of the structures
on the surface of oz Ori is not certain observationally, and it may be
premature to discuss them further.

Another possibility is to project the stellar visible disk over the

wavelength position of spectral lines in rapidly rotating stars. The
surface of a rapidly rotating star can be projected through Doppler shifts
onto a spectral line profile, and one-to-one correspondence between a
position across the disk and a wavelength position of a rotationally
broadened profile is made. Any feature over the visible disk will then
manifest itself in line profiles. This mapping is called “Doppler
Imaging” and it will be discussed in detail in Sections 7 and 8. Still
another possibility is using the eclipse of a close binary in which one of
the components is a pulsating star, as discussed below.

6.2 Phase Shift of Pulsation During Eclipse

Let us suppose that a nonradially pulsating star is a component of an

eclipsing binary. If the nonradial oscillation is of low-degree harmonics
(small I), the visible hemisphere of the pulsating star may be divided
into two parts whose oscillations are roughly 180° out of phase with each
other. When the eclipse occurs and the occulting star gradually cuts off
the disk of the pulsating star (as illustrated schematically in Fig. 6.2), the
phase of the pulsation will be shifted accordingly. This kind of
phenomenon has, in fact, been observed in the old nova DQ Her

(Warner, Peters, Hubbard, and Nather, 1972) and in the nova-like

binary UX UMa (Nather and Robinson, 1974). It was once used as
evidence for traveling wave-type nonradial oscillations with I: 2 and
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Fig. 6.2 Eclipse of a nonradially pulsating star by a companion.

m=—2 or +2 (Nather and Robinson, 1974).
However, this kind of phenomenon of phase shift during eclipse

can be equally well explained by other traveling features around the
equator of a star, and interpretation based on nonradial oscillations is by
no means unique. In fact, observed phase shifts during eclipses in D0
Her and UX UMa can be better reproduced by the oblique rotator
model. The oblique rotator model was developed to explain periodic
variability in Ap stars and the pulsars; in this model a rotating star has a
magnetic field and its magnetic axis is oblique to the rotation axis. As
the star rotates, its magnetic pole is directed to observers once every
rotation period. In the cases of DO Her and UX UMa, it is thought that

material is accreted on the magnetic pole of a rotating white dwarf and
that the radiating beam from the magnetic polar regions irradiates the
accretion disk, producing traveling features in accretion disks (Petter-
son, 1980).

The cases of DO Her and UX UMa were therefore not good
examples, but there is still the possibility of observing phase shifts
during eclipse due to nonradial oscillations, and it is interesting to find
pulsating stars in eclipsing binary systems.

6.3 Length of Period in Pulsating Variable Stars

In the case of radial pulsations, the period of the fundamental mode is
longer than those of the higher harmonics. In the case of nonradial
oscillations, the f—mode and the p-modes have periods similar to those of
the corresponding radial modes, but in general the g-modes have
periods much longer than those of radial pulsations. Suppose that there
exists a group of pulsating variable stars whose periods turn out to be
much longer than that expected theoretically for the radial fundamental
mode. It is then possible for pulsations of these variables to be explained
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in terms of nonradial g-modes, but not in terms of the radial pulsations.
In fact, white dwarf variables are a good example of this case. (Section
10)

6.4 Amplitude Modulation

In some variable stars, amplitudes of pulsation in the light curve and/or
in the radial velocity curve are known to be modulated with periods
much longer than the principal periods as illustrated schematically in
Fig. 6.3. This is the so-called beat phenomenon; the simplest explana-
tion for it may be the simultaneous excitation of two oscillations with
nearly equal periods. In the case of radial pulsations it is difficult for two
oscillations with nearly equal periods to occur. But in the case of
nonradial oscillations, the existence of nearly equal periods can be easily
explained in terms of the rotational splitting of eigenfrequencies of
nonradial modes with the same quantum numbers n and I but differing
in m, i.e., the lifting of the degeneracy of nonradial modes in the
presence of rotation. In fact, the beat phenomenon has been used to
infer nonradial oscillations for ,B Cephei stars and white dwarf variables.

Amplitude modulation also occurs in the case of nonradial
oscillations if the symmetry axis of a nonradial mode is oblique to the

rotation axis of a star. This possibility was first suggested by Kurtz

(1982) to explain amplitude modulation observed in rapidly oscillating
Ap stars. This model was called the “oblique pulsator model,” in that
the pulsation is a nonradial zonal mode with m=0 with low degree 1,
whose symmetry axis is coincident to the stellar magnetic axis that is in
turn inclined to the rotation axis. As the star rotates, the symmetry axis
of pulsation (and the magnetic axis) is then periodically exposed to
observers, producing modulation in amplitude of pulsation. More
details on this phenomenon will be discussed in Section 9.

‘--§~

Fig. 6.3 Beat phenomenon in which the amplitude of oscillations is modulated with a
long period.

6.5 Characteristic Variations in Line Profiles
In nonradial oscillations different parts of the surface of a star move in
different ways, and this kind of motion (the macroscopic velocity field)
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must naturally affect spectral line profiles. As will be shown in the next
section, the nonradial oscillation coupled with the stellar rotational
velocity field gives rise to significant variations in line profiles. The
characteristic line profile variations observed in O and B variable stars
(or line-profile variable 0 and B stars) can be explained successfully by
nonradial oscillation.

6.6 Baade’s Pulsation Test
Baade (1926) first proposed an empirical method by which the radial
pulsation hypothesis for an intrinsic variable star can be tested
observationally. Wesselink (1946, 1947) formulated it in a more

practical form, and this method is called the Baade-Wesselink method.
We can distinguish nonradial oscillations from radial pulsations using
Baade’s pulsation test. The principle of this test is as follows: the
luminosity variation in a radially pulsating star may be written as

L(t) = S(I)B(I) = 47TR2(I)O'deeff4(t), (6.1)

where S(t) and B(t) stand for the instantaneous surface area of a star
projected on the celestial plane and its instantaneous surface brightness,
respectively, omd denotes the Stefan-Boltzmann constant, and R(t) and

Teff(t) are the instantaneous radius and effective temperature, respec-
tively, of the star. The observed luminosity variation is therefore the
result of two effects: a change in the surface area (or radius) and a

change in the surface brightness (or temperature). It is possible to
separate the two effects because the temperature variation may be
estimated from the color variation. We may then calculate the relative
variation of the radius R(t)/R0 from equation (6.1). On the other hand,
the radial velocity curve provides the absolute variation in radius
R(t)—R0. If the pulsation theory is correct, these two plots agree in
phase, and a comparison of the amplitudes of the two curves yields an
estimate of the radius R0 of the star. If the radius thus obtained gives a

reasonable value, the radial pulsation hypothesis is justified for the star.
Let us now suppose that a star is pulsating nonradially— say, with a

p-mode of I = 2. Since nonradial oscillation looks like a volume-
conserving pulsation, the stellar disk ( i.e. , the projected area of the star
against the celestial plane) is in maximum expansion at the phase of
maximum compression in the line-of-sight direction. Thus the relation
between the line-of—sight motion (responsible for the radial velocity
curve) and the subtended area of the star (responsible for the light
curve) for the nonradial oscillation OH = 2 is just opposite to that in the
case of radial pulsation.

If we applied Baade’s pulsation test to a nonradially pulsating star,
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we would get a negative value for the radius in the case of l = 2 or an
unrealistically large radius in the case of I = 1. Walker (1954a, b)
applied this pulsation test to two [3 Cephei stars, BW Vul and 16 Lac,
and obtained results which failed to confirm the radial pulsation
hypothesis. In the case of BW Vul, the entire light variation was
explained by the temperature variation, and in the case of 16 Lac a
radius of minus 50 R0 was obtained. These two results led Walker to

conclude: “The observations, if they mean anything, might be taken as
strengthening the supposition that these two stars undergo some sort of

nonradial pulsation.”
Dziembowski (1977b) has given analytical expressions for light

variations and radial velocity variations in the case when a star
undergoes nonradial oscillations. Balona and Stobie (1979a, b, 1980)
have discussed the application of the Baade-Wesselink method to
nonradial oscillations. Recent progress on this matter was summarized
by Stamford and Watson (1981).

6.7 Dynamical Phenomena in the Stellar Atmosphere

Nonradial oscillations with higher spherical harmonics may not give rise
to light variations, but they may manifest themselves as surface velocity
fields. It may then be possible that nonradial oscillations are underlying
causes of certain kinds of dynamical phenomena, such as macro- and
micro-turbulences, the heating of stellar chromospheres and coronae,

and the stellar wind. However, further theoretical discussions and

observations are needed to reveal these phenomena.

7. Line-Profile Variations by Nonradial Oscillation

When a star undergoes nonradial oscillation, different parts of the
stellar surface move in different phases and this kind of motion produces
a certain characteristic variation of line profile when combined with
stellar rotation ( i.e. , the macroscopic velocity field). In the past decade
or so, a new class of variable stars called “line-profile variable stars”
have been discovered owing to the development of high precision
spectroscopy with the use of solid-state detectors such as CCDs and
Reticons (see Section 8). These stars manifest their variability most
conspicuously in spectral line profiles, with little accompanying change
in brightness or radial velocity (line centroid). It is now thought that
line-profile variations in these stars are caused by nonradial oscillations
(or nonradial pulsations, often abreviated as NRP). '

Historically, Ledoux (1951) was the first to suggest that nonradial
oscillations may be responsible for variability of some class of pulsating
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stars, in his case, the ,B Cephei variable stars. He has shown that the
nonradial mode with spherical harmonic indices 1 = 2 and m = 2
combined with stellar rotational velocity field may produce the right
kind of line width variation observed in B CMa, a prototype of 13 Cephei
stars. Ledoux’s model of line-profile variation by nonradial oscillation
was appreciated by Christy (1967) for the explanation of line doubling
observed in some of these stars. Osaki (1971) then calculated
line-profile variations for stars undergoing nonradial oscillations in the
presence of rotation and compared with variations of observed line
profiles in )6 Cephei stars. Theoretical line profile variations due to
nonradial oscillations have further been examined by Stamford and
Watson (1976, 1977), Smith (1977), Kubiak (1978), Balona (1986a, b,
1987), and Kambe and Osaki (1988). Observations of line-profile

variable stars will in general be discussed in the next section, but Smith
(1977), Vogt and Penrod (1983), and Baade (1984) have shown that
observed variations in line-profiles in these stars can be matched by
model profiles produced by NRP velocity fields.

In general, low degree nonradial modes such as I = 1, 2, and 3 can
produce variations in line width and line asymmetry. Smith (1977) has
shown that line-profile variation in slowly rotating B-type variables

called 53 Per stars can be explained by low I NRP modes. It was thought
before that high degree NRP modes (i.e., I > 4) could not produce
appreciable line-profile variations because they tend to cancel them-
selves over the visible disk, and further that line-profile variations due
to NRP could be difficult to detect in rapidly rotating stars because the
pulsational velocity may be hidden by much larger rotational velocity.
However, these arguments were found to be somewhat prejudiced, and
it turned out that rapid rotation rather helps to increase the visibility of
intermediate 1 NRP modes (i.e., I = 4 ~ 8), as it resolves the stellar

visible disk through rotational Doppler shift. In fact, the existence of a

nonradial mode as high as I =16 was claimed by Smith (1985) in a rapid
rotator, Spica (a Vir). This effect is called “Doppler imaging” (Vogt and
Penrod, 1983), as it projects a two-dimensional stellar disk into
one-dimensional velocity (or wavelength ) space. In what follows, we
present general characteristics of line profile variations due to nonradial
modes of low and intermediate I (l = 2 ~ 8).

7.1 Formulation of Line-Profile Modeling

Nonradial oscillations can produce line-profile variations mainly in two
ways: .by the Doppler shift of surface elements and by local surface
brightness variation. Variations in surface area and in surface normal
due to nonradial oscillation may also produce some variations of line
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profile, but their effects are probably minor compared with the two
effects mentioned above. Most of the work so far done is on velocity
effects of oscillation, and studies on the local brightness variation are
rather limited [see, however, e.g., Balona (1987)]. In this monograph,
we study only effects of velocity variation of oscillation on line profile.

We describe here the standard procedure of line profile modeling
by nonradial pulsations, which was first described by Osaki (1971) and
refined by Smith (1977). In this procedure, we first choose a certain
stellar absorption line for which we wish to model, and then calculate its
intrinsic profile for a given effective temperature Teff and surface gravity
g appropriate to the star of interest by using the standard stellar
atmosphere computer code. We then choose a particular nonradial
mode. As outlined in Section 4, there are three kinds of NRP modes:

p-modes, g-modes, and f-modes. We have so far restricted ourselves to
the case of non-rotating stars. However, there may exist in the presence
of rotation another class of modes called Rossby modes or r-modes
(Papaloizou and Pringle, 1978; see also Section 19). We shall consider
line profile variations due to r-modes as well in this section.

Nonradial p-modes and g-modes are described by the spheroidal
modes, while r-modes are described by toroidal modes (see Section 13).
In the case of spheroidal modes, pulsation velocity fields are written in
the spherical polar coordinates (r,6,¢) as

_ a 1 a m iot

while in the case of toroidal modes, they are written as

— _1__8 _i m i0:
Vtor - A (0, S1116 a¢ a 89 )YI (6,4))6 ' (7'2)

Here 0 denotes the angular frequency of oscillation, and Y["(6,¢) is the
spherical harmonic function given by

YI"(6,¢) = P)m|(cose)eim¢. (7.3)

The quantity k, appearing only in the case of the spheroidal mode of
equation (7.1), is the ratio of the horizontal to radial velocity
amplitudes. It is not a free parameter, but it is related to the frequency
of oscillations such that [see equation (14.13) and Ledoux, 1951]

_ GM/R3 _ 1 _ Q 2
k’ 02 '?'(0.116)’ (7'4)

where G is the gravitational constant, M and R are the mass and radius
of the star of our interest, a) is the dimensionless frequency defined by



28 NONRADIAL OSCILLATIONS OF STARS

this equation, Q [=17(i)/p@)“2] is the pulsation constant, and II is the
pulsation period in days. Generally speaking, the k value is smaller than
one for p-modes, and it can be larger than one for g-modes. We here
adopt 0.15 and 1.2 as the standard values of k for p-modes and g-modes,

respectively.
The normalization of the spherical harmonic function Y!" adopted

in this section is that the maximum value of the largest component of the
vector is unity so that A stands for the velocity amplitude of NRP mode.
Thus, for a p-mode in which the radial velocity component dominates
the horizontal one, A represents the radial velocity amplitude, while for
a g-mode with the dominant horizontal component, A represents the
horizontal velocity amplitude and the radial one is given by A/k. It may
be noted that the normalization of the spherical harmonic function in
this sub-section is different from that discussed in other parts of this
monograph.

In the above discussion, we have assumed that p-modes and
g-modes are described by spheroidal modes while r-modes are described
by toroidal modes. However, this is correct only for a non-rotating star.
In a rotating star, an eigenfunction of a single nonradial mode is
described neither by a single spheroidal component with a given I and m
nor by a single toroidal component; it is in general given by a sum of
spheroidal and toroidal components with a given m (m remains a
quantum number even in a rotating star). Its velocity vector is written in

spherical polar coordinates as (see Section 34)

8 1 8

V ‘ 12.... (A5" AS'ka'AT' my,
1 a a m i0!

Aslkmw “1:97)” “’4’"? ’ (75)
where AS, and AT, are velocity amplitudes of spheroidal and toroidal
components, respectively. Equation (7.5) is the general expression for
the velocity vector of NRP mode, but profile calculations have so far

been restricted to a single spheroidal or toroidal mode and calculations
based on the general eigenfunction of rotating stars remain to be
performed.

We usually assume that the symmetry axis of oscillation is aligned
to the rotation axis. The cases in which these two axes are inclined are
not discussed here, but Baade and Weiss (1987) examined line-profile
variations in such a case. The general discussion of the oblique pulsator
model may be found in Section 9. To calculate theoretical line profiles,
we need to specify first the equatorial rotational velocity Ve and the
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inclination i of the axis of rotation to the line of sight. We then divide
the stellar visible disk into many surface elements, as many as 20,000

depending on the mode of interest, and calculate the velocity of each
element due to combined effect of rotation and oscillation. The line
profiles are constructed by adding the intrinsic profile of each element
with due account of Doppler shift corresponding to the line of sight
velocity and of a weight appropriate to the limb darkening law. In the
above prescription, we have neglected variations in surface area and in

brightness due to oscillation. Thus, profile variations are assumed to be
generated solely by Doppler effects of oscillations. However, the
brightness variation due to oscillation over the visible surface can be as
important as the velocity variation, particularly for nonradial p-modes.
The brightness and surface area variations due to oscillation remain to
be investigated thoroughly.

We summarize parameters necessary to construct a single line-
profile due to a single NRP mode: (1) equatorial rotational velocity Ve,
(2) inclination i, (3) NRP mode specified by I and m and either
spheroidal or toroidal, (4) its velocity amplitude A, (5) the ratio of the
horizontal to vertical velocity amplitude k in the case of spheroidal
mode, and (6) the phase of oscillation (pp. We sometimes include (7) the
effect of broadening due to the macroturbulent velocity. If a single
coherent oscillation is involved, all parameters must remain constant all

the time except the oscillation phase (pp, which should increase linearly
with time. Observed profiles usually exhibit migratory signatures across
the profile, and they are best reproduced by nonradial oscillation modes
with m 4!: 0, which represent waves traveling around the equator with
the phase velocity:

(34)/30pm. = —0/m. (7.6)

Thus, modes with negative m (i.e., m < 0) represent waves propagating
in the same direction to rotation* , and they are called prograde modes;

those with m > 0 are waves traveling in the opposite direction to
rotation and called retrograde modes, while the mode with m = 0
represents a standing oscillation.

It should be noted here that the frequency of oscillation of
non-axisymmetric NRP mode with m =I= 0 and its sense of “prograde” or
“retrograde” depend on the coordinate system observed, that is, either
from the inertial system or from the co-rotating system of the star. The
frequency ac of oscillation in the co-rotating frame of reference to the
 

* Note that the relation between the sign of m and the direction of propagation of

traveling waves used here is opposite to that used in the first edition because of the
different convention for the sign of o in equations (7.1) and (7.2).
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star is related to that of the inertial frame a in such a way that

0 = ac - m0, (7.7)

where 0 denotes the angular velocity of rotation of the star and the term
(I in equation (7.7) represents the well-known Doppler effect of waves
in the moving system. In what follows we show some sample
calculations of line profile variations due to NRP modes.

7.2 Profile Variations Due to Low 1 Modes
Main characteristics of profile variations due to low I modes are
variations in line width and line skewness. A typical example is shown in
Fig.7.1 for a case of a prograde p-mode with I = 2 and m = —2 and
amplitude A/Ve = 0.4, k = 0.15, and i = 90°.

The corresponding radial velocity curve and variation in line
half-width are illustrated in Figs.7.2(a) and 7.2(b), respectively. Here
the radial velocity of a spectral line is defined by the position of the
deepest point in the profile, and it is not the centroid of the line. The

V 1.0 - a 4

¢P=0.0 =0.50 /

  W}

 

 

       

.E

7 Q- S’ 0 / {xi /
\ I

0.10 0.60 > V /

V 7 C —1.0 -- -
0.20 0.70 . .

V C b

0.25 0.75 20_ I

C: 4. _,
0.30 0.80 3

21.0- -
"<

: I : V:
0.40 0.90

—1.0 0 1.0 —1.0 0 1.0 G 0? 1‘0

AA/A/IR ¢ (phase)

Fig. 7.1 Variation in line profile with Fig. 7.2 (a) Radial velocity curve, and
phase 4),, for A/Ve = 0.4, k = (b) variation in line half-width
0.15 and i = 90°. The abscissa is (Alla) for the same parameters

A/UAAR (or V/V. sini), where as in Fig. 7.1. It is noted that the
AIR denotes the rotational radial velocity in this figure is

width of the spectral line and AA defined by the deepest point in
denotes the wavelength mea- profile and it is not that of the
sured from the line-center and line centroid. The arrow in the
the ordinate uses an arbitrary lower figure indicates the half-
scale (after Osaki, 1971). width for pure rotation (after

Osaki, 1971).
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Fig. 7.3 Observations of a line in 53 Per (B5 V) matched with nonradial pulsation profile
models (after Smith, 1977).

phase 4),, is chosen in such a way that ¢,, = 0.25 and (12,, = 0.75

correspond, respectively, to the maximum expansion and the maximum
contraction at the disk center of the star (the phase convention used by
Osaki, 1971). Therefore, if the adiabatic pulsation is assumed, they are

the phases of the minimum and the maximum of the light curve,
respectively. As seen in Fig.7.1, the variation in line profile looks as if a
kind of wave were sweeping over the rotationally broadened profile
once per cycle: a weak component first appearing on the violet edge of
the profile moves toward the center, increasing in intensity; it reaches
the maximum intensity and the narrowest width at «p. = 0.25 when the
radial velocity passes the y-velocity on the ascending branch of the

radial velocity curve. (Here the y—velocity signifies the average radial
velocity over one cycle of pulsation and represents the radial velocity of

space motion of the star.) It then moves toward the red edge, decreasing

in intensity and increasing in half—width. At 4),, = 0.75, the line becomes

the broadest, and it takes a dish-shaped profile. Lines are symmetric at
4),, = 0.25 and «p. = 0.75, but they are very asymmetric near 4),, = 0.0
and 4),, = 0.50 with an extensive wing on the red side or on the violet
side. When the red component finally disappears, a new violet
component appears, and a new cycle starts to repeat. These characteris-
tics simulate very well observed profiles of line profile variable stars
called 53 Persei stars. Figure 7.3 shows five profiles, observed during
three nights for its representative member 53 Per (B5V) itself and
computed simulation by Smith (1977). The computed solution is shown
by a solid line which fits remarkably well with observation.
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As for the aspect effect, the general behavior of line-profile

variations remains similar over a wide range of inclinations i = 45 ~ 90°
for sectoral modes such as I = |m| = 2, because the oscillation amplitude
and the rotational velocity show qualitatively similar dependence upon
the colatitude 6, that is, Voscmation oc sin’6 and thation 0c sinB.

The cause of curious variations in line profiles due to nonradial
traveling modes of! = 2 and m = —2 can be understood with the help of
a schematic diagram. Figure 7.4 illustrates the combined velocity

vectors due to rotation and the nonradial oscillation OH = 2 and m = —2
at the star’s equator. In the case of a traveling-wave-type oscillation,
different phases of oscillation correspond to observations from the
different directions indicated in the figure. As the figure shows, at 4),, =
0.25 the combined velocity vectors are mostly directed perpendicularly
to the observer over a large part of the surface facing the observer. In
this condition a very sharp line is observed. At ¢,, = 0.75, on the other

hand, the combined velocity vectors on the left half of the visible disk

are mostly directed toward the observer while on the right half of the
disk they are directed away from the observer. This condition gives a
very broad line and sometimes a line doubling for an appropriate
combination of the rotation velocity V. and the oscillation velocity

amplitude A.
A wave traveling in the opposite direction to the rotation with m =

2 gives rise to the same variation in line profiles as that of m = —2, but
the sign of the radial velocity is interchanged. In other words, for a

92'0=‘¢
.1:

¢,
=0
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 .60 NQ

¢,=0.25

Fig. 7.4 Velocity vector at the equator for a rotating nonradially pulsating star with a
prograde wave of! = 2 and m = —2. Three kinds of arrows show the rotational
velocity vector ( ---> ),the nonradial oscillation velocity vector ( —> ), and the
combined velocity vector ( => ).
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retrograde traveling wave the sharpest lines occur on the descending
branch of the velocity curve, and lines become diffuse on its ascending
branch.

The mode with 1:2 and m=—1 is also an oscillation of the
traveling-wave type, but it is antisymmetric with respect to the
equatorial plane so that the radial velocity over the northern hemis-
phere is just opposite to that of the southern hemisphere. In this mode
the amplitude of oscillation becomes largest at the colatitude 6 = 45°.
Line profiles for this mode were calculated in a case of i = 45° by Osaki
(1971). The general behavior of line-profile variations in this case is
surprisingly similar to that of the m = —2 mode. However, unlike the m

= —2 sectoral mode, the results are rather sensitive to the inclination i.

This general characteristic applies for tesseral modes other than the
sectoral ones.

7.3 Profile Variations Due to Intermediate and High I Modes
As discussed in the introduction to this section, it was thought earlier
that intermediate and high I (say, I > 4) nonradial modes could not be
observed in stars because of the cancellation effects over the visible
disk. But it turned out that intermediate I nonradial modes (i.e., I = 4~

8) can well be observed in rapidly rotating stars, as rapid rotation rather

helps to resolve the stellar disk through rotational Doppler shift. Vogt
and Penrod (1983) were the first to realize this, and they have
demonstrated that so-called traveling bumps (quasi-absorption/emission
bumps traveling across rotationally broadened line-profiles) observed in
C Oph can be explained by a nonradial mode of I = 8 and m = —8.

Figure 7.5(a) exhibits an example of line profiles produced by a
nonradial spheroidal mode of I = 8 and m = -8 with k = 0.15. Three
absorption bumps (actually four bumps, if a weak bump near the line
wing is counted) at a time are seen, and they are traveling across a
rotationally broadened profile from blue to red. Figure 7.6 illustrates

how bumps are formed in the line profiles‘ of a rapidly rotating
nonradially oscillating star. In this figure, the lightest shaded zones
represent material moving toward the observer; darkest ones, that
moving away from the observer. There is a one-to-one correspondence
between position across the disk (or, more exactly, strip parallel to the
projected rotation axis) and wavelength in a rotationally broadened
profile. The mapping between spatial position over the stellar disk and
position in a rotationally broadened line profile is called Doppler
imaging, as it images a two-dimensional stellar disk into one-
dimensional wavelength position of line profile. The arrows beneath the
star represent the direction in which a local absorption line is shifted by
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Fig. 7.5 (a) Line profiles for a sectoral spheroidal mode of! = 8, m = —8, k = 0.15, i =
90°, and A/Ve = 0.1, which corresponds to a p-mode. (b) the same as (a) but for
a mode with k = 1.2, which corresponds to a g-mode (after Kambe and Osaki,
1988). The abscissa is ANAAR (=V/V, sini) and the ordinate uses an arbitrary
scale. -

the addition of the nonradial oscillation; material approaching us (light
shaded zones) produces a blueward shift, while material moving away
(darkest zones) produces a redward shift. The pronounced dips (bumps)
in the line profiles occur when the absorption from a redshifted lobe to
the left and a blueshifted lobe to the right combine to produce local
absorption within the line profile.

Line-profile variations due to nonradial oscillations have been
examined for rapidly rotating stars in a wide range of parameters by
Kambe and Osaki (1988). Some of their results are summarized below.
As is discussed above, the so-called traveling bumps observed in B-type
variable stars are usually interpreted in terms of spheroidal sectoral
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Fig. 7.6 Velocity map of a nonradial oscillation mode with I = 8 and m = —8 in a
rotating star and resultant line profile shown below. The width of the line
profile has been scaled to match the diameter of the star. The darkest regions
correspond to material moving away from the observer, while the lightest
regions moving toward the observer (after Vogt and Penrod, 1983).

modes, and an example of such a mode is presented in Fig.7.5(a). In line
profile calculations, there exists a parameter defined by k in equation
(7.1), which measures the ratio of the horizontal velocity amplitude to
the vertical one at the stellar surface. In the standard line profile
calculations, this k value is usually chosen to be less than, say, 0.15. On

the other hand, the k-value is related to the oscillation frequency by
equation (7.4). Thus, the assumption of small k is appropriate only for
high frequency p-modes.

In order to see characteristics of line-profile variation for a mode
with large k, we show in Fig.7.5(b) line profiles for the same sectoral

spheroidal mode with I = 8 and m = —8 but k = 1.2, which corresponds
to a g-mode. We see that a strong bump appearing near the blue wing
propagates toward the line center, but it becomes obscure as it

approaches the line center. It reappears in the red wing later. Since k is

large, profile variation is caused mainly by the horizontal component of
the NRP velocity vector. The horizontal velocity component significant-
ly contributes to the profile variation only near the disk limb. The
oscillation of a sectoral mode with intermediate or large I is confined in
the equatorial belt so that bumps appear only near line wings, as the 4)
component of oscillation velocity vector is dominant for the sectoral
spheroidal mode.

Let us now consider line profiles produced by toroidal modes.
Motions produced by toroidal modes are essentially a two-dimensional
eddy confined on the spherical surface, and their velocity vectors are
transverse. Since transverse velocity fields can produce no Doppler shift
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Fig. 7.7 Illustration of stream lines of flow produced by a toroidal mode with I = 5 and

  

m = —5 which is viewed from a direction 1' = 60°
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Fig. 7.8 (a) Line profiles for a sectoral toroidal mode OH = 5, m = —5, and AW, = 0.1
viewed from an intermediate inclination i = 60°. (b) For comparison, we show
profiles of the corresponding spheroidal mode with I = 5, m = -5, k = 0.15,
and AW, = 0.1 viewed from the same inclination i = 60° (after Kambe and
Osaki, 1988).
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near the disk center, toroidal modes were thought not to be of much

help for line-profile variation observed in variable B stars. I-Iowever,
Osaki (1986b) has found that a sectoral toroidal mode (or sectoral
r-mode) can equally well reproduce “traveling bumps” observed in line
profile variable B stars when seen from an intermediate inclination i ~
60°, and thus the uniqueness of NRP mode identification based on line
profile modeling was questioned.

To see this, we illustrate in Fig.7.7 stream lines of a sectoral

toroidal mode with I = 5 and m = -5. We see that the regions of

large-amplitude oscillation are confined more or less in the equatorial
belt and the dominant oscillation velocity is its 6-component near the
equator. Therefore, if observed from nearly the equator-on direction
(i.e., i ~ 90°), oscillation velocity vectors due to this kind of mode can

produce no Doppler shifts and thus the resulting line profiles are
essentially rotationally broadened profiles, as expected. However, if we
see the same oscillation velocity fields from a somewhat inclined

direction (say the inclination i is about 60°), we can see a significant line
of sight component for the oscillatory transverse fields of the equatorial
belt.

Figure 7.8(a) exhibits line profiles produced by the sectoral toroidal
mode with I = 5 and m = —5 seen from i = 60°. We see from Fig.7.8(a)
that the sectoral toroidal modes can produce “traveling bumps.” For
comparison, we exhibit line profiles of corresponding spheroidal mode
in Fig.7.8(b). As seen in Fig.7.8, profiles produced by these two modes
are very similar, and these modes are indistinguishable from the profiles
alone. However, line profiles produced by sectoral toroidal modes are
rather sensitive to inclination. As noted above, the same sectoral

toroidal mode merely produces rotationally broadened profile if seen
from the equator-on direction of i = 90°.

Kambe and Osaki (1988) have found that the case of sectoral
toroidal modes is by no means unique but that there exists another
example of toroidal modes, that can produce “traveling bumps.” That is
a tesseral toroidal mode with |m| = I—1, which can produce traveling
bumps for a fairly large range of inclination. Figure 7.9(a) exhibits line
profiles for a tesseral toroidal mode with I = 6, and m = -5. Traveling
bumps are seen clearly. Figure 7.9(b) shows corresponding profiles for a
sectoral spheroidal mode OH = 5, and m = —5. We see that very similar

profiles are again produced by these two modes. It is furthermore found
that traveling bumps in this case are seen for a fairly wide range of
inclination with i = 60° ~ 90°.
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Fig. 7.9 (a) Line profiles for a tesseral toroidal mode of! = 6, m = —5, i = 90°, and AW.
= 0.1. (b) For comparison, we show profiles of the sectoral spheroidal mode
with I = 5, m = —5, k = 0.15, i = 90°, and AW. = 0.1(after Kambe and Osaki,

1988).

8. Early Type 0, B Variables

Only a decade ago, B Cephei stars were only the known pulsating
variables among early type stars. However, recent observations with

high precision spectroscopy and photometry have revealed that pulsa-
tions and related variations are quite ubiquitous among early type stars
(see Smith, 1986; Waelkens and Rufener, 1985). These variables ranges

from spectral type 04 (Baade, 1986a) to B8 (McNamara, 1985) and also

from luminosity class V to class I. They surround the B Cephei variables
on the HR diagram.

Light variations of O, B variables are generally not large (usually
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amplitude Am, 5 0.1 mag). It is, however, noted that the majority of

these stars shows the spectroscopic variations in which absorption line
width and asymmetry vary with time and in some cases several
quasi-emission/absorption bumps travel across an absorption line. In
particular, those stars which exhibit characteristic variations in line
profile are called “line profile variable stars,” and their variations are
now believed to be caused by nonradial pulsations (NRP) in rotating
stars. In fact, there is some good evidence for such beliefs. The time

scale (0.5 ~ 2 days) of variations in these stars is too long for radial

pulsations. The beat phenomena appearing in some cases cannot be

explained by radial pulsations.
There have been many suggestions for classification of variable 0,

B stars. For example, Cox (1987) suggested dividing these stars into
three groups: one that shows at least one radial mode (Smith, 1980c)

and two that display only nonradial modes, which are divided in turn

into two subgroups: slow rotators and rapid rotators. Smith (1980a,
1981) defined the first group as B Cephei stars, and called the other two
groups 53 Persei variables and I; Ophiuchi variables, respectively.
However, the mode identification of these stars (radial or nonradial) is

still controversial. So, in this monograph, we call 0, B variables that

show relatively large light- and radial velocity variations with timescales
of several hours the B Cephei (or B Canis Majoris) variables. The other
variables show mainly variations in line-profiles. We call the slow
rotators (V. sin i < 170 km s”) among them 53 Persei variables, and call
the rapid rotators C Ophiuchi variables. In what follows, we present the
general features of these variables [see also a recent review by Baade
(1986b)].

8.1 B Cephei Variables
The B Cephei stars are a small group of pulsating variables of early
spectral type. Table 8.1 lists the B Cephei stars (Underhill, 1966, 1982;
LeContel, Sareyan, and Valtier, 1981). Pulsation periods of B Cephei
stars range from about 3.5 to 6 hours. The amplitudes of light variation
are rather small, and the typical amplitudes in visual light are Amv =
0.01 ~ 0.08 mag. The largest amplitude is shown by BW Vul, for which
Amv = 0.24 mag. The radial velocity variations are also small: their
typical range is 2K = 10 ~ 50 km s'1 where 2K is the full amplitude in
the radial velocity curve. BW Vul is again exceptional in that 2K = 150
km s“1 . There is no appreciable phase lag of the light curve to the radial
velocity curve, in the sense that the maximum light occurs at the phase

of “maximum compression” when the radial velocity crosses the
y-velocity on the descending branch of the velocity curve. In this sense,
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Table 8.1 Representative B Cephei variables.
 

 

Light Velocity Beat
HD Name Sp. Period Amplitude Amplitude V. sini NRP Periods
number type Am.,(mag) (km s") (km s") (days)

886 y Peg B21V 3°38n1 0.015 7 3
16582 6 Cet B2IV 3 52 0.025 13 13
19374 53 Ari B1.5V 3 40 0.07 5 18
21803 KP Per BZIV 4 48 0.1 16—25 —
29248 v Eri B2111 4 10 0.05—0.18 27—71 25 Yes 7.0
44743 B CMa BIII-III 6 02 0.03 6—18 36 Yes 49.1
46328 E' CMa BO.51V 5 02 0.01—0.045 36 27
50707 15 CMa 311V 4 26 0.01 7 49 Yes
111123 B Cru BO.51II 5 40 0.04 14 38 Yes
116658 a Vir BIIII—IV4 10 0014—0029 16 159 Yes
118716 e Cen B111] 4 05 0.01 — 159
122451 B Cen BIIII 3 46 0.0—0.04 14 139 Yes
126341 1' Lup BZIV 4 16 0.03 11 30
129056 a Lup B1.5111 6 14 0.03 14—20 24
136298 6 Lup B1.51V 3 58 0.03 — 221
147165 0 S00 B2111 5 55 0.08 80— 120 53 Yes 8.0
157056 0 Oph BZIV 3 22 0.06 5—20 35 Yes 6.0
158926 11 Sec BZIV 5 08 0.023 17 163
160578 K Sco Bl.51II 4 48 0.009 6 131 7.37
165174 V986 Oph BOIII 6 56 0.03 — 434
199140 BW Vul B211] 4 49 0.19—0.26 150 26 Yes
205021 B Cep B1IV 4 34 002—005 18—46 28
214993 12 Lac B2111 4 38 0.03—0.11 20—55 53 Yes 8.9
216916 16 Lac BZIV 4 04 0.06—0.11 20—40 23 Yes 17.16
 

the B Cephei variables are simple pulsating variables. The B Cephei stars

were, as pointed out by McNamara and Hansen (1961), once considered
to be slow rotators, but Shobbrook and his co-workers (Shobbrook,

Herbison-Evans, Johnston, and Lomb, 1969; Shobbrook and Lomb,

1972; Shobbrook, 1972) discovered a few rapidly rotating B Cephei stars

(larger than 100 km s"): rotational velocity is not an indicator of B
Cephei stars at all.

Concerning the pulsation mode of B Cephei stars, Smith (1980a,
1981) has argued that the main pulsation of B Cephei variables is radial,
and he has proposed that the B Cephei stars must be defined as those
early type variables whose main pulsation is radial (Smith, 1980b). It
should be noted that some B Cephei stars show multi—period beating,
which indicates that nonradial pulsations must be involved as well (see
Section 6.6).

Although there are uncertainties in absolute luminosities and
masses of B Cephei stars, observations indicate that the pulsation
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constant or Q-value of B Cephei pulsations ranges from 0.025 to 0.04
days, which means either the radial fundamental mode or the first
harmonic mode, if the stars are radial pulsators.

The B Cephei stars are to be confined to a narrow region in the
observational HR diagram; their spectral types are restricted to between

B05 and B2 and between luminosity classes III and IV. This instability
strip of B Cephei stars was believed to lie about 1 magnitude above the
zero-age main-sequence (ZAMS), being nearly parallel to it. The
existence of the instability strip of B Cephei stars is very important to
assign the excitation mechanism of pulsation because it will give an
observational clue to the seat from which the pulsation is driven. In fact,
Schmalberger (1960) and Lesh and Aizenman (1973) pointed out that
this instability strip almost coincides with the so-called S-bend stage of
stellar evolution in which the evolutionary path of a massive star with M
= 10 ~ 15M® crosses the instability strip three times: core hydrogen
burning, overall contraction, and shell hydrogen burning. In this
respect, it should be noted that in the galactic open clusters NGC 3293
(Balona and Engelbrecht, 1983) and NGC 6231 (Balona and Shob-
brook, 1983; Balona and Engelbrecht, 1985a), several B Cephei stars

are identified. However, the variables in the young cluster NGC 6231

are still on the ZAMS. The present observations now establish that the

B Cephei stars are normal main-sequence stars in the core hydrogen
burning stage. It is now interpreted that amplitude of pulsation of B
Cephei stars has its peak at the center of the classical instability strip
stated above and decreases towards both directions of luminosity.

Amplitudes and periods of B Cephei variables are rather stable
among 0, B variable stars. But Shobbrook (1979) has shown from
Fourier analysis that some of the B Cephei variables seem to give
different frequency spectra from decade to decade, or even from year to
year. Amplitude changes in 0; Vir and 16 Lac are also an intriguing

matter. 0: Vir was once found to be a B Cephei star before 1970, but its

amplitude decreased almost to zero between 1968 and 1972 and
remained there since then (Lomb, 1978). oz Vir has recently been found

to show line-profile variations due to the nonradial pulsations (Walker,
Moyes, Yang, and Fahlman, 1981; Smith, 1985). The eclipsing variable

16 Lac also has amplitudes decayed by half for all three pulsation modes
between 1965 and 1977 (Jarzebowski, Jerzykiewicz, LeContel, and
Musielok, 1979).

8.2 53 Persei Variables

The 53 Persei stars are nonradial pulsators with slow rotational velocity
(V. sin i S 170 km $71). This class of variables was first recognized by
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Smith and Karp (1976) and Smith (1977, 1980b). The 53 Persei stars
surround the B Cephei variables on the HR diagram, extending from
late 0 stars (10 Lac) to mid-B stars (53 Per), and from the
main-sequence (v Ori) to the supergiants (p Leo). The slow variables in
mid-B stars photometrically discovered by Waelkens and Rufener

(1985) would be 53 Persei variables. In fact, Waelkens (1987) confirmed
line profile variations for HD 74195 and HD 74560 in this sample. In
addition to these variables, the other kinds of variable B stars previously
recognized might also be included in 53 Persei variables such as Maia
variables (Struve, 1955; McNamara, 1987) and the ultrashort B star

variables (Jakate, 1979). Table 8.2 lists representative 53 Persei
variables.

The 53 Persei variables exhibit both light and line-profile varia-
tions, but line-profile variations are crucial for distinguishing this class
from others. The 53 Persei stars have periods usually of 0.5 to 2 days,
too long for radial modes. Therefore, their line-profile variations are
interpreted in terms of nonradial pulsations. In fact, with the assump-
tion of sectoral nonradial modes (m = i I ), Smith (1977), as illustrated
in Fig. 7.3, performed mode typing (assignment of I and m) in 53 Per,
the prototype variable. For the majority of these slowly rotating

pulsators, modes are considered to be prograde with low degree I
spherical harmonics. However, there are some problems in our
understanding of the variations of these stars. Apparent mode switching
occurs in many of them within months or even days, which is far sooner
than expected theoretically. The amplitude for a certain mode changes

Table 8.2 Representative 53 Persei variables.
 

 

Light Velocity
HD Name Sp. type Period” Amplitude Amplitude” V. sin i
number Amv(mag) (km s“) (km s“)

3360 C Cas 321V 21'130'11 — 4 18

24760 8 Per BO.5V 3 51 0.008 35-40 153

27396 53 Per B4IV 45 00 0.01-0.04 10—12 19

35039 22 Ori BZIV-V 14 06 — 5-7 14

36512 v Ori BOV 11 30 — 5 20

51309 I. CMa B311 - - - 29
74195 0 Vel B3IV 66 43 0.012-0.02 - 40

74560 B3IV 37 13 0.015—0.02 — 22

91316 p Leo Bllb — — — 61
160762 I. Her B3IV 9 54 — 4-6 11

214680 10 Lac 09V 4 54 - 4—10 31

 

Note: 1) Main period in the case of multiple perodicity.
2) Amplitude estimated by NRP modeling.
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even within a day. Balona (1985) pointed out that periods obtained
photometrically in many of the 53 Persei stars rarely correspond to those
determined by modeling of the line profile variations with nonradial
pulsations.

Finally, in some of the 53 Persei variables such as 22 Ori and v Ori
(Balona and Engelbrecht, 1985b) and 1 Her (LeContel, Ducatel,

Sareyan, Morel, Chapellier, and Endiqnoux, 1987), short periods of

0.12 to 0.14 days with smaller amplitude are also discovered.

8.3 C Ophiuchi Variables
C Ophiuchi stars are nonradial pulsators with rapid rotation (Ve sin i 2
170 km s71), named after the prototype line profile variable C Oph
(Walker, Yang, and Fahlman, 1979). They, like the 53 Persei variables,
surround B Cephei variables on the HR diagram. Table 8.3 (cf. Percy,
1986) indicates that C Ophiuchi stars include both B emission (Be) stars
and B normal (Bn) stars. In late B stars, both light and line-profile
variations are fairly small.

Owing to the rapid rotation of this class of variables, detectability
of nonradial modes as high as I = Iml = 16 have been suggested (Smith,

1985). In fact, Vogt and Penrod (1983) have demonstrated for the first
time that the observed moving “bumps” in the line profiles in C Oph can
be interpreted in terms of nonradial sectoral mode with I = Iml = 8
according to the “Doppler imaging” discussed in Section 7 for a rapid
rotator (see Fig. 8.1).

Many of the modes in C Ophiuchi stars appear to be retrograde
(except for C Oph) when seen from a rotating frame. In this respect, Be

Table 8.3 Representative C Ophiuchi variables.
 

 

Light Velocity
HD Name Sp. type Period Amplitude Amplitude V. sin i
number Am. (mag) (km s"‘) (km s“)

5394 y Cas BOIVe 21.47". — — 300
33328 A Eri B21Ve 16 48 0.03 2-6 336
37490 60 Ori B3IIIe 45 50 0.05 — 194
120324 11 Cen B21V—Ve 12 14 0.015 15 175
149757 C Oph 09.5Ve 3 18 0.02 20-24 379
157246 y Ara Bllb 20 53 — — 281

157042 I. Ara BZIIIe .12 22 0.05 — 369
180968 2 Vul B0.51Ve 14 38 0.06 - 332
191610 28 Cyg B3Ve 16 48 0.06-0.10 — 310
205637 5 Cap B3Ve 18 27 0.03 — 293
217050 EW Lac B4IIIe 17 17 0.06 - 350
217675 0 And B6IIIe 37 41 0.05 — 330
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Fig. 8.1 Line profile variation of the He I 16678 line of C Oph (after Vogt and Penrod,
1983).

star 11 Cen (Baade, 1984) is quite unique that a series of bumps in the

line profile apparently move from red to blue wing even in the inertial
frame (cf. Kambe and Osaki, 1988).

Observationally Penrod (1987) has suggested that a Be star has an I

= 2 mode in addition to high I sectoral modes, while a Bn star has only
high I modes (with the exception of C Oph). This difference seems to be
important, since it may indicate that nonradial pulsation (particularly
low I, say I = 2 mode) and rapid rotation are essential ingredients which
allow a B star to become a Be star. Radial motion of nonradial pulsation
(particularly I = 2 modes) may puff up its matter from the surface of a B
star. Another possibility is that nonradial nonaxisymmetric (m =I= 0)
modes can redistribute angular momentum over the stellar envelope,
and the nonradial (prograde) modes can occasionally accelerate the
equatorial surface velocity to lead to mass loss, whose mechanism will
be discussed in subsection 36.2. These effects are considered to be
possible additional forces for the episodic mass loss of Be stars to the
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centrifugal force of rotation. It should be noted that there are some Be
stars with V. sin i < 170 km s‘1 (e.g., 28 CMa, V. sin i = 120 km 571)
which show line-profile variations. This is interpreted in terms of low
inclination, and we consider that Be stars exhibiting line-profile

variations are all included in this type of variable.

In many C Ophiuchi variables (e.g., 11 Cen, y Ara, 8 Per), an
intriguing observational fact is that the superperiod m X H is apparently
constant for all modes with different values of I =—m. This constant is
the time needed for the pulsation pattern to revolve completely about
the rotation axis. The constant value is different for different stars. The
existence of the superperiod would be considered an important clue to
the excitation mechanism of nonradial pulsations in these stars.
However, it is also possible that the intrinsic pattern speed seen from
the rotating frame is much smaller, say by one order of magnitude, than
the stellar rotational speed, and so the wave pattern speeds in the
inertial (observer’s) frame for all modes seem to be constant within the

range of observational error.
There remain unsolved problems: the apparent unequal spacing

between adjacent crests of the sectoral modes, the occasional masking

of a crest that results in either an amplitude change or even a
disappearance, and rapid mode switching; some of these problems are
also seen in 53 Persei variables. Balona and Engelbrecht (1986) have
proposed the possibility that some of the line-profile variations are due
to star spots. To attain complete comprehension of these variations, a
number of both observational and theoretical works will be needed.

8.4 Line-Profile Modeling and Related Problems

The historical development and the actual procedure in line profile
modeling by nonradial pulsations have been described in detail in
Section 7. Line profile modeling by NRPs for “line profile variable

stars” among 0, B stars has been used for mode identification of NRPs

in these stars. However, the uniqueness of the solutions obtained
hereby is often questioned. The physical parameters (say, degree I,
amplitude, etc.) for modeling are chosen by trial and error until the
difference between theoretical and observational profiles is well within
the limits of observational error.

Recently Balona (1986a, b, 1987) proposed an objective method
for determining mode parameters in line-profile variations. A time
series of the first two or three moments of a certain line profile is
composed, and the mode parameters are derived from the profile’s
Fourier analysis. By this technique, Balona (1986a) has suggested that
the mode switching often seen in 53 Per might be accounted for by the
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sCarcity of its data. However, it is noted that the variations in the first

two or three moments of the line profile decrease with spherical
harmonic degree I, and thus this method is not effective for high I
values.

Gies and Kullavanijaya (1988) also developed another objective
method of analyzing line-profile variations, and applied it to line profile

data of 8 Per for five nights, in which the time evolution of a line profile
is displayed as the deviation from the averaged line profile as a function

of wavelength position. They have calculated power spectra at each

point across the line profile in order to search for periodic variability.
From this calculation, four prominent peaks have been found in the
power spectra of 6 Per. In this procedure, there are neither artificial
assumptions nor preferences to degree I, which is superior to Balona’s
method. Gies and Kullavanijaya (1988) diagrammed the phase of the
complex power spectrum as a function of position across the line profile,

and derived the order of nonradial pulsation modes m = —3, —4, —5,

and —6, assuming that these variations are due to nonradial pulsations.
We want to mention the so-called “k-problem.” The parameter k is

defined as the ratio of horizontal to vertical velocities. As discussed in

Section 7.1, the parameter k is physically related to the intrinsic

pulsation period [equation (7.4)], such that k is smaller for shorter-
period NRPs (e.g., p-mode). In 0, B variables except for B Cephei
stars, g-modes are expected owing to their long periodicity in the

co-rotating frame. By definition, k values should be large for g-modes (k
2 1) whereas line profile fitting usually suggests that this value is of
order 0.15 or smaller. This is the “k-problem.” One possible explana-

tion, already presented in Section 7.3, was proposed by Osaki (1986b):

that the sectoral toroidal modes seen from intermediate inclination (~

60°) show traveling bumps similar to those due to the sectoral spheroidal
mode. Kambe and Osaki (1988) have further shown that the tesseral

toroidal mode (e.g., I = 6, m = —5) gives a similar traveling bumps to

those of sectoral spheroidal mode for a fairly large range of inclination.

In these discussions, a single spherical harmonics (being the solution

only for nonrotating stars) is used for line profile fitting. However, in
rotating stars like 0, B variables, line profiles should be expressed by a
sum of spheroidal and toroidal components as in equation (7.5).
Therefore, the k-problem remains to be studied.

The most fundamental problem of O, B variables concerns the
excitation mechanism of pulsations. So far, no definite destabilizing

mechanism has been found, although almost all possible mechanisms
known in stars have probably been proposed: (1) K-mechanism, (2)
e-mechanism, (3) overstable convection, (4) shear instabilities in a
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differentially rotating star, and (5) tidally forced oscillation and
nonlinear coupling between modes. The problem of excitation mechan-
isms of pulsations in O, B variables will be discussed in Section 35.

9. Rapidly Oscillating Ap Stars

The rapidly oscillating Ap stars are cool Ap stars which pulsate with
short periods in the range of 4-15 min and small amplitudes: Amv < 10
mmag (1 mmag = 0.001 mag), generally much less; most are less than 1

mmag. They were first found in 1978 by Kurtz, and so far twelve have
been counted. The name of this class of stars evidently comes from the

shortness of their periods, which are much shorter than the dynamical
timescale, 217/(GM/R3)1/2, of these stars that is of the order of z 2 hr.

In Table 9.1 we list all of the known members of this class of star.
They are cool, magnetic Ap stars with SrCrEu line strength peculiari-
ties. Some are well-known oblique magnetic rotators, and it is a
reasonable presumption that they all are. Although uncertainty remains

about their position in the HR diagram because of their spectral
peculiarities, they lie in or near to the lower portion of the Cepheid
instability strip, where the 0 Scuti stars are located. However, it has not

yet been established whether the rapidly oscillating Ap stars are limited
in the instability strip. Also, whether or not all of the cool, magnetic,

SrCrEu-type Ap stars show rapid oscillations has not yet been

established. Indeed, there are some Ap stars whose characteristics are
almost the same as those of the rapidly oscillating Ap stars except for
the appearance of oscillations. Detailed description of eleven of these
stars and references to the literature on them is available in Kurtz’s
(1986a,b) review, and information on the twelfth, HD 166473, can be

found in Kurtz and Martinez (1987). Other reviews on these stars are

also available in Weiss (1986), Shibahashi (1987), and Kurtz (1988). The
oscillations were first found by means of high-speed photometry, but

they have also been detected as the Doppler shift of spectroscopic lines
(Matthews, Wehlau, Walker, and Yang, 1988b; Libbrecht, 1988a).

Figure 9.1 shows a typical example of luminosity variation of the

rapidly oscillating Ap stars. The power spectrum of this star is shown in
Fig. 9.2. One of the most conspicuous characteristics of the rapidly
oscillating Ap stars is that the pulsation amplitudes are modulated with
the rotation period of the star in the sense that the amplitudes are
correlated with the phase of the magnetic strength which varies with the
rotation. As shown in Fig. 9.1, it is evident that the pulsation amplitude
varies.

Figure 9.3 indicates the variation in the pulsation amplitude of HD
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Table 9.1 Rapidly oscillating Ap stars.
 

HD Sp.Type H.(G) Freq.(mHz) Amp.(mmag) Refs.
 

6532 Ap SrCrEu

24712 A5p +300 to +1200

60435 Ap Sr(Eu)

83368 Ap SrCrEu —700 to +700

4.

101065" Controversial -2200 -

128898 Ap SrEuCr —300(variable)

134214 F0 SrEu
137949 Fp SrCrEu +1400 to +1800
166473 Ap SrEuCr

201601 F0p +500 to —800
203932 Ap SrEu
217522 Ap SiCr

2.39612 1.01 (1)
2.40210 0.37
2.40761 0.55
2.7208 2.13 (2)(3)(4)
2.6528 2.07
2.6875 2.07
2.7556 2.07
2.6200 2.07
2.7936 2.07
1.10077 2 (5)
1.30371 6
1.35210
1.38088
1.40749
1.43364
2.75 15
4.17307
1.423950 2.14 (4)
1.432069 1.75
1.428011 0.38
2.856019 0.45
2.847906 0.20
2.864139 0.18
1.372865 5.40 (6)(7)(8)
1.315079 0.67
2.7459 0.26
2.442041 1.91 (9)
2.4395 0.38
2.9496 3.23 (10)(11)
2.0148 1.39 (4)
1.891944 0.49 (12)
1.823890 0.27
1.928169 0.25
1.339 0.86 (13)
2.804789 0.66 (14),
1.21510 2. (15)
 

References to Table 7.1
(1) Kurtz and Kreidl (1985)
(2) Kurtz and Seeman (1983)
(3) Kurtz, Schneider, and Weiss (1985)
(4) Kurtz (1982)
(5) Matthews, Kurtz, and Wehlau

(1988a)
(6) Kurtz (1981)
(7) Kurtz (1980)

(8) Kurtz and Wegner (1979)
(9) Kurtz and Balona (1984)
(10) Kreidl (1985)
(11) Kreidl and Kurtz (1986)
(12) Kurtz and Martinez (1987)
(13) Kurtz (1983a)
(14) Kurtz (1984)
(15) Kurtz (1983b)
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83368 with the rotational phase, where the zero of the rotational phase
is the phase at which the observed magnetic field strength is zero. We
can see that the pulsation amplitude is almost sinusoidally varying with
the rotation phase and that it becomes the largest at the magnetic
maximum phase. Figure 9.4 is a schematic sketch of an extension of the
part in problem of the power spectrum of Fig. 9.2; it shows that there is

a triplet fine structure of which each of the side-components is separated
from the central peak by the stellar rotational frequency.

In order to explain this character, Kurtz (1982) proposed the
oblique pulsator model, in which the pulsation is interpreted as
nonradial, axisymmetric (m = 0) oscillations with low degree I, whose
symmetry axis is coincident with the stellar magnetic axis which is itself
oblique to the stellar rotation axis. Figure 9.5 indicates the pattern of an
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Fig. 9.1 The light curve of HD 83368 (dots). The abscissa is 5 ,000 s long and the
ordinates 40 mmag high with tick marks at 10 mmag intervals. The continuous

light curves have been folded into 5,000 s consecutive sections which should be
read from left to right, t0p to bottom, just like lines of print (after Kurtz, 1982).
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Fig. 9.2 An amplitude spectrum for HD 83368. Significant amplitude can be seen at
both at 1.4 and 2.8 mI-Iz. The low frequency high amplitude noise is due to
fluctuation in sky transparency during the observations (after Kurtz, 1982).
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Fig. 9.3 The amplitude A(t) of the dipole oscillation with v = 1.42801 mHz as a function

of rotational phase, where the luminosity variation is expressed as AL/L = A(t)

sin(2rrvt) (after Kurtz and Shibahashi, 1986). The error bars are :tlo.

axisymmetric (m = 0) dipole (I = 1) mode. As seen in this figure, the
amplitude of such axisymmetric modes is large at the polar region of the
symmetry axis. As the star rotates, the aspect angle of the pulsation
(and the magnetic axis) varies; hence the apparent pulsation amplitude
varies synchronously with the magnetic strength which is also modulated

with the rotation.
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Fig. 9.4 A schematic amplitude spectrum for HD 83368 showing the frequency triplet.

The form of the modulation is dependent on the geometrical
configuration, and we can, therefore, infer a relationship between the

angle of the rotational axis to the line-of—sight, i, and the angle of the

rotational axis to the magnetic axis, B, from the analysis of pulsation. In
favorable cases where we can identify pulsation in at least two modes of

different I, we can determine i and B. These quantities are independent-
ly inferred from the analysis of variation in the magnetic field strength of
the star within the framework of the oblique rotator model for magnetic
Ap stars. In the case of HD 24712, the angles determined by these two
methods are consistent with each other (Kurtz, 1982). Another
favorable case for the oblique pulsator model is HD 83368. Kurtz (1982)
analyzed his observational data on this star, and by applying this model,

 

Fig. 9.5 The pattern of an axisymmetric (m = 0) dipole (l = 1) mode.
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Fig. 9.6 The phase of the dipole oscillation with v = 1.42801 mHz as a function of
magnetic phase (after Kurtz and Shibahashi, 1986). The error bars are :tla.

he deduced that i = 86° and B = 36°. This led to the predictions that the
rotational velocity, V. sini, should be z 32 km s'1 and that the polarity
of the observed magnetic field of this star should reverse when the
line-of-sight becomes parallel to the magnetic equator. Polarity-
reversing of the magnetic field was later confirmed by Thompson
(1983), and the rotational velocity was also measured later to be V. sini
z 33.-t3 km s‘1 by Carney and Peterson (1985). The angles i and B
provided by variation in the observed magnetic field are also confirmed
to be consistent with Kurtz’s prediction.

If the oscillation is due to a dipole (I = 1) axisymmetric mode whose
symmetric axis is oblique to the rotational axis of the star, the phase of
the oscillation is expected to jump by 17 radians at magnetic quadrature
and remain constant in other phases. The phase of the pulsation mode in
HD 83368 is plotted against the magnetic phase in Fig. 9.6 (Kurtz and
Shibahashi, 1986). We see this is the case as expected. All of these facts
support the oblique pulsator model.

The periods of rapid oscillations of Ap stars are much shorter than
that of the radial fundamental mode. The very high frequencies of the
oscillations of these Ap stars are then naturally interpreted as very high
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overtone p-mode oscillations. According to the asymptotic theory of
oscillations (Tassoul, 1980; see also Section 16), the angular eigenfre-
quenCy on, of such a high order p-mode with a low degree I is, to first
order, given by

0", z 277v0(n + l/2 + e), (9.1)

where

R
v0 5 [2/ c’ldr]-l, (9.2)

0

6 is a constant which is dependent on the equilibrium structure of the
star, c(r) denotes the sound velocity in the star, and n is the radial order

of the mode in problem (n >> 1). Equation (9.1) means that frequencies,
v E 0/217, of p-modes with even and odd I alternate with a separation of
v0/2. Detailed power spectrum analyses have revealed that some of the
rapidly oscillating Ap stars are pulsating in several modes with
uniformly spaced frequencies (Kurtz and Seeman, 1983). The observed
frequency spacing (e.g., z 33 MHz for HD 24712) is consistent with the
theoretical values of v0/2 for stellar models with M === 2M0 in the

main-sequence stage, which indicates that the observed oscillations are
an alternation of even and odd degree p-modes (Shibahashi, 1984;
Gabriel, Noels, Scuflaire, and Mathys, 1985; Shibahashi and Saio,

1985). The odd degree modes in HD 24712 are supposed to be 1 =1 since
they have triplet fine structure which is well interpreted by the oblique
pulsator model of] = 1. As for the even degree modes appearing in the
middle of] = 1 modes in the power spectrum, the degree is likely to be I
= O or 2; otherwise the total amplitude of the variability integrated over
the stellar disk is too small to be detected. By substituting the observed
frequency spacing into v0 /2 in equation (9.1) and supposing l = 1 from
the arguments given in the above, we estimate the radial order n z 30.

The appearance of such high order p-modes reminds us of solar
five-minute oscillations, whose period range is also much shorter than
that of the radial fundamental mode of the sun. There are, however,

differences in the rapid oscillations in Ap stars and the solar oscillations.
One of them is that the rapid oscillations in Ap stars are significantly
influenced by strong magnetic fields of the stars so that their symmetric
axis is coincident with the magnetic axis of the star. Another difference
is that most of the rapidly oscillating Ap stars, except for HD 60435
(Matthews, Kurtz, and Wehlau, 1988a, c), seem to pulsate with only a
single or a few eigenmodes among the dense frequency spectrum while
the solar oscillations consist of many modes whose amplitudes are the
same order of magnitude. The selective excitation of overtones may be a
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consequence of the strong magnetic fields of Ap stars. The oscillations
in Ap stars seem to be quite stable; hence by having a long time-span of
observations we can determine eigenfrequencies with high accuracy (see
Table 9.1). If many eigenfrequencies are determined for each of rapidly
oscillating Ap stars, seismological approach will be useful to study the
physics of Ap stars.

Dziembowski and Goode (1985, 1986) paid attention to the
inequality of the amplitudes of the frequency components in a triplet
fine structure in the power spectrum. If the pulsation were due to a
purely axisymmetric (m = 0) mode with l = 1 whose symmetric axis is
oblique to the rotational axis of the star, the rotational modulation of
the amplitude would cause the triplet fine structure in the power
spectrum to be symmetric with respect to the central component. As
seen in Fig. 9.4, the observation shows this is not the case. Dziembowski

and Goode (1985, 1986) formulated the oscillations of a rotating
magnetic star as an eigenvalue problem by taking into account both the
oblique magnetic field and the rotation, and showed that the relative
amplitudes in a fine structure of the power spectrum is dependent on the
rotation and the internal magnetic field strength of the star. This result

leads to a possibility of using fine structure of the power spectrum as
diagnosis of the internal magnetic field of Ap stars (see also Kurtz and
Shibahashi, 1986). The detail of theoretical treatments of oscillations in
a rotating magnetic star will be discussed in Section 19. The asteroseis-
mological aspect will also be discussed in Section 43.

The classical pulsating variables in the lower portion of the Cepheid
instability strip near the main sequence have been known as the 6 Scuti
variables, whose periods are in the range of 30 min ~ 4.7 hr (typically z
2 hr). The interesting thing is that not all the stars in this region of the
instability strip are observed to vary and only about one third of the
stars in this region are 6 Scuti variables. All the Ap stars had been

included among the apparently non-pulsating stars. Variability in Ap
stars was searched for, but until the first discovery of the rapidly
oscillating Ap stars (Kurtz, 1978) explicit evidence for pulsation in Ap
stars had not been discovered. Therefore, chemical peculiarity and
pulsation had been empirically regarded as mutually exclusive. The
discovery of the rapidly oscillating Ap stars has thus raised many
questions: What is the relationship between these stars and the (5 Scuti
stars? What is the relationship between the pulsation and the anomalous
chemical abundances? Why do these stars pulsate in such high
overtones? Why are the pulsations aligned with the magnetic axis? What
is the excitation mechanism of the rapid oscillations? Most of these
questions have not yet been answered. The answers to these questions
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should provide us useful concepts for understanding the physics of Ap
stars.

10. Variable Degenerate Stars

There are at least three distinct groups of variable degenerate (single)

stars. These are, in the order of increasing luminosity, DAV stars [=
ZZ Ceti stars; i.e., variable DA (hydrogen envelope) white dwarfs],

DBV stars [variable DB (helium envelope) white dwarfs], and DOV
stars [= PG1159 stars; variable hot pre-white dwarf stars] including a
variable planetary nebula nucleus. The periods of their light variations,
ranging from ~ 100 s to ~ 2,000 3, are consistent with the periods of the
nonradial g-mode oscillations with low spherical degrees. Amplitudes of
their luminosity variations are less than ~ 0.3 mag, and in most cases
they show complex beat phenomena due to multiple modes simul-
taneously excited. Accurate high speed photometry over a long time
span is necessary to delineate such complex light variations to obtain
accurate periods. Because of this difficulty, only approximate periodici-
ties have been obtained for many degenerate variables. If accurate
periods are obtained on a long time base line, this data set may reveal

period change due to the change of the stellar structure that accompa-
nies the cooling evolution of these stars, which may give an independent
check of the microphysics for the dense degenerate matter.

Cataclysmic variables are different from the above variables. They
are made of degenerate stars and the accretion disks around them in
interacting close binary systems. They also show small amplitude
luminosity variations with periods from ~ 10 s to ~ 1,200 8. In the
following subsections, we discuss the characteristics of the luminosity
variation for each group.

10.1 Variable DA White Dwarfs (ZZ Ceti Variables)

At the time of writing, twenty variable DA white dwarfs (DAV stars or

ZZ Ceti stars) are known. The observed properties of the twenty known
DAV stars are listed in Table 10.1. They are listed in the order of
increasing main periods. It is apparent that they form a narrow
instability strip of 11,000 K 5 Te 3 13,000 K, which corresponds to the
color region of —0.41 S G — R S —O.29 (Greenstein, 1982, 1984),
where (G - R) color of white dwarfs is correlated with their effective
temperature more accurately than the (B — V) or (b — y) color is. All
the DA white dwarfs in the instability strip seem to show luminosity
variations (Greenstein, 1982; Fontaine, McGraw, Dearborn, Gustaf-

son, and Lacombe, 1982; Fontaine, Bergeron, Lacombe, Lamontagne,
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and Talon, 1985a). Figure 10.1 shows two-color diagram of the variable

and nonvariable white dwarfs (Greenstein, 1982). The DAV stars are

located in the color region where the hydrogen Balmer absorption is
maximum at the stellar surface. This suggests that the cause of the light

variations of the DAV stars is related to the hydrogen partial ionization

zone (see Section 28). There is no clear correlation between the main

period and the effective temperature of the DAV stars (Winget and
Fontaine, 1982).

The luminosity variations are believed to be caused by temperature
variations due to nonradial g-mode oscillations (Robinson, Kepler, and

Nather, 1982; Kepler, 1984b). The variations are, in most cases,
multiperiodic with periods in the range of 100 — 1,200 5. In some cases,
a few periods coexist in a small period range and the amplitude of the
light variation shows a complex beat phenomenon. These closely spaced
periods may be produced by the rotational “m-splitting” (see Sections 4

and 19). Inspecting Table 10.1, we notice that the periods of the DAV
stars are divided roughly into short period and long period groups. This
is seen more clearly in Fig. 10.2, where the peak-to-peak amplitudes are
plotted against the periods of the DAV stars. The peak-to-peak
amplitudes of the DAV stars in the long period group are systematically
larger than those in the short period group. The cause of this grouping is
not clear, although it may be related to the mode trapping caused by
compositionally stratified envelopes of the DA white dwarfs (Winget,
Van Horn, and Hansen, 1981).

Pulsational properties of the DAV stars may be largely classified
into three groups. One is the group of small amplitude variables such as
R548 and 6226-29, whose pulsations are mainly governed by one or two

periods accompanied by a few closely spaced periods. Second is the
group of the intermediate amplitude variables such as GD154 and
BPM31594, whose light curves are relatively regular and are explained

by one period with its harmonics. Probably, the main period consists of
two or three very closely spaced components. The third group is the
large amplitude group such as HL Tau-76, G29-38, and G38-29, whose
light curves are complex; several periods as well as their harmonics are
excited simultaneously. In what follows, we describe the observed

characteristics of the light curves for a representative star of each group.
The variability of the DA white dwarf R548 (ZZ Ceti) was first

discovered by Lasker and Hesser (1971). They found that R548 had a

main period of 213 s and a secondary period of 274 s. Osaki and Hansen
(1973) and Brickhill (1975) demonstrated that these periods are
consistent with the periods of nonradial g1- and gz-modes for l = 2.
Later, Robinson, Nather, and McGraw (1976) demonstrated that the
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Table 10.] The variable DA white dwarfs (ZZ Ceti variables).
 

 

 

Name V B-V b—y G—R U—V Te” Amp Periods“) Refs.“
(mag) (mag) (mag) (mag) (mag) (K) (mg) (8)

G226-29 12.14 .069 —0.36 0.31 12,300 0.02 109 (1)
L19-2 13.75 0.25 12,300: 0.04 193,114 (2)
6238-53 15.51 —0.30 0.61 0.01 206 (3)
R548 14.10 0.20 .029 —0.37 0.50 12,500 0.02 213,274 (4)
6185-32 13.00 0.17 .091 -0.33 0.42 12,000 0.02 215,141 (5)
G117-B15A 15.52 0.20 .029 —0.41 0.37 12,900 0.06 215,304,271 (6)
GD385 15.13 0.19 .053 —0.39 0.38 11,800 0.05 256 (7)

GD66 15.6 0.22 —0.31 10,800 0.08 272,301,813 (8)
0207-9 14.64 0.17 .071 0.06 318,557,292 (9)
GD99 14.55 0.19 .064 —0.36 0.39 12,000 0.13 480:,590:,260: (10)
BPM31594 15.03 0.21 0.21 617,403 (11)

HL Tau-76 14.97 0.20 —0.31 0.51 11,300 0.34 746,626,663 (12) (13)
PG 2303+243 15.5 .09 —0.31 0.37 0.11 795,901,623 (14)

BPM30551 15.26 0.29 0.18 823 (15)
R808 14.36 0.17 .090 —0.34 0.41 11,900 0.15 830,513 (10)
0255-2 16.04 —0.34 0.46 0.28 830,685 (16)
G191-16 15.98 0.03: .070 —0.31: 0.44: 12,400: 0.28 883,588 (5)
03829 15.63 0.16 .060 —0.34 0.54 11,200 0.21 926,1020 (17)
G29-38 13.10 0.20 .054 —0.37 0.46 11,700 0.28 933,820,671 (17)
GD154 15.33 0.18 —0.29 0.51 11,600 0.10 1186,780 (18)

a) Harmonics are not included. (6) Kepler et al. (1982)
b) References for the pulsation periods. (7) Kepler (1984a)

(8) Fontaine et al. (1985b)
L19-2=MY Aps (9) Robinson and McGraw (1976)
R548=ZZ Ceti (10) McGraw and Robinson (1976)
GZ38-53=GR 538=LP66-262 (11) O’Donoghue (1987)
BPM31594=VY Hor (12) Page (1972)
R808=Gl80-23 (13) Fitch (1973)

(14) Vauclair, Chevreton, and Dolez

(1) Kepler, Robinson, and Nather (1983) (1987)
(2) O’Donoghue and Warner (1987) (15) McGraw (1977)
(3) Fontaine and Wesemael (1984) (16) Vauclair, Dolez, and Chevreton
(4) Stover, Hesser, Lasker, Nather, and (1981)

Robinson (1980) (17) McGraw and Robinson (1975)
(5) McGraw et al. (1981) (18) Robinson, Stover, Nather, and

McGraw (1978)

two periods in the light curves of R548, one at 213 s and one at 274 s,
vary in amplitude and in phase, and that the amplitude and phase
variations are strictly periodic, with periods of about 1.5 days. A portion
of their light curve and the power spectra of the light curve of R548 for
three consecutive nights are reproduced in Figs. 10.3 and 10.4,
respectively. The periodic amplitude- and phase-modulations of each of
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the two oscillations are explained by the beating of two very closely
spaced pulsation frequencies; in other words, each of the oscillations
actually consists of a pair of pulsation modes, and the individual
pulsation modes are constant in both amplitude and phase. Combining
all the data available, Stover et al. (1980) obtained the following four
periods (and amplitudes in mag): 213.132605 s (0.007), 212.768427 5
(0.0044), 274.250814 s (0.0049), and 274.774562 s (0.0034). The beat
periods are 1.44122 days for the 213 8 pair and 1.66528 days for the 274 s

pair. With these periods, the observed light curves are almost
completely reproduced.

The existence of closely spaced periods is naturally accounted for
by the m-splitting of nonradial pulsations due to the stellar rotation (see
Section 4). If the difference between the m-values of the two adjacent
frequencies is one (Am = 1), the rotation period is approximately equal
to the beat period. Then, the rotation period of R548 is about 1.5 days.
If we adopt a typical radius, 9 X 103 km, we obtain the equatorial
rotational velocity of about 0.4 km 8“.

Similarly very closely spaced periods have been obtained for
GD385 (Kepler, 19843), for which the beat period is 3.7 days, and for
6226-29 (Kepler et al., 1983), for which the beat period is 0.72 days.
Attempts to detect the period change due to the cooling evolution of the
white dwarf have been made for some stars in the short-period group
because they have relatively simple light variations. The cooling time is
expected to be of the order of 109 yr. Only the upper limits of the period
change have been obtained. Among them the smallest upper limit
obtained so far for the DAV stars is ldH/dtl S 9.9 X 10'15 for
Gll7-B15A by Kepler, Winget, Robinson, and Nather (1988), which
corresponds to the lower limit of the timescale of the period change of 7
X 108 yr. We expect that the cooling time of a DA white dwarf will
actually be measured using the nonradial pulsations in the near future.
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Fig. 10.4 Power spectra of the light curves of R548 for three consecutive nights, after
Robinson et al. (1976).

Some DAV stars show non-sinusoidal but relatively regular light
curves. A representative example is GD154, whose light variability was
discovered and studied extensively by Robinson et al. (1978). A part of
the light curve of GD154 is shown in Fig. 10.5 and the power spectrum is
shown in Fig. 10.6. The peak-to-peak amplitude is about 0.1 mag. The
light variation is dominated by a period of 1186 s and its harmonics.
Also, there exist (1/2 + j) v0 periods, where v0 is the pulsation frequency
of the main pulsation; v0: 1/1186 8", and j = 1, 2, . Interestingly,
1.5vo frequency is common in several medium to large amplitude DAV
and DBV stars. Such pulsation is probably excited by nonlinear
coupling with the main pulsation.

Robinson et al. (1978) reported that for the first nine nights the
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light curves and their power spectrum are similar to that shown in Fig.
10.5 and Fig. 10.6, respectively, but on the tenth night the amplitude of
the main frequency decreased significantly and 1.5v0 pulsation domin-
ated the light curve. There are two possible explanations for this

phenomenon: beating and nonlinear mode switching. If the main
pulsation with frequency V0 consists of two (or more) pulsations whose

frequencies are so closely spaced (by the rotational m-splitting) that

these are not resolved, the decrease in the amplitude of the main

pulsation on the tenth night may be explained by the beating with a very
long beat period. Another explanation is to assume that nonlinear
coupling among the modes shifts the pulsation energy from v0 mode to
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Fig. 10.5 The light curve of GD154 after Robinson et al. (1978).
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Fig. 10.7 Light curves of the largest amplitude variable white dwarf, HL Tau-76.

Abscissa marks are every 200 s (after Warner and Nather, 1972).

1.51/0 mode. More extensive photometry is necessary to determine
which (or what other) mechanism is appropriate to explain the
pulsational behavior observed in GD154.

The variability of a white dwarf HL Tau-76 was first discovered by
Landolt (1968). The peak-to-peak amplitude of the light variations of
this star is the largest among the known DAV stars (Table 10.1); it
amounts to 0.34 mag. A beautiful light curve of this star was obtained by
Warner and Nather (1972), and a portion is reproduced in Fig. 10.7.
This complex light curve is accounted for by several periods (Page,
1972; Warner and Robinson, 1972; Fitch, 1973). Other than HL Tau-76,

G29-38, G38-29, R808, and GD99 may be classified into this group.
Many of the frequencies may be explained by the harmonics including
(0.5 + j)v0 frequencies and their rotational splitting of a few main
pulsations. The difference in pulsational properties between this group
and the previous group is that several main frequencies are excited in
the former and one main frequency is excited in the latter. More
extensive observations are necessary in order to understand completely
such complex light curves.

10.2 Variable DB White Dwarfs
Although the light variation of the first DAV star HL Tau-76 was
discovered accidentally (Landolt, 1968), the light variation of the first
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DBV, GD358, was discovered during a search for a variable DB

(helium envelope) white dwarf itself. In the study of the excitation
mechanism of the DAV stars, Winget, Van Horn, Tassoul, Hansen,

Fontaine, and Carroll (1982a) predicted the existence of pulsating DB
white dwarfs, whose pulsations are excited by the effect of the partial
helium ionization zone. After an extensive search, Winget, Robinson,

Nather, and Fontaine (1982b) actually found that a DB white dwarf,
GD358, does pulsate. Since this discovery, four other DBV stars have
been found. The known members of the DBV stars are listed in Table
10.2. The DBV stars are located in the temperature region of 23,000 K
5 eff 5 27,000 K (Liebert, Wesemael, Hansen, Fontaine, Shipman,

Sion, Winget, and Green, 1986; cf. Koester, Vauclair, Dolez, Oke,

Greenstein, and Weidemann, 1985). For this range of the effective

temperature, HeI absorption is maximum at the surface, which indicates
that the excitation of the light variation is related to the partial
ionization zones of helium.

Periods of the light variation range from ~ 1000 s to ~ 100 s. The
pulsational properties seem to change with the length of the main
periods; i.e., pulsations are simpler for stars with shorter main periods.
The light curve and its power spectrum for GD358 are shown in Figs.
10.8 and 10.9, respectively. The light curve shows apparent beat
phenomenon indicating multiperiodic pulsations. Its power spectrum
shows the existence of more than 28 modes between 952 s and 142 s, in

contrast to the existence of only a few periods for the DAV stars and the
DOV stars (see below). This difference may be caused by the difference
in the composition stratifications between the DA and the DB white
dwarfs. These pulsation frequencies are divided into several groups
which contain several nearly equally spaced frequencies. The frequency
distribution is probably a combination of a dense frequency spectrum of
g-modes and rotational m—splitting.

Table 10.2 The variable DB white dwarfs.
 

 

 

Name V B— V b—y T9,, Amp. Periods Refs.

(mag) (mag) (mag) (K) (mag) (S)

PGI351+489 24,000 0.16 489,333 (1)
PG1456+103 23 ,000 0.11 657,793 ,425 (2)
PGI654+160 25,000 0.18 851—149- (3)

GD358 13.65 —0.11 —.049 27,000 0.30 952—142 (4)
PG1115+158 25,000 0.11 1000:—106: (1)

(1) Winget Nather, and Hill (1987) (3) Winget, Robinson, Nather, and
(2) Grauer, Bond, Green, and Liebert Balachandran (1984)

(1988) (4) Winget et al. (1983)
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Fig. 10.8 The light curve of DBV star GD358, taken from Winget et al. (1982b).
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Fig. 10.10 The light curve of DBV star PG 1351+489 after Winget et al. (1987).

The light variation of the DBV star PGI351+489 discovered by
Winget et al. (1987) gives another extremum of the degenerate
variables. A part of the light curve is reproduced in Fig. 10.10. Like the
light variation of the DAV star GD154 (Figs. 10.5 and 10.6), the light
variation of PGI351+489 is extremely regular, and is dominated by a
single period of 489 8 (v0 2.04 mHz) and its harmonics. The light
variations are so regular that Winget et al. (1987) even obtained a mean
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pulse shape by superposing many pulses. It is interesting to note that, as
in some DAV stars, there are frequencies of V'—‘-’ (i + 1/2) v0 (1' = 1,2,...)

which are common to the large and intermediate amplitude nonradial
pulsators of the degenerate variables. The 489 s period corresponds to a
nonradial g-mode with ~ 15th radial order if I = 2 is assumed. The
frequency spectrum around such high radial order g-mode pulsations is
densely populated. It is not known why a single frequency is selectively
excited in PGI351+489 and so many frequencies are excited in GD358,

PG1654+160, and PG1115+158.

10.3 Variable Hot Pre-White Dwarfs (PG1159 Variables)

The first DOV star, PG1159 — 035 (= GW Vir), was discovered by
McGraw, Starrfield, Liebert, and Green (1979). At present, five DOV

stars are known, including a planetary nebula nucleus, K1-16, whose
luminosity variation was discovered by Grauer and Bond (1984). These

stars are listed in Table 10.3. Their spectra are characterized by the
presence of He II and C IV absorption lines and the absence of Balmer
lines. The spectra indicate that these objects are in the pre-white dwarf
stage with extremely high effective temperature (higher than ~ 100,000
K) and high surface gravity (Wesemael, Green, and Liebert, 1985).
Although the radii of these stars are uncertain, the observed periods are
believed to be high radial order nonradial g-modes (n > 40 if I: 2 is
assumed; Starrfield, Cox, Kidman, and Pesnell, 1984; Kawaler,

Hansen, and Winget, 1985a). The pulsational properties are similar to
those of the short period DAV stars. The light curve of the prototype
star PG1159 - 035 is shown in Fig. 10.11, which is taken from Winget,
Kepler, Robinson, Nather, and O’Donoghue (1985). Because of the
high luminosity of these stars, the time scale of the period change due to
the evolutionary change of the stellar structure is expected to be shorter
than that for the DAV and DBV stars. Actually, Winget et al. (1985)

Table 10.3 The variable hot pre-white dwarfs (PGllS9 variables).
 

 

Name V B—V b—y G—R U—V Te” Amp. Periods Refs.

(mag) (mag) (mag) (mag) (mag) (K) (mag) (S)

PGZl31+066 16.63 —0.36 —0.21 —0.79 0.10 386,413 (1)
PG0122+200 17.90 —0.73 —0.81 0.10 404,444 (2)
PGl707+427 16.69 —0.81 —0.84 0.13 450,333,493; (1)
PG1159—035 14.84 —0.37 —0.71 —0.78 0.08 516,539,451 (3)
K1—16 15.04 —0.38 >80,000 0.04 1698 (4)
 

(1) Bond, Grauer, Green, and Liebert (3) Winget et al. (1985)
(1984) (4) Grauer and Bond (1984)

(2) Bond and Grauer (1987)
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Fig. 10.11 The light curve of DOV star PG 1159—035 (GW Vir) after Winget et al.
(1985).

obtained dH/dt = (1.2 i 0.1) X 10’”, which corresponds to an evolu-
tionary time scale of (1.4 i 0.1) X 10" yr.

10.4 Cataclysmic Variables

Cataclysmic variables are eruptive variables which from time to time
exhibit sudden luminosity increases in various scales. They are usually
divided into three classes: (1) novae, (2) dwarf novae, and (3) nova-like
variables. All the cataclysmic variables form close binary systems with
periods ranging from ~ 1 hr to ~ 2 days, each of which consists of a
white dwarf, an accretion disk, and a low mass star. Many short period
light variations of cataclysmic variables are also reported. Recent
reviews on the short period variations are found in Cordova and Mason
(1982) and Warner (1986). The period range extends from ~ 7 s to ~
1,200 s. These short period light variations are grouped into three types:
(1) extremely stable pulsations observed for DO Her (nova), (2) quite
coherent oscillations seen in dwarf novae during outbursts, and (3) the
quasi-periodic oscillations, also seen in dwarf novae outbursts. The
stable pulsation of DO Her is now believed to be caused by a radiating
beam from the rotating white dwarf illuminating the surface of the
accretion disk (Petterson, 1980). The rate of change of period, dH/dt =
—8.1 X 10"13 obtained by Balachandran, Robinson, and Kepler (1983),

is explained as the spinning up of the white dwarf by accretion, which
supports the above picture. The periods of the coherent and quasi-
periodic oscillations of the dwarf novae change with the luminosity of
the system. The period is shorter when the star is brighter. This change
of the period makes it less convincing to explain the light variations by
nonradial pulsations of the white dwarf itself. These pulsations are
believed to be caused by the accretion disk (possibly nonradial
pulsations in the accretion disk).

The absence of nonradial pulsations of the white dwarf itself in the
cataclysmic variables is consistent with the fact that the effective
temperature of white dwarfs in cataclysmic variables is higher than the
blue edge of the DAV stars. The surface composition of the white dwarf
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in the cataclysmic variables is, in many cases, hydrogen rich, because
the mass donor has a hydrogen-rich envelope. There are a few
exceptions, in which the donor has no hydrogen. In such a case the
central accreting white dwarf must be a DB white dwarf. The effective
temperature of the instability strip of the DBV stars is much higher than
that of the DAV stars. It is possible that such exceptional helium
cataclysmic variables show nonradial pulsations if the effective tempera-
ture of the white dwarf enters into the instability strip for the DBV stars.
Wood, Winget, Nather, Hessman, Liebert, Kurtz, Wesemael, and

Wegner (1987) recently found a candidate for such a phenomenon, a
helium cataclysmic variable PGl346+082 which consists of two de-
generate stars. This star shows, in some phase of the cataclysmic
variations, 200 to 400 s light variations whose light curve is very
reminiscent of the DBV stars. In such phase the effective temperature
seems to be consistent with the DBV stars.

11. Oscillatory Motions of the Sun

11.1 Five-Minute Oscillation

In 1960, Leighton and his co-workers (Leighton, Noyes, and Simon,

1962) discovered that the solar surface was almost entirely covered with
vertically oscillating elements. This oscillatory motion was called the

“five-minute” oscillation, as its period was near five minutes. Since
then, extensive observations of the five-minute oscillation have been

made by various researchers. In the very early studies, the five-minute

oscillation was thought to be excited locally by overshooting of
convective elements (observed as “granules”) into the stably stratified
photosphere from below. However, as more and more observations
were accumulated, it became clear that the five-minute oscillation was

independent of granules. Instead, these oscillations have been identified
as superposition of eigenmodes of the sun—that is, many of the
nonradial p-modes of the sun are somehow excited and observed as
five-minute oscillations. Furthermore, it was found that the sun is

oscillating even in radial modes with periods near five minutes. It was
also shown later that the brightness on the solar disk varies with the
period near five minutes that is associated with the oscillatory motion.
Stein and Leibacher (1974) reviewed early observations and theoretical
models of the five-minute oscillations before the oscillations have been
recognized as the eigenmodes of the sun.

In order to see how the five-minute oscillations look, we reproduce,

in Fig. 11.1, a velocity and a brightness plot as functions of time and
position on the solar disk which were obtained by Musman and Rust
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(1970) and Nishikawa, Hamana, Mizugaki, and Hirayama (1986).
Several features of the five-minute oscillation are apparent in the figure.
Oscillations are almost always present to some degree. When large
oscillations are observed, they begin and end with small amplitudes, and

a maximum is reached only after some period. That is, they do not start
abruptly as would be expected in the case of “excitation” by single
overshooting granules. Rather, it appears that a steady oscillation is

always present and that transient large-amplitude “wave trains,” which

last four to five cycles, are superposed. Although the typical horizontal
scale for amplitude coherence is of the order of 5 ~ 10 Mm, occasionally
phase coherence occurs over a distance as long as 30 Mm.

There has been some confusion and contradiction concerning the
horizontal scale of oscillating elements. Rather small horizontal scales
(z 2 Mm) for oscillating elements were reported in early observations,
but much larger scales (even to the solar diameter scale) were indicated

in recent observations. This inconsistency is thought to be caused by a
confusion of (small-scale) granulation velocity fields and oscillatory

velocity fields. It is thus important to distinguish these two velocity
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Fig. 11.] (Left) Vertical velocity variation with time for points along a scan line on the
solar surface separated by intervals of 3 arcsec (2.2 Mm) obtained by Musman
and Rust (1970). The distance between the curves for adjacent points is equal
to a velocity of 400 m 5". (Right) Intensity variation with time in the image
compressed into one dimension (5450 A, FWHM of 400 A) obtained by
Nishikawa et al. (1986). Each curve is separated by 2.26 arcsec and 0.08% in
the intensity fluctuation. (The radius of the sun is 0.696 X 10" km, and the
angular diameter of the sun viewed from the earth is 32 arcmin.Thus, 1 arcsec
on the solar disk corresponds to 725 km; i.e., l arcsec = 0.725 Mm.)
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fields clearly. For this purpose and for a comparison with theory, the
most useful is the so-called diagnostic diagram in which observed
powers are shown as a function of horizontal wavenumber kh and
angular frequency 0. The wave natures of oscillations are clearly seen

from the location of powers in that diagram. The diagnostic (kh,
(7)-diagram has been discussed and used extensively in geophysics (see,
e.g., Eckart, 1960), and it was first discussed in the context of waves in

the solar atmosphere by Whitaker (1963). Before presenting power

spectral observations, we give a brief explanation of the diagnostic
diagram below.

Let us consider the wave propagation in a plane isothermal
atmosphere under a constant gravitational field. The pressure p0 and

density p0 of a static isothermal atmosphere are well known to vary with
height 2 as

po. po 0C eXp(-z/Hp), (11.1)

where HP 5 p0 /(p0g) = 9.3 T0 /(11g) = const. is the scale height, g the

gravitational acceleration, T0 the temperature, 11 the mean molecular

weight, and g: the gas constant, and the subscript 0 is used to signify

undisturbed quantities. The linearized system of equations in hydrody-

namics of adiabatic perturbations allows a simple solution of plane
waves for velocity v, the pressure variation p’, and the density variation
p' of the form

v, p’, p' 06 exp (2; ) exp[i(ot + khx + kzz)], (11.2)
P

 

where x stands for the horizontal coordinates. The exponentially

growing factor with height in equation (11.2) arises so as to conserve
wave energy in vertical direction since the density p0 in atmosphere
decreases with height.

The angular frequency a and the horizontal and vertical wavenum-
bers kh and kz must then satisfy a dispersion relation (see Eckart, 1960,
p.107; Whitaker, 1963; cf. Chapter 111, Section 15) which is given by

(a2 — 0.3,.)012 — (k,,2 + k,,2)c202 + kh2c2N2 = 0, (11.3)

where c2=ypolpo = y 92 TO/po, and y and c are the ratio of the specific
heats of gas and the sound velocity, respectively. The quantity 0“ is the
acoustic cut-off frequency and N is the Brunt-Vaiséiléi frequency. They
are given by

 = C = 33o... p 26 (11.4)
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and

N = §x/y—1 (11.5)

for the isothermal atmosphere. The acoustic cut-off frequency is slightly
greater than the Brunt-Vaisala frequency, and Oac = 1.02 N for y = 5/3.

Equation ( 11.3) may also be written as

czki = (a2 — 03..) + k,2,c2(N2 - 02)/02. (11.6)

If a and kh are given, the above equation determines kzz. If k22 > 0,

waves can propagate vertically. On the other hand, if k22 < 0 no waves
can propagate, and the energy density perturbation decreases exponen-
tially with height (evanescent waves) if no wave flux is coming from
above. This situation is most conveniently shown in the (kh, o)-diagram
of Fig. 11.2. The diagnostic (kh, 0)-diagram is divided into three

regions: (1) kz2 > 0, denoted “P”, where modified acoustic (pressure)
waves can propagate, (2) k22 > 0, denoted “G”, where modified gravity
waves can propagate, and (3) k22 < 0, where waves are evanescent. The

straight line with o = khc in the figure shows the “Lamb waves” first

discovered by Lamb (1932); they represent vertically evanescent but

horizontally propagating acoustic waves. The Lamb wave is closely
related to the f-mode which separates the p-modes from the g-modes.

The solar atmosphere is by no means isothermal, and, strictly
speaking, the wave nature cannot be discussed locally. However, the

diagnostic diagram is still helpful in approximately representing the
wave nature of the five-minute oscillations. The critical acoustic cut-off
frequency 0m. varies with the inverse square-root of temperature To.

 

 
0 '0.

Fig. 11.2 Diagnostic diagram for the plane isothermal atmosphere. The quantity k} is
positive in the hatched region (G) and in the cross-hatched region (P), while it
is negative in the other regions.
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Thus the heighest acoustic cut-off frequency (and also the highest
Brunt-Vaisaléi frequency) occurs at the temperature minimum in the
solar atmosphere where aac z 0.034 s”, which corresponds to a critical

period of oscillation of about 185 8.
Let us turn to observations of power spectra in the two-dimensional

(kh, 0)-diagram. Figure 11.3 illustrates one of such power spectra
obtained in early periods, reproduced from the work of Frazier (1968).

It is immediately apparent from the figure that there are two distinct
regions of power: low wavenumber (k), z 1 Mm'l) oscillatory power
with periods near five minutes, and high wavenumber (k), z 2 ~ 4
Mm’l), nonperiodic low frequency power which corresponds to the

granulation. Thus the five-minute oscillation and the granulation are
very clearly separated in the diagnostic (kh, o)-diagram. We can also see
that the power of the five-minute oscillation falls on the region of
evanescent waves in the diagnostic diagram for the upper photosphere.
The horizontal scale in Frazier’s observations was rather limited (i.e.,
the observational lower limit of wavenumber k}, z0.6 Mm‘l) because of
the small total area of observations, but recent observations with longer
base lines and/or two-dimensional observations of solar disk yield
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results for power of the five-minute oscillation with much lower

horizontal wavenumber (see Chapter VII).
The observational fact that the five-minute oscillations fall in the

evanescent wave regions of the diagnostic diagram for the photosphere
implies strongly that they are standing eigenmodes of the sun—in
particular, acoustic eigenmodes trapped in the subphotospheric regions.
That is because standing eigenmodes are trapped waves that are
reflected at the two boundaries of the system. The fact that the observed

oscillations are evanescent (and thus non-propagating as waves) in the
photosphere means that the photosphere can act as a reflecting
boundary for the five-minute oscillations. The word “evanescent”

sometimes seemed misunderstood in the past, but it simply means that
the energy of oscillations is contained largely in the subphotospheric
regions and the energy density, p v2, decreases exponentially with height
within the photosphere. It does not mean that the amplitude of velocity
v itself decreases with height. Indeed, it is possible that v increases with
height because density p decreases exponentially with height more
rapidly than the energy density.

Two separate maxima at periods of 270 s and 350 s are seen in
Fig.11.3, and this was interpreted as indicating two eigenmodes of the

sun by Ulrich (1970). The statistical reliability of Frazier’s observations

for the two peaks was, however, questioned by various observers
because of the rather low resolution of his observations in both space
and time. Later, Deubner (1975, 1977) and Rhodes, Ulrich, and Simon
(1977) demonstrated by observations with high resolutions in wavenum-
ber and frequency that powers of the five-minute oscillation are
concentrated in several distinct ridges in the (kh, o)-diagram, and these

observed ridges agree very well with the positions of theoretical
nonradial p-modes of the sun. Figure 11.4 reproduces the two-
dimensional power spectrum of the five-minute oscillation in the (kh,

a)-diagram obtained by Deubner (1977). Also shown in the figure are
the locations of the theoretical nonradial p-modes of the sun calculated
by Ando and Osaki ( 1975), which form a series of many nearly parallel
ridges (one for each overtone, n). The general pattern of observed
powers closely resembles the theoretical ridges, and thus the five-
minute oscillation is now interpreted beyond doubt as the nonradial
p-modes of the sun. The eigenmodes first identified by Deubner (1975)
and Rhodes et a1. (1977) are nonradial p-modes with degrees I z 200 ~
1000. Recent observations resolving the oscillations into individual

modes (e.g. , Libbrecht, Popp, Kaufman, and Penn, 1986) show that the
velocity amplitude of each of p-mode is of the order of 10 cm 8“. These
modes are, however, occasionally in phase with each other, and the
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superposition of many modes with such minute amplitudes transiently
leads a velocity field as large as 500 m $71. On the other hand, when
most p-modes are not in phase, superposition of these modes turns to a
very small amplitude velocity field. As a consequence, the oscillations
apparently look like Fig. 11.1 in the case of observations with low
resolution in space and time. It is seen in Fig. 11.4 that theoretical ridges
tend to deviate above the observed ridges. There still remain small
discrepancies between the observed frequencies and the theoretical
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Fig. 11.4 (kh, a)-diagram of velocity fluctuations (Doppler shifts of the Fe I 6270.2 line)
sampled at 105 5 intervals over half the solar diameter (from Deubner, 1977).
The diagram represents an average of the spectra obtained from four
observing runs of 5 hr 50 min each. The heavy dashed lines outline the top of
the ridges observed in the domain of the 300 s oscillations. The solid lines show
theoretical eigenfrequencies of p-modes by Ando and Osaki (1975).
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frequencies based on even the most up-to-date theoretical models of the
sun. The discrepancies between theory and observation are thought to
be caused by some uncertainties in the solar equilibrium model used in
the theoretical calculations, and the observed oscillations are now used

to observe the solar structure just as we examine the earth’s interior

using seismic waves (see Chapter VII).
In the late 1970’s, Isaak and his colleagues in the Unversity of

Birmingham were attempting to measure the gravitational redshift of
the sun by comparing the solar absorption lines with the corresponding
lines produced in the laboratory, using the integrated sunlight over the
whole disk (Brookes, Isaak, and van der Raay, 1978). Although the

variation in the observed shift of the solar absorption line relative to the
laboratory was attributable mainly to the diurnal motion of the earth,
there existed residuals which showed a fluctuation with amplitude
smaller than 1 m s"1 and a period of about five minutes (Fig. 11.5).
Power spectrum analysis of the data reveals many peaks with almost
equal distance of 67 ,qu. The observations performed simultaneously at
two distant sites showed that the small amplitude oscillations are of solar
origin (Claverie, Isaak, McLeod, van der Raay, and Roca Cortés, 1979,

1981a,b). However, nonradial p-modes with high degrees such as I z
200 ~ 1000, which were identified at that time as five-minute

oscillations, cannot be a source of the oscillations detected in the

integrated sunlight, because the oscillation patterns of such high degree
modes are so small that their contributions to the integrated sunlight
over the whole disk cancel each other out. Rather, the whole-disk

measurements are sensitive only to modes with low degrees such as I z 0
~ 4. The shortness of the periods implies that the oscillations discovered
in the integrated sunlight are p-modes and their radial orders n should
be large since the degree I must be low. According to the asymptotic
theory (Tassoul, 1980; see also Section 16), the angular eigenfrequency

on, of such a high order p-mode with a low degree I (n>> l -- 1) is, to first
order, given by equation (9.1), which means that frequencies, VE 0/211,
of high order p-modes with even and odd I alternate with a separation of
110/2, which corresponds to the observed spacing of 67qu. The
Birmingham group’s observations were confirmed by an independent
observation performed at the South Pole by the Nice group (Grec,
Fossat, and Pomerantz, 1980, 1983), who used a technique similar to

that of the Birmingham group. Observations from the South Pole are of
great advantage in obtaining long strings of uninterrupted observational
data, which are necessary to secure high resolution in the power
spectrum. Indeed, Grec et al. (1980, 1983) succeeded in measuring the
Doppler shift using integrated sunlight over the disk for 120 hr without
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interruption. Their data yield higher resolutions in the power spectrum
than those given by the first-order asymptotic formula (9.1), and
individual p-modes with l and n have been resolved for each sequence of
l = 0, 1, 2, and 3. The Birmingham group also performed observations
from two distant sites (Tenerife and Hawaii) and combined these data to

get high resolution in the power spectrum and also resolved peaks of
individual p-modes (Claverie, Isaak, McLeod, van der Raay, Pallé, and
 

‘600

Tm 1400 Tu,
E 5.0- E

1’ r . h I! “200 3.
g 0.0 I I hr n I l ‘ 'g

21% ” (b) B
o o >
a: ‘5.0f 7;

3 V

" «-200
(a)

1—400  
 

8 910111213141516171819

Time GMT

Fig. 11.5 Variation in the observed Doppler shift of the solar absorption line obtained
using the integrated sunlight over the whole disk. The variation is attributable
mainly to the diurnal motion of the earth as shown by the smoother curve and
the scale on the right, but the residuals show a fluctuation with a period of
about five minutes and with amplitude smaller than 1 m s“. The scale for the
residuals is shown on the left. Taken from Pallé, Perez, Régulo, Roca Cortés,
Isaak, McLeod, and van der Raay (1986a).
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Roca Cortes, 1984). Figure 11.6 reproduces their power spectrum
obtained after a three-month observation run. Their results are also
confirmed by the measurements of the total irradiance variation of the
sun from the Solar Maximum Mission (SMM) satellite (Woodard and
Hudson, 1983a, b). The SMM satellite took the Active Cavity

Radiometer Irradiance Monitor (ACRIM) on board to perform
sensitive, broad-band measurements over the wavelength range car-
rying the bulk of the sun’s radiation flux. ACRIM can detect fractional
flux change as small as 0.01% occurring at intervals as short as two
minutes. Accumulating observational data for a long time span reduces
the noise level, and the signal-to-noise ratio increased to 106 or more.

Analysis of these data shows the luminosity variation on various time
scales and clearly presents the many sharp peaks in the power spectrum
in the “five-minute” range, which correspond to individual p-modes of
low degree 1 and high order n (Fig. 11.7). The relative amplitude in
brightness variation of each mode is of the order of AI/I ~ 10*.
ACRIM is observing the sun as a star, and hence the sun is now

regarded as a pulsating star showing a luminosity variation of a
millimagnitude level. Doppler shift measurements, using the modified
magnetograph at Stanford University (Scherrer, Wilcox, Christensen-

Dalsgaard, and Gough, 1982), have a different sensitivity to the

harmonic degree I, and they have detected global p-modes with l = 3, 4,

and 5.
It is convenient to use the so-called Echelle diagram to plot the

individual p-modes of low degree I, on which the string of frequency is
divided into constant segments which are placed in a vertical row. As a
result, eigenfrequency VEa/Zn is plotted as summation of v. and Av,
where V] and Av are the ordinate and the abscissa, respectively. To first
order, the asymptotic formula (9.1) predicts the equi-distant frequency

spectrum, and hence individual p-modes lie on a straight line on the

Echelle diagram. Figure 11.8 shows the eigenfrequency obtained by

various groups in the Echelle diagram with cut of 135 ”Hz. The general
pattern of observed frequencies are roughly in agreement with the
theoretical expectation, and the oscillations detected in the integrated
sunlight are now identified as high order p-modes with low degrees I.
There still remains, however, slight discrepancy between the observed

frequencies and the theoretically calculated frequencies. Figure 11.9
shows the variation of the frequency differences between I = 0 and l = 2
modes and between I = 1 and l = 3 modes. The upper panel shows the
results of the standard solar models by various groups, which deviate
systematically from the observed values that are shown in the lower
paneL
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The gap between low I and high I p-modes in detection of solar
oscillations was filled by Duvall and Harvey’s (1983) Doppler-shift
observation for velocity fields. They observed a one-dimensional solar
image produced by a cylindrical lens. By using the lens to average the
sun’s image in a direction perpendicular to its rotation axis, they
eliminated high-angular-order spherical harmonics to leave mainly
zonal harmonics with m = 0. Averaging the sun’s image in a direction
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and Rhodes (1983), (O) Shibahashi, Noels, and Gabriel (1983). (D) Lebreton,

Berthomieu, and Provost (1987). (After Gelly et al., 1988.)

parallel to the rotation axis, in contrast, leaves mainly information on

sectoral (Iml = 1) modes. By analyzing these data Duvall and Harvey
(1983) succeeded in identifying intermediate 1 p-modes near the
five-minute range. As a consequence, the sun is now found to be
pulsating in many p-modes with l = 0 ~ 1000. Figures 11.10, 11.11, and
11.12 show the diagnostic diagrams of the recent observational data by
Duvall, Harvey, Libbrecht, Popp, and Pomerantz (1988), where the
ordinate is v E 0/21r and the abscissa is the harmonic degree 1. The
tremendous number of detected eigenmodes of the sun provides us the
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possibility of using these eigenfrequencies to probe the interior of the
sun; this research field, which is now called helioseismology, will be

discussed in detail in Chapter VII.
Comparing the eigenfrequencies observed by SMM/ACRIM in

separate years (1980 and 1984), Woodard and Noyes (1985) noticed a
slight decrease in the eigenfrequencies of p-modes with low degrees.
Such long-term variation of the eigenfrequencies has been examined by
other groups, but the results are conflicting. Two groups reported a
slight increase of eigenfrequencies of low degree p-modes (Isaak,
Jefferies, McLeod, New, van der Raay, Pallé, Régulo, and Roca

Cortés, 1988; Rhodes, Woodard, Cacciani, Tomczyk, Korzennik, and
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Fig. 11.10 The (l, v)—diagram for the recent observational data in the range of 10 s l s
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Ulrich, 1988), while other two groups reached the opposite conclusion
(Gelly, Fossat, and Grec, 1988; Henning and Scherrer, 1988).

We can use frequency differences of modes having the same n and l
but different m to measure the solar rotation rate, in particular the
variation of the rotation rate with the depth. Let us consider nonradial
oscillations of the eastward- and westward-traveling waves with m = :1.
In a rotating star, those waves traveling in the same direction as the
rotation have higher frequencies than those traveling in the opposite

direction, and their frequency difference due to this rotational splitting
is, in the reference frame at rest,

A0 z 2|mlfl. (11.7)

Here the Cnrterm, which is due to the Coriolis force effect, has been

neglected, since it is negligible for high wave-number modes like the
solar five-minute oscillation (see Section 19). In the case of differential
rotation, D. in equation (11.7) may be understood as the angular velocity
of rotation averaged with the eigenfunctions of the relevant modes.
Since different modes are trapped at different depths, we can in
principle probe the variation of the rotation rate with depth. Duvall and
Harvey’s (1984) detection of the frequency difference between sectoral
modes and the corresponding zonal modes was soon applied to measure
the rotation rate in the sun. This is an example of the product of
helioseismology (see Chapter VII).

The observations described above are essentially one-dimensional
in space—that is, they are based either on the sunlight integrated over
some part of the solar disk or on a one-dimensional device (e.g.,
Reticon array). The fully two-dimensional observations of the solar disk

enable us to identify both the degree I and the azimuthal order m of a
mode. In order to perform such a two-dimensional observation, many
researchers devised various narrow-band filters and instruments such as

Fourier tachometers based on the Michelson interferometer (Brown,

1984), magneto-optical filters (Cacciani and Fofi, 1978; Cacciani and

Rhodes, 1984; Rhodes, Cacciani, Blamont, Tomczyk, Ulrich, and

Howard, 1988), Fabry-Perot filters (Rust, Appourchaux, and Hill,
1988), and birefringent filters in combination with a KD*P electro-
optical crystal (Libbrecht and Zirin, 1986). Identification of both the
quantum numbers I and m and measurement of eigenfrequencies of
various tesseral modes by means of these instruments can be used to
measure the variation of the rotation rate with the latitude in addition to
that with the depth. In the case of differential rotation with respect to
both depth and latitude, Q in equation (11.7) should be regarded as the
angular velocity of rotation averaged over both depth and latitude with
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the eigenfunctions of the relevant modes. Since the latitude at which a
mode, is concentrated is dependent on the azimuthal order m, we can
probe the variation of the rotation rate with latitude. Recent results will
be discussed in Chapter VII.

11.2 Long Period Oscillations

Several groups have reported that they have detected long-period global
pulsations of the sun, whose periods are in the range of g-modes. If the
identification of g-modes in the sun is real, it will provide important
information about the stratification in the radiative core of the sun (see

Chapter VII). However, the detection of long period oscillations has
itself not yet been established. Indeed, negative results for the existence
of these oscillations in the sun have also been reported by other groups,
and there have been controversies over the very existence of long period
global solar oscillations.

Henry Hill and his collaborators had been measuring solar
oblateness in order to test Einstein’s theory of general relativity over the
Brans-Dicke theory. In the course of their study, they discovered
fluctuations of solar diameter with a period near 50 min, together with

nine higher frequencies of oscillation (Brown, Stebbins, and Hill, 1978).

Later, they found some other long period oscillations whose periods are
in the range of those of g-modes, together with short period oscillations
in the p-mode range (Hill, 1985; Hill, Tash, and Padin, 1986). By

measuring diameters of the solar disk in various directions and taking
their correlation, they identified the degree 1 and the azimuthal order m.
The radial order n is estimated from the period after identifying the
degree I.

Severny, Kotov, and Tsap (1976, 1980, 1983), at the Crimean
Observatory, by modifying their magnetograph to measure the Doppler
velocity difference between the solar disk center and the limb, have

discovered periodic fluctuations in the difference between line of sight
velocities at the poles and the disk center with a period of 2 hr 40 min
and an amplitude of about 2 m S“. The magnetograph at Stanford
University has also been modified similarly, and the 2 hr 40 min
periodicity was confirmed by a group at Stanford (Scherrer and Wilcox,
1983). The joint observations by the Stanford and Crimean groups
showed that the oscillation lasts quite stably (Scherrer, Wilcox, Kotov,

Severny, and Tsap, 1979, 1980). There are some other peaks in the
power spectrum of the data of these groups, though the amplitudes are
smaller than the peak of the 2 hr 40 min periodicity. Delache and
Scherrer (1983) analyzed the Stanford data and tried the mode
identification of those components in the following way: According to
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the asymptotic theory, the period 17", of a g-mode with a low degree I (n
>> I E 1) is, to first order, given by

H", E (n+l/2+€)170/\/l(l + 1), (11.8)

with

f' _1

H0 E 2772 N/r dr] ’ (119)

where r- is the radius at the bottomoof the convective envelope and N is
the Brunt-Vaisala frequency. On the basis of this formula, Delache and
Scherrer (1983) searched for peaks havin uniformly spaced periods in
the power spectrum with respect to H/Vl (l + 1) by assuming I = 1 or 2
or 3 and parametrizing the value of 170, and found them. Frohlich and
Delache (1984) and Isaak, van der Raay, Pallé, Roca Cortés and
Delache (1984) also used the same technique to determine g-mode
oscillations from the low frequency spectra of the SMM data and of the
Birmingham group data, respectively. The values of 170 thus obtained
were 170 E 38.6 min from the Stanford data, 170 E 41.2 min for the

Birmingham data, and H0 E 38.6 min for the SMM data.

The detection and the modal analysis of these long-period
oscillations described above have not yet been well confirmed, and
there still remain controversies. More reliable observations in the future
will be necessary to confirm the existence of the long-period oscillations.





Chapter III

BASIC EQUATIONS AND
ADIABATIC OSCILLATIONS

12. General Remarks

The associative development of theory and observation is important in
astrophysics as in all other sciences. This importance has to be
particularly emphasized in the study of nonradial oscillations in various
types of stars, be ause much of the observational evidence is indirect or
requires theoreti al interpretation and analysis.

In this chapter, we first derive the basic equations of nonradial
oscillations of stars. The basic equations governing nonradial oscilla-
tions are equations of conservation of mass, momentum, and energy, as

usual (Section 13). The basic equations are then linearized for the
normal mode analysis of nonradial oscillation. There generally are
convection zones in stars. The coupling between convection and
oscillation is very complicated, and the treatment of oscillation in the
presence of convection is postponed to Section 20. The theoretical
treatment is also restricted in this chapter to a spherically symmetric
radiative star without rotation and magnetic field, except in Section 19.

The mathematical and physical properties of linear, adiabatic
nonradial oscillations are discussed in Sections 13—20. They are: the

orthogonality of the modes and the variational principle (Section 14),
wave trapping (Section 15), asymptotic WKBJ analysis (Section 16),
mode classification (Section 17), the numerical method (Section 18), the
influence of rotation and magnetic field (Section 19), and convection

(Section 20).
The Eulerian (fixed-position) perturbation of the gravitational

potential is generally small in nonradial oscillations. Theoretical
discussions become greatly simplified by the Cowling (1941) approxima-
tion in which it is neglected (Section 15). The physical justification for
the Cowling approximation is that the contribution of one part of the
medium to the gravitational potential perturbation is largely canceled in
nonradial oscillations by the contribution of the other part of the

85
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medium. The Cowling approximation is also good wherever the
homology invariant U (E 41rpr3/M,) of the stellar structure theory is
small, even for radial pulsations. In nonradial oscillations, the error

introduced by the Cowling approximation is not entirely negligible
(although small) for the low overtones (small n) of the dipole (l = 1) and
quadrupole (l = 2) g-modes. For the p-modes, the oscillation itself is
unimportant where the homology invariant U is large. We will use the

Cowling approximation for most of the theoretical discussions, since
simplicity is more desirable than accuracy. The numerical work,

however, does not need to be restricted to this approximation, as we can
take advantage of the electronic computer.

A high degree of adiabaticity has been argued for in the first
chapter in terms of the free-fall time and the Helmholtz-Kelvin time
given by

q, = (R3/GM)“’- = 0.443(M/M@)'“2(R/R®)3/2 hr (12.1)

and

W=GMz/(RL) = 3.1 x 107(M/M®)2(R/R®)‘ '(L/LQ).‘ 1 yr, (12.2)

where the symbols have their usual meanings. These are the dynamical

and thermal time scales of a star as a whole. The fundamental oscillation
time scale rose defined by the travel time of a sound wave from the

center to the surface is the same order of magnitude as the free fall time

tff because of the virial theorem describing the overall hydrostatic
equilibrium of a star. There are, however, two cases in which

nonadiabaticity is important and the time scales must be considered
locally. One is the stellar outer envelope, where the local thermal time

scale becomes comparable to or smaller than the dynamical time. The
other is the wave propagation region or the trapping zone in which the

excitation or damping mechanism operates. If the adiabaticity is

achieved locally to a high degree of accuracy, an approximation using

the adiabatic solution to estimate the growth (or damping) rate
(quasi-adiabatic approximation) can give the correct result. If not, the
full nonadiabatic treatment should be employed.

The local dynamical and thermal time scales are given by

rdyn = H/c and m, = Ksz/[c.(1 — [3)], (12.3)

where c denotes the speed of sound, Cal: the speed of light, K the opacity;
H stands for the characteristic length scale of oscillations, and it is given
by the smaller of the following two scales: the pressure scale height, Hp,
and the local wavelength of oscillations. The thermal time scale 13;, is

valid for the radiative zone where (Icp)—1 is the photon mean free path
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and ca.=(rcpH)—l is the average speed of photon diffusion (for optically
thick H, 1 — [3 denotes the ratio of the radiation pressure to the total
pressure). The factor 1 — fl is added to the expression of the thermal
time scale because it measures the ratio of the radiation energy density

to the total internal energy density of gas and radiation. The dynamical
time scale given above is valid for perturbation of pressure-wave type.
The reciprocal of the Brunt-Véiiséiléi frequency, N—l, is also a kind of
dynamical time scale, but it takes account of the degree of local
dynamical stability as well and is proper for perturbation of gravity-
wave type.

The degree of adiabaticity is measured by 01'”, compared with unity,
or, roughly, by the ratio tm/‘L'dyn, which is KpH(c/c*)/(1 — 6) for a
trapped wave mode. The adiabatic approximation is normally sufficient
to discuss the dynamical characteristics of the oscillations except in the
atmosphere. However, for the study of the nonadiabatic effects, the

numerical accuracy of the quasi-adiabatic approximation is not guaran-
teed in the outer envelope of a star, especially for giants and
supergiants. This has already been noticed by Zhevakin (1953), who
established the K-mechanism in the Hell ionization zone as the principal
cause of the Cepheid pulsation. In the present chapter, the dynamical
properties of the adiabatic oscillations will be discussed; discussion of
the nonadiabatic thermal properties will be postponed to the following
two chapters.

13. Basic Equation

13.1 Equations of Hydrodynamics

The basic equations that describe deformations and oscillations of a star
are equations of hydrodynamics. General discussions and derivations of
equations of hydrodynamcis will not be given here as they may be found

in various textbooks of fluid mechanics and astrophysics.

The basic equations of hydrodynamics are equations of conserva-
tion of mass, momentum, and energy, which are given by

% + V-(pu) = p, (13.1)

p(8_at + u-V)u = pf — Vp — de> + divéf, (13.2)

and

pT(.a—5: + u-V)s = p(EN + 5V) — V-FR, (13.3)
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where p denotes the density, p the pressure, T the temperature, u the

fluid velocity, 5 the specific entropy, (D the gravitational potential, 1' the
electro-magnetic and external forces, a the viscous stress tensor, 8N the
nuclear energy generation rate, 8V the viscous heat generation, FR the
radiative energy flux, V the gradient operator.

There are convection zones in most stars, either in the interior or in

the outer envelope. The convective motion in stars is considered to be in
a state of fully developed turbulence. When convection is present, the
treatment of stellar oscillation becomes rather difficult because the
separation of the velocity into convective motion and oscillation and
their mutual interaction are very complicated. We restrict ourselves to
the case without convection in most of this chapter. The treatment in the
presence of convection will be deferred and it will be discussed
separately in Section 20. Equation (13.2) is the Navier-Stokes equation
for a viscous fluid. However, the viscous term (the last term of the

right-hand side of equation [13.2]) is generally small in the stellar

interior, and we neglect it and also the 8V term in equation (13.3) in
most of this monograph. When convection exists, the turbulent viscosity
may be important. We also omit the term Iin equation (13.2) except for
some special cases and consider non-magnetic self-gravitating systems.

Equation (13.2) may then be reduced to the Euler equation for an
inviscid flow: °

p(8_at + v-V)v = —Vp — pVCD, (13.4)

where the velocity without turbulent convection is denoted as v in order
to distinguish it from the general form .of u that may include turbulent
convective velocity fields.

Supplementary equations are needed to complete the description of
a system. The first one of them is the Poisson equation that relates the
gravitational potential to the distribution of matter; it is written as

V24) = 47er, (13.5)

where G is the gravitational constant and V2 is the Laplacian operator.
The radiative flux is given by the radiative diffusion equation

 

FR = —KVT, (13.6)

where the radiative conductivity K is written in terms of opacity K as

_ 40C* 3
K — 3Kp T , (13.7)

a is the radiation density constant, and can the velocity of light. The
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remaining supplementary equations are equations of state giving p (p,
T) and S (p, T) and equations giving energy generation rate EN (p,T) and
the opacity K (p, T) for a given chemical composition. The latter four
equations will be introduced later, when they are necessary.

Let us now discuss the equilibrium state, upon which small
perturbations of oscillations are superimposed. Here we consider a
non-rotating, non-magnetic star without convection. By setting the time
derivative and velocity equal to zero in equations (13.1)—(13.7) (i.e.,
8/8t = 0 and no: 0), we obtain

—VPO — POV‘DO = 0, (13-8)

pOEN,O — V'FO = 0, (13.9)

V2420 = 4770,00, (13.10)

and

F0 = ‘KoVTo, (13.11)

where the subscript 0 denotes the unperturbed, equilibrium state.
Since the equilibrium state is spherically symmetric under the

present assumption, equations (13.8)—(13.11) are rewritten in the
spherical polar coordinates (r, 6, (1)) as the standard form of equations of

stellar structure:

 

 

 

dp _ _

dM, _ 2
dr — 4m p, (13.13)

dL, _ 2
dr — 4m peN, (13.14)

and

dT _ 3Kp 1 L,
7 — 4ac. T3 41rr2’ (13°15)

where

g = GAL and L, ='4rrr2F (13.16)

are the local gravitational acceleration and the radiative luminosity,
respectively, and M, is the mass within the sphere of radius r. Here the
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subscript 0 is omitted for simplicity.
Equation (13.15) is valid only when the energy transport is by

radiation. When convection is present, the convective energy flux must
be included. The energy flux is then the sum of the radiative and
convective fluxes:

F = FR + FC (13.17)

and

L, = 477r2(FR + FC). (13.18)

Convective flux results from an averaging process of energy equation
(13.3) over regions containing the turbulent eddies of maximum size. It
is most often described based on the so-called mixing-length formalism
of stellar convection.

13.2 Equations of Oscillation

Let us now derive basic equations of linear oscillations. To do so, we
consider the “unperturbed” equilibrium state of a star and superimpose
on it “small” perturbations. We assume in the linear theory that all

perturbations are sufficiently small so that only terms in the first-order

in perturbations are retained while those higher than the second are
neglected.

There are two different ways to express perturbation: the Eulerian
form and the Lagrangian form. The Eulerian perturbation is defined as
a perturbation of a physical quantity at a given position, denoted by
prime, while the Lagrangian perturbation is defined by that for a given
fluid element, denoted by a symbol 6. A physical quantity f is therefore
expressed by either

fl”) = fo(r) + f'(r,t) (13-19)

or

‘ f(r,t) = f(,(r(,) + 6f(r0,t). (13.20)

The Lagrangian and Eulerian perturbations are related to each other by

5f(r,t) = f'(r,t) + E'Vfo(r) (13-21)
to the first order in the displacement, 5,

E E r — r0, (13.22)

where r in equation (13.22) denotes the Lagrangian position variable of
a given fluid element which is at r = to in the equilibrium state. The

corresponding time variations are denoted by d6f(r, t)/dt and 8f '(r,t)/8t,
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where

d 8

and

dr

In the general case when the unperturbed state has a steady flow
with v =# 0, such as the case of a rotating star, we derive a relation

between the Eulerian and Lagrangian perturbations of velocity vector.
We first note that from the definition of v and E

, 6" V(r0+§) “ V000)

dr dro _ E
dt dt dt

7:; + (v-V)§

33?: + (WV); (13.25)R

We have therefore

v’ = 6V - (§-V)v0

= alt? + (WV); — (§-V)v0. (13.26)

This relation will be used later in the case of a rotating star.

When no motion exits in the unperturbed state (i.e., v0 = 0), we
have simply

. _ _ <95 _ dEV — 6v — at — dt . (13.27)

_ In what follows in this chapter, we write this perturbed velocity vector as
v unless there is confusion.

With the above preparations, the set of the linearized basic
equations is derived in the Eulerian form as follows:

:6 + V-(pov) = 0, (13.28) 
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[50% + Vp' + mm» + p'V<D0 = 0, (13.29)

a I I I

POTOECS + E'VSO) = (PEN) — V‘F , (13-30)

Vch’ = 41er’, (13.31)

and

F' = —K0VT' — K’VTO. (13.32)

Equations (13.28)-(13.32) are linear, homogeneous, partial dif-
ferential equations with respect to time t and space coordinates r for
perturbed variables with prime (such as p’, T’, ¢’, ...) and velocity
vector v (or displacement E). The coefficients of these partial differen-
tial equations include solely quantities at equilibrium such as p0, T0, ...,

which are functions of radial coordinate r only:

p0 = p0(r), T0 = T0(r), $0 = (1,009, . (13.33)

We may therefore separate the time t and write all the variables to be
proportional to exp(iat) as explained in Section 4.

In what follows, we omit the subscript 0 for equilibrium quantities
unless there is confusion. If we note v = 1'05, equation of continuity
(13.28) is written as

p' + v-(pg) = 0 (13.34)

01'

(5p/p + v-g = 0, (13.35)

while the equation of motion (13.29) is written as

—025 + pivp' + Vd>’ + %V<b = 0 (13.36)

or in radial and horizontal. components:

   

 

_ 2 1810' 84’ WE-0§,+p 8r + 8r + p dr —0 (13.37)

and

—025, + vi“: +4») = 0. (13.38)

Here

5 = (§n50,§¢)a 51 = (0,§e,§¢),
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and

V _ i( _3 Li)
i—r ’86’sin68¢

is the horizontal component of the gradient operator in the spherical
"polar coordinates. Eliminating 51 from equation (13.35) by use of
equation (13.38), we obtain

(Sp 1

7+—r2 3%

(13.39)

r2§,)+—V2 (%+¢')=0, (13.40)

where

2 _ i__1 _a( _88) 59—2].
Vl — r2 sin26 sinOa—H sin6 + 8412 (13.41)

The Poisson equation (13.31) is similarly written as.

13(2 88'
r2 8r 8r

Let us now express the density perturbation p' in terms of p’, 5,,
and (SS. From the thermodynamic relation (see equations [13.83] and
[13.89] below),

 ) + vfcp' = 4ter'. (13.42)

 

  

6p 1 6p pT—— = —— — 0 —6S, 13.43
p 1‘1 p d p ( )

where

_ alnp _ alnTrl _ ( amp )5 and Vad _ (—8lnp)5, (13.44)

we have that

p’ 1 p’ pT= _ _ A , _ 0 —6S, 13.45
9 F1 p E d p ( )

where the quantity A is ’the Schwarzschild discriminant preferentially
used by Ledoux (Ledoux and Walraven, 1958) to denote the degree of
convective instability (i.e., A > 0) or stability (i.e., A < 0), and it is
related to the Brunt-Véiiséiléi frequency N by

dlnp _ _1_dlnp

dr F1 dr °

Eliminating 6p and p' from equations (13.37), (13.40), and (13.42), we
obtain

A = —N2/g =  (13.46)
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 1(3+ ”_g)p’—(02+gA)§,+ 2f =gVadpTTas, (13.47)

       

   

 

p 8r F p

I 1_ 2 _1_dlnp p V2 p 1 ,/,—2 rs)+ T§.+(npag)p 02.4»

= Vadp—Tas, (13.48)
P

and

a 2 8 2 ,_ P' _ __ pzT(flarr a——+V)(D 41TGp(rlp A§,)— 477017,“, 68.

(13.49)

We similarly write the flux perturbation F’ from equation (13.32) as

, _ _ aT’ , dT
F, — Kar——K——d—r (13.50)

and

F: = —KViT'. (13.51)

Substitution of these expressions into equation (13.30) yields

10,0765: (psN) —i—(rZEHV(KT). (13.52)

The six equations [equations (13.47), (13.48), (13.49), (13.50),
(13.52), and (13.84) below] are the basic equations for linear nonadiaba-
tic nonradial oscillation with six variables [p’, T', 6S, 3,, (15’, and F,’]. In

the adiabatic approximation, the right-hand sides of equations (13.47),
(13.48), and (13.49) are neglected while equations (13.50)——(13.52) are
not needed, and the former three equations determine the three
unknowns E" p', and (15’.

13.3 Wave Equations in Radial and Angular Directions

Equations (13.47), (13.48), (13.49), (13.50), and (13.52) and a
supplementary equation (13.84) relating p', T’ and 6S (which is
obtained from a thermodynamic relation) are the basic equations. The
coefficients of these differential equations depend solely on r, and the
one and only differential operator with respect to the angular variables 0
and 4) is Vi. In this case, the separation of variables into radial and
angular parts is possible for all the variables, with the angular
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dependence of Y(6,¢) satisfying

[rzvf + A] Y(0,¢) = 0, (13.53)

where A is a constant. Similarly, the function Y(6,¢) admits the
separation into the product of a colatitude function (9(6) and an
azimuth function. The azimuth function should be exp(im¢) with an

integer m for a normal mode owing to the periodicity with respect to the
increase of 4) by 217. Thus, equation (13.53) is reduced to

m2d 2 d9 _d” [(1 u) d” +(A 1_M2 )9 0, (13.54)

where p=cos 6. The solution of this equation is given by Ferret’s
associated Legendre polynomial PJ"(]u) and Q3111) (see, e.g. , Whittaker
and Watson, 1965 ) with A = v (v + 1). However, the function 6 must
be regular and single valued for —1 s p s 1, and Q3111) is improper
because of a lOgarithmic singularity at u = 1. The function P3111) also
diverges at u = -1 unless v is an integer. Thus, we have (9(6) = P,”'(11)
with an integer 1. Further, the integer m must be chosen as |m| s 1, since
P{"(m is zero if |m| > 1. We have, finally,

YI"(6.¢) .. P','"'(u)e‘"'¢, (13.55)
where mE—I, —l+1,...,l-1,l, and

A = [(1 + 1) (lzinteger). (13.56)

With the normalization

2n n

/ / Yi"(6,¢) Y15"'(0,¢)sin6d0d¢=611'6mm'. (13-57)
0 o

the orthogonal functions

21+1 (l—Iml)!
271 (1+ Iml)!

form a complete set of normalized orthogonal functions called spherical
surface harmonics, where 611' and 6mm, are the Kronecker deltas. For a

normal mode, the variables take the following form:

P'(t.r, 9,4’) = P' (r) Yz’"(9,¢)ei°', (1359)
etc. Hereafter, we often use the same symbols to denote the radial part
of the variables, say p' (r), if no confusion will result.

The corresponding expression for the displacement vector 5 is given

by

 Y1"(0.¢)=(—1)<'"+""'>’2 ll’zle'W‘mt (13.58)
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6 a .
5 = [540, §h(r)8—6’ hmm] Ylm(9a¢)em'a (13-60)

where 5,, is given from equation (13.38) by

_ 1 p’ .5,, _ ??(? + <1). (13.61)

The spherical surface harmonics of! = 4 are illustrated in Fig. 13.1.
The sign in the gray regions is opposite to that in the other regions. In
other words, on a given sphere of radius r, at a phase of positive velocity
in the gray regions, the velocity is negative in the white regions. There
exist I [Iml azimuthal and (l — Iml) latitudinal] border lines, whichever
value the parameter takes. For a non-zero m, the pattern of oscillation
propagates with a phase velocity —0/m in the azimuthal direction.

Assuming the forms of 5,, p', (1”, (SS, T', and F,’ as given by like

equation (13.59), we obtain a set of ordinary differential equations from
equations (13.47)-(13.52) as follows:

   

 

i dp’ g I 2_ 2 df' pT

p dr +pc2p +0"0+)& rd=gVa6—S, (13.62)

ii 2 L dlnp _L_,2 p' _1(1+1) ,
r2 dr (r §r)+ F1 ' 5' (1 2 )pcz 02,.2 d5

= 172,977.53 (13.63)

   1d 2dd>’_l(l+1) ,_ p' J_v:
r2 dr (r dr) r2 (D 47TGP()OC2+ g Sr)

2

 

 

= —4nGVad ’0; as, (13.64)

dT' , ,dTK dr _ —F, KW, (13.65)

and

1d_(__r2F',) _l__(l+ 1)

r—2dr

where c = (I‘lp/p)“2 is the sound velocity. L, and N are the Lamb
frequency and the Brunt-Véiiséiléi frequency, respectively, and given by

iopTéS = (peN)' KT’, (13.66)
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lml=l

  
|ml=2 |m|=3 |m|=4

Fig. 13.1. Illustration of spherical surface harmonics Y,’"(6,¢) with l = 4; see also
Fig. 4.1.

2

2 = __’(’:21” (13.67)E‘

and

F1 dr dr

They have appeared already in equations (4.9) and (4.11). Equations
(13.62)—(13.66) are basic equations of linear nonadiabatic nonradial
oscillations and equations (13.62)—(13.64) are those of linear adiabatic
nonradial oscillations, with right-hand sides are neglected.

It is noted here that there exists a trivial solution to the basic
equations of oscillations besides ordinary nonradial oscillation modes
whose governing equations are discussed above. In this solution,
eigenfrequency o and all scalar variables are zero such that a = 0 and p' ,
T’, p’, (15’ = 0 but velocity vector v is non-zero. To see this, we must go
back to equations (13.28)-(13.32). We see from these equations that
there exists a steady flow solution which satisfies 1}, = 0 and

Vi-vi = 0, (13.69)

that is, a horizontal eddy motion confined on the spherical surface. The
solution of equation (13.69) is given by

V1 = V1 >< (Qer). (13.70)

where e, is a unit vector in the radial direction and Q is any scalar

  (13.68)
N2 = -gA = g(i dlnp dlnp).
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quantity. If we expand the scalar function Q by spherical harmonics as

Q = Z Qi"(r) Yz’"(9,¢). (1371)

we then have for each component of the horizontal eddy motions

vi" = (QF/r) (0. fi%, —%) Y,'"(6,¢). (13.72)

This form of solution is called a toroidal mode, while the ordinary

oscillatory modes with 0 =11: 0 described by equation (13.60) are called
spheroidal modes. Toroidal modes are steady eddy motions and not
oscillatory velocity fields, and thus are not of much interest in the case
of a non-rotating, non-magnetic spherical star, but they become
oscillatory modes in the case of a rotating and/or magnetic star. For a
more detailed discussion on spheroidal and toroidal modes, see
Aizenman and Smeyers (1977).

13.4 Some Useful Thermodynamic Relations

In treating the equations for nonradial oscillations we frequently need
thermodynamic relations among the perturbations of the pressure,
density, temperature, and entropy. Here, we summarize these thermo-
dynamic relations, which will be used frequently in this monograph (for
detailed derivations, see, e.g., Cox and Giuli, 1968, Chap. 9). In most

cases, the periods of the nonradial oscillations are much shorter than the

time scales of nucleosynthesis and material diffusion. Then, the

Lagrangian perturbation of the chemical composition is negligibly small.
This simplifies the thermodynamic relations very much. Therefore, in
this subsection we discuss the interrelations among the Lagrangian
perturbations of thermodynamic variables. The relations for the
Eulerian perturbations may be obtained by use of the relation (13.21).

If the chemical composition does not change, any thermodynamic

variable can be regarded as a function of two independent variables. If
the matter density, p, and temperature, T, are chosen as the

independent variables the pressure and entropy perturbations, 6p and
65, are written as

6p ,_ 6p (ST

and

(ST 6as = cv—T— — c.,(r3 — DTP’ (13.74)

where xp and x1 are defined by
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am amxp = (mgr and X, = (81ng (13.75)

the specific heat per unit mass at constant density, Cu, is defined by

8Scv — T (W); (13.76)

and an adiabatic exponent (F3 — 1) is defined by

_ = 819T _ flLr3 1- (amp )5 _ c. M. (13.77)

The last relation of equation (13.77) was obtained by using one of the
Maxwell relations of thermodynamics:*

—.

6T _ 1 8p6). — .2 (.5 >.-
If we regard the pressure, p, and temperature, T, as independent

variables, we have

fl an E

  

p = pp? — v1 T (13.79)

and
6p 6T

(SS = "Cp VadT + Cp—T—, (13.80)

where S

= alnp _1 //=_ alnp __x_T
pp—( alnp )T— Xp and vT— (alnT)p— Xp , (13.81)

and the adiabatic temperature gradient, Vad, and the specific heat per
unit mass at constant pressure cp are defined as

_ alnT _ as
Vad = (m)s 311d Cp — T (8T)p. (13.‘82)

Furthermore, if we regard pressure, p, and entropy, S, as the

independent variables, we have

 

* This relation can be derived as follows: From the first law of thermodynamics, we have

dU = NS + p dp,"—2p

where U denotes specific internal energy. Differentiating the above relations in terms of S
and p, we obtain

82U 82U (8T) _ i ( 8p)
apes asap S — 2 p
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— = —— — —6S 13.83
p r1 P Cp ( )

and

(ST _ 1‘2—1 6p (SS

where
F E (alnp) = (alnp) + (alnp) (alnT

‘ amp 3 amp T aInT ,, amp )5

= 26. + xr(F3 — 1) (13.85)
and

1'2—1= alnT _ _ 13—1

F2 — (alnp )s _ "d _ I“, ' (13.86)

The ratio of the specific heats, y, can be written as

cv 8T ,, 85 p

135) (3) (LT) (11”) =99) (i)apTaTsapsaSTapTaps

= L = ppm, (13.87)
X0

where the following cyclic relations are used:*

(841(2) (fl) = -18T p as T 6p 5
and (13.88)

6T 6p 8S _

(KL (fi)s($)r— — 1

Using equations (13.77), (13.86), and (13.87), the quantity vflcp in
equattion (13.83) can be expressed as

E = P_T
cp ad p (13.89)

Let us now consider a mixture of ideal gas and radiation. The
internal energy per unit mass, U, of such a system is

 

" Or the following expressions can be used:

(8S)(8T) _ a(s,p) a(T,p) _ a(T,p) a(s,p) _ (_ag) (i)

W W ’ a(r.p)a(S.p) ‘ a(T.p)a<s.p) ' 6p 8p
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1 k T + 174, (13.90)
7,. - 1 um“ p

where k, ,u, mu, and a denote the Boltzman constant, mean molecular

weight, mass of the atomic mass unit, and radiation density constant,
respectively, and yg is the ratio of the specific heat for the ideal gas; yg =
5/3 for a monoatomic gas. The total pressure is given as

U:  

 

 
 

_ _ k 1 4
p _ pgas + prad _ 11m7pT + ?aT . (13.91)

For such a mixture of ideal gas and radiation we have

1 4 — 3
XT=4—3.3, Xp=fi, [5:3, UT: 16 'B, (13.92)

' 1 12(1— 13) k
Cu = + , 13.93

[Y8 _ 1 fl .umu ( )

 

,1: B + (4—3/3)2(y.— 1)

 

 

19 +120. —1)(1—13)’ (13°94)
_ = (4-3B)(7 — 1) -

r2 1 182+30g—1)(1519)(4+/3)’ (”'95)
and

_ = (4—3/3)(yg-1)
r3 1 B +120. -1)(1-fi)’ (”'96)

where

8 E pgas/p. (13.97)
The internal energy and the pressure of a completely degenerate

gas are functions of density only and have no temperature dependence.
Therefore, 'we have xT = 0 and v7: 0 for such a gas. There are two

extreme states for a degenerate gas: nonrelativistic (long7) and
relativistic degenerate (logp27) states. For the nonrelativistically and
completely degenerate gas, we have

U 0C p2’3 and p at p5’3. (13.98)

Then, we have
5

Xp =r1 =3 (13.99)

for nonrelativistic complete degeneracy. For the relativistically and
completely degenerate gas, we have

U 0c p“3 and p 0c p‘”3 (13.100)

so that
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4
xp=F1=§. (13.101)

Using thermodynamic relations, the Brunt-Vfiisala frequency, N,
defined by equation (13.68) is transformed to a form which is
convenient for the numerical calculations. By definition, the square of
the Brunt-Véiiséiléi frequency, N2, is given by

d In p 1 dlnp2__ _____g_ __
N_ gA r(dlnr F1 dlnr)

=—g(‘““p+%)= gv (dlnp — -1—), (13.102)  

 

dr 7 dlnp P]

where V(r) is the homology invariant defined by

= _ dlnp _ GM,p
V(r) — dlnr — rp . (13.103)

Since we are dealing with the spatial derivatives, we have to take into
account possible change in the chemical composition. The matter
density p may be written as

p = p(p, T, Xi), (13.104)

where X,- (i = 1, 2, ..., 1) represents the mass fraction of an element 1',

which satisfies the condition
I

2X,- = 1. (13.105)
i=1

This relation reduces the number of the independent variables X,- to
(I—l). Then, we have

   

  

 

dlnp _ (alnp) + (alnp)

dlnp — alnT 9A1, 3111p T,X,.

l-1

alnp dlnX,+ ( ) , 13.106
72=1 alnXi T,p,xi(fi)dlnp ( )

where
_ dlnTV = dlnp . (13.107)

Furthermore, using the relation

(alnp) _(8lnp) +(alnp) (8S)

alnp T',)(i alnp S,X,. 8S p,Xi alnp T,X,.

1 (alnp

=r_1 _ alnT

   

 ) Vad, (13.108)
Paxi
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we obtain

  

l—1

2: gV[ _ (alnp) dlnXi]
N —r 6,07,... 10+; alnx, T’,),XW dlnp . (13.109)

In the fully ionized region, the effect of the spatial gradient of

chemical composition can be represented in terms of the gradient of the
mean molecular weight, 14; i.e.,

’ l — 1
2 (alnp) dlnXi = (alnp) dlnp (13.110)   

 

[:1 alan' T,p,XI.(*l.) dlnp alnp pm dlnp’

where
I .

1 1+2,- ~ 3 Z
I — 2 A.- ~ 2X + TY + 7 (13.111)

with the mass fractions of hydrogen, X, helium, Y, and heavy elements,

Z. Therefore, if the pressure in the fully ionized region is approximated
by ideal gas plus radiation pressure, the square of the the Brunt-Vaiséila

frequency, N2, is reduced to

 N2 = % 4;}3B(Vad — V.) + V“, (13.112)

where

_ dlnu
V“ — m. (13.113)

Equations (13.110) — (13.112) should not be used in a partially ionized
region, because the gradient of mean molecular weight in the partially
ionized region does not represent the gradient of chemical composition.

We have N2 = 0 in the completely degenerate and chemically
homogeneous region because UT = xp’xp = 0 there.

14. Linear Adiabatic Oscillation as 3 Boundary Value Problem

14. l Adiabatic Oscillation
The dynamical properties of stellar oscillations can be studied assuming
that the specific entropy is conserved during the oscillations; i.e., 6S =
0. In this approximation the perturbations of density can be expressed
by the perturbation of pressure such as

6p = (Sp/c2 or p’ = p'/c2 + §,pN2/g. (14.1)
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The basic equations (13.62)—(l3.64) are reduced to

1 d—(r2%, -%E.+(1-0L’—) pl— 1(l+1) d”, (14.2) 

  

r2 dr pc2 azr2

1 dP+ 8 2_ 2 _ddb’p d, +cp—2P+(N— o)§.= d, . (14.3)
and

   L_‘L 2d<1>’_l(l+1) ,_ p’ N_2r, dr (r dr) 2 <D—47er(pc2+ g 15,). (14.4)

These equations with proper boundary conditions give a well-posed
eigenvalue problem with an eigenvalue 02. We will consider the
boundary conditions at the center (r = 0) and at the surface (p = 0),
where the above equations are singular.

Near the origin r ~ 0, the quantities appearing in the above
equations behave as follows: g ~ 0, L? at r‘z, p ~ const, c2 ~ const, N2
~ 0, and N2/g ~ 0. Therefore, equations (14.2)—(14.4) can be
approximately written as

 

 

 

1 dp’ _ 2 d¢l ~
?_dr 0 E,- + dr ~ 09 (14'6)

and

d 2 d(D’ , ~W(r dr ) 1(1 + no ~ 0. (14.7)

The general solution of equation (14.7) can be expressed as a linear
combination of the two terms which are proportional to Fa“) and r’,
respectively. Because (15’ must be regular at the center, we adopt the
solution (15’ 96 r'. Then, we have

d(b’ [<D’

dr r

Similarly, by considering the regularity at the center for the variables 5,

and (p’/p+ d”) in equations (14.5) and (14.6), we obtain the relations, £5,
at r"1 and p' at r’, or, equivalently,

  = 0 at r ~ 0. (14.8)

 l p’ , _g, E(p +q>)_0 at r 0. (14.9)
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Equations (14.8) and (14.9) provide the boundary conditions at the
center (see Section 18.1 for a different way to derive these equations).
Since, as is easily verified, equations (14.2)—(14.4) are equivalent to a
fourth-order differential equation with a single variable, the other two

boundary conditions must be set at the surface. The physical boundary
conditions are complicated because of the nonadiabaticity in the
atmosphere. The oscillation must be solved in an atmosphere under
conditions of no mechanical and thermal flux from outside. The
relations among the variables at the base of the atmosphere where the
adiabatic approximation is good must be taken as boundary conditions
for the oscillation of the interior. However, we will postpone the
discussion of physical boundary conditions to later sections and restrict
ourselves here to the so-called zero-boundary conditions.

We assume that the pressure and the density become zero at the
surface r = R. With oscillations, the stellar surface may be distorted, but

still no pressure is acting from outside, and therefore,

(5p = 0 at r = R. (14.10)
Also, since p = 0 outside, equation (14.4) gives (15’ 0c PU“), or

dd) + (1+ 1)
dr r

Equations (14.10) and (14.11) are the zero-boundary conditions (see
Section 18.1 for more general discussion on the outer boundary
conditions). Equations (l4.2)—(14.4) and the boundary conditions
(14.8)-(14.11) form a boundary value problem with 02 as an eigenvalue.
Since neither the equations nor the boundary conditions involve the
index m of the spherical surface harmonics, the eigenvalue 02

degenerates (21 + 1)-fold with respect to m.
The outer boundary condition (14.10) implies V - E E 0 at the outer

boundary. Combining this condition with equation (14.2), we obtain

  d” = 0 at r = R. (14.11)

 P, = at r = R. 14.12E gp ( )

If (15' is neglected (Cowling approximation; see Section 15.1 below),
equation (14.12) is reduced to

2 3a R
E, — Eh—GM at r — R, (14.13)

where the relation (13.61) was used. Equation (14.13) implies that the
horizontal motion is much larger than the vertical motion for low
frequency oscillations, or vice versa.
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14.2 The Orthogonality of Eigenfunctions

The basic equations of linear adiabatic nonradial oscillations are
reducible to a fourth-order differential equation, which is not a
Strum-Liouville type, in contrast to the linear adiabatic radial pulsations
(Section 14.4 below). In this section we shall discuss the orthogonality
and the self-adjointness of linear adiabatic nonradial oscillations.

We will first show the orthogonality of eigenfunctions such that

R

é*°§er=6nn’6Il’6mm’/ p[|§r|2+l(l+1)|§h|2]r2dr. (14-14)
0

where E and 5 denote displacement eigenvectors belonging to the (n, l,
m)- and (n’, l', m’)-modes, respectively, and an asterisk represents the
complex conjugate. From equation (13.60), owing to equations (13.57)
and (13.58), we obtain

M R

/0 E*-§er=/ pé:§,r2dr//Y{"(6,¢) Y,¢"'(0,¢)*sin 6d6d¢

aY'" aYm’* 1 81”" aY'I"* .
+/Rp§h*86§hr2dr//[I 86 +sin26 34’! 8:1) s1n6d6d¢ 

= 6II'6mm’R/ plgr§r+l(l+1)éh*§h]r2dr' (1415)

It now remains to show that

R
Inan/ p[§,§,*+l(l+1)§h§h*]r2dr=0 for n=l=n’. (14.16)

0

_ Taking the scalar product of the equation of motion (13. 36) with
p5, we obtain

—a2p§*-§ + &*-(vp' + p'vq> + de>’) = 0. (14.17)

The following transformation will follow from equations (14.1)—(14.4)
or their equivalent:

62p? - g— v - [p'&* + pcp'é’“ + (4flG)—l¢'V&5'*]

= E“ - (vp'+p'V¢+pV¢') — v- [p’Ek + pcp'é’“ + (4nG)‘1<D'Vd>’*]

= —p'V-;=*+gp'é:—42702?)—(4nG)—‘vo(¢'V<I3'*)
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*

.515
p

= pI -*_d_p-*) 2 -:1: -l I 2-I*_ . 7 ~I*
p02 (5P dr 5r +N p§,§,+(4rrG) [¢Vd5 V (@15de )]

 =p +%p'i5:‘+~2p§.é:+ ¢'p'*—(4nG)"V-(¢'Vd3'*)
 

=p%p’p’*+N2p§,é,*—(4flG)_1Vd5'-V<i)'*. (14.18)
Integrating this equation over the whole volume of a star, we obtain

021ml: ip'pm +N2péréfi‘ -—1—V<D’ -V<13'* rzsin 6drd6d¢
pc2 4770

—(4rrG)'l(l+ 1) [rd5'43'*] , (14.19)
r=R

where the last term is due to the following relation:

// V°[p’&* +214»? + (4flG)_l¢'V<1>’*]r2sin 6drd6d¢

= (4770)” [//( #6836") sin6d6d¢]
r r=R

= —(41rG)'l(l+ 1) [rab'cis'*] , (14.20)
r=R

by virtue of the zero-boundary conditions. The right-hand side of
equation (14.19) is symmetric with respect to the eigenfunctions of the
(n, l, m)- and (n', l', m')-modes, therefore, must be equal to 0’2*I,mr:

(o2 —0’2*)I,,,,' = 0. (14.21)

For the case of n=n’, this equation shows that 02:0“; i.e., the

eigenvalue is real. When n =19 n', 02 =19 0’2, in general, since the equations
and the boundary conditions depend on n. Therefore, we obtain the
orthogonality relation:

Inn, = 0 for n E n’, (14.22)

if 02 E 0’2. This means that the the system of equations (14.2)—(14.4) is
self-adjoint.

Although there is no mathematical proof, to the authors’ know-
ledge, the numerical results so far published suggest the nonexistence of
degeneracy among the eigenfrequencies of adiabatic nonradial oscilla-
tions of a spherical star (i.e., 02 = 0’2 only if n = n'). Even if the
degeneracy exists, it is well known that an orthogonal set of functions

can always be constructed (e.g., Schiff, 1955, § 10).
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The eigenmodes with 02< 0 are the dynamically unstable
g’-modes and those with 02 > 0 are the oscillatory modes. The set of
eigenfunctions is usually assumed to form a complete set together with
toroidal modes with 02 = 0 (see, e.g., Aizenman and Smeyers, 1977).

The relation between equation (14.18) and the wave energy
conservation is noteworthy. For n = n' and l = l', the first term in the
first line of equation (14.18) correspond to the kinetic energy of waves
and the divergence term corresponds to the energy flux. The first and
the second terms in the last line of equation (14.18) correspond to the
potential energy of a pure pressure wave and that of a pure gravity
wave, respectively. The third term in the last line of equation (14.18)
may be regarded as the potential energy for perturbations caused by
self-gravity, which plays an important role in the Jeans instability. This
problem will be discussed again in Chapter V.

14.3 Variational Principle

It was first shown by Chandrasekhar (1964) that the eigenvalues of the
adiabatic nonradial oscillations obey a variational principle. In this
subsection we confirm the fact by using an operator representation for
the linear adiabatic nonradial oscillations (Lynden-Bell and Ostriker,

1967; Cox, 1980). The formal solution of Poisson’s equation for the

Eulerian perturbation of the gravitational potential (13.31) is

(V(r) = —G/M. (14.23)

Using equation (14.23), the continuity equation (13.28), and the
adiabatic relation (14.1), the equation of motion (13.29) may be written
as

025 = z (E). (1424)
where a linear operator $(E) is expressed as

2(aapizwpw-(bé)—in(e-Vp)—pi\7(c2pv°§)

+V {G/ V"[p(x)§(x)ld3x}. (14.25)
IX -r|
 

In deriving the last term in the above equation, it was assumed that the
gas density p vanishes at the surface. Taking the scalar product of
equation (14.24) with p5“ and integrating it throughout the stellar
volume, we obtain
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02/ 9'5er =/ E*-£6(E)er- (1426)

Comparing equation (14.26) with equation (14.19) shows the Hermiti-
city of the linear operator 5g; i.e.

f0 [é*-z(s)ldM. =/0 [5-2(é*)ldM.. (14.27)

We note that since the zero-boundary condition was used in deriving
equation (14.19), equation (14.27) for the Hermiticity of 3 is valid
under the zero-boundary condition.

Now we apply a small variation on equation (14.26):
M

(02 + A02) /0 (5+ AE)* ' (5+ AE)er

= / (5+ A§)* - $(§+ A§)dM,, (14.28)

where A5 and A02 are the variations in E and the corresponding
variation in 02, respectively. Because of the linearity of the operator 3,
we have 56 (5 + A5) = 5g (5) + 5g (Ag). Using the Hermiticity of £5
and the relation ( 14.26) for the terms of 0 (A0) and discarding the terms
of O(Az), we obtain from equation (14.28) the relation

402/ ?°Eer=-02/ (?'A§+E'AE*)er

+/0 [5*-$(A§)+A§*°$(E)]er

M

= -2 Re { / (A3“)~[ozE-$(E)]er},(l4-29)
where Re means the real part of the indicated quantity. The right-hand
side of equation (14.29) is equal to zero if a is an eigenfrequency
satisfying equation (14.24). Thus, we have proved that the eigenfre-
quencies obey a variational principle. Thevariational principle indicates
that eigenfrequencies are determined more accurately than the eigen-
functions. This fact could be utilized to improve eigenfrequencies.

14.4 General Properties of Eigenfrequencies and Eigenfunctions

Some eigenvalues (square of oscillation frequencies) are shown in Fig.
14.1 for the polytrope with index 3 and 1'1 = 5/3. In this figure the
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square of the normalized eigenfrequencies w2 defined by

R3
2 = 2w -— a GM

are plotted against 1. There are two sequences of the eigenvalues. One
of them tends to infinity as n increases for a given I:

 (14.30)

0,,2 ——> 00 as n —> oo (p-mode), (14.31)

and the other tends to zero:

0,,2 —> 0 as n —> 00 (g-mode). (14.32)

For a given order n, the frequency is higher for the modes with larger 1.
Figure 14.2 shows the eigenfunctions for the radial displacement,

which are normalized at the surface for p-modes (solid curves) and at
the center for g-modes (dashed curves). It is apparent that the relative
amplitude of a p-mode (a g-mode) is large only in the outer (inner) part
of the star. The f-mode, which has no node in the radial variation of the

eigenfunction, has intermediate character between the pl-mode and the

 

 

    —0.40
0

Fig. 14.1 The square of the dimensionless eigenfrequency, w2(= 02R3/ GM), versus the
index I of spherical harmonics Y,"'(0,¢) for the adiabatic pulsations of the
polytrope with N = 3. The radial pulsations correspond to I = 0.
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Fig. 14.2 Eigenfunctions of nonradial l = 2 pulsations of the N = 3 polytrope are plotted
against the distance from the center. The solid curves are for the f- and
p-modes, which are normalized at the surface, while the dashed curves are for

the g-modes, which are normalized at the center.

 

gl-mode.
We note that a = O for the f-mode for l = 1. This mode corresponds

to the trivial solution which describes a parallel displacement of the

whole star. As is easily verified, a trivial solution exists for the set of
equations (14.2)—(14.4) for l = 1 satisfying the boundary conditions
(14.8)—(14.11):

5, = 5,, = const.

p = pg§,; i.e., 6p = O
> (14.33)

(15’ = -g.§,; i.e., 645 = O

02 = O. J 
This corresponds to the f-mode because there exists no node in the
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radial direction. According to the orthogonality (14.22) of the eigen-

funCtions, the existence of other nodeless eigenmodes is inhibited.
Thus, the solution ( 14.33) is the unique f-mode of] = 1. We note that if
the Eulerian perturbation of the gravitational potential is neglected (the
Cowling approximation; see Section 15.1), the nodeless eigensolution
with 02 4E O can exist even for l = 1. However, this solution is formal

and has no physical correspondence.

Detailed properties of the adiabatic nonradial oscillation modes
will be discussed in the following sections.

14.5 Adiabatic Radial Pulsations

Radial pulsation is the particular case with l = O of nonradial pulsation...
For radial pulsations equation (14.2) is reduced to

p’ 1 d_ ___ 2 ip62 - ,2 d, r 5,) + 626,. (14.34) 

Substituting equation (14.34) into equation (14.4) with l = O, we obtain

1 2 (14’ i 2 2 Q _ ,dr (r dr ) + 4nG[p dr (r 15,) + r g, dr — 0, (14.35)

where the relation Nz/g = —dlnp/dr — g/c2 was used. Integrating
equation (14.35) under the condition that d¢’/dr is non-singular at r = 0,
we obtain

d(b'

dr

Substituting equations (14.34) and (14.36) into equation (14.3) and
using the relations for equilibrium structure such as (13.12) and (13.13),
we finally obtain a standard differential equation of radial pulsations
[equation (58.1) in Ledoux and Walraven, 1958]:

7d;[rlpr4%(—§r—)] + {02pr4 + r3%[(31‘1 — 4)p]}( 5' )=0. (14.37)
r

 + 4770,05, = 0. (14.36)

 

This equation with the boundary conditions (14.9) with l = 0 and (14. 10)
fozrms a Strum-Liouville type eigenvalue problem with the eigenvalue
0 .

The mode with the smallest eigenvalue is called the fundamental
mode, F, whose eigenfunction has no node in 05 r s R. The modes with

n nodes are called the n-th harmonic mode, nH. The eigenfrequencies
increase as the number of nodes of the eigenfunctions increases, as
shown in Fig. 14.1. The properties of the eigenfunctions and eigenfre-
quencies are similar to those of nonradial p-modes.
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15. Trapping of Oscillations

The acoustic and gravity waves which are responsible for nonradial
oscillations are propagative in the radial direction only in the restricted
regions depending on the properties of the waves. The global nonradial
oscillations are standing waves which are formed by the reflection of the
waves at both sides of a propagative region. In other words, the
oscillations are trapped in a propagative region. The trapping of
oscillations is of fundamental importance in the theory of nonradial
oscillations.

15.1 Cowling Approximation

To discuss general properties of nonradial oscillations the Cowling
(1941) approximation (45’ = 0) is appropriate to use, since it has a
sufficient degree of accixracy and simplifies the treatment greatly. The
accuracy of this approximation is quite good for modes with large values
of n and 1.

Using the Cowling approximation reduces equations (14.2) and
(14.3) to

 

 

ii 2 _ i _ L_IZ p’ _
r2 dr ' ’3') c2 E, + (1 02)pc2 — 0 (15.1)

and

idp, g I 2 _ 2 _

p dr + pczl’ + (N (1)5, — 0. (15.2)

With the transformation of variables E, and p' to new variables 5

and 17 defined by

E- E rzgrexp(—v/0' édr) (15.3)

'Nz ) 2 (W )= ex — —dr =0 r ex — ——dr , 15.4n p p( [0 8 En p 0 g .( )

equations (15.1) and (15.2) result in a canonical form,

and

 

j—f= hr()— (L—gz — 1):": (15.5)
and

d 71 _
W ‘ 72111?) (”2 ' N2) 55’ (156)
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where

h(r) = exp[/(1:2— — —)dr2)] > 0. (15.7)

It should be noted that the equations of linear adiabatic nonradial
oscillations are not the Sturm-Liouville type even in the Cowling
approximation.

15.2 Local Analysis

Qualitative features of nonradial oscillations can be understood in the
local treatment, in which the coefficients of equations (15.5) and (15.6)
are assumed to be constant. In this approximation, we obtain

5'0), 1'70) cc exp (ikrr), (15.8)
where

k? = 0‘2c_2(02 — Lf)(o7- — N2). (15.9)

Equation (15.9) is the dispersion relation, which relates the wave

number to the frequency. The appearance of the Lamb frequency L,
[defined in equation (13.67)] and the Brunt-Vaisala frequency N as
critical frequencies should be noted. If 02 > L12, N2 or 02 < L}, N2, the
wave number k, is real, and k} > 0. In such cases, waves can propagate
in radial directions. If N2 > 02 > L} or L,2 > 02 > N2, the wave number
k, is purely imaginary, and k} < O. The phase of the oscillation is
spatially locked, and the amplitude changes exponentially with r. The
wave energy flui over the sgherical surface of radius r, which is 4m Zp’E,
and is proportional to 517*, also changes exponentially with r.
Therefore, if the propagative zone or a source of waves exist interior (or
exterior) to the imaginary k, region, the solution exponentially
increasing (or decreasing) with r should be omitted. Then the other
solution describes the wave which is reflected and spatially damped as it
goes into the imaginary k, region. The wave is said to be evanescent in
this region.

We now introduce the horizontal wave number k), by

= 1(1 + 1)/r2 = L,22/c, (15.10)

for there are l nodal lines on the spherical surface of radius r, and I (l +
1) instead of 12 is due to the spherical effect. The dispersion equation
(15.9) is rewritten as

4 — (N2 + k2c2)02 + Nzkhzcz = 0, (15.11)

where
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k2 = k3 + k3. (15.12)

Figure 15.1 illustrates the diagnostic diagram which represents the
relation (15.11) on the (k2,02)-plane. In the hatched (G) and
cross-hatched (P) regions, the quantity k3 is positive, while it is negative
in the other regions. For a given k,2 =\=0, equation (15.11) is represented
by two hyperbolas as shown in Fig. 15.1. The asymptotic lines are given
by 02 = N2 and 02 = czkz. With k3 = 0, we have

02 = N2 (15.13)

and

02 = czkhz. (15.14)

Equations (15.13) and (15.14) represent the dispersion relations of the
horizontally propagating gravity wave and the Lamb wave which is not
propagative in the vertical direction, respectively.

There exist two kinds of resto’r‘ing forces, pressure (mainly in the
region P) and gravity (mainly in the region G). In fact, for g —> O (and
hence N2 —> 0), one root of equation (15.11) in the region P is given by
02 —> czk2 and the other solution in the region G is given by 02 —->
Nzkhz/k2 —> 0. The former represents the acoustic wave due to the
isotropic pressure and the latter shows the anisotropic nature of the
gravity wave. As the radial wave number k, becomes larger, the

6’2

2—22

N2+ k'éc2

 

  
*3

Fig. 15.1 Schematic diagnostic diagram for gravitoacoustic wave. The quantity k3 is
positive in the hatched region (G) and in the cross-hatched region (P), while it
is negative in the other regions. The dispersion relation (15.11) is represented
by the two hyperbolic lines on this diagram.
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frequency of the acoustic modes becomes higher while that of the
gravity waves becomes lower.

The group velocity vg, and the phase velocity VP}, are given by

80 czo N2
Vgr—W— 20'2—(N2‘I‘C2k2) [kn kh(l—7)] (15.15) 

and

0' U
Vph = -k— = ‘l—(i—(kr, kh). (15.16)

For the limiting acoustic wave (g —-> 0, 0 = ck), we have

Vgr = vph = c(k/k), (15.17)

representing an isotropic nondispersive propagation. For the limiting
gravity wave (g —> O or c —> 00: incompressible, a = Nkh/k), we have

Nk, k Nk
Vgr = k3 (‘km TZ'kr) and Vph = —7(3—h(kn kh); (15-18) 

hence vg,T VP), and the vertical components are the same in magnitude
and opposite in direction.

It should be noted that equation (15.11) and Fig. 15.1 are not exact
even for the isothermal plane-parallel atmosphere [see equation (11.3)
and Fig. 11.2] in which k, (= k2) is really constant. However, the
qualitative aspects are well revealed in the present local treatment. In
particular, the dual character of nonradial oscillations in the stellar
medium, depending upon the frequency and the horizontal wave
number, should be noted.

15.3 Propagation Diagram

In order to visualize the condition of wave trapping in realistic stellar

models, a diagram in which L12 and N2 are plotted as functions of the
radial coordinate r should be instructive. The diagram may be called a
propagation diagram. A propagation diagram of the polytrope with
index 3 is shown in Fig. 15.2 for l = 2. The ordinate (02 denotes the
square of dimensionless frequency [w2 = 02/(GM/R3)], and N2 and 142
are measured in the same unit. In this figure thin horizontal lines
indicate the oscillation frequencies of several modes, and the small
circles on the lines indicate loci of the nodes in §,(r) (cf. Figs. 14.1 and
14.2). The nodes for the p-modes and g-modes appear, respectively, in
the P-type and G-type propagative zones, where k} > 0 [see equations
(15.8) and (15.9)]. This figure clearly shows that the p-modes and
g-modes are trapped in the P zone and the G zone, respectively. For
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Fig. 15.2 Propagation diagram for the polytrope with index 3 in the case of l = 2. Some
eigenfrequencies are indicated by thin horizontal lines, and the location of
nodes is shown by circles.

larger 1, the LIZ-curve is displaced upward corresponding to the factor
le/LLZ = l(l+1)/6, which explains the increase of (oz with l for
pn-modes (Fig. 14.1).

The behavior of L12 is qualitatively not much different from star to
star, being infinite at r = 0 and decreasing monotonically as r increases
except in the chromosphere-corona transition. But the behavior of N2

changes sensitively with evolution. In the following part we will discuss
the propagation diagrams and the properties of nonradial modes of
various stellar models.

15.3.1 Massive Main-Sequence Stars

Equation (13.112) indicates that the existence or nonexistence of
convection and the gradient of chemical composition largely influence
the distribution of N2 in the stellar interior. Therefore, the spatial
variation of N2 changes significantly as the star evolves. Figure 15.3
illustrates the propagation diagram of l = 2 for a 10M® zero-age
main-sequence (ZAMS) model. This model has a convective core and a
homogeneous chemical composition (Vu = O). The temperature
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Fig. 15.3. Propagation diagram for the ZAMS model of a lOMQ star in the case of l = 2
(X = 0.7). Taken from Osaki (1975).
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Fig. 15.4 Eigenfunctions of relative displacement in the radial direction §,/r for! = 2 for
the same model as Fig. 15.3. The normalization at the center is (l) (§,/r)c =
1.0 for g,- and gz-modes, (2) (§,/r)c = 0.1 for f-mode, (3) (.‘g,/r)r = 0.02 for
p,-mode, and (4) (§,/r)( = 0.005 for pz-mode. Note, however, that the energy
density of oscillation is proportional to p53 (from Osaki,]975).
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gradient is very close to the adiabatic value (V - Vad = 10"6 ~ 10-7) in
the convective core, and N2 is practically zero there. Figure 15.4 shows
the eigenfunctions of relative displacement in the radial direction §,/r for
1 =2 for the 10M® ZAMS model. Because of the existence of a relatively
large evanescent zone due to the convective core, the relative
displacement of a g-mode is maximum at r/R ~ 0.25—0.3 rather than at
the center, in contrast to the case of the polytrope with index 3 (Fig.
14.2).

As the star evolves, hydrogen is depleted in the central region as
the result of the nuclear burning, and a highly stable zone due to the
gradient of mean molecular weight develops. Figure 15.5 illustrates the
evolutionary change of the distribution of hydrogen abundance X as a
function of the fractional mass q (= M,/M) for a IOMQ star. The fully
mixed convective core in a massive star recedes with time, and the zone

with varying chemical composition is left in the position between the
outer edges of the present and the initial convective cores. This #-
gradient zone becomes wider as the star evolves. The central condensa-
tion increases rapidly. These features cause a characteristic change in
the NZ-curve—that is, a trapezoidal profile associated with the
u-gradient zone. Figure 15.6 shows the propagation diagram for the
models with XC = 0.48 and Xc = 0.07, where X6 is the hydrogen
abundance at the center. The II-gradient zone acts like a potential well
that may trap gravity waves. In these evolved models eigenmodes in the
frequency range between the two maxima of the NZ-curve possess a dual
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Fig. 15.5 The distribution of hydrogen inside a lOMQ star at various evolutionary stages.
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#13)], in the case I = 2 (from Osaki, 1975).

character such that they behave like gravity waves in the u-gradient
zone, but like pressure waves in the outer part of the star. Because of
this dual character classification of the nonradial modes of evolved stars
is not trivial. This problem will be discussed in Section 17.

The evolutional development of the ,u-gradient zone causes the
frequencies of low order g-modes to increase as the star evolves. An
example of this phenomenon is shown in Fig. 15.7(a), where the
dimensionless eigenvalues (oz of nonradial modes are plotted as
functions of the evolutionary age for a 16M® main-sequence star
(Aizenman, Smeyers, and Weigert, 1977). The g-modes move upward
rapidly with evolution, while the f- and p-modes at first remain fairly
constant in wz. As the gl-mode approaches the f-mode, the f-mode is
bumped by the gl-mode and the f-mode begins to move upward while
the gl-mode now occupies the position that was originally occupied by
the f-mode. The f-mode then bumps the pl-mode, and soon. Aizenman
et al. (1977) have shown that this phenomenon is essentially the same as
the “avoided crossing”. of modes of two coupled oscillators. One
oscillator is identified as a gravity-wave oscillation trapped in the deep
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decoupled modes (see text for detail).

interior and the other is a p-wave oscillation trapped in the envelope.
The avoided crossing is caused by the interaction between the two
oscillations. Simple crossings between a g-mode and the f- or a g-mode
would occur if the interaction between the two oscillations were
suppressed. In order to show this, Aizenman et al. (1977) calculated
eigenmodes for artificially modified differential equations. They drop-
ped the terms lep’/(02pc2) and 1(1 + 1) ¢’/(02r 2) in equation (14.2) to
obtain Ip-and Ir-modes, which are, respectively, the f— and p-modes,

decoupled from the g-modes. Decoupled g-modes, which were called
y-modes, were obtained by dropping the term 025, in equation (14.3).
The result is shown in Fig. 15 .7(b). The decoupled yl-mode now
intersects, successively, the (p-, 171—, and Irz-modes, and it is well

demonstrated in the figure that the mode “bumping” phenomenon (or
avoided crossing) in the original problem is due to the coupling between
the pseudo g-modes trapped in the u-gradient zone and the envelope f-
and p-modes.

During the avoided crossing, the characters of the two modes are
exchanged by the interaction of the two waves which occurs through the
tunnel effect in the evanescent zone. The evanescent zone acts as a
potential barrier. As the potential barrier becomes higher and/or wider,
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the coupling of the oscillations in the two zones becomes weaker. Thus
the coupling and hence the avoided crossing occur only when the
eigenfrequencies of the two modes are very close to each other. These
avoided crossing and mode-switching phenomena are common to the
nonradial modes in a broad sense (Osaki, 1975; Hansen, Aizenman, and

Ross, 1976; Ulrich and Rhodes, 1977; Francis, 1973; Jones, 1976).

15.3.2 Lower Main-Sequence Stars

The spatial variation of N2 in the ZAMS model and its evolutionary
change for a less massive star (M S 1.2MQ) are different from those for
massive stars, because a massive star with M 2 1.2MG has a convective

core and a radiative envelope, while a less massive star with M s 1.2MQ
has a radiative core and a convective envelope. Figure 15.8 shows the
propagation diagrams for a 1M9 star at the ZAMS stage (#1) and at the
advanced evolutionary stages (#2 and #3). Model #2 has an internal
structure close to that of the present sun. The LIZ-curves in Fig. 15.8 are
of model #2, but they do not differ much for different models.
Hydrogen burning through the p—p chain reactions results in the

radiative core and hence the smooth u-gradient zone, as shown in Fig.
15.9.

The condition of wave trapping in the outer envelope depends on
the structure of the atmospheric layers. The adiabatic approximation is
less adequate but still useful for most cases of interest. Figure 15.10 is a
propagation diagram of the sun with particular emphasis on the
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Fig. 15.8 Propagation diagram for models of a 1M0 star. The quantities N2 and L? are
measured in units of GM/R3. After Shibahashi, Osaki, and Unno (1975).
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Fig. 15.9 The distribution of hydrogen inside a 1M0 star at various evolutionary stages.
The propagation diagrams of these models are illustrated in Fig. 15.8.
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horizontal scale shows the relative radius (r/R) for the inside of the
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atmospheric structure, for which the Harvard-Smithsonian reference
atmosphere (Gingerich, Noyes, Kalkofen, and Cuny, 1971) is adopted.
Large values of N2 in the chromosphere and a minimum of L} in the
temperature minimum are the characteristic features of the propagation
diagram of the solar atmosphere. The solar 'five-minute oscillation ((02
~ 103) is trapped below the photosphere because of the large N2 in the
chromosphere. The solar five-minute oscillation will be discussed in

detail in Chapter VII (see Section 11 for the observational properties).

15.3.3 Giant Stars
The stellar structure of a giant star is characterized by a high density
contrast between the small size core and the extended but low density
envelope (which is sometimes called a “core-halo” structure). Figure
15.11 shows the propagation diagram of a giant star model with M =
5M0. We see from Fig. 15.11 that both N2 and L} increase greatly with
depth toward the center so that any eigenmode with moderate
frequency, 0, behaves like a gravity wave with extremely short
wavelength in the deep interior. The Brunt-Vaisala frequency is nearly
zero in the outer convective envelope, which penetrates into the deep
interior during the evolution along the red-giant branch. Another
important point to be noticed is that the width of the evanescent zone in
the envelope increases with increasing 1. Then, p-modes are trapped
more effectively in the envelope with increasing 1.

The radial wave number k, of a high order gravity wave in the core
is written as [see equation (15.9)]

N [1(1+1)]“2 _ N7— _k, = r 7k» (15.19)

The Brunt-Vaisala frequency N is very large (N2 ~ 107 in units of
GM/R3) near the center. For an envelope p-mode with a moderate
frequency (002 ~ 10), the number of nodes N8 in the core is estimated to
be

Ng ~ / k,dr/1r ~ 103%. (15.20)

The travel time, 13,, that it takes for a wave packet to traverse the core

and to return to the envelope is accordingly very long and is given by

dr k,
1,, ~ 2 / —|— ~ 2 —dr

core U8’9’ I core 0
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~ 31 k,dr/Ir ~ period X Ng, (15.21)
core

where 1!ng Stands for the radial component of the group velocity of high
order g-modes given in equation (15.18). On the other hand, the
damping time, tdamp, of nonradial oscillations in the core of a giant star

is very short (Tdamp ~ period; Dziembowski, 1971) due to strong
radiative dissipation. Obviously, this strong dissipation is due to the
extremely short wavelength nature of the gravity waves. Since the
damping time in the core is much shorter than the travel time, i.e.,

rdamp << rm (15.22)

the wave may be damped to a negligible intensity long before being
reflected at the center. In such a situation, standing oscillations
extending from the center to the surface are impossible (cf. Pesnell,
1984). However, there exists an evanescent zone between the core and

the envelope P-zone. This evanescent zone acts like a partially reflecting
wall for envelope p-modes, and thus “quasi”-standing wave oscillations

are formed. A method to treat such a quasi-standing wave in the
envelope will be discussed in Section 21.
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Fig. 15.1] Propagation diagram for a red giant model (5M0, log L/LO = 2.9, log T,” =
3.63) in the case of l = 9. The quantities N2 and L? are measured in units of
GM/R3 (after Shibahashi and Osaki, 1976b).
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Fig. 15.12 Propagation diagram for a cool 1M9 white dwarf (log L/LQ = -4.2, log T?”
= 3.83) in the case ofl = 2, where the stellar center is located at the origin (to
the right) of the horizontal axis (after Hansen, 1980). The location of radial
nodes for g- and p-modes are indicated by filled circles.

15.3.4 White Dwarfs
The propagation diagram of a white dwarf is characterized by the low
value of the Brunt-Vaisala frequency N in its interior due to strong

electron degeneracy, which is responsible for the long periods of the
g-modes of white dwarfs. A sample of the propagation diagram is shown
in Fig. 15.12 for a 1M9, purely radiative and chemically homogeneous
Fe white dwarf with log L/LQ = —4.2 and log Teff = 3.83. This figure is
based on Fig.2 in Hansen (1980). Note that the abscissa is log (1 — r/R),
resulting in placement of the inner part of the model to the right and
emphasis of the outer layers. In the case of complete degeneracy (i.e. , in
a zero-temperature white dwarf), stratification is neutral, and thus the

Brunt-Véiiséiléi frequency is exactly zero. Although in a real white dwarf
the internal temperature is finite and so is the Brunt-Vaisala frequency
N, the value of N is extremely low in the degenerate core. The
Brunt-Vaisala frequency increases drastically in the non-degenerate
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radiative envelope. (It drops to zero in the thin surface convective zones
due to the partial ionization of hydrogen and/or helium in a chemically
stratified white dwarf.) The loci of nodes of the eigenfunctions of some
g- and p-modes are also shown in Fig. 15.12. The low order g-modes of a
white dwarf tend to be trapped in the outer envelope. On the other
hand, the central concentration of a white dwarf is not high in general,

and the Lamb frequency L, varies gradually from infinity at the center to
near zero at the surface. Consequently, the p-modes of lower harmonic

degrees I have rather wide propagation zones (02 > N2, L12), and their
eigenfunctions have large amplitudes even in the deep interior. These
properties of the p- and the g-modes are opposite to those for the other
kind of star. The effect of a crystalline core of a cool white dwarf has
been investigated by Hansen and Van Horn (1979).

Figure 15.13 illustrates the evolution of a star to the white dwarf
phase. Losing most of its hydrogen-rich envelope in the asymptotic giant
phase, a highly evolved star moves blueward in the HR diagram. After
passing through the phase of planetary nebula nuclei, it enters into the
white-dwarf cooling sequence. As we discussed in Section 10, nonradial
g—mode oscillations are known to be excited in several phases of the
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Fig. 15.14 Periods in seconds of the (top to bottom) g., g3. f. p.. and pz-modes of

nonradial quadrupole oscillations (I = 2) as functions of stellar luminosity for
the 0.398MQ models (taken from Osaki and Hansen, 1973).

evolution from the planetary neblua nuclei phase to the cool white

dwarf phase (ZZ Ceti or DAV stars). As the evolution proceeds, the
core temperature decreases and the degree of the degeneracy of the
electron gas becomes higher, which decreases the Brunt-Vaisala
frequency. The stellar radius decreases during the pre-white dwarf stage
but remains almost unchanged during the white-dwarf cooling se-
quence. A decrease in radius tends to decrease the oscillation period,
while a decrease in the Brunt-Vaisala frequency tends to increase the
periods of g-mode oscillations. Therefore, as the star evolves, the period
of a g-mode oscillation first decreases in the pre-white dwarf phase due
to the effect of decrease in radius and then the period begins to increase
when the luminosity becomes low enough in the white-dwarf cooling

sequence. Figure 15.14 shows the periods of g2, g], f, p], and pz-modes

of l = 2 as functions of stellar luminosity for 0.398MQ white dwarf
models calculated by Osaki and Hansen (1973). For this model
sequence the turnover of the periods of g-modes occurs when the
luminosity is ~ 4L9. The luminosity at the turnover of period depends
on the mass of the pre-white dwarf (lower luminosity for a less massive
star), because the luminosity during the phase contracting toward the
planetary nebulae nuclei region in the HR diagram is an increasing

function of the mass. The numerical analysis by Kawaler, Hansen, and
Winget (1985a) indicates that the periods of high order g-modes of a
0.95MQ pre-white dwarf model begin to increase when L ~ 103LQ. On
the other hand, analyzing the observed light curves, Winget, Kepler,
Robinson, Nather, and O’Donoghue (1985) found that the period of a
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Fig. 15.15 Radial dependence of the eigenfunction E,/ r for the gm, g“, glz modes (I = 2)
of a compositionally stratified I-I/I-Ie/C white dwarf with 0.6MQ, from Winget
et al. (1981). The eigenfunctions are each normalized to unity at the stellar
surface, but the curves are displaced from one another. The composition

boundaries and convection zones are indicated by vertical divisions.

pre-white dwarf pulsator PG 1159—035 is decreasing. If the luminosity
estimated for PG 1159—035, L ~ lOZLQ, is more or less valid, the

observed period change of PG 1159—035 may suggest that the mass of
this star is less than 0.95MQ. One possible complexity is the helium shell
flash. According to evolutionary models from the asymptotic giant

branch to the white dwarf stage, the last helium flash occurs around the

planetary nebulae nuclei phase. During a helium shell flash the stellar
radius and hence the period of oscillations change largely on a time scale
as short as ~ 103 yr (e.g., Iben, 1984). If PG 1159—035 is in a helium
shell flash, its period change cannot be predicted as a function of its
mass and luminosity.

The above properties do not depend on the detailed structure of
white dwarfs. There are some interesting properties which depend on
the composition stratification of the outer envelope of white dwarfs.
Winget, Van Horn, and Hansen (1981) found that nonradial g-modes
are selectively trapped in the chemically stratified envelope. Figure
15.15 (from Winget et al. , 1981) shows the eigenfunctions for the radial
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Fig. 15.16 The “kinetic energy of oscillation”, Em, as defined in the text plotted against
period for the lowest 23 g-modes (I=2) of the model shown in Fig. 15.15,
from Winget, et al. (1981). Modes g, g... gm. and 323 are “trapped” in the
surface hydrogen layer.

displacements of the gm, g“, and g12 modes for l = 2, where the

eigenfunctions are normalized to unity at the stellar surface. In this
model the composition distribution at the interface is assumed to be
discontinuous. In this figure, it is apparent that the amplitude in the core
for g“ is small compared to those of glo and glz; i.e., the g1] mode is
trapped in the white dwarf envelope. If a mode is trapped in the
envelope, the kinetic energy of oscillations for a given amplitude at the
surface, Ekm = éazféw |§2 dM, is small compared to the adjacent
modes. Figure 15.16 shows the kinetic energy for several g-modes (l =
2). A mode with smaller Ekm can be considered to grow to observable

amplitude more easily. Therefore, the trapping by the compositionally
stratified envelope may be related to the groupings of the periods of ZZ
Ceti stars. If this is true, the period of a ll Ceti star gives us
information on the composition stratification of the outer envelope.

I6. Modal Analysis by an Asymptotic Method

In the previous section we studied the local property and the qualitative
characteristics of nonradial oscillation. To investigate them precisely for
various modes in a realistic star, we need to solve the wave equations
either by using numerical calculations or by using an asymptotic
method. These two methods complement each other: the former is
appropriate for lower overtones (small and intermediate n), while the
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latter is applicable to higher overtones (large n). In this section, we
study the general properties of stellar nonradial oscillations analytically
using an asymptotic method (Shibahashi, 1979; see also Tassoul, 1980;

Smeyers and Tassoul, 1988).
We use the Cowling approximation, which is accurate for large

values of n and l. The basic equations are equations (15.5) and (15.6).
Eliminating E or 1'], we obtain

dzé dlanl dé - _
dr2 dr W _ PQE _ 0 06'”
  

and dzfl _ d_lleld_ndr, d—rd— — PQi; (16.2)

respectively, where

P(r)—— —(:’- )h(r) (16.3)

and

Q0) = $012 — N2)h(r)-'. (16.4)
It should be noted that the zero value of P(r) causes a regular singularity
of equation (16.1) and not of equation (16.2), and the opposite is true
for Q(r). These equations should then be regarded as being com-
plementary to each other. For the limiting case of 02 >> N2, equation
(16.2) tends to the Sturm-Liouville type

 
dzfl dln(r2h) dfi l(l+1) - _ 02 -

drz T77? T" — 7" 1 06-5)
and for the other limiting case of 02 << N2, it tends to

dzfi d 2h dn_ N2 -_ 1 1(1+1)N2 -
drz +_dr_l“(TZI—dr 72’7‘ ? r2 ’7' “6"”

Similarly, equation (16.1) tends to the Sturm-Liouville type

L? d _1 dz; N2~_ 02-
dr2+?1n(r—:h )d—r c25— 75’ (16'7)

01'

2
2'j§+il(h1)d5 __l__(1+1)g__ lefi‘glg, (16,8)

depending on whether 02 >> L12 or 02 << L, . Since the only subsisting
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term containing 02 is proportional to 112/c2 in equations (16.5) and
(16.7), their solutions must correspond to acoustic waves. On the other
hand, the solutions of (16.6) and (16.8) correspond to gravity waves, for
the frequency aappears only in the form of N2[l(l+1)/r2]/02 = NzkE/az.

For convenience, we introduce the new variables v and w, defined

by

Liz
02

v E éIPI—UZPJ/Z = pl/ZCr(
  

—1/2

) :3, (16.9)

and

W E filQl—l/chl/Z = p—l/2r(|N2_0,2|)—l/2pr , (16.10)

where pc denotes the density at the stellar center. The basic equations
(15.5) and (15.6) are thezn reduced to a pair of turning-point equations,

d v 

 

 

(1,2 + 1er - f(P)]v = 0 (16.11)
and

Li}: + [k3 - f(Q)]w = 0, (16.12)

” ‘9009
~2 ‘99.

31——_’\~__:5__ l-

  g7?/////x
Fig. 16.1 Schematic propagation diagram of an idealized stellar model. The hatched

region is the gravity-wave propagation zone and the cross-hatched region is the
acoustic-wave propagation zone. Frequencies of three kinds of modes are
indicated by the horizontal bars. Turning points of equations (16.11) and
(16.12) are indicated by filled circles and open circles, respectively.
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with k} = —PQ given by equation (15.9) and

lel—l/Zd_ 1/2
f(x) — lxl T

The turning points are the points at which k3 — f(P) = 0 and k3 — f(Q)
= 0 for equations (16.11) and (16.12), respectively.

Let us consider an idealized stellar model whose propagation
diagram is illustrated in Fig. 16.1. For simplicity, we neglect the second

terms in the brackets in the left-hand sides of equations (16.11) and
(16.12), which are negligibly small compared with the first terms k3
almost everywhere except near the singular points and the stellar
surface. This approximation is especially valid for oscillations with short
wavelengths in the radial direction. In this approximation, the singular
points for one of these equations, at which P = 0 and Q = 0,
respectively, coincide with the turning points for the other. Although
such a coincidence is not necessarily required for the following
discussion, it will simplify the mathematical treatment. In Fig. 16.1, the
turning points of equations (16.11) and (16.12) are indicated by filled
circles and open circles, respectively, at three kinds of frequencies. The
hatched region is the gravity-wave propagation zone, in which P > O, Q
< 0 so that k} > 0, and the cross-hatched region, is the acoustic-wave

propagation zone, in which P < 0, Q > 0 so that k} > 0. The other
region is the evanescent zone, in which k} < 0.

We will solve the basic turning-point equations in terms of Airy
functions by dividing the stellar interior into regions each having only
one turning point, and then use asymptotic forms of Airy functions to
join these regions in order to obtain a complete eigenfunction. The
turning-point equation (16.12) is used to obtain the form of w near
singular points for equation (16.11), at which 02 = L12, and to deduce

the form of v from dw/dr; conversely, equation (16.11) is used to obtain
thze solution of equation (16.12) near its singular points, at which 02 =
N .

In the case of a high frequency denoted by 0,, in Fig. 16.1, an
acoustic-wave propagation zone extends from a turning point ra to
another turning point rb (ra < rb). To obtain the function w in the region
containing the turning point ra—that is, for 0 s r < rb—it is appropriate
to introduce a Liouville transformation, which transforms variables (w,

r) to (W, C), by

C

(16.13)

(j—gf [k3 - f(Q)] ——~ (j—gfk? (16-14)
and



134 NONRADIAL OSCILLATIONS OF STARS

fl
dé’

(see, e.g., Oliver, 1954; Langer, 1959). Then, it is readily verified that

W satisfies the equaztion

_[.-<01w= .,
where f(x) is the regular function defined by (16.13). To the first
approximation in which f(dr/dC) is neglected, the solution W is
represented by

WE(   
)_m w (16.15)

w = aAi(z;) + bBi(I;) , (16.17)

where Ai(?,‘) and Bi(§) denote the Airy functions of the first kind and of
the second kind, respectively, which are related to Bessel functions of
1/3 order as

AKC) =%[C “21. 1/3 (§C3/2) + @1/211/3 (%§3/2)]

(16.18)

84:) = 71—;[11/21_m(%c3/2) — 1:191“, @234”
and a, b are constant coefficients. For large values of ICI, Airy functions
take the asymptotic forms given by

44:)~;\}——;(—0—“4exp[——§—(—03/2]
(16.19)

84:)~—V1—?(—0-“4exp[%(—03’2)]
for C < 0, and

Ai(§)~‘\/l—?C—U4COS[%C3/2‘%]

(16.20)
BI'(C)~———V—1§_1/4sin[—3 §3/2_ ]4

for §>0. The combination of equations (16.14), (16.15), and (16.17)
leads to the form of the function w

l6[aAi(C)+bBi(§)] , (16.21)3 r /W: IkrI—Uz
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3 ’ 2(710.460)

and the symbol sgn (x) E IxI/x means the sign of function x. Substituting
equations (16.19) and (16.20) into equation (16.21), we obtain the
asymptotic form of the function w which is written as

where C is given by

I; = sgn(k3) (16.22)
  

2\/_\/_CXP(—/’u Kdr)+ v_bV1—exp(/rKdr) for r<<ra

~

V_v:...(/k1-4)-;2V1E““(f.1,..- 3)
for ra << r,

(16.23)

with K2 E —k,2. The coefficient b must be equal to zero for the regularity
of the function w at the center r = 0. Otherwise the upper second term

in the right-hand side of equation (16.23) diverges at r = 0, because K z
[I (l + 1)]“2/r in the region r << ra as a result of the inequality N2 << 02 <<
L12. To the same approximation as used for equation (16.23), equation
(15.6) can be written as

sgn(Q) Ikrl ‘U  dw +1dlnIQI
(d—+2 dr W)

II sgn(Q)Ik.I-“f,—’f . (16.24)

Substituting equation (16.23) with b = 0 into (16.24), we obtain the
asymptotic form of the function v for r >> ra

v~ ——Va=flV—l_—Tsin(/;kdr- T)‘ (16.25)

In a similar way, equation (16.11)1s used to obtain the function v
for ra < r. The function v takes the asymptotic form given by

fivl? cos(/rbk,dr.-—4—)-—\/—ci_—Vl_sin(/rbk,dr-%)

v~ for ra <<r<< rb

zv—Vl—CXP(—/;Kdr)+%\/1_Eexp(A Kdr) for rb<<r

(16.26)
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with two constant coefficients c and d. The asymptotic form of the
function w is reduced from equation (16.26) to

w~—\/_\/_Sin(/k,dr—T)—7d_—V__cos(/rbk,dr- %)

(16.27)

for ra << r << rb. Two kinds of asymptotic expression of the functions v
and w for ra << r << rb must agree with each other. Eliminating the
coefficient d from the combination of equations (16.23) (with b = 0) and
(16.27), and from that of equations (16.25) and (16.26), we obtain

c = —a sin(/ k.dr—%). (16.28)

Similarly, we obtain

 

d —a cos(/ k,dr—%). (16.29)

In the expression of v for rb << r given by equation (16.26) the term with
the coefficient c in the right-hand side represents the evanescent wave
coming from the stellar interior. But the second term with the
coefficient (1 represents the wave coming from the outside of the star
and must then vanish. We set (I = 0 as the outer boundary condition of
equation (16.11) or (16.12). As seen from equation (16.29), the
condition for d = 0 is satisfied if and only if

/ k,dr = mr (16.30)

with an integer n. This is the condition for eigenoscillation correspond-
ing to Bohr-Sommerfeld’s quantization rule in quantum mechanics. It

should be noted that the right-hand side of equation (16.30) is not (n +

1/2) II as in the latter quantization rule, but mr. This is due to the
different properties of the two evanescent zones (r < rd and rb < r) as a

result of the different combination of signs of P and Q there.
The coefficients b and d are equal to zero, and the coefficient c is

equal to (—1)"a as a result of the condition (16.30). There are n nodes of
the function of v, which correspond to nodes of the function E,, in the

propagation zone. Such eigenmodes are classified as pn-modes after the
number of nodes of the function 5,.

The quantization rule (16.30) leads to the eigenfrequency 0,, of the
pn-mode (Gough, 1986c; Smeyers, Briers, Tassoul, Degryse, Polfliet,

and Van Hoolst, 1988). The outer turning point rb is, in most cases, very
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close to the photosphere. So we approximate rb 8‘5 R and replace the
upper boundary of the integral in equation (16.30) by R. By estimating
quantity k, in the propagation zone to be

~ o/c for ra << r << R
k’ ~ { c_1(a2 — L12)“2 for r ~ ra, (16°31)

and by substituting it into equation (16.30), we obtain
r* R

/ c"1(02—L,2)“2dr+0/ c-ldr=mr, (16.32)
a

where r* is a radial distance below which the sound velocity is almost
e ual to its value at the center Co. We assume that, for r > r*, the ratio

L, /02 may be neglected in comparison to unity. By integrating the first
term in the left-hand side of equation (16.32) we have

"' 2 1/2/ c—l[l_%] .1,
r 0 r

= oc0_1[(r *2 — raz)“2 - o-1[l(l+ 1)]1’2c0cos_1(ra/r *) . (16.33)

In the case of a high overtone (n >> 1) with low degree (I ~ 1) p-mode,
the inner turning point ra is very close to the stellar center, and then we
set rd 2 0 so that

"‘ 2 1/2/ c—1[1__._1<'+,1;c] d.
r 0 r

z / c—ldr— [I(1+1)]“2n/2. (16.34)
0

Adding the second integral in the left-hand side of equation (16.32), we

obtain the eigenfrequency on, of the pn-mode

0n] z 277v0(n 'I' ”2 + E) , (16.35)

where

v0 2 [2 [R %dr]_l (16.36)

and 6 is a constant. This formula is valid for high overtone p-modes with
low degree (Vandakurov, 1967; Tassoul, 1980; Smeyers and Tassoul,

1988).
In the case of an oscillation with a low frequency denoted by 0g in

Fig. 16.1, the procedure for obtaining eigenfunctions is the same as in
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the case of the acoustic mode with a high frequency op. Let rd and n, be
the radial coordinates of the two turning points (ra<r,,). The final results
of asymptotic forms of eigenfunctions are given by

 r a Lex (—/raKdr) for r<<rzfiV? P , “

  

 

   
  

”“4 1 (16.37)
_ a (_1)n+ . I’h — 1T

- V—IT VT, 51" (.lr‘ krdr T)f0r ra <<r<< rb

and

' a 1 exp -/raKdr for r<<r2V? V? I , I ..

  _ a l . rkdr—l)

WWWI, , 4
a

  

   
w~< r (16.38)

= Va? (J17), cos(/r' k,dr—%) for ra<<r<<rb

‘25? (‘72 exp(—/:b Kdr) for rb<<r,

and the eigenvalue condition is

/ k,dr = nrr. (16.39)

with an integer n. Such eigenmodes are classified as gn-modes after the
number of nodes, n, of the eigenfunction v. Estimating the quantity k,
to be

L,N _ [l(l+1)]“2N 1
0c — r o
 k, ~ (16.40)

in the region ra << r << rb using the inequality 02 << L12, we obtain
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1/2 ’b

0,, zfl/ fldr. (16.41)
MI r

This formula for 0,, is, however, formal, since the turning point r,,

depends strongly on the frequency 0,, itself in usual cases. For the case
of higher-gravity modes with low frequencies in a massive star in the

main-seduence stage, rd and n, correspond to the outer edge of the

convective core and the stellar surface, respectively, and are practically

independent of 0,,.
Eigensolution properties can be most clearly depicted in the phase

diagram. If we plot the solution in the (v, w)-plane, starting from the
stellar center and proceeding toward the surface, it describes a curve.
This is the phase diagram, and its path is called the phase path. For
simplicity, we use the asymptotic forms of Airy functions even near the
turning points. The combination of equation (16.24) and the corres-
ponding equation for w then leads to

d v w

The phase point thus moves along a path given by

v2 + sgn(k3)w2 = const., (16.43)

which is a circle in a propagating zone and a hyperbola in an evanescent
zone. If the functions v and w are expressed in terms of the polar
coordinates as

 

v _ cos A(r)
( w ) ‘ R(r) ( sin I(r) ), (16.44)

the functions R(r) and A(r) obey

(11:32 = Ik,|[sgn(P) + sgn(Q)]cos11sin/1 (16.45)

and

(111 , 2 2
W = Ikrll-Sgn(P)sm A + sgn(Q)cos 11] . (16.46)

The general behavior of the phase diagram is easy to see from these
equations. The phase point moves clockwise around the origin in a
gravity-wave zone where P > 0 and Q < 0, while it moves
counterclockwise in an acoustic-wave zone where P < 0 and Q > 0. It

moves along a hyperbola from the second or the fourth quadrant to the
first or the third quadrant in an evanescent zone in which both P and Q
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are positive, and in the opposite direction in an evanescent zone in
which both P and Q are negative. The characteristic movement is
schematically shown in Fig. 16.2. The inner boundary condition requires
the phase point to start from the origin and to move along the straight
line v = w in the innermost evanescent zone (P > 0 and Q > 0 there).
On the other hand, the phase point is required to move to the origin
along the line v = w in the outermost evanescent zone (P < 0 and Q <
0). This is possible only for certain discrete values of 02. These values
are eigenvalues, and the corresponding solutions are eigensolutions.
Figure 16.3 shows the phase diagrams of a g-mode and a p-mode. It is
clearly seen that the phase point starts from the origin and moves along
the line v = w until it reaches at the inner edge of the propagation zone
(r = ra). For the case of g-mode with frequency 03, the phase point
rotates clockwise around the origin in the propagation zone, and it
finally moves along the line v = w in the outermost evanescent zone (rb
< r). On the other hand, for the case of p-mode with frequency 0p, it

rotates counterclockwise in the propagation zone as shown in Fig. 16.3.
It is clearly seen that the phase in the asymptotic form of v given by

(l) P>0.0>0 (2) P<0,0<0

W W

7.
x

(3) P>0,0<0 (4) P'<0,0>0

\

\\\
//fl

42
:)

  M

W

(x 0
J ” K

a

  

\t  
Fig. 16.2 Schematic sketch of phase paths for two kinds of evanescent waves [(1) and

(2)], gravity waves (3), and acoustic waves (4).
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(a) (b)

Fig. 16.3 Schematic phase diagrams of a simple g-mode [left; (8)] and of a simple

p-mode [right; (b)]. Filled circles indicate turning points of equations (16.11)
and (16.12), respectively.

equation (16.25) corresponds to the phase angle measured clockwise
from the phase point at r = ra. Conditions (16.30) and (16.39) are then
interpreted as the conditions requiring the phase point of an eigenmode

to move along the line v = w in both the innermost and the outermost

evanescent zones.
In the case of a mode with such a frequency 0,, as is shown in Fig.

16.1, there are four turning points. Let the radial coordinates of these
points be ra, rb, re, and rd (ra < rb < r, < rd). The manipulation for

obtaining the eigenfunctions and the eigenvalue condition is lengthy but
parallel to that used in the case of simple modes. The final results of
asymptotic forms of eigenfunctions are given by

z—a——V_\/l_exp(—[Kdr) for r<<r,
W

Va—\/_—cos(/rkdr—T) for ra<<r<<rb

rb

2—\/_VLsink,dr)exp(—/rKdr)

+Va_fl\/1_Ecos(/r' k,dr)exp(/r;xdr) for rb<<r<<rc

1

  

C
cos( k,dr—l) for rc<<r<<rd

V? W; , 4
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c 1 exp( /rKdr) for r <<r— d
2\/? V? r, (16-47)

and

a 1 exp —/r“Kdr for r<<r
2V? V? ( , ) a

a 1_WWSin(./‘rkdr-%) for ra<<r<<rb

a 1 .
— 2V7 Wsmrh,kdr))(exp(_fhr)Kdr

w~ <

 + \/a_77 V—l?—co:(/rh k,dr)exp(/Kdr) for rb<<r<<rc

k,dr— %) for r, << r << rdv—v—ma —exp / Kdr for r <<r,
lm—Vl— ( d ) d (16.48)

where two constants a and c are related each other by a condition

c=a[2cos(/ k,dr)cos(/ k,dr)exp(/ Kdr)

+%sin(/ k,dr)sin(/ k,dr)exp(-/ Kdr)], (16.49)

and the eigenvalue condition is given by

cot(/ k,dr)tan(/ k,dr)=%exp(—2/ Kdr). (16.50)

The quantity K in the evanescent zone is estimated as K z [I (l + 1)]“2/r
if N2 << 02 << L12. The right-hand side of equation (16.50) is then given
by

rd

-:—exp(—2/ Kdr)z—‘-11—(rc/rb)'2’ , (16.51)

and is estimated as 10" << 1 if rC/rb z 3 in typical cases (Shibahashi and
Osaki, 1976a). Let this small quantity be e (0 < 6 << 1). In this case, one
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of the three conditions

frbk,dr z (n + 1/2)1r + 0(6), (16.52)

or a

/rdk,dr z m7T + 0(6) , (16.53)

or (I

/ krdr z (n+1/2)7T i 00/?)

, (16.54)

/ k,dr z mrr 3F O(V?)

with integers n and m must be satisfied in order for the value of the
left-hand side of equation (16.50) to be negligibly small. It should be
noted that conditions (16.52) and (16.53) cannot simultaneously satisfy

the eigenvalue condition (16.50), of which the right-hand side is of the

order of magnitude of 6.
When condition (16.52) holds, the order of magnitude of the

coefficient c is (—1)”+’"(rc/rb)—’a. Since the kinetic energy of the
oscillation (026252) is proportional to v 2 + wz, the ratio of the energies

trapped within the inner propagation zone (ra < r < r b) and the outer
propagation zone (rc<r<rd) is evaluated by aZ/cz, that is:

 (pr2§2)inner zone ~ 2!

(pr252)outer zone (r0 / rb) , (1655)

and it is estimated as 10“ if rcfrb z 3. We find in Section 17.2 that this

estimate is in good agreement with the numerical results of Shibahashi

and Osaki (1976a). In this case, the oscillation is mainly associated with
the gravity-wave propagation zone (ra < r < rb). On the other hand,
when condition (16.53) holds, the left-hand side of equation (16.55) is
approximated by (rc/rb)'2’ and the oscillation is effectively trapped in
the acoustic-wave propagation zone (rc < r < rd). Condition (16.52) is
then regarded as the mode trapping condition for the gravity-wave
propagation zone, while (16.53) is regarded as that for the acoustic-
wave propagation zone. Condition (16.52) includes a half—integer as in
Bohr-Sommerfeld’s quantization rule because the evanescent zones on
both sides of the gravity-wave propagation zone have the same
combination of signs of P and Q in this case. It should be noted that the
left-hand sides of equations (16.52) and (16.53) are not exactly equal to
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(n + 1/2)7T and mu, respectively.
When condition (16.54) holds, a mode-mixing phenomenon occurs.

The absolute value of the coefficient c is the same order of magnitude as
that of the coefficient a. The kinetic energy of the oscillation trapped
within one of the propagation zones is therefore the same order of
magnitude as that trapped in the other, and the mode behaves like a
trapped gravity wave in the inner gravity-wave zone and like a trapped
acoustic wave in the envelope. Condition (16.54) is then regarded as a
mode-mixing condition.

Let us consider an eigenfrequency satisfying either (16.52) or
(16.53) for a given model. Suppose the frequency gradually increases.
At first, conditions (16.52)—(16.54) all break down. The wave number k,
in the gravity-wave zone (a < N, L,) decreases as a result of equation
(16.40), and the extent of the gravity-wave zone is shortened.
Therefore, the integral of k, over the segment [rm rb] monotonically
decreases. On the other hand, the integral of k, in the gravity-wave zone
soon comes close to (n — 1/2)1r, or that in the acoustic-wave zone

becomes close to (m + 1)rr, and one of the eigenvalue conditions

(16.52), (16.53) will be satisfied again. However, if both the integrals of
k, simultaneously approach (n — 1/2)1r and (m + 1)1r accidentally, the
eigenvalue condition (16.50) is satisfied neither by conditions (16.52)
nor (16.53) but by condition (16.54). In such a case there are two
eigenvalues, which are slightly different, corresponding to the pair of
signs (1') in equation (16.54). This means that accidental degeneracies

of the modes never occur, but a pair of mixed character modes appear
whenever two eigenvalues draw near. This property causes stepwise
variation (or “avoided crossing,” cf. Gabriel and Scuflaire, 1979) in
eigenfrequency with increasing 1 for a fixed model, which has also been
found in the case of terrestrial atmospheric oscillations (see, e.g.,

Francis, 1973; Jones, 1976).

Figure 16.4 shows the phase diagrams of two kinds of combined
modes. The phase point starts from the origin and moves along the line
of v = w until it reaches the inner edge of the gravity-wave zone (r= ra).
Moving around clockwise in the gravity-wave zone (ra < r < rb), it
reaches the inner edge of the middle evanescent zone (r = rb). If
condition (16.52) is met, the phase point at r = rb is on the second or the
fourth quadrant. Then it moves inward along the hyperbola in the
evanescent zone (rb < r < rc) as seen in Fig. 16.4(a). After moving
around counterclockwise in the acoustic-wave zone (rc < r < rd), it
moves along the line v = w to satisfy the outer boundary condition. On
the other hand, if condition (16.53) is satisfied, the phase point moves
along a path such as is shown in Fig. 16.4(b). The phase diagram of such
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3
KC . J.

(a) (b)

Fig. 16.4 Schematic phase diagrams of a well-trapped mode in the inner gravity-wave
zone [left; (a)] and of a well-trapped mode in the outer acoustic-wave zone

[right; (b)]-
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Fig. 16.5 Phase diagrams of two kinds of mixed character modes. Their frequencies and
properties are very near but slightly different. The frequency of the mode on
the left (a) is slightly higher than that of the mode on the right (b).

eigenmodes for a massive star is seen in Shibahashi and Osaki (1976a),
in which the coordinates (§,/r, lgh/r) are used instead of (v, w).

When condition (16.54) is satisfied, the phase point moves along a
path such as shown in Figs. 16.5(a) or 16.5(b), depending on whether
the sign is positive or negative for the last term in the right-hand side of
the second equations ( 16.54). The radius of the phase track is naturally
the same order of magnitude for both propagation zones.

In some massive evolved stars the lower-gravity modes trapped in
the inner gravity-wave zone have such high frequencies that waves
cannot be reflected at the outer boundary, and they take on progressive-
wave character in the envelope (see Section 18; Shibahashi and Osaki,

1976b). Also, the higher-gravity modes of low frequencies may not be
reflected at the outer boundary (see Section 18). In some giant stars, the
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acoustic waves trapped in the envelope cannot reach the stellar center as
a result of strong radiative dissipation in the deep interior, and they also
show progressive-wave character in the deep interior (see Section
15.3.3; Osaki, 1977). In such a situation, a wave trapping region should
be treated as an isolated pulsating unit with wave leakage in the form of
a progressive wave. Strictly speaking, such eigenmodes are not standing

waves. However, if an evanescent zone exists between the two

propagation zones, those modes still have discrete eigenfrequencies,
and the situation is analogous to a virtual level in the potential problem
in quantum mechanics.

Assume a nonradial mode with such an eigenfrequency 0am, as

shown in the propagation diagram of Fig. 16.6. The oscillation is
trapped in the inner gravity-wave zone and leaks outward in the form of
a progressive acoustic wave in the envelope. We denote three turning
points as ra, rb, and rc (ra < rb < re). The outer boundary condition is

then set in the form of

v, w «717:6xP[i(—/_ k,dr + 0t)] (16.56)

for re << r, since the group velocity and phase velocity of acoustic waves

 

lo
g
02

    O
r/R

Fig. 16.6 Schematic propagation diagram of an idealized stellar model in an advanced
stage. Frequencies of various kinds of modes having progressive-wave
character are indicated by the horizontal bars. Turning points of equations
(16.11) and (16. 12) are indicated by filled circles and open circles. respective-
ly. The arrows indicate the directions of leakage of wave energy, which are
those of group velocity of progressive waves.
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in the radial direction have the same sign. After some manipulation
similar to that used previously we obtain the eigenvalue condition

tan U k,dr—%)exp(2/ Kdr)=——:1— . (16.57)

The eigenvalue 0 is complex even in the adiabatic approximation as a
result of leakage of wave energy. In the gravity-wave zone the wave
number k, is then reduced from equation (16.40) to

 k,=kR +ik1z ”Cl" (313—40%) , (16.58)

where OR and 01 are the real part and the imaginary part of 0,
respectively. On the other hand, the quantity K is estimated as the real
quantity K R“ [l (l + 1)]“2/r in the evanescent region rb < r < rc. After
substituting equation (16.58) into equation (16.57) we obtain new forms
of the eigenvalue condition given by

f der = (n + %)rr (16.59)
a

tanh/ kldrz/ kldr= —%exp(—2/ Kdr) (16.60)

with an integer n. The condition (16.59) corresponds to Bohr-
Sommerfeld’s quantization rule, and equation (16.60) represents the
effect of leakage. Using equations (16.58) and (16.59), equation (16.60)
is rewritten as

and

01~_1__1_ _ "
OR ~ 4 (n+1/2)1Texp( 2A Kd')

1 1 re -21

~ WWW) ° (16°61)
Since the temporal dependence of the functions v and w is exp(iot), this
equation represents the damping rate as a result of wave leakage. The
right-hand side of equation (16.61) is estimated as 10" << 1 if rc/rb z 3 in
typical cases (see Shibahashi and Osaki, 1976b).

In some evolved stars, higher gravity modes trapped in the inner
gravity-wave zone with frequencies 0(1th as shown in Fig. 16.6 leak
outward in the form of progressive gravity waves in the envelope. In
such a case, the outer boundary condition must then be set in a form

similar to equation (16.56) except for the sign in front of the integral;
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the group velocity and phase velocity of gravity waves in the radial
direction have the opposite sign. The eigenvalue condition and the
damping rate are naturally the same forms as those of equations (16.59)
and (16.61).

The effect of wave leakage into the stellar deep interior upon the
acoustic modes trapped in the envelope is dealt with in a similar way.
Assume a nonradial mode with such an eigenfrequency 0;, as shown in
Fig. 16.6. We denote three turning points rb, rc, and rd (rb < rc < rd).

The oscillation is trapped in the envelope and takes on progressive
gravity-wave character in the region r < rb. Choosing the inward
progressive wave, we must set the inner boundary condition at

v, w «_V—ITc—iexp[i(,/, k,dr + at)] (16.62)

for r << rb. After some manipulation we obtain the eigenvalue condition

tan(/ k,dr)exp(2/ Kdr)=%. (16.63)

Using the approximate form of the wave number in the acoustic wave
zone k, = kR + ik, z (0R + ial)/c, we finally obtain another form of the
eigenvalue condition given by

/ krdr = "217 (16.64)
(‘

with an integer m, and the damping rate given by

fl .. i; (_ )0R 4 mn exp 2/r; Kdr

1 1 re -7J

~ 4W(Z) ° (16°65)
The effect of wave leakage upon the damping rate is then estimated as
10" if rc/rb z 3. This estimate is in good agreement with the result of
numerical calculations (Osaki, 1977).

In treating a pair of turning-point equations (16.11) and (16.12), we
have assumed that the values of N2 and Li2 vary slowly in the stellar
interior—that is, kal >> [f(P)|, [f(Q)]. In some realistic stellar models
this assumption breaks down, because the Brunt-Vaisala frequency N2

may sharply vary at the edge of the convective region. The turning
points [k,2 — f(P) = 0] of equation (16.11) then do not strictly coincide
with the singular points of equation (16.12), at which 02 = N2. The value
of N2 can, however, vary slowly in the other parts. Therefore, the
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present treatment can be valid even in such a case, if the first exact
equality in equation (16.14) is used for the variable C.

In the above analysis, we have used asymptotic forms of Airy
functions. But, in order for this approximation to be valid, the turning
points must be well separated. In other words, there must be many
oscillations of the wave functions in the propagation zone, and the
evanescent zone must extend widely. Therefore, the treatment used
here is especially valid for eigenmodes having many nodes in the radial
direction with large I of spherical harmonics Y{"(6, ¢). However, the
qualitative aspects of the present modal analysis can be valid even for
lower harmonics and overtones.

17. Modal Classification

We have seen in previous sections that linear adiabatic nonradial
oscillations show different physical and geometrical characteristics
depending upon the frequency and the horizontal wave number. There
are g- and p-mode sequences of eigenfrequencies and an f-mode (except
for the case of l = 1) for a given 1. The g- and p-mode sequences are
attributed to the G and P propagation zones, respectively (see Fig.
15.3). Classifying nonradial oscillation modes is easy for a simple stellar
structure such as a less centrally condensed polytrope or a zero-age
main-sequence star, because only one propagation zone is responsible
for a given eigenfrequency (except for an f-mode) and the frequency
ranges of the g- and the p-modes are separated clearly (see Figs. 15.2
and 15.3). As the evolution proceeds, however, the maximum value of

the Brunt-Vaisala frequency in the core increases, which leads to
avoided crossings between a g-mode and a p-mode (or f-mode) as
discussed in Section 15.3.1. The frequency ranges for the G-type and
P-type propagation zones come to overlap with each other. In such

cases, the classification of nonradial eigenmodes is not trivial. We will
discuss how to classify the nonradial oscillation modes in an evolved
star.

17.1 Phase Diagram and Generalized Cowling Nomenclature

In the previous section, it has been shown that if we plot an
eigenfunction in the (v, w) diagram the point moves counterclockwise
around the origin in the acoustic-wave (P) zone while it moves clockwise
in a gravity-wave (G) zone as r increases. Thus, it is convenient to use a

phase diagram in classifying nonradial oscillation modes. We use the (5,,
5) phase diagram rather than the (v, w) diagram because the former is
directly related to the eigenfunction of displacement vector. The two
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phase diagrams have the same general properties, because in the
Cowling approximation, 5, and Eh are related to v and w through

15, = f1(r,o)v (17.1)

and

5;. = f2(r,o)w (17.2)

with positive-definite functions f1(r,0) and f2(r,o) given by

f1(r,0) = p"”2c"'r"(|1—L,2/02I)”2 (17.3)

and

f2(r,0) = 0—2p—1/2r—2(|N2 — 02D”. (17.4)
A sample of the (5,, Q) phase diagram is shown in Fig. 17.1 for the five
lowest modes (g2, g1,f, p1, p2) of l = 2 for the ZAMS model of a 10M®
star, whose propagation diagram and eigenfunctions for E, are shown in
Figs. 15.3 and 15.4, respectively. In Fig. 17.1 the open circle indicates

the stellar center and filled circles indicate the stellar surface.
Obviously, in the phase diagram the curves for g-modes and p-modes
cross the line of E, = 0 (i.e., at a node of 5;) clockwise and
counterclockwise, respectively.

Figure 17.2 shows the main-sequence evolution in the HR diagram
for the IOMQ star whose propagation diagrams at some evolutionary
stages were shown in Figs. 15.3 and 15.6. The numbers along the
evolutionary track indicate the model numbers counted from the ZAMS
stage. The propagation diagrams in Figs. 15.6(a) and (b) are for the
models of Nos. 4 and 13, respectively. As the evolution proceeds, the

Brunt-Vaisala frequency in the stellar interior increases due to the
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ZAMS model with M = lOMQ. The phase points at the surface are (17,4) for
f-mode, (-106, -14) for pl-mode, and (360,27) for pz-mode (after Osaki, 1975).
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increase of the central condensation and the formation of a ,u-gradient
zone (see Fig. 15.6), and the frequencies of g-modes increase. Avoided
crossings of modes occur when the star evolves enough (see Section
15.3.1). In such an evolved star, the frequency ranges for the G-type
and P-type propagation zones overlap significantly. The eigenfunction
for the mode whose frequency falls in the overlapped range has extra
nodes. These modes with extra nodes correspond to the modes with
frequencies like ad, shown in Fig. 16.1, which have two propagation
zones.

Figure 17.3 shows eigenfunctions of the relative radial displacement
§,/r for the lowest three modes of l = 2 for the evolved model of Fig.
16.5(b) (model No.13; see Fig. 17.2). The eigenvalues w2[E 02/(GM/
R3)] of these three modes are 27.2, 22.6, and 11.2, respectively. These
modes can be continuously connected to pr, f-, and gl-modes,
respectively, of the ZAMS model as shown in Fig. 17.4, where
eigenvalues (02 are plotted against the model numbers. The existence of
extra nodes is apparent in Fig. 17.3. Such extra nodes also appear in
eigenfunctions for polytropic models with high central condensation
(Owen, 1957; Robe, 1968), in which the maximum of the Brunt-Vaisaléi

frequency in the core region is significantly larger than the minimum
frequency of the P zone in the outer part.

The phase diagrams for these modes are shown in Fig. 17.5. They
behave like gravity waves in the u-gradient zone but like acoustic waves
in the outer part of the star. We can classify nodes of the eigenfunction
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Fig. 17.2 Evolutionary track of a lOMQ star near the main sequence (from Osaki, 1976).
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Fig. 17.3 Eigenfunctions of the relative radial displacement §,/r for the same model as

in Fig. 15.6 (b).The upper figure shows details of eigenfunctions in the inner
part, while the lower figure does the same in the outer part. The hatched area
indicates the zone with a varying chemical composition (from Osaki, 1975).

into g-nodes and p-nodes, depending upon whether the phase point is
traveling clockwise (g-nodes) or counterclockwise (p-nodes) at the
crossings of the axis §,/r = 0, as r increases. Comparing asymptotic
expressions of eigenfunctions given in Section 16 with Fig. 17.5, we see
that the numbers of p- and g-nodes are the integers m and n in the
right-hand sides of equations (16.52)—(16.54). The phase angle (the
angle at which eigenfunction sweeps in the phase diagram as r increases
from the inner to the outer boundaries of a propagation zone) decreases
in the gravity-wave (G) zone and increases in the acoustic-wave (P) zone
as the frequency becomes higher. Consequently the difference between
the number of p-nodes and of g-nodes increases monotonically as the
frequency becomes higher. Scuflaire (1974) and Osaki (1975) general-
ized Cowling’s (1941) nomenclature of modes to oscillations having
extra nodes by taking the difference between the number of p-nodes and
the number of g-nodes. An example of this classification is given in
Table 17.1, which gives consecutive eigenmodes of the lOMQ No. 13
model (see Figs. 15.6(b), 17.4) for l = 2 in order of increasing w2[=
02/(GM/R3)]. The third column shows the number of g-nodes, N8, and
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Fig. 17.4 The variation in dimensionless eigenvalues of nonradial modes (I = 2) with the
evolutionary model sequence (after Osaki, 1975). The abscissa is the model
number (see, Fig. 17.2). The arrows indicate the model where a new pair of
nodes appears for a given mode. They are models Nos. 7 and 14 for it = 0
mode, model No. 9 for r”: = 1 mode, model No. 11 for f1 = 2 mode, and model

No. 12 for it = —1 mode. As for the definition of it, see equation (17.5).

the fourth column shows the number of p-nodes, Np. We find that their
difference,

it = Np — Ng, (17.5)

is monotonic with respect to (02 and conserved during the evolutionary
change of the stellar structure as shown in Fig.17.4. Therefore, the

number it defined in equation (17.5) is suitable as the index of

classification, while the total number of nodes (the second column of

Table 17. 1) does not behave as well. By using this nomenclature, we can
easily pick up all the modes in a given frequency range for a given 1.

17.2 Mode Classification Based on Modal Property

The weakness of the nomenclature discussed above is that it does not
necessarily represent the characteristic of the mode. For example, the
mode with h = —1 in Table 17.1, which has the same ordinal number it

as g1 of the ZAMS model, has eigenvalue (1)2 similar to that of pl-mode
of the ZAMS model (see Fig. 17.4) and should have the character of
pl-mode in the envelope, as discussed in Section 15.3.1. As explained in
Section 16, if the two propagation zones are widely separated by an
intermediate evanescent zone, oscillation modes can be classified into
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17.3, respectively. The phase points at the surface are (— 155, — 18) for the 1': =

1 mode,(19, 1.6) for the i1 = 0 mode, and (—391, —28) for the f: = 1mode.As
for the definition of it, see equation (17.5).

Table 17.1 Relation between the number of nodes and the ordinal number i: for the
nonradial oscillations of [=2 for the 10M.,, model whose propagation diagram
is shown in Fig. .15.6b.
 

 

2 Total number n
w of nodes N‘ N" (Np-Ng)

5.859 4 4 0 —4
8.698 3 3 0 —3
10.62 2 2 0 —2

17.18 3 2 1 -1
22.58 2 l 1 0
27.24 3 1 2 1
40.07 4 l 3 2
55.86 ' 5 1 4 3
74.31 6 1 5 4

88.57 5 0 5 5
96.71 6 0 6 6
120.5 7 0 7 7
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Fig. 17.6 Propagation diagram for an evolved model of a 30M® star. The quantities N2
and L? are measured in units of GM/R3 (from Shibahashi and Osaki, 1976a).

two types by observing their mainly trapped propagation zones. (When
the frequencies of two modes are similar, an avoided crossing occurs
and the modes are trapped in both propagation zones; the modes, then,
have mixed character.) Shibahashi and Osaki (1976a) introduced a
classification scheme based_ on the characteristic in the main trapping
zone. In this classification G" indicates the mode_ trapped mainly in the
u-gradient zone having n g-nodes there and Pm denotes the mode
trapped in the envelope acoustic-wave (P) zone having m p-nodes there.
The symbol g, is used for the mode trapped mainly in the envelope G
zone separated from the “u—gradient G zone”. The overbar represents
classification based on the characteristic in the main trapping zone.
According to this classification, the modes with i1_= 1, 0, -1, and -2 in

Table 17.1, for example, are classified as far, G2-, 131-, and f-modes,

respectively. Comparing Fig. 17.5 with a phase diagram for the ZAMS
model, Fig. 17.1, we see that the f- and pn-modes have the same physical

property as the f- and pn-modes of the ZAMS (simple) model. In Fig.
17.4, the parts which show gradual increase in frequency with evolution
correspond to the modes trapped in the envelope (i.e., gn-, f-, and
pn-modes), while the rapidly increasing parts (for example, it = —1
modes between model Nos. 2 and 6, f1 = —2 modes between model Nos.
9 and 11, etc.) correspond to G" modes, whose frequencies tend to zero
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Fig. 17.7 Eigenfunctions of relative radial displacement E,/ r for G3- and g3-modes ofl =
4 for the model whose propagation diagram is shown in Fig. 17.6. The ordinate
scale is arbitrary (from Shibahashi and Osaki. 1976a).

for the ZAMS model. An avoided crossing is formed when a rapidly
increasing part intersects with a slowly increasing part. The characteris-
tic behavior in the lower frequency part (i.e. , avoided crossings between
G" modes and g" modes) is more clearly seen in Fig. 1 of Roth and
Weigert (1979).

The propagation diagram of nonradial oscillations for an evolved
3OM® star is shown in Fig. 17.6. This model consists of the homogene-
ous convective core, the u-gradient zone, the thin convective shell just
outside the original convective core, and the radiative envelope. Since
the thin convective shell behaves like an evanescent zone, the gravity
waves with low frequencies are divided into modes trapped mainly in
the u-gradient zone (Gn modes) and those trapped in the envelope G
zone (3,, modes). Figure 1_7.7 shows eigenfunctions of the relative radial
displacement §,/r for the G3- and gg-modes ofl = 4 for the model shown
in Fig. 17.6. The difference between the two modes is clearly seen.
Numbers in parentheses in this figure are the ordinal numbers it defined
by equation (17.5).

The results of numerical calculations are summarized in Table 17.2
for various values of l for the 30M® model. The column headings in this
table are the ordinal number of modes ft, the number of nodes of

gravity-wave and pressure-wave type Ng and Np, respectively, and the
dimensionless eigenvalue defined by 61)2 = 02R3/GM. The quantity A in
column 5 is defined by

= fl)” p|§|241rr2dr

jbR pI§I241rr2dr ,
 (17.6)
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where rs stands for the radius at the outer edge of the u-gradient zone. It
measures the ratio of the kinetic energy of oscillations within the
p—gradient zone to that of the whole star. The number of nodes in the
u-gradient zone is given as nc'; in column 6, and those in the G- and
P-type propagation zones in the envelope are given as ng and n‘,,
respectively. It should be noted here that for some of the modes in
Table 17.2, N8 =# ng— + n(; or Np =# n,,-, because one of the nodes exists in

the evanescent zone between the two propagation zones. The ninth
column shows the mode classification representing the physical nature
of oscillations. The evanescent zone between the p—gradient zone and
the envelope P-type propagation zone is wider for larger 1. Moreover,
for a given width of the evanescent zone the degree of the trapping in
the u-gradient zone is larger for larger 1 [see equation (16.55)].
Therefore, the _separation of the modes into [5,, mode trapped in the
envelope and Gn-modes trapped in the ,u-gradient zone is generally
clearer for larger 1. However, it should be noted that during an avoided
crossing, mode mixing, where modes are trapped in both of the
propagation zones, occurs even for a large 1, although the frequency

range where the mode mixing occurs is smaller for larger 1.
Figure 17.8 shows the relation between eigenfrequencies 61)2 and l

for modes specified in our classification scheme, and it corresponds to
the diagnostic diagram shown in Fig. 15.1 because kh = [I(l + 1)]“2/r.
The envelope modes of f)”, f, and g" are connected by solid lines, while
gravity modes Gn trapped in the ,u-gradient zone are connected by
dashed lines. The saturation effect of eigenfrequencies is seen for the
envelope gravity-modes g" at a moderate value of l, but not for
Gn-modes until to2 ~ 100 (l 2 30). The reason for the difference is that

the profile of N2 in the u-gradient zone has a narrow but high peak with
szax = 100, while in the envelope N2 shows a wide but moderately high
plateau with N2 = 8 (Fig. 17.6). The dispersion relation for pure internal
gravity waves, a = Nkh/k (see subsection 15.2), indicates that saturation
will occur when k), 2 k,. Since k), ~ l/r and k, ~ n/Ar where Ar stands

for the width of the G-type propagation zone, the condition for the
occurrence of the saturation is reduced to l 2 grr/Ar. The difference in
the saturation effect of eigenmodes between G" and gn-modes is thus
caused by the difference in the width of the propagation zone and the
maximum value of N2. It should be noted that the diagnostic diagram
(Fig. 17.8) gives information on the internal structure of the star;
therefore, it is the basis of helio- and asteroseismology (see Chapter
VII).

To specify nonradial modes, we shall hereafter utilize both the
generalized Cowling classification based on the ordinal number it and
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Table 17.2 Pulsational properties for nonradial modes of the evolved 30M® model whose
propagation diagram is shown in Fig. 17.6.
 

 

11 N3 NP (0‘2 A m; "g n,, Mode

[=2:

1 0 1 17.28 0.476 0 0 1 GO
0 1 1 14.04 0.269 0 0 1 p.

—1 1 0 8.121 0.404><10—l 1 0 o f
—2 2 0 2.548 0.731 1 1 0 ('3.

[=4:

1 1 2 29.30 0.853 0 0 2 G”
0 1 1 19.93 0.165x10‘2 1 0 1 p,

—1 1 0 10.15 0.122x10‘2 1 0 0 f
—2 2 0 6.562 0.824 1 0 0 ('3.

(=8:

2 0 2 46.58 0.975 0 0 2 (3.,
1 1 2 41.36 0.851><10‘6 0 0 2 62
0 1 1 26.68 0.112x10‘6 1 0 1 p.

—1 1 0 15.44 0.907 1 0 0 G.
I: 15:

2 0 2 64.13 1.00 0 0 2 G0
1 1 2 57.40 0.882x10"4 1 0 2 62
0 1 1 37.80 0.293x10‘l4 1 0 1 p.

—1 1 0 28.99 0.983 1 0 0 G.
—2 2 0 20.51 0.726x10‘” 2 0 0 i
—3 3 0 16.58 0.935 2 1 0 G2
—4 4 0 10.81 0.921 3 1 0 G3
—5 5 0 7.167 0.947 4 1 0 G4
—6 6 0 6.368 0.243x10‘3 4 1 0 g.
—7 7 0 5.160 0.921><10‘3 5 2 0 g
—8 8 0 4.950 0.960 5 3 0 G,
—9 9 0 3.823 0.356><10-2 6 3 0 g3
—10 10 0 3.570 0.958 6 4 0 (3.,

1:30:
1 2 2 83.61 1.00 0 0 2 6.,
0 1 1 61.69 0.881x10‘36 1 0 1 p,

—1 1 0 49.20 1.00 1 0 0 G.
—2 2 0 35.02 0.380x10‘35 2 o 0 i
 

*Numbers boldface are used for the mode identification in column 9.

the classification based on the oscillation property in the mainly trapped

zone, depending on the problem and on the degree of trapping of

eigenmodes to a certain zone. These two different classifications are

complementary.
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18. Numerical Method

18.1 Dimensionless Formulation of Equations and Boundary Condi-

tions

In contrast to the asymptotic method which is suitable for qualitative
study and has better adaptability to higher overtone oscillations,

numerical investigation can give high accuracy, especially for the study

of lower overtone oscillations with realistic stellar models.
In this section, the Cowling approximation is not adopted, and the

full fourth-order differential equations or an equivalent set of simul-
taneous equations are treated. The basic equations are equations
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(14.2)—(14.4). Here, the oscillations are assumed to be adiabatic.
Nonadiabatic effects will be studied in the following chapter.

In numerical analysis, the use of dimensionless variables is

preferred. We thus rewrite the basic equations (14.2)—(14.4) in four
first-order differential equations with four dimensionless variables.
Following Dziembowski (1971), we use the following four variables:

 

y1 = ——§’. (18.1)
r

y — _1_(P'+¢r) (18 2)
2 8r 10 ’ '

- iqb' (183)YS — gr 9 .

and

1 dqb'

The variables §,, p’, 915’, and d¢'/dr are then represented by

E, = ryl, $1.33} (18.5)

 

CU‘
p' = 98702 - Y3). ’ (18.6)

(15' = gry3, (18.7)

and 1

dd?d, — gy... , (18.8)
The substitution of (18.5)-(18.8) into equations (14.2), (14.3), and
(14.4) gives

2
dy 8r gr L: 8r

' drl = (7 ‘ ) 1 + 717 ‘ 1)” + 7”” (‘89)

dY2 _ _ 2 _ 2 _r_ _ _8_'_ dln(pg) ]
rdr _ (N 0)gy' c2+ dlnr +1”

_gL dlnp)+ (c, + —dlnr y3, (18.10)

and



ADIABATIC OSCILLATIONS 161

N2pr2
_ Pr dr 7r 82

,2

C2
  y] "1" 4776 yz

 
2_ pr _ dln(gr) ]

+ l(l+1) 4170 c2 ]y3 ——d1nr +1 y4, (18.11)

and the combination of equations (18.7) and (18.8) gives

dy3 _ _ dln(gr)

’ dr ” dlnr y3 + y4' (18°12)
Further, the dimensionless radius x defined by

x = r/R (18.13)

is used as an independent variable instead of r. Then, equations
(18.9)—(18.12) are rewritten as follows:

  

 

 

dy t(1+ 1)x dxl = (Vg — 3)y1 + [ €le — vgly2 + vgy3, (18.14)

dY2 _ 2 _ :1. =1: _ _ =1:x dx — (clw A )yl + (A U + 1))’2 A y3, (18.15)

1‘”3 = (1 — U)y + y (1816)dx 3 4, °

and

xfli: UA*y1+ Ung2+ [l(l+ 1) — UVg]}’3 — Uy4, (18.17)

  

dx

where .

_L__i dlnp _fl = dlnM, _ 47rpr3

Vg"r, ’ 1‘1 dlnr— c2’ U‘ dlnr ‘ M, ’ (18°18)

c, a (r/R)3/(M,/M), (18.19)

(02 = 02R3/(GM), (18.20)

and

A* a —rA = rg‘lNz. (18.21)

In this way, the basic equations of linear adiabatic nonradial oscillation
are reduced to simultaneous first-order differential equations
(18.14)-(18.17), in which the coefficients are expressed in terms of
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dimensionless stellar equilibrium quantities.
These equations form an eigenvalue problem with their proper

boundary conditions. The boundary conditions were briefly examined in
Section 14. However, the discussion will be more precise here, and the

use of the present dimensionless variables is more convenient for actual
computations.

If the oscillation is seriously nonadiabatic in the atmosphere, the
adiabatic solution should be terminated at the interface where the
interface conditions require the continuity of yl, y2, y3, and y4. In this
procedure, we can first solve the oscillation in the atmosphere with the
appropriate surface boundary conditions and then derive two asympto-
tic relations among y1, y2, y3, and y4, that are satisfied towards the

adiabatic interior by eliminating arbitrary constants of integration. This
is the basic idea of deriving the two outer boundary conditions for the
interior oscillations. However, since the conditions of oscillation differ

greatly from one mode of oscillation to another and from one star to
another, we will outline here the procedure of deriving the boundary
conditions taking, as an example, the simplest case where the oscillation
is adiabatic all the way to the atmosphere (cf. Section 14.1 and Section
21).

Near the center, dimensionless quantities of stellar equilibrium
structure approach their central values as follows:

U—>3+0(x2)

V—>0+0(x2) as x——>0.

0822)
A*—> 0 + 0(x2)

Equations (18.14)—(18.17) may then be regarded as differential equa-
tions with constant coefficients near the center:

y 1 1’1

d Y2 Y2
x— = ai- 18.23
dx Y3 ( 1) Y3 ( )

Y4 Y4

with the constant coefficient matrix

 l(l+l)—32 €le 0 0

clw —2 0 0
-- = .4(a,,) 0 0 _2 1 (18 2 )

0 0 1(1+1) —3
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The characteristic equation

det (ail- — 160') = 0, (18.25)

determines two double roots given by

3.1 = 1—2 and AZ = —(l ‘1' 3). (18.26)

The general solution of equation (18.23) is now given by

y,-=(A,-+B,.1nx)x’“ +(C,-+D,-1nx)x*2, (i=1, 2, 3, 4), (18.27)

where A,- and B,- denote eigenvectors associated with Al while C,- and D,-

are those associated with 22. Since eigensolutions have to be regular at
the center (x = 0), the vectors 3,, C,-, and D,- should vanish:

B,- a 0 and C,- = D,- a 0. (18.28)

Then, eliminating x)Ll from equation (18.27), we finally obtain two
homogeneous relations near the center, which are given by

 
2

C (1)

1, y: - yz = 0 (18.29)

and

In — y4 = 0. (18.30)

These are the two inner boundary conditions. In these conditions
variables appear separately in pairs of (yl, yz) and (y3, y4), owing to the
matrix (a,-,-) which is semi-diagonal.

The proper outer boundary conditions can similarly be obtained.
Owing to the surface (assumed quasi-isothermal) properties that

U—>O, Vg—>Vg(x= 1)

as x—> l, (18.31)
A*—>A*(x =1), c1—> 1'

equations (18.14)—(18.17) are reduced to differential equations with
constant coefficients near the surface, given by

1’1 y 1

d Y2 ' Y2
x— = b,-- 18.32
dx Y3 ( 1) Y3 ( )

Y4 Y4

with
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vg—3 l(l+1)/w2—Vg vg 0
wz—A’“ 1+A* —A* 0

(b0) — 0 0 1 1 (18.33)
0 0 l(l+1) 0

The characteristic values of the matrix (by) are

A1 = _l’

A = l + 1,2 “11% » (18.34)
and
m

A. = ém + A* — 2) i 7”]. . 
where (1?" ~ 17 ,5 w\/4 2

y =(A* — Vg+4)2+4[1(1+ 1)/w2— Vg](w2—A*). (18.35)

The general solution of equation (18.32) is then given by

VI 0’1 131

YZ =A3 0’2 x—I+ 33 132 xl+l

y3 1 1

Y4 ‘0'”)

1 1
l_-b” A+“b11

+ C1 '3 x’L + D1 '6 x’h, (18.36)

0 0

where

b12b23 — b13(b22 '1' 1)
 

 

 

= , 18.37
m (bu + ”(bzz + l) ‘ b12b21 ( )

b21b13 — b23(b11 + I) 1-
: / , " ‘4 18.38

«2 (bu '1' 0(b22 + 1) -_b21b ( )

’31 b12b23 ’ b13(b22 — l— 1) (18.39)
= (bu — I— 1)(b22 — I — 1) — b12b21’
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and

[32 = b21b13 — b23(b11 _1— 1) .
(bu — 1‘ 1')(b22 _1’1)— b12b21

Here the coefficient B3 should be set equal to zero:

33 = 0, (18.41)

in order for _the potential perturbation y3 not to increase outward.
The kinetic energy density of the oscillation, eK(E ozplglz), is

related to x, y1, y2 as

 (18.40)

since

p oc x-M‘Ws). (18.43)

For the solutions associated with A = At, the kinetic energy density is
then given by

_(A*+Vg-2)x2A¢ = xiV? (18.44)

_and oscillations near the surface are evanescent waves or propagating
waves depending on whether y > 0 or y < 0. The roots of y = 0 give two
critical frequencies 60Cl and (062(61)‘.l < wcz):

eKOCx

 
4V

y = - 23(102 — 61)2cl)(a)2 — (07;). (18.35’)
to

If the frequency w is lower than (0c2 and higher than cucl(a)cl < w < we),
the quantity y is positive and the oscillations associated with A = A: are
evanescent. On the other hand, the quantity y is negative, and solutions
associated with A = A1. represent progressive waves, if (1) < “’01 or we2 <

(1). These critical frequencies wel and we2 are similar to N and L, of the

local analysis in Section 15. The difference, however, results from the

existence of the first term in the right-hand side of equation (18.35),
because of the fact that h(r) defined by (15.7) is not a constant as
assumed in Section 15. Thus the critical frequencies (0c! and arc2

represent the critical frequencies for propagating gravity waves and for
propagating acoustic waves near the surface, respectively.

If the eigenfrequency w is between these critical frequencies (y >
0), the kinetic energy density of the A+-solution monotonically increases
outward while that of the A--solution monotonically decreases. There-
fore, the A+dsolution should be rejected, and
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D1 = 0. (18.45)

Eliminating x" and xA’ from equation (18.36) with B3 = D, = 0, we
finally obtain two homogeneous relations among y1, y2, y3, and y4 as

follows:

 

(1 + 1)y3 + y4 = 0 41:1, (18.46)

and ( 1'" A4 5'.) 3:3 ,‘1' $141353
1 3

A_—b a A_—b
—IIY1—Y2—[ l( H) ‘02]Y3=0- (18.47)

b12 b12

These are the two outer boundary conditions in the case of 60Cl < w <
wcz. Equations (18.46) and (18.47) are the potential boundary condition
and the mechanical boundary condition, respectively.

If the inequalities

A*, v, >> (1)2, l(l+1)/w2, 1 (18.48)

are satisfied, the mechanical boundary condition (18.47) may be
somewhat simplified. In the limit of the zero-boundary (A*,Vg —> 09) in
which the density and pressure vanish at the stellar surface, the
mechanical outer boundary condition (18.47) turns out to be

yl — yz + y3 = 0. (18.49)

This condition is readily reduced to the free boundary condition

(Sp = 0. (18.50)

On the other hand, if the surface pressure is finite, the condition (18.47)
is simplified to

y1{1 + [I(l + 1)/a)2 — 4 — w2]/V} — yz

+ y3{1 + [1(1 + 1)/w2 — 1 — 1]/V} = 0, (18.51)

which is accurate to the first order in V". This form of the condition
was utilized by Dziembowski (1971) and by Osaki and Hansen (1973).

If the frequency w is either higher than we, or lower than wc', the
quantity y is negative and the waves cannot be reflected at the
boundary. Since the temporal dependence of the oscillations is taken as
exp(iot), the A_- and A+-solutions represent waves whose phases
propagate upward and downward, respectively. It should be remem-
bered here that the group velocity and the phase velocity in the radial
direction have the same sign in acoustic waves but have the opposite
sign in gravity waves (Section 15). Because we consider stellar free
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oscillations, the inward propagation of wave energy from the outer
boundary should be rejected. Thus for acoustic waves with w > wcz, the

solution associated with A+ is improper, so that

D1 = 0, (18.52)

and the mechanical outer boundary condition for w > 60c2 is obtained as

m _ _[ “101—"W _
b12 y1 y2 b12

Since the quantity A_ appearing in equation (18.53) is a complex
quantity, given by

 a2]y2=0. (18.53)

A- = é—[wg + A* — 2) — i|y|“2], (18.54)

the eigenvalue 0)2 and eigenfunctions y,- are also complex even in the
adiabatic approximation. This is due to the leakage of the wave energy
from the system in the form of progressive waves. On the other hand,
for gravity waves with a) < 6%,, the solution associated with A_ should be

rejected so that

C1 = 0. (18.55)

The corresponding mechanical outer boundary condition is then given

by

 

4+"b11 _[CY1(4+—b11)
— Y2- — =0 18.56b12 Y1 b12 “211’3 ( )

with

_ 1 4 _ - 1/2A+ — —2 [(Vs + A 2) + zlyl ]. (18.57)

Thus the four proper boundary conditions of the differential
equations (18.14)—(18.17) are now explicitly given by the two inner
boundary conditions (18.29) and (18.30) and a set of the outer boundary
conditions consisting of equation (18.46) and one of the conditions
(18.47), (18.53), and (18.56) depending on the frequency of the
oscillation to.

18.2 Method of Calculation
To solve boundary value problems numerically, we may successively
integrate the differential equations from each of the boundaries to a
fitting point, regarding the boundary conditions as the initial conditions,
until the two kinds of values of functions y,- at the fitting point agree with
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each other by the correct choice of the eigenvalue. On the other hand,
the relaxation method usually called the Henyey method (Henyey,
Forbes, and Gould, 1964) is powerful in solving boundary value
problems like the construction of stellar models (cf. Kippenhahn,
Weigert, and Hoffmeister, 1967), and it can also be applied to stellar
oscillation problems (cf. Baker, Moore, and Spiegel, 1971). In this
subsection, we describe the algorism of the Henyey method of solving
the eigenvalue problem of stellar oscillations.

Dividing the region of independent variable x by N mesh points
(xn;n = 1,2,..., N), we have a system of 4(N — 1) difference equations
from the four linear differential equations (18.14)—(18.17). These
difference equations are then regarded as linear algebraic equations for
4N + 1 unknowns, viz., the correction 6102 to the assumed (02(0) and the

corrections 6y,-(x,,) to the assumed yfo)(x,,). The four boundary
conditions plus a normalization condition, say,

y1 = 1, (18.58)

at the outermost mesh point, together with 4(N — 1) difference
equations, form a system of 4N + 1 algebraic equations for 4N + 1
unknowns. We can successively iterate this procedure until all the
correction terms become small enough. Thus both the eigenvalue (02
and the corresponding eigenfunctions y,-(x,,) are obtained simul-
taneously.

Now we will consider more precisely how the Henyey-type

relaxation method is applied to stellar oscillation problems. To make
application to other problems easier, we discuss the method of solving
eigenvalue problems of I first-order differential equations and K
eigenvalues A. For simplicity, the symbol y,-" is used for y,-(x,,). The set of
the I differential equations dyi/dx = f,-(y,-,Ak); (i,j = 1,2,..., I;k = 1,...,K)

is approximated by the corresponding difference equations given by

ny_n+l_y. -
'__' = (1-01')fi()’jn+l§4k)+91fi0’in;’1k)’ (1859)Ax"

for i, j = 1, ..., I and k = l, ..., K, where

Axn=xn+1-x,,; n=1, 2, ..., N—1, (18.60)

and 6,- is a real constant lying in the interval, 0 s 6,- 5 1. For better
accuracy, 6,- = 0.5 is adopted if no numerical instability occurs (see
Section 24). To solve the eigenvalue problem with I first-order
differential equations and K eigenvalues, the number of boundary
conditions should be I + K = L including the normalization conditions.
Let L, and L — L, be the numbers of the inner and the outer boundary
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conditions, respectively (L, < I). Then, the inner and the outer
boundary conditions can be written in the forms

81011; A..)=0; 1:1, 2, L, (18.61)

and

810).”; Ak)=0; l=Ll+1, L,+2, L, (18.62)

respectively, where i = 1, 2,..., I and k = 1, 2,..., K.

Let )3,- be trial eigenfunctions and Ak be trial eigenvalues. We
assume that the true eigenfunctions and eigenvalues are given by

y.-"=.V.-"+6y.-"; i=1.2.....1; n=1,2,...,N, (18.63)

 

  

and

71,. = 1,. + 6Ak; k = 1, 2, K. (18.64)

We define

f,- 2 120,991.); i,j = 1, 2, 1; n = 1, 2, N;

k = 1, 2, K, (18.65)

g} a glow»; 1= 1, 2. L,, (18.66)

g,” s g,(y,.~;}1,,); l=L,+1, L,+2, L, (18.67)

8f." sf."
F!!! = __n, ln = - , 18.68

-1 -1

G1,: 815’ , A}. = Cl"*5>";1=1,2,..., L,, (18.69)
ayi 34k

and

-N -N

0,7: 881 A}: = i; l=Ll+1, L,+2, L. (18.70)
87,” ax.

Substituting the forms (18.63) and (18.64) into equations (18.59),
(18.61),and (18.62), and discarding all terms containing products of the
6y)" and the 6Ak, we obtain the following I X N+ K equations:

A36y,-"+‘+Bgay,-"+M;',,52,.+d;'=0; n=1,2,..., N—l, (18.71)

G},6y}+A}k61,.+g}=0; 1: 1,2,..., L,, (18.72)

and
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GfflSyiN+AfZ6Ak+ng=0; I=L,+1, L,+2,..., L, (18.73)

where the Einstein summation convention is used for j and k,

A5; = Axn(l — 6;)FifH-l — 61'], (18.74)

B; = AxnfliFif' '1' 6,7, (18.75)

3‘ = Axn[(1 — 6i)L,'2+l ‘1" Bier , (18.76)

and

d." = - 1"“ — '1") + Axnlu — 60f?“ + 19.-fr]. (1877)
where 15,-,- denotes Kronecker’s delta. At a first glance, the system of the
equations looks too large to be solved by matrix inversion. But there are
many zero elements in the coefficient matrix, and the Henyey-type
relaxation method makes use of this characteristic property.

First, we consider a set of I equations which consists of the L,

equations (18.72) and I — L, equations from (18.71) (for example, i = 1,
2, ..., I -L,). The set of equations may be written as

6A
6y1 6y? '

l 2 6A2

5Y2 5Y2 .
(P1) : = (01) : + (‘11) : , (18-78)

' ' 6).
6y} 6y? 1K

where

01: G12 G1,

01. 012 0'2:

G11, GL2 01,:
(P1) = 1' , 1 , (18.79)

Bl] BIZ 81]

Bi. 3.122 BE,  1 1 1
B(I—L,)1 B(I— L,)2 B(l— L,)l
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(Q) _ 0 for i=1,2,...,L, and j=1,2,...,I;

1” —A},-_L,,,- for i=L,+1, L,+2,...,1 and j=1,2,...,1,
(18.80)

and

f —A11 -1112 —A1K 1'11 \
-A11 #152 _A2K -8§

-A1Ll -A}. 2 -A}. K -81
(‘11): 1’ 1’ 1’ 1' . (18.81)

—M11 —M12 ”' _MlK —dl

-M§1 -M%2 —M.12K -d§

-Mb—L,)1 ‘MiI—an ‘MiI—Lnx -db—L,)  
This set of 1 equations includes 21 + K unknowns 6y}, <‘5y,-2 (i = 1, 2, ...,
I), and 62,. (k = 1, 2, ..., K) so that I unknowns are expressed by linear

combinations of the other I + K unknowns; i.e.,

6).
6Y1 6y? 1

1 2 512
6Y2 6Y2 ,

. = (R1) . + ('1) : , (18.82)

' ° 6).
5y} (5)),2 1 K

where

(R1) = (P0—1 (Ql), (18.83)

(1'1) = (P0—1 (411), (18.84)

and (P1)‘1 denotes the inverse matrix of (P1).
Next, we combine the remaining L, equations (i = I - L, + 1, I —

L, +2,..., I) in (18.71) for n = l and the first (I — L1) equations (i =
1,2,..., I — L,) in (18.71) for n = 2. This set of equations can be written

as
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(SA
6y} 6y:2 6y? '

1 2 3 6’12
5Y2 6y2 6y2 .

(S1) : + (P2) : = (02) : + ((12) : ,
. . . M

6y; 6y? 6y? 1"

(18.85)

where

(S) _ B;,_L,...,-,,- for i=1,2,...,L, andj=1,2,...,I;

"’ _ 0 for i=L,+1, L,+2,...,I and j=1,2,...,I,
(18.86)

( A(l—L,+l)l A(I-L,+1)2 A(l—L,+l)l

A(l—L,+2)l A(I—L,+2)2 A(l-L,+2)l

A11 A12 A11
(P2) = 2 2 2 , (18.87)

311 312 B”

B% 8&2 3%:

\ B%l—L,)l B(I—Lpz B(I—Lpl }

(02) _ 0 for 1': 1,2,...,L, and j=1,2,...,I;

" _ —A%,-_Ll),- for i=L,+1, L,+2,...,1 and j=1,2,...,I,
(18.88)

and

—M(l—L,+1)l _M(I—L,+l)2 —M(I—L,+1)K —d(I—L,+l)

“M(I—L,+2)1 —M(l—L,+2)2 —M(I——L,+2)K _d(l—L,+2)

( ) -M}1 -M}2 —M}x -d}
q =

2 —M%. —M%2 —M%. —d%
-M%1 -M%2 -M.%x -d%  



ADIABATIC OSCILLATIONS 173

—MiI—L,)1 -M%:_L,)2 -M%1—L,)K -d%1_1.,)
(18.89)

Substituting (18.82) into (18.85), we obtain

(5)1

5% 6y? 1

6Y2 5Y2 ,
. = (R2) . + (r2) : , (18.90)

' ° 61
5y} 15y,3 1 K

where the matrices (R2) and (r2) are defined by

(R2) = [(51)(R1) + (P2)]_l(02) (18-91)

and

(r2) = [(S1)(R1) + (P2)]—l[(¢12) - (S1)(r1)]- (18-92)
Equation (18.90) can be generalized as

6 n (S n+1 63']

6y; ayiH-l 612

y? = (R..) yf + m) s , (18.93)
° ' 6}.

5y? 6y?“ 1K

with

(Rn) = [(Sn—1)(Rn—1) + (Pn)]_l(Qn) (18-94)
and

(tn) = [(Sn-IXRn—l) + (Pn)]—1[(qn) _' (Sn—1)(rn—l)]9 (1895)

where

B&ZILIH» for i=1,2,...,L, and j=1,2,...,l;

0 for i=L,+1, L,+2,...,I and j=1,2,...,I,

(18.96)

(Sn—l)ij =
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-1
r A?!—L,+1)1

—1
A?!—L,+2)1

AW]

371

331

(Pn) =

 

 

BZ’LIH

0
(Qn)ij= {

‘A ELL,»-

and

r-M('I-—1L,+1)1
n—l

-M(l—L,+2)1

_Mn—l
II

n-Mn
n—M21

(‘12) =

 
\ “Mfl—Lpl

for

—l
A?I—L,+l)2

—1
A ('I—L,+2)2

(472—1
n

12

332

31'1—L,)2

—M(111,.» 1)2

"M(’1:11.,+2)2

_11172—1

‘M72

‘M32

_M?1-L,)2

—1
A ?I—L,+1)1

n—l
A (l—L,+2)l

A171
n
1]

331  
B('I— L,)l

i=1,2,...,L, and j=1,2,...,I;

for i=L,+1, L,+2,...,I and j=l,2,...,I,

—M('I-—1L,+1)K

—M('I——1L,+2)K

—M7,:‘
‘Mi'K

“Max

‘Mi'I—Lnx

, (18.97)

(18.98)

"d?I_—1L,+1)

—d(9:11.,+2)

-d7"l

—di’

—d§'

 
—d('I—L,) )

(1899)

At the outermost mesh point n = N, combining the remaining L,
equations in (18.71) for n = N — 1 with L — L, outer boundary
conditions in (18.62) we obtain

6y?“ 6y?

5y?“ 6y?(z) . + (II) .
6yF“ 6yF

where

6).,

612

61K

1

(18.100)
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Z~= B(NljlL+,-),- for i=1,2,...,L, and j=1,2,...,I;

” 0 fini=LerIq+2n,rmmj=1gwnxg—

___ (18.101)

( A(III:II.,+1)1 A(l—L,+1)2 A(I—N:L,+1)l\

A(All:ll.,+2)l A(l—L,+2)2 A(l—L,+2)I

Afi—l 1412—l All-1(11) = N N N , (18.102)
G (L,+1)1 G (L,+1)2 G (L,+1)I

07L,+2)1 G[2/L,+2)2 07L,+2)I

\ C711 012 0'1:

and

_ _ _ N—
r—MQVI-1L,+l)l "‘Mlzll—1L,+1)2 "M](vl—1L,+1)K -d(l-1L,+1)

—MI(vl——1L,+2)1 -M](VI:lL,+2)2 —M(l—L,+2)K _dlzll_-1L,+2)

(W) _ -M’7r‘ 4472-1 447,21 —d’7“
_AI(VL,+1)1 _A7L,+1)2 —AI(VL,+1)K ‘87L,+1)

—AI(VL,+2)1 ‘A7L,+2)2 —AI(IL,+2)K ‘87L,+2)

\ -A’}’.1 -A’Zz -A’ZI< *9’1‘:
(18.103)

Substituting equation (18.93) with n = N - 1 into equation (18.100)
yields

0y? 011
by? 012

[(2)(RN-1) "H")1 . = [(W) ‘(XXI'N— 1)] 5 , (18-104)

6yF 6:K

01'
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( 6y?

6%”

 

(5ij _ 18105(Z) 61. — (c) < . )
612

1..)
with the (I + K)-th order square matrix (Z) whose elements are given by

  

 

Z-- = [(2)(RN—l)+(n)]ij for j: 1,2,...,];

U [(2)(rN_1)—(W)],-(,-_,) for j: 1+1, l+2,...,l+K,

(18.106)

for i = 1, 2, ..., I+K(=L), and the column vector (c) given by

c,-=[(W)—(E)(rN_1)],-(K+l); 1:1, 2,....,I+K (18.107)

Applying the inverse matrix of (Z) to equation (18.105), we obtain

 

  

 

6y?
6y?

a W _6%: = (Z) '(c). (18.108)

612

1 61).
Thus the solutions for the outermost mesh point, 6y)” (i = 1,2,. .., I) and
611,. (k = 1,2,..., K), are obtained. Inserting these solutions into the
recurrence relation (18.93) with n = N — 1, we obtain the solutions for n
= N — 1, 6y,- ". By the same procedure, the solutions for the inner
mesh points, by)", are successively obtained. Inserting these solutions
into equations (18.63) and (18.64), we obtain the corrected values for y,"
and M. Unless the entire system of the equations is linear in all
dependent variables, y,-”, and eigenvalues, 11k, however, the corrected y,-"
and 11,. will not be true solutions of equations (18.59), (18.61), and
(18.62), but simply better approximations. Since the system of
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equations for nonradial oscillations is nonlinear in terms of the
eigenvalue (oscillation frequency), we have to iterate the procedure
until the corrections, 6y)" and 611k, become sufficiently small.

To adopt the Henyey-type relaxation method, starting trial
eigenvalues and eigenfunctions are needed. The convergence of this
relaxation depends on how good the initial guesses of eigenvalues and
eigenfunctions are (and on the degree of nonlinearity of the system of

equations). Castor (1971) invented the following method of making a
good guess in solving the radial pulsation problem. If we set aside one of
the boundary conditions while keeping the normalization condition, we
can solve this system of equations with an arbitrary value of (02. (No
iteration is necessary in this case, because the system of equations is
linear in terms of unknowns.) We then substitute this solution into the
excluded boundary condition. In general, the condition is not satisfied
for the arbitrary (02, but the numerical value associated with the
boundary condition serves as a discriminant for eigenvalues of the
original system. Once we get a reasonably good initial guess of the
eigenvalue and corresponding eigenfunctions, we can use the relaxation
code to obtain solutions for the full system. This method is applicable
also to the nonradial oscillation problem. For .instance, we choose the
potential boundary condition (18.46) as a discriminant,

D(w2;y.-N) E (l + 1)y:’sV + yi", (18109)
which becomes zero if and only if (1)2 is one of the eigenvalues. We
evaluate D for various values of (02 and use the value of (02 near the zero
points of D as an initial guess of the eigenvalue. To calculate the
discriminant D, unknowns are only y,-", in terms of which the system of
equations is linear, so that any values for the initial trial value for y,-” can

be adopted and the solutions for a given value of (02 are obtained
without an iteration.

An example of the behavior of D as a function of (1)2 is shown in
Fig. 18.1 for a white dwarf model (from Osaki and Hansen, 1973). With

the help of the discriminant we shall not miss any eigenmodes. In some
cases, however, the discriminant given by equation (18.109) does not
behave smoothly as in Fig. 18.1. Very often, zero points of D are very
close to singular points, where D = :09. Such singularity is caused by
that the function y,- takes zero by accident for the given value of (1)2 at the
mesh point where the normalization condition is applied. In order to
avoid the problem, we only have to evaluate the discriminant with a
different normalization. That is, better behavior of the discriminant is

obtained if we adopt the deviation from the boundary condition divided
by yll as the discriminant, if the normalization condition is applied to the
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outer most mesh point. Sometimes a good discriminant can be obtained
by using an inner boundary condition.

In the cases of progressive boundary conditions (18.53) or (18.56)
and of nonadiabatic oscillations (Chapter IV), the eigenvalues and
eigenfunctions are complex quantities. Such problems can be solved
either by applying the algorism of complex numbers in the above
formulations or by separating the complex variables into real and
imaginary parts to form a system of 21 real dependent variables and 2K
real eigenvalues. In either cases, the discriminant D depends on the real
and the imaginary parts of 00 so that it is difficult to obtain good trial
functions and eigenfunctions by using the discriminant. In most cases,
however, the imaginary part is so small compared to the real part that
we can use adiabatic real solutions with the reflective boundary
conditions as trial solutions of the problem.

151- fl -‘

lOr— —

 

  
 

_15— ._

l l l L

0.01 0.1 1.0 10.0 100
‘02

     
Fig. 18.1 Behavior of the discriminant given in equation (18.109) as a function of (1)2 for

a white dwarf model of 0.398MQ (from Osaki and Hansen, 1973).
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19. The Influence of Velocity Field and Magnetic Field as Treated by

Perturbation Theory

19.1 Perturbation Equations .
So far we have considered linear, adiabatic oscillations of a nonrotating
star with no magnetic field. However, real stars rotate to a greater or
lesser degree and have magnetic fields. Their influence on nonradial
oscillations sometimes has to be taken into account. For example, the
beat phenomena of early type 0, B variables are well explained by the
nonradial oscillations of rotating stars, and the rapid oscillations in Ap
stars are interpreted as nonradial oscillations of rotating, magnetic stars,
as discussed in Chapter 11. However, since the theory has been

complicated for the case of rapid rotation or strong magnetic field
except in some special cases, we shall consider here the effects of a slow
rotation and a weak magnetic field upon nonradial oscillations in a case
where the equilibrium structure can be taken as spherically symmetric.

The influence of rotation will be discussed in greater detail in Chapter
VI.

The equation of motion in the presence of a velocity field and a
magnetic field B in a rotating frame of angular velocity 00 is given by

%+(V-V)v+200Xv+flOXQ,Xr

1 1

where B is described in the MHD approximation by

% = v x (v x B). (19.2)

In equation (19.1), the third and fourth terms in the left-hand side
represent the Coriolis force and the centrifugal force, respectively. We
suppose the equilibrium velocity field v0 and the equilibrium magnetic
field BO are steady so that

8V0

8t
 = 0 (19.3)

and

c980

at
 = 0. (19.4)
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The unperturbed state without oscillations is then described by

(VO'V)V0+200X V0+00X00XT

 

1 1
=—V<I> ——V +——— VxB XB 19.50 p0 P0 47TPo( 0) 0 ( )

and, if the velocity field is solenoidal,

(B(1°V)V0 ‘ (V(1°V)30 = 0 , (19.6)

while the linearized equations are

‘2: +(v0-V)v’+(v’-V)v0+200xv’

 , p’ 1 ] 1 ,
=—V<D+ V -— VxB XB ——Vp P0 471 ( 0) 0 p0 P2

0

 

+LL[(VxBI)xBO+(VxBO)xB'] ' (19.7)
4” P0

and

83' , ,
8t =VX(V XBo)+VX(V()XB) , (19.8)

where the prime denotes the Eulerian perturbation. Hereafter, the
suffix 0 for the equilibrium quantities is omitted for simplicity. The
Eulerian perturbation of velocity v’ is related with the displacement
vector 5 by equation (13.26). We set the temporal dependence of
eigenfunctions as exp(iot) in the rotating frame. Substitution of
equation (13.26) into (19.7), with the help of the linearized equations
describing the mass-conservation and the adiabatic energy conservation,
gives (cf. Lynden-Bell and Ostriker, 1967; Gough and Taylor, 1984;
Dziembowski and Goode, 1984)

V[(p-pc2)V - E-E - VP] -pV(V ° §)+p‘ ‘(6 - Vp)Vp

—p02§+de>’ +2i0p[00X §+(v- V)§]

+p[(v-V)2§—2mx1(§-V)v—(v-1051—15-V)(v-V)v]

+1410“ [Ip-‘(s-V)p+V-ewx(vw>

-[(VxB’)xB+(VxB)><B’]]=O, (19.9)
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which is symbolically writtten as

2(5)-025+0M(§)+N(E)+B(E)=0 , (19-10)
where the operator 3(5) is defined by equation (14.25) and

M(E) E 21100 X E + (V'V)§l , (19-11)

N(§)E(V° V)2§-200>< [(E' V)V-(V' V)§]-(E' V)(V° V)V,
(19.12)

and

8(5) a (4wp)"[1p-‘(;=- V)p+ v - §13>< (7 x B)

—[(V xB') xB+ [(V x B) x 3'1] . (19.13)

Here, B’ is related to 5 through equations (19.8) and (13.26). Besides
the influence upon the equilibrium structure, the effect of the presence
of the unperturbed velocity field appears in the operators M _and N, and
the effect of the magnetic field appears in the operator B.

We regard the effects of velocity fields and magnetic field on the
equilibrium structure and on the oscillations as small perturbations, and
expand any equilibrium quantity such as p, the eigenfunctions, and
eigenfrequencies as

p = p(0) + p“) +... , (19.14)

g = 15‘") + g“) +... , (19.15)

and

a = 0(0) + o“) +... . (19.16)

Substituting (19.14)—(19.16) into (19.10) and neglecting the terms of the
first and higher orders, we obtain

2(905‘9) - a<°>2§(°) = 0 . (19.17)

Similarly, discarding of the second and higher orders yields

$(0)(§(1)) +$(1)(§(0)) _ 0(0)2 5(1) _ 2010100150)

+a<0>M<°>(§(°>)+B<°>(§(°>) = 0 . (19.18)

Here, the operators with a superscript, such as 56(1), are operators
consisting of equilibrium quantities of the first order. As seen in
equations (19.5) and (19.9), the magnetic field affects both the
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equilibrium structure and the oscillations in the same order of
magnitude. The equilibrium structure is no longer spherically symmet-
ric, and the small departure from spherical symmetry is represented in
terms of2 (1) and 5“”. In contrast, velocity fields (relative to an inertial
frame) affect the equilibrium structure in the second order, while their

effects on the oscillations appear even in the first order. The operator
N(0) represents the departure from the spherical symmetry, but it is of

the second order, and then we do not discuss it in this section.

The solution of equation (19.17) gives the eigenmodes of a
non-rotating non-magnetic star, which are represented in terms of
spherical harmonics YI" (6,4)). Since such a star' is spherically symmet-
ric, there remains a freedom for the choice of the polar axis, 6 = 0. Here.
we arbitrarily set the axis and let {5mm} be the set of eigensolutions with
the eigenfrequency 0,50) given by equation (19.17). The eigenfrequen-

cies with a fixed set of (n, l ) are degenerate with respect to the
azimuthal order m(m = —l,...,l).

If we take account of the effects of v0 and B, the star is no longer

spherically symmetric and its normal modes have a specified direction.

The zero-order eigenfunction of equation (19.10) must satisfy both
equations (19.17) and (19.18). Let us now consider the (n, l) multiplets
and represent the zero-order eigenfunction 5“” in terms of the set of

{gnlm}:
I

g(O) = 2 amgnlm - (1919)

m=—l

The set of combination coefficients {01”,} should be uniquely determined
for 5“” to satisfy both equations (19.17) and (19.18). Also we expand
the perturbed displacement 5(1) in terms of {Enlm} as

5(1):; z’fin’l’m’gn’l’m’+EYI’m’(r)nl’m’ - (1920)

m' n’ l' l’ m’

In the first term on the right-hand side of equation (19.20), {,Bn'pm'} is a

set of constants and 2' meansthe summation over 12' and 1' except for
(n’, l’) = (n, I). In considering the perturbation in the eigenfunctions,
we must include, for the completeness of the eigenfunctions, toroidal
modes mm with 0“” = 0 given by (cf. see Section 13; Aizenman and
Smeyers, 1977)

1 1 8 8 m.
”I'm'=W(O, W597, -¥)Y1’ (6, (1’) -

(19.21)

The second term on the right-hand side of equation (19.20) represents
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contributions from these toroidal modes, and {y,7,,,7} is a set of functions
of r.

In the following, we derive the expansion coefficients of 5“” and
5‘”: {am}, {/3"7,7m7}, and {y,7m7}. Substituting equations (19.19) and
(19.20) into equation (19.18) and then integrating over the whole
volume after multiplying by 5*n"pm" with an arbitrary set (n"l"m"), we
obtain

_20510) 0(1)6n"n61"16m"mamlnl +Za’m AM’Erf’l’m"1$()(gnlm)er

+2 21W—051(1))2)6n"n'6I'I'6m”m’fln'l’m'In'l'

+ 0511) 2am /MEn”ImM(O)(Enlm)er

+211", /0M§1;7,77mB(°)(E,.,m)dM,=0. (19.22)

Here, 15,-,- is the Kronecker delta,

In! E AMlgnlmlszr , (1923)

and we have used the orthogonality of 5.1m equation (14.14) and

/0M5277m7-n,7m7dM,=0 . (19.24)

For (n", l”) = (n, 1), equation (19.22) is reduced to

: (Omum — 0(1)6m7m)am = 0 (19.25)

for m” = —l, ..., T(lDziembowski and Goode, 1985, 1986), where

0",... E Mm7m + 9,7", , (19.26)

M”=mm— 2_I,,,1/0M gnlm'" M(0)(§n1m)er , (1927)

and

Bm"’"=_ —)—20r;l)lnl /M£21m”.[B(O)(§nlm)+$(1)(§nlm)ler- (1928)

Equation (19.25) means that the 21 + 1 eigenvalues o“) are the
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characteristic values of the matrix 0 E (Om7m) and the combination
coefficients am are the corresponding eigenvectors of the matrix. We
rewrite equation (19.25) in a matrix form:

Oa = arA , (19.29)

where the matrix a consists of the eigenvectors, and the matrix
AE(Am77m)=(o,(,,1)6m7m) is a diagonal matrix consisting of the character-
istic values.
The expansion coefficients for 5(1) are obtained as follows. For (n",

l")=(n’, 1’), equation (19.22) is reduced to

.Bn’l'm' (0119;? _ 051(1))2)In'l'

M .

+ Eam{or(1(l)) / ETI’I’m’ 'M(0)(§nlm)er
m 0

M

+ / gfi’l’m’ ' [B(O)(Enlm) + $(1)(§nlm)]er} = 0 ° (1930)

Then
_1 —l

fin’l'm' =[0r(i(l))2 _ 011912] In’l'

M

X Zam{or(i(l)) / E:’I’m"M(O)(§nlm)er
,,, 0

M

+ / gz’l’m’ ° [B(O)(Enlm) + $(1)(§nlm)1er} - (1931)
0

Similarly, by substituting equations (19.19) and (19.20) into equation
(19.18) and integrating over the whole volume after multiplying 777%,
we obtain

YI’m' =01192'-2

M

X Zam{ar(z(l)) / ”Ik’m’ ' M(0)(§nlm)er
,, 0

M

+ / '1 T’m’ ' [B(O)(§nlm) + 7% U)(EnldeMr} ° (1932)

Here we have used
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M

/ lm'mrlsz, = 1. (19.33)
0

19.2 Influence of Rotation on Spheroidal Modes

In evaluating the operator M(0)(§n,m) in equation (19.27), we suppose
the equilibrium velocity field Va is due to the rotation of the star. Let us
suppose the magnetic effect is much smaller than the effect of the
rotation and investigate the effect of the rotation in this subsection. The
assumption may be justified in most cases. The equilibrium velocity
field is given by

V0 = 0 X r = (0, 0, rflsin 6) , (19.34)

where the angular velocity 0 of the star at equilibrium measured in the
rotating frame with an angular velocity 00 is assumed to be axially
symmetric so that

(I = [Q(r,0)cos6, —Q(r,6)sin6, 0] . (19.35)

We consider the problem in a rotating frame whose rotational axis is
identical with the rotational axis of the star. Using the relations among
the unit vectors

 

8e, _ .?¢— — e¢s1n6 , (19-36)

889 _
W — e¢cos9 , (19-37)

and

804, _ _ - _19¢ — e,81n6 egcosfl , (1938)

we obtain

1%..- M(°)(§m) = —mfl§’,",,7 . 5m — i(Q+flo)§”,;,7,,Em,¢ sin 0

- 110+005’rkn”,0§m,¢ COS 9

+ «01-00);tn”,¢(§m,r8in 0 + gmflCOS 0) ,

(19.39)

where ()0 denotes the angular velocity of the rotating frame. Here the
suffixes n and 1 representing the multiplets 5",", are omitted for
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simplicity, and the suffixes r, 6, and 11) mean the r-, 6—, and (1)-component

of 5 measured in the spherical polar coordinates, of which 0 = 0 is taken
as the direction of the rotational axis, and the azimuthal dependence of
5",", is taken as exp (im¢). Then, if we take the polar angles (6, 4)) with
respect to the rotational axis of the star as a base for EM", the integral of

equation (19.39) over the whole star is reduced to
M R

%/ £21m“ M(0)(Enlm)er = 6m”mm X {00/ p(r)r2(2§r§h + §£)dr
0

0

_ 11 R

+ 212*—1 (1+1Z111A-0 ./—0 p(ryzQUfl)

 

 

  

>< (—53+2§.§,)(P)'"')2+

m dP)m| cosB dP)’"l 2 m2 m .
+3121?) I—d0— sin0 —(__d§—) - sin26 (P) ')2]]drs1n 6d6} ’

(19.40)

while the denominator of anm, I,,,, is given by
M R

/ |§(°)|2dM,=/ p(r)r2[§,2+l(l+1)§fi]dr. (19.41)
0 0

Equation (19.40) means that the matrix ME(M,,,~,,,) is diagonal:

anm E 0,2,1)” 6M7”, . (19.42)

As a consequence, the eigenvector matrix a is the unit matrix. That is,

the zero-order eigenfunction is given by a single spherical harmonic
Y["(6, 4)). The perturbation in eigenfrequency of the mode labeled by m
due to the rotation measured in the rotating frame of the angular
frequency 00 is given by (Hansen, Cox, and Van Horn, 1977)

R

01.9% mx {00/ 717721285, + 5%)dr
0

11' R

+ 8.121351-./..192099)
(- 53 + 25.57.) (le'f

 

X
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m dP}’”' cos6 dP)"" )m

+5312” I d6 sin6 _( d6 )2_ sin"120 (P |)2]]d’51“9d9}

R _

p(r)r2[§,2+l(l+1)§§]dr] 1 . (19.43)
0

  

With the help of the properties of spherical harmonics Y,’"(6, 4)), the
integral of equation (19.43) is rewritten in another useful form

(Cuypers, 1980):
R

09...: mx {00/ 70921285,. + 5,070
0

1:11:17; 21M.
>< (ZE,Eh- i=3 +5711-t(l+1)1)

 

3 an 1 820 . 2
_ (7—8—0—COS6+ ??Sln6)§h }d9]dr}

—IR

/ 10(r)r‘°'[é372 + 1(1 + 0513M ] (19-44)

 

The perturbation in frequency in an inertial frame is given by equation
(19.43) or (19.44) with 00 = 0. As seen from equation (19.43), the
perturbation in frequency due to the rotation is dependent on the index
m of the spherical surface harmonics Y,’"(6, ¢). Thus, the (21 + 1)-fold
degeneracy is resolved by rotation. This result is similar to the Zeeman
effect of magnetic field in which m is the magnetic quantum number.

It may be instructive to consider some simple cases. In a case of
uniform rotation 0 = const. , equation (19.44) leads the perturbation in

frequency in an inertial frame of 00 = 0 (Cowling and Newing, 1949;
Ledoux, 1951):

051121,“ linertial frame = -m(1 - (:nI)‘(2 a (1945)

where

C = ./0R pr212§r§h+§h1dr

"’ f0pr2[§, +I(1+1)§,3]dr

is a constant depending on the model and on the mode considered. The
perturbation in frequency is proportional to the rotational angular

(19.46)
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velocity (2 and to the azimuthal order m. A nonradial mode with m =1E 0
travels around the polar axis with a phase velocity — om/m =
—0(0)/m + (1 - Cn,)fl. In the reference frame co-rotating with the star

(0 = 0), the frequencies of traveling waves are

0
onlmlco-rotating frame = Org!) + anl 00 9 (1947)

and they are lower or higher than the frequency (undisturbed by
rotation) of the standing wave with m = 0, depending upon whether the
traveling directions are the same or opposite to the rotation. In the case
of p-modes, with an increase in the radial order n, since the radial
displacement 5, comes to dominate over the horizontal displacement 5,,
the quantity C", tends to zero. In the case of g-modes, in contrast, it

tends to 1/[l(l+1)], since 3,, becomes the dominant term with
increasingly higher overtones.

In the case of Q(r,6) = Q(r), equation (19.44) leads to

f0” pr20(r)[é=3 — 2 £3, 5,. - §fi[1—I(I+1)]]dr}
fifpr2153+1(z+1)g,3]d, -
 07(4),“: m{CnIQO—

(19.48)

Again, the perturbation in frequency is linearly proportional to the
azimuthal order m. In other cases, in general, the perturbation in
eigenfrequency 0,3,1) depends on m in more complicated forms.

19.3 The 1' Modes
In a non-rotating non-magnetic spherical star, the toroidal vector fields
of velocity correspond to the trivial solution with zero frequency for the
adiabatic linear nonradial oscillations as discussed in Section 13.3.
However, the toroidal displacement vector must be incorporated with
usual spheroidal displacements to represent an arbitrary displacement

[see equation (19.20)]. In a rotating star, the toroidal modes become
non-trivial, having oscillation frequencies of the order of the rotation
frequency (Papaloizou and Pringle, 1978). These modes are called

r-modes (or quasi-toroidal modes). The character of the r-modes is
similar to Rossby waves which appear in the Earth’s atmosphere or
oceans (see, e.g., Greenspan, 1969; Chapter VI).

In this subsection, we assume uniform rotation and nonexistence of

magnetic field, and use the co-rotating frame, (I = 0. The angular
frequency of oscillation in an inertial frame is obtained by adding —m00

to the angular frequency in the corotating frame. For a uniformly
rotating non-magnetic star, equation (19. 10) is, in the co-rotating frame,
reduced to
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56(5) - 025 + 21900 x 5 = 0 . (19.49)

The frequency of toroidal modes is zero in a non-rotating star (0(0) = 0),
which is equivalent to the relation

58 (°’(§<°>) = 0 (19.50)

for a toroidal displacement 5(0). Because of 0“” = 0, however, we

cannot use equation (19.18) for the r-modes.
Toroidal velocity fields have no radial velocity but have non-zero

radial component of vorticity (the curl of velocity), while spheroidal
velocity fields have finite radial velocity but no radial component of
vorticity. Therefore, the toroidal velocity fields do not disturb the
equilibrium configuration of a non-rotating non-magnetic star. This is
the reason why the toroidal displacements have zero angular frequency
(see Section 13) in a non-rotating spherical star. However, in a rotating
star, the radial component of vorticity interacts with the Coriolis force
and disturbs the equilibrium structure of the star. This is the reason for
the existence of the r-mode oscillations with finite angular frequency. In
discussing the characteristic of the r-modes, it is instructive to separate
equation (19.49), which consists of three component equations, into the
following three equations:

02 (V1 X §)r — 2i0[%(V_L. 5) — (“0 ' V1)E]r = [V1 X 56 (5)], 7

(19.51)

02V1'§+2i000°(v1x§)=V1'$(§)a (19°52)

and

210110 sin 01;, = [$05)], — 0273,, (19.53)

where equation (19.51) is the r-component of the operation Vi x as
applied to equation (19.49), equation (19.52) is obtained by applying
operation Vi- to equation (19.49), and equation (19.53) is the
r-component of equation (19.49). Since [Vi x $(°)(§)], = 0 for any
displacement vector 5, the non-zero terms of the right-hand side of
equation (19.51) are associated with deformation of the equilibrium
structure due to rotation and are of the order of ()8; i.e.,

[v x sg<01= - ,1. :5 51,119 a: [$705)] 

18,018 . 2 . .
+ r2p2 86 S1110 349 [g VP+CPV E] (19.54) 
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Let us consider an r-mode whose zero-order displacement vector is
proportional to the toroidal vector r),,,,, and assume the displacement
vector as

E: “(r)"lm+ 2 fin'I'mgn’l’m'l'z Yl’'W’Im a (1955)

n'l’

where the form of the toroidal vector mm is given by equation (19.21),

and 5,7,7", represents the zero-order eigenfunction for the spheroidal
mode with quantum numbers n'l’m. The leading terms in equation
(19.51) are of the order of 03 because 0 is O(QO). When equation
(19.55) is substituted into equation (19.51), the leading terms are
written as

0(0)2 “0) (V1 X "lm)r + 2i0'(1)0’(r) ((10 ' Vinlm)r = 0 (1956)

Using in the above equation the expression for mm giveniby equation

(19.21), we obtain

a<‘>[o<”— i—G’fl‘; a(r))\/l(l+l)Y,’" =0. (19.57)

Then we obtain the non-zero eigenvalue of an r-mode as

(1) = zmni)

l(l+1) ’

which is identical to the angular frequency for Rossby (or planetary)
waves (Longuet-Higgins, 1964; Chapter VI).

Equation (19.58) indicates that in the co-rotating frame the
r-modes propagate counter to the stellar rotation in the azimuthal
direction (i.e., retrograde waves in the co-rotating frame), because
(4), t)-dependence of the eigenfunction is approximately written as exp
{im[¢ + .,—(,2?"l)t]}. Note that the leading term of eigenfrequency of the
r-modes is determined only by the angular dependence of the radial
component of vorticity and rotation of the star [see equation (19.56)].
To the order of ()0, the eigenfrequency of the r-modes is independent of
the radial dependence of the eigenfunction, a(r). In this sense, the

eigenfrequency is infinitely degenerate to the order of 00. This
degeneracy is resolved when we consider the higher order terms.

When we substitute equation (19.55) into equation (19.53), which
states that the radial component of the Coriolis force must be balanced
by the effect of spheroidal displacement, we find

16.77.. = 0(03) . (19.59)

Moreover, if we substitute equation (19.55) into equation (19.51) again

 (19.58)
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and take into account the higher order terms, we obtain

—a(l)a(2)\/l(l+1)a(r)Y,'" + 2iomflo 2 [3,,7pm [—E,,l(l+ 1) cos6Y,’"
n' I'

+(§,+§h)sin6 :2“ ]= 2 13.77,..[v.>< sg<l>(§.7,m)], . (19.60)

Since [V,X$(l)(§n'rm)]r = 0(03), we obtain

0(2) = 0(1),?) , (19.61)

(Papaloizou and Pringle, 1978). The value of 0‘2) is determined as the
eigenvalue in the numerical calculation to obtain radial dependence of
the toroidal displacement a(r). We note that in determining 0‘2) and
a(r) the spheroidal components with l' = l i 1 must be incorporated.
But y,’(r) is not necessary to obtain 0‘2). Further discussions on the
properties of r-modes are given in, e.g., Provost, Berthomieu, and
Rocca (1981), Smeyers, Craeynest, and Martens (1981), and Saio
(1982). The overstability of r-modes in slowly rotating stars was
investigated by Saio (1982) and Berthomieu and Provost (1983).

 

19.4 Influence of Magnetic Fields

Next, we consider the magnetic effect. Let us suppose the magnetic
effect dominates over the effect of the rotation. The rapidly oscillating
Ap stars seem to fulfill this condition (see Section 9). In contrast to the
case of rotation in which the effect on stellar equilibrium configuration
appears in the order of 02 but the effect on the oscillations appears in
the order of 0, the effect of magnetic field appears as a term of 56“) in
equation (19.18) in the order of B2 both in the equilibrium configuration
and in the oscillations. Therefore, in a general case, a detailed

equilibrium model is needed for consistency in order to consider the
influence of magnetic field on the stellar nonradial oscillations. The only
exception is the case of force-free equilibrium fields in which (V x B) x
B = 0.

However, in the absence of the unperturbed velocity field, if we
take the polar angles (6, (p) with respect to the magnetic axis of the star
as a base for {5mm}, the matrix B E (anm) is diagonal:

8",," = 0mm“0",," , (19.62)

and the zero-order eigenfunction is given by a single spherical harmonic
Y{"(6, (b). For a potential field (VXBEO), 0mm“ is given by

1
M

,(nl)mag = __ ‘1 B’ sz, , 19.63" 870191., f p ' ' ( )
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if the energy loss [(§(°)xB)XB’] from the surface is absent. In the case
of a dipole field,

B=BOV(r’2cos6)=30(2r—3cos6e,+r—3sin6eg), (19.64)

equation (19.63) is reduced to
M

2 / p—lfilmer

30 0
(0) M

8m“ / (gsnzwwflwm
0

 
Orgmag = , (19.65)

where

[3 7... = (11573") - 255002 A0 + (1.251") - 2155"’)(E7‘."’ — §§"’)(1 - 3 A0)

+ (571°) — 5591271, + [% 069)]20 - A0)

+ % “55°”% (”55‘”) <1 - 340) + [% (75194204 — m2 — A.)

d
’ 2&7: $17 (550) + 5110))1’772 + 5710” 112m2,

2(1? — m2) — 1

(21— 1)(21+ 3) ’
 I¥=1(I+1), A0:

_ 21?—m2(21%+3)
and A‘ ‘ (21— 1)(21+ 3)
 (19.66)

19.5 Nonradial Oscillations in a Rotating Magnetic Star

Some Ap stars posses strong magnetic fields whose symmetric axis is
inclined to the rotational axis of the star. The observed magnetic field
strength then varies with the rotational phase of the star. As described
in Section 9, rapid oscillations have recently been discovered in some of
these stars, and these oscillations look like axisymmetric dipole modes
whose symmetric axis is identical with the magnetic axis which itself is
inclined to the rotational axis of the star. We consider in this subsection
the nonradial oscillations in a rotating magnetic star by taking into
account both the effects of the rotation and the magnetic fields upon
oscillation.

The basic equation to solve is equation (19.25). As seen in
equations (19.26)-(19.28), the expression of matrixes O, M, and B are
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Fig. 19.1 Geometry of various frames: (x,-, y,-, z,-) = (r sin 6,- cos (1),, r sin 6,- sin 47,-, r cos

6,). (i = B, R, I, L). The transformation formula of spherical harmonics is
given by means of the so-called Euler angles and the explicit form is given by
equations (19.68), (19.86), and (19.88).

dependent on the choice of the base of eigenfunctions—that is, they are
dependent on the choice of coordinates. Let us now suppose that the
effect of the magnetic field dominates that of rotation. In such a case, it
is more convenient to adopt a reference frame co-rotating with the
magnetic axis with the angular velocity 00, and to choose Y,’"(6B, (193) to
describe the eigenfunctions rather than to use Y,”'(6R, ¢R), where (63,
493) and (6R, ¢R) are coordinates in the co-rotating frame and 63 = 0

and 6R = 0 are the directions of the magnetic axis and the rotation axis,
respectively. The angle between these two axes is denoted by B (see Fig.
19.1). In the following, we derive the expression of the matrix 0 by
means of the coordinates (63, (p3).

Let us first obtain the expression of M, the component of 0 due to
the rotation, by means of the coordinates (6B, (113). As was noted in the

previous subsection 19.2, in the (6R, 49R) frame

M‘R) a(R) = a(R>A. (19.67)

Here the quantities with superscript (R) represent those expressed in
the (6R, 49R) frame co-rotating with the magnetic axis, and A =
(0,5,1)’°‘6m7m). The spherical harmonics with respect to (63, (1)3), Y,”'(6B,

433), are expanded by means of Y,’"'(6R, 49R) as
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Ylm(BBa (PB) = 2 (1127116) Ylm,(6Ra ¢R) , (19-68)
m’=-l

where

211 17

de'(fi)E/ / Ylm *(QR, ¢R) Ylm(68a (PB) sin63d63d¢3.
¢,,=0 63=0

(19.69)

Inversely, Y["'(6R, ¢R) is expressed by means Y,'"(6B, 493) as

YMHR. «17.) = Z 7151.)...706) mag, 42,.) . (19.70)

Hence

a(R) = 216“” , (19.71)

where the matrix d consists of d5,?,,,7(fl), superscript t means the
transposed matrix, and superscript (B) means the expression in the (6B,
433) frame. It should be noted that

d“ = 'd . (19.72)

Substituting equation (19.71) into equation (19.67) and then multiplying
d from the left-hand side, we obtain

dM<R>'da(B> = «(3)/1 . (19.73)

The right-hand side of equation (19.73) should be M(B)a(3), and hence

M<B> = dMWd . (19.74)

Since M(R) is diagonal and is given by equation (19.42),
1

115,3)... = Zd9.(fi)d£2.(13>a£”m' . (19.75)
k=-I

By adding equations (19.62) and (19.75), we eventually obtain the
expression of the matrix 0‘”) in the (6B, ¢B) frame (Dziembowski and
Goode, 1985, 1986; Kurtz and Shibahashi, 1986):

I

0:54.. = 01.11““86m7m + 2 71127.03) 715.8(6) 011W.
.--, (19.76)

The off-diagonal components of the matrix 0”” are of the order of
0mm: and therefore they do not contribute to the eigenvalue to the
order of 0mm. The eigenvalues are given by the diagonal components
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of 0‘”):
l

as.” -~ 01.11““ + 217152,.(61120W0' . (19.77)
kE-l

The corresponding eigenvector matrix consists of

1 for m"=m ;
0 for m"=—m;

0,153)-
am m ks2_ld(l)”k(fl)d(ml)k(fi) 0(1)rot

0(1)"!08 _OU) mag
olml W’l

for m”=# :l:m . (19'78) 

Therefore, the zero-order eigenfunction of a slowly rotating magnetic
star is given by

I

5(0)“ [Yin(937¢3) + 2,613)», Y!M"(Bm $13)]
m'=-l

x exp[i(a<°> + 6mm+ .2 [d513, (8)12611>'°')t] . (19.79)

In a case of uniform rotation,ok(1)’°' measured in the reference frame

co-rotating with the star with angular velocity 00 is

611”“ = kC,,o,,, (19.80)

which is obtained by substitution of 0:0 into equation (19.44).
Since, as Aizenman, Hansen, Cox, and Pesnell (1984) showed,

l

21d55.),.(6)12k00 = anIQOCOSB . (19.81)
k=-I

65.3) E 6mm“ + anlflocosfi . (19.82)

The eigenvector matrix is then given by

1 for m”=m ;

for m” =-m;

[.--/cd">~,(fi)d41(3)]0100
<1)mag_(0mag

01ml a 1720
for m” =1: :tm (19'83) 

Therefore the zero-order eigenfunction of a slowly rotating magnetic
star is given by

5(0)“[Y1m(937 ¢B)+2” “(5:)"my!(93, 4’59]
m'-—l
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x exp[i (0(0) + 0mm“ + m C", Q,,cos,B)t] (19.84)

for m = —l, ..., l, where 2" means the summation over m" except for m”

= im.

The observable luminosity variation due to a single mode labelled

by m is obtained by rewriting the eigenfunction in an inertial frame and
integrating over the visible disc (see Fig. 19.1). As a first step, we
transform the spherical harmonics YI"(6B, (1)3) into Y,""(6R, 4m) in the

co-rotating frame using equation (19.68). In the co-rotating frame, the
perturbed physical quantities f '(r, t) of the single mode are given by

f’nlm(r’ t) =f'nl(0220'an dfrliz'm' (B) Ylm'(6R’ ¢R)exp[i(0r(l(l)) + 05711))t1°

(19.85)

Next we move from the co-rotating frame to an inertial frame, whose
polar axis coincides with the rotation axis of the star (see Fig. 19.1 and

Table 19.1). Let (6,, 4),) be the coordinates of the inertial frame. Then,
since

Ylm(6h (PI) = Ylm(6Ra ¢R) exp[im(00t — 77)]

=(-1)mYIm(9R, ¢R) exp(im 90‘), (19-86)

where t=0 is chosen as the time when the magnetic pole is the closest to
the line-of-sight, the eigenfunctions are rewritten as

f'nlm(r7 t)=f,nl(r)22 (-l)m' “175%: dgrz’m' (B) Yim’(6h (pl)

xexp[i(o,<,9> + 65,,” — m’00)t]. (19.87)

We transform the coordinates (61,431) into another set of coordinates
(6L,¢L) in the inertial frame, where 6L=0 coincides with the line-of-
sight. Since

I

ma. 4») = 2 7111.)...70) YP'wL. ¢L) . (19.88)
m'=-—I

where i denotes the angle between the rotation axis of the star and the
line-of-sight (see Fig. 19.1),

f'nlm(r’t)=f’nl(r)22 (_1)M' afg'zndgzz'm’ (B)Zd£rll)'m'"(i) Ylmm(0L7 ¢L)
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X exp[i(o,(,,)+ 0,3,1) — m’00).t] (19.89)

Integration of equation (19.89) over the visible disc, 6L=[0, 77/2] and
¢L=[O, 277], leads to obvservable luminosity variation due to the single

mode. Since

277

/ Yz’"m(0L, ¢L)d¢L = 0 (19-90)
0

except for m”’= 0, we eventually obtain an expression for the observable
luminosity variation:

AL...«ZZ(—1)m' 8.31.7112... (19)d<'>0(0 1610,, «1.)
Xexp[i(a,(,,0)+o,(,,1)-m’00)t]. (19.91)

In cases of a uniform rotation, equation (19.91) is reduced to

ALobsocz (—l)m’ {dISQn’ (fl)

I

7, d127,,
+CnIQO Z 0(1)mag_0,((lfl)2nag [2 kd(m1)7k(fl)d(,2k(/3)]}

Im77~=-7"m1 1
 

x (152700) cos{[o,(,,) + 012$“ + m C,,,roos/3— m'00]t}.

(19.92)

The form of matrix d for [=1 can be seen in Edmonds (1957), and
those for [=2 and [=3 are given in Shibahashi (1986). Equation (19.92)
will be applied to the observations of the rapidly oscillating Ap stars in
Section 43.

Table 19.1 Relations among various coordinates and the transforming formulae.

 

 

6-axis Magnetic axis Rotation axis Line—of—sight

Rotatin frame 6 , —> 6 ,8 ( B 4’3) (19.68) ( R ¢R)

(19.86)

Inertial frame (01. (PI) — (9L, ¢L)
(19.88)  
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20. Influence of Convection

20.1 Influence of Convection
In most stars, there are convection zones either in the interior or in the

outer envelope. Convection in stars should be in a state of fully
developed turbulence because of its high Reynolds number. Our main
concern, however, is the influence of its large-scale statistical average.

The corresponding mathematical description will be the coarse graining
average in which fluctuations on a smaller scale than a certain grain size
are smoothed out. In nonradial oscillations, wave lengths may not
always be longer than the characteristic scale of turbulent convection,
which is supposed to be of the order of the scale height. We will,
however, treat here those cases in which the wave length of the
oscillation is much larger than the scale height, by taking a grain size
large enough to smooth out the convective pattern. The influence of
convection on the oscillation is described by the spatial average of the
nonlinear couplings in the momentum and energy exchange that can be

prescribed in analogy with the viscosity and the thermal conduction.
The basic equations governing the convection-pulsation system are

given by equations (13.1)—(13.3). We will, however, represent the
above prescription explicitly by introducing the turbulent Reynolds
stress 9°, and the turbulent conductive flux FK in equations of
momentum and energy conservation. Let us first define the mass-
centered velocity, w, by

pa = fiw, (20.1)

and decompose it in the average (oscillation) velocity, v, and the
turbulent (convection) velocity, V,

w=v+ V, v=fv, (20.2)

where the overbar denotes the local spatial average. Likewise, other
symbols are decomposed into

u=i1+uc, p=p+pc, p=fi+pc, etc., (20.3)

where subscript C, represents the convection. We define 9 , and Fk by

(9,)”- = < p'uCiVU- > = < p'u,-V,,- > (20.4)

and

FK = < p (hc+u2C/2)V, > = < p (h+u2/2)V, >,(20.5)

where the convective turbulent velocity V has been decomposed
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virtually into the laminar convection V, generating no viscosity or
conduction and the turbulent motion V, generating viscosity and
conduction We will, however, omit the subscript i from V, hereafter,

following the renormalization technique sometimes used for the
evaluation of turbulent diffusivities (Nakano, 1972). Then, the basic
equations (13.1)—(13.3) are rewritten in the following form:

a_p

           

 

a—t + V(pu)= (20.6)

8pu .
8t - —Vp -de>— d1ng ,(u), (20.7)

and

BS _pT[W+(u-V)S]=p(£N+8V)—p,V-u-V-(FR+FK), (20.8)

where

(91)ij=P16ij_(C31)ij=P161‘j_ fltoija (20-9)

1 2 ea) au-
—< pV> =-—+ ’ -—(V u)<5,--, (20.10)‘0': 3 “'1' ax; ax,- I

pa; = grad u-éj,(u), (20.11)

FK = -K1V[(P+Pr)/fi], (20-12)

with

fl1=fvfiV< V >211, K1=pr-V< V >211, (20-13)

1, being the mixing length, fv ~ 0.1, and fK = 2.5 fv. The factors fv and fK
are somewhat uncertain (however, see Unno (1987) and references
the'rein). Anisotropy of 11, is important in the theory of stellar
differential rotation and circulation [see, e.g., Dumey (1987)], but is
disregarded in equations (20.9) and (20.10). The explicit forms of 90,
and FK in equations (20.9) and (20.12) are due to the gradient diffusion
approximation in analogy with that of molecular diffusivities. That is,
the specific moment, 11 (the specific enthalpy, h, under constant
pressure), is transported by mass flux, pV, in all directions so that the
net momentum (thermal energy) transport should be proportional to

the gradient of u, (T). In the renormalization, it may appear that the
contribution (pVV) in equation (20.7) is counted twice. But the
turbulent diffusivities introduced by the gradient diffusion approxima-



200 NONRADIAL OSCILLATIONS OF STARS

tion treats essentially the moment 11 of one mean-free-time earlier, and
the nonlinear inertia of the laminar flow is not included in Q ,.

Therefore, the renormalization takes care of the nonlinear effect in

smaller scales by the turbulent diffusivity, while retaining the nonlinear
effect in larger scales as before. The analogy betweewn turbulence and
molecular motions in the momentum diffusion are thus prescribed. In
the same spirit, three terms, —p,V - 11, pay, and — V-FK, have been added

in equation (20.8). The term, -p,V - n, represents the work done by the
motion against the turbulent pressure gradient, pev denotes the viscous
dissipation due to the turbulent viscosity, and FK given by equation
(20.5) as the small scale convection is deformed by the renormalization
technique (Nakano, 1972) to be the turbulence counterpart of the
molecular thermal conduction, which has been neglected compared with
FR in equation (20.12). The form of FK in equation (20.12) is due to the
gradient diffusion approximation of éj , (U). The introduction of p, and
8v in equation (20.8) is for consistency with the introduction of 9’ , in

equation (20.7), which is necessary also when numerical computations

are performed with the use of artificial viscosity. To show this, we derive
the equation of the kinetic energy conservation from equation (20.7) by

multiplying u scalarly,

_8 1pa2 +V- ipuzu =—u-V(p+p,)—pu-V<D+u-div éj,(u).
2at 2

(20.14)

Then the thermal energy conServation, equation (20.8), is transformed
into

g(pwvahuru-V(p+p,)=p(e~+ev)—V-<FR+FK).
(20.15)

where use has been made of the thermodynamic relation

TdS = dU + pd(1/p) = dh - (1/p)dp, (20.16)

and of a useful formula derived from the continuity (20.6), that is,

p(d/dt)Q = (3/8t)(pQ) + V°(10QU) 7 (20-17)
for an arbitrary quantity Q. Adding equations (20.14) and (20.15), we
obtain the total energy conservation,

8E[p(U+"Tz)] +V-[p(h+—:—2—)u]+pu-V<D

= peN — V-[FR+FK+u-§P,(u)], (20.18)
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where u ~90,(u) represents the kinetic energy flux transported by the
turbulent viscous stress. The work against the turbulent pressure, p,,
cancels in equation (20.18) by decreasing the kinetic energy but
increasing the thermal energy.

The coarse grain average of equations (20.6), (20.7), and (20.18)
g1ves

3i?

p(g+v-V)v+V(p+p,)+pV¢ = divéj,(v), (20.20)

and

a ‘ 0+ '2 +V- '1'1+ Vz +' 7Vd>5M 7)] [p( TM p"
— ' ' a 1 _ 2

= pGN — V-[FR+FC]—E(7pV >—V'[FK+U°9,(V)],

(20.21)

where the convective flux,

u2
FC = <fi(h+T)V>, (20.22)

absorbs the turb_ulence contribution < V- 9,(V)_> in < u- 9(a) >,
and [3 in v and pU are approximated by pvv and pU, respectively. The

thermal energy equation of the average motion is obtained from
equation (20.21) by subtracting the kinetic energy part, [v-equation
(20.20)], in the following form:

_' 8 ' ’ — - - ' '
PT(57+V.V)(S+Sx)=P(8N+€V)-V‘(FR+FC)a

(20.23)

where the entropy of the turbulent motion 5, is defined by

_ -- 8 - _ a

in analogy with the thermodynamic relation (20.16).
These equations describe the hydrodynamics of a general flow

associated with turbulent convection. For unperturbed state (a/at = 0),
with rotation or circulation velocity v0, we obtain, from equations

(20.19)—(20.23),

(%p V2) +V~FK+p,V° v (20.24)
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v7(,o0 v0) = 0, (20.25)

(1+ 61)Vp0 + povtbo = —p0(v0 - V) v0 + div [,u,o(vo) ],

(20.26)

and

V ° (FR,O + Fan) - P0(€N,0 + €v,0) = ‘(1'1‘ 52)poTo V0 ' V50,

(20.27)

where

01 = 1),/p and 02 = §,/s', (20.28)

and subscript 0 denotes the unperturbed state. For a spherical
symmetric star without rotation and circulation (v0 = 0), equations

(20.26) and (20.27) are reduced to

 

 

(1 + 01) ‘3’,” + pog = 0, (20.29)

and

ddlrjr — 477r2p0€N,0 = 0. (20.30)

Equations (20.19), (20.20), and (20.24) are also the basic equations
governing oscillations under the influence of turbulent convection. The
latter influence appears as Fc,p,,S, and 11, in éj , and 3:, through equations

(20.9) and (20.11). The éV-term is crucial in accretion disk physics
(Shakura and Sunyaev, 1973), but it is small in stellar oscillations and is
neglected hereafter. The linearized equations of oscillation are then
obtained in the following form:

p’ + V-(pOE) = 0 , (20.31)

 po :25 + (1+61)Vp' +p’V¢o+p0Vd>’=div[u,o(v)], (20.32)

and

a I I I I

(1+52)POTOE(S +E'VSO)=(P€N) -V°(FR +FC)- (2033)

The turbulence corrections, 151 and 62, are troublesome to estimate

precisely. These corrections, being small in any case, are taken here to
be constant under the assumption that turbulent motions behave



ADIABATIC OSCILLATIONS 203

similarly to thermal motions in the course of oscillation. For 11,, only the
equilibrium value is needed, but the evaluation of FC' requires the
solution of time-dependent convection induced by oscillation. The
adiabatic oscillation is described by equations (20.31)—(20.33) with the
right-hand sides put equal to zero. In that case, the influence of
convection appears only through 61 and 62, which are normally small.

20.2 Convection in Oscillating Medium

Equations governing the convection superposed on the oscillation can
be obtained by, subtracting the coarse grain average from the basic
equations. For instance, subtracting equation (20.19) from equation
(20.6), we obtain

a
8’? + v-(pV) = 0. (20.34) 

For simplicity, however, we employ the anelastic approximation (Ogura
and Phillips,l962) for stellar convection,

v7(pV) = 0 , (20.35a)

suppressing acoustic waves, or even the Boussinesq approximation
(pC=0, fi=const.) for qualitative studies,

V-V = 0 . (20.350)

The monentum conservation in convection, [(20.7)—(20.20)], is given by

[3L5 + (v+V)-V]V + p(V-V)v

= —VpC — pC(V<1>+ v) + div 81,01) , (20.36)

where

. 8
v = (Et— + v-V) v . (20.37)

The density excess pc in buoyancy is approximated in the Boussinesq
approximation by

pC = —0T& TC . (20.38)
To

The derivation of the thermal energy conservation for convection is
somewhat involved. Using the approximation 62=S,/S=const., we
rewrite equation (20.15) in the following form:
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(1+62)pT(§% + u-v) s = peN-V-FR , (20.39)

in comparison with the corresponding average equation (20.23),

(1+82)pT'(—83t + wv) s' = EEN—v-(ERHE‘C), (20.40)

where EV is neglected. Here, the_ turbulence entropy S, has been
assumed to be similar in form to S, in equation (20.24), as follows:

pT(a—€ + u-V) S, = -p£V+V-FK+p,V-u, (20.41)

although we will not use such an expression to estimate (52. Subtracting
equation (20.40) from equation (20.39) side by side, we obtain

_ a _
(1+ 62)pT[(E+ V'V)Sc+ V-vs] = (pe~)c-V-(FR.C+FK.C),

(20.42)

where the radiative flux from a convective element, FR'C, and the

conductive flux of convection energy, FK‘C, are given by

Fm = —KVTC, K = (4/3)(aC*T3/Kfi), (20.43)

F,“ = (1+02)(,5T’SCV)—ic = —K,chTC, (20.44)

where the last expression is due to the same vein of approximation as
the gradient diffusion approximation. Equation (20.42) is further
simplified in the Boussinesq approximation in which (dpc) is neglected
in the thermodynamic relation,

T'dsc = cp(dTC- 04%dpc), (20.45)

since the convection is an unstable gravity mode which is the slow mode
having small pressure perturbation, pC. We then have

c;[(a—é:+v‘-V) TC+ v-(Vi— Vad%Vp)]

1
= €N,C - FV'(FR,C+FK,C)1 (20-46)

where

c; = (1 + 62)cp . (20.47)
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Following Xiong (1978), we now employ the statistical theory of
turbulent convection to study the convection-oscillation coupling. With
the aid of equation (20.35), we construct a closed set of equations for
energy densities X, Y, and Z, defined by

X = (1/2)< pv2 > = (3/2)p, , (20.48)

Y = (cp/i‘)“2< pTCVz > , (20.49)

2 = (1/2)(c,,/T')< p73 > , (20.50)

arranging equations (20.36) and (20.46). To make this possible, we use
several approximations:

(A1) Spatial structure of a convective element is practically
unchanged by the presence of oscillation and is approximated by that of
the stationary Rayleigh-Bernard convective cell with free boundaries.

(A2) Turbulence is isotropic, and its characteristic scale is much
smaller than the wave length of the oscillation.

(A3) The third-order correlation (<pV2V>, for example) is
estimated by use of the gradient diffusion approximation.

From equation (20.36), we obtain the kinetic energy equation of
convection,

4.x — V°[(M7/fi)VXl + p.V-v

= —v . ch+ vT[(g + 0,)/(c,,T')1/2]Y— 2(11,/,6)k2X, (20.51)

where

d, = (8/8t) + v-V, (20.52)

the second term on the l.h.s. is due to the approximation (A3) for
<p( V2/2) V>, and the wave flux, ch = <pCV>, associated with

convection can be neglected on account of the approximation (A2) and
the Boussinesq approximation unless the convection is oscillatory with
magnetic field or rotation. From the z-component of equation (20.36)
and equation (20.46), we obtain

ci,1z+(av,/az)1/+(c,,/7')“2 ,[(aT/8z)—Vad(T/p)(8p/8z)]

—V-1(x./p)vn = 20; 1(g+v.>/(cpf)"212
eNET K _+{ __cpT — [(;+u,+x,)/p]k2} Y,

(2053)
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where the term, (cp/T)“2< fiTC(V-V) Vz >, on the l.h.s. has been
neglected with the approximation (A2),

0; = 077 — < CPTC(8pC/az) >/[(g+i}z)Z] z vT —(1/3) (20.54)

by the approximation (A.2), k denotes the representative wave number
of a convective element, (e.g. k=\/ 3 77/1,) and 8N,C has been approx-
imately

8N,C = 8N Sr(Tc/f). (20.55)

Multiplying equation (20.46) by ([5/ T)TC, we obtain

J,z+(c,,T'1/2)[aln f/az — Vadaln p’/82]Y-— 2V-[(K,/p)VZ]

= {2(eN ET/CPT) — [(K/cpp) + (K,/fi)]k2} 2, (20.56)

where the difference between cp and cp* has been neglected for
simplicity. The nonlocal effects represented by the second term of
equation (20.51), the fourth term of equation (20.53) and the third term
of equation (20.56) are important in the penetrative convection (Unno,
Kondo, and Xiong, 1985) but are small compared with the correspond-
ing diffusivity terms (the last term in each equation) in the main body of
the convection zone. Since we have adopted the Boussinesq approxima-
tion which is consistent with the local theory (Spiegel and Veronis,
1960), these nonlocal effects will be neglected hereafter.

Summarizing the result, we have

[J,+ (2/3)v7 v+2(u,/p)k2]X = vT(g + 0,) (cpT')-“2Y, (20.57)

[ci,+(8vz/82)—(CPT)_18N£T + (c;1K+ 11+ K,)(k’-/p)]Y

= 20; (g+iJz)(cpT)— “22 — (2/3)(c,,T')1/2(i7— Vad)(a ln p/az)X,
(20.58)

and

[77, — 2(cp7‘)'1£~ 8T + 2(c,,-11<+ K,)(k2/[5)]Z

= —(c,,T')“2(i7— Vad)(81np'/82)Y, (20.59)

where

' = 3m T/alnf). (20.60)

These equations are nonlinear in X, Y, Z because of 11, and K, that are

proportional to X“2. Without oscillation, they are reduced to

[(8/8t)+2(11,/p0)k2]X = ng(cpT(,)'“2Y, (20.61)
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[(8/8t) — (cpT0)—18N 8T +(Cp-1K'l” M: + K1)(k2/Po)]Y

= 2v7g<cpTo)—“ZZ+ (2/3)(cpTo)‘/2(V- V..7)H;‘X.
(20.62)

and

[(8/8t) — 2(cpT0)—13N £1 + 2(c,:1 K + K,)(k2/po)]Z

= (cpT0)“2(V — Vad)Hp‘lY, (20.63)

where Hp denotes the pressure scale height,

 _ _ alnpo _1HP — ( 82 ) . (20.64)

In the convective core (£N=/=0), the convection is unstable until the
turbulent conductivity K, is increased to satisfy the following stability
criterion:

poeN $T- CPT0(K,+CP_1K)k2 S 0, (20.65)

in which the equality gives the amplitude of the steady state. In the
convective envelope (£N=0), the system is stable and settled to the
steady state given by

2(CpT0)1/21u10k2X0 = UTgPOYOa (20-66)

(CpT0)1/2(Cp— 1K + #10 + K10)k2Y0

=2v$gp0Z0 + (2/3)(Cpp0T0)( V“ Vad)Hp— 1 X0, (20.67)

and

2(Cp— 1 K — K1 0)k220 = (Cp T0)l/2( V“ Vad)p0 Hp—l Y0, (20-68)

where subscript 0 represents the equilibrium convection. The solution of
these equations are equivalent to that of the local mixing length theory
(Vitense, 1953).

Equations (20.58)—(20.59) govern the convection in the presence of
oscillation, while equations (20.66)-—(20.68) describe the convection in
the absence of rotation. To study the convection-pulsation coupling, we
need to calculate F5 in equation (20.33). Solving linearized equations of
(20.57)—(20.59) for Y’, we obtain F 232. The derivation of this and other
components of F5 will be made in Section 30.





Chapter IV

NONADIABATIC OSCILLATIONS

21. Basic Equations 01' Fully Nonadiabatic Oscillations

As discussed in the previous chapter, dynamically stable adiabatic
oscillations in a non-rotating and non-magnetic spherical star are strictly
periodic. In mathematical terms, the eigenfrequencies and eigenfunc-
tions are purely real. oscillations in nature are, however, inevitably
nonadiabatic; i.e. , energy exchange among mass elements occurs during
oscillations, and governs the vibrational stability (amplitude growth or
decay) of the star. This corresponds to the fact that the eigenfrequencies
and eigenfunctions are complex (non-real) in the mathematical descrip-
tion of linear nonadiabatic oscillations. The fact that the eigenvalue and
eigenfunctions become complex due to nonadiabaticity is recognized by
looking at the linearized equation of energy conservation (13.66), which
includes a coefficient of complex number, because the equation of
energy conservation involves a first-order time derivative. Since we
express, in this monograph, the temporal dependence of perturbed
quantities as exp(iot), the amplitude of oscillations grows if the
imaginary part of the angular frequency a is negative.

21.1 Differential Equations

In order to obtain the eigenfrequencies and eigenfunctions of linear
nonadiabatic oscillations, we have to incorporate the equations of
energy conservation and the flux equation (13.65) and (13.66).
Although these equations are written in terms of the Eulerian
perturbations of nuclear energy generation rate EN, radiative flux FR,
etc., it is convenient, in practice, to use the Lagrangian perturbations.
One reason for this is that if we use the Lagrangian perturbations of
nuclear energy generation rate and opacity K, we do not need to
consider the dependence of these quantities on the chemical composi-
tion, which is conserved in a mass element because the oscillation

periods are, in most cases, much shorter than the time scale of

209
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nucleosynthesis or the time scale of particle diffusion. The linearized
perturbation equation of energy conservation may be written as

7135—: (M — 6(in-F), (21.1)

where energy flux F includes the radiative and the convective fluxes [cf.
equations (13.17) and (20.23)]. The first and second terms in the
right-hand side of equation (21.1) represent, respectively, the energy
gain (or loss) due to the excess (or deficient) energy generation and the
energy loss (or gain) due to the excess (or deficient) energy outflow.
Using the equation of mass conservation (13.35), the latter term can be

written in a different form:

—6(piv-F) -;—[%)—V-F—6(V-F)

pil—(vosxvn—V-F—(E-V)(V-F>1

= —piv-[F'+§(V-r)]. (2172)
In the following we use the fact that the energy flux has only a

radial component in the equilibrium structure (i.e., F= F,e,). Furth-

ermore, writing the flux perturbation as

F' = 1%, + Fi’, (21.3)

with Fl' being the horizontal component of the flux perturbation, we
define the luminosity perturbation 6L, as

0L,=4m2(8F,+2%F,), (21.4)

which represents the perturbation in the spherically symmetric part of
energy flow. Then equation (21.2) leads to

86L 1 15,, dL,—pi6(—VF)+——'_ —pvF’+l(l+1)— (21.5)
—8—M,— rfigM, ’

where L, is the total (convective plus radiative) minosity at r as
defined by equation (13.18). The terms in the right-hand side of

equation (21.5) represent the effect of the non-spherical perturbation in
energy flux.

Here we face a serious difficulty in treating perturbation of energy
flux. In general, energy flux consists of radiative and convective fluxes.
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However, time-dependent convection theory, which is necessary to
calculate perturbations of the convective flux, has not been fully
developed. Although some attempts to include perturbations of the
convective flux have been made (e.g., Unno, 1967, 1977; Gabriel,

Scuflaire, Noels, and Boury, 1975; Gough, 1976; Xiong, 1978; Baker

and Gough, 1979; Gonczi and Osaki, 1980; Saio, 1980; Gonczi, 1982;

Stellingwerf, 1984), the treatments are very complex and include several
uncertain points (see Sections 20 and 30). Therefore, in most of the
investigations of nonadiabatic nonradial pulsation, the perturbation of
the convective flux is neglected for simplicity. This neglect is sometimes
called a “frozen convection” approximation. This name is, however,
somewhat misleading, because this treatment is not necessarily an
approximation even in the cases where the oscillation period is much
shorter than the turnover time of the largest convective eddies. .

In order to avoid complexity, we neglect perturbations of the
convective flux in this chapter. (The time-dependent convection theory
is discussed in Sections 20 and 30.) There are several ways to neglect
perturbations of convective flux. For example, if we set 6LC =
0 and Féi = 0, equation (21.5) becomes

_ ”LR __1_ . 7 gdL,8M, pV17,.,+1(1+1) r m,

where the radiative luminosity LR and the convective luminosity LC at r
are given by LR = 4anFR) and LC: 477r2 FC, respectively. If we set
6(in-FC) =0, equation (21.5) becomes

  _5(£_v.p) = (21.6)

  

  

 

_ 3. “8667;. 7 3de8(pV F)— 8M, pv FRi+l(l+1) r m. (21.7)

Furthermore, if we assume 6(V-FC)=0, equation (21.5) becomes

_ 1 __ 86LR _i . , _Zj_,,dL,6(FV F)_ 8M, pv FRi+l(l+1) r m

2
_ a(r gr) dLC (21.8)

r28r er '

Other ways are also possible. Although we have no convincing scientific
reason to prefer one relation to the others, we choose the expression in
equation (21.6) in the following discussions in this chapter. Before we
proceed further, we should caution that using any of the above
approximations can cause a fictitious excitation effect near the bottom
of the convective zone. Special attention must be paid to this
phenomenon in performing a nonadiabatic analysis.
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In the diffusion approximation the radiative flux is given by
equation (13.6), and its linearized form is given by equations (13.50)
and (13.51) with the Eulerian perturbations of the physical variables.
Transforming the Eulerian perturbations to the Lagrangian perturba-
tions and using the fact that the perturbed quantities are proportional to
a spherical harmonic Y,’"(6,¢), we obtain

_ 6K 1;- 15,, 07 d(‘s—TT)/dlnr
6FR,=FR —+2—l—(l+1)—+4——T +—__dlnT/dlnr

(21.9)

and

v-Fé, = FR l(l+1) T (21.10) 
-dlnT/dlnr r 7’

where FR denotes the radiative flux in the equilibrium state.
Thus the differential equations for the radial part of eigenfunctions

of the fully nonadiabatic nonradial linear oscillations given in equations
(13.62)—(13.66) can be written as

 d p, ' _N_2_I 2_ 02 _ (SS

 

   

p

:1 thw _L_72 p' «1+9 g
r2 drr(25)+r1 §r+(1 a2 )pcz— ozr2 ¢=UT Cp ’

(21.12)

i_d_2 ch’ _ l(l+1) ,_ p’ N—2

r2 dr(r2 dr ) r2 4’ 47er(pC2 + g E,)

= —4770va% , (21.13)
p

13' VF;

d6LR + 1(1+1) FR W',.€/
dM, dlnT/dlnr pr T/

C

i oTrSS = 6£N —  

f;\

+7(1+1)(—r75"dL'l 5' LR
r% r 477r3p
.77

1,- \05‘1 *QIM m Qlé

 ), (21.14)

and
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(SLR = (SK 5 d‘S—T /dl
LR K r T T dlnT/dlnr'

The relation between (ST and (SS is obtained from a thermodynamic
relation [equation (13.80)]:

 (21.15)

(5T (5p

7 V067?)
and 5,, is related with (p '/p+ (D ’) by equation ( 13.61). The perturbations
of opacity and nuclear energy generation rate may be represented as
functions of 6p and- 6S:

3 6T 92=K—+K
K TT ‘0

as = cp( (21.16)

_ (5p (SS
— KadT ‘1' KS Cp (21.17)

and

(SEN = (5T 38

8N T

(5
= End? '1' 85—, (21.18)

where

) = xrvad + — , 7 (21.19)
S

 
and

 ) = 5,170., + i , L (21.20)
5 F1  
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In deriving the above relations we assumed that the chemical composi-
tion of a mass element is conserved during the oscillations. This
assumption is justified because in most cases the period of oscillations is
much shorter than the time scales of nucleosynthesis and particle
diffusion. When the time scale of nucleosynthesis is comparable to the
period of oscillation, more careful treatment is necessary to obtain the

expression for (SEN (see e.g., Cox, 1955; Kawaler, 1988a).

Thus, linear nonadiabatic nonradial oscillations are described by six
(four if the Cowling approximation is employed) first-order differential
equations of the complex variables.

21.2 Reflective Boundary Conditions

The six differential equations discussed above and six boundary
conditions form an eigenvalue problem with a complex eigenvalue 0. In
this subsection, as a natural choice, we discuss three inner boundary

conditions and three outer boundary conditions. In the deep interior of
a star, the thermal time-scale must be extremely long compared to the
oscillation periods. The adiabatic condition is nearly perfectly satisfied
for oscillations there. Therefore, the inner boundary Conditions for the
mechanical variables such as (15', 1;), and p' are the same as those

discussed in Section 14. These are <D' 06 r’, 5,0: r’"1, and p' 0c r’ near
the center. Using these relations, equations (21.11)-(21.13) can be
reduced to

 

  

l p', — — +4?) = 0 21.215 027(1) ( >
and

d(D' ld)’
dr — r , (21.22)

near the center. Another central boundary condition may be chosen as

(SS = 0. (21.23)

If oscillations are well trapped in the envelope of the star, the inner
boundary may be set somewhere between the center and the bottom of
the oscillating envelope. Since in this case the oscillation amplitude is
negligibly small, we can use simple inner boundary conditions such as
5,: 0, (15' = 0, and 155 = 0 (or (SLR/LR: 0). We note that for many cases

of the oscillations well trapped in the envelope, the Cowling approxima-
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tion is a good approximation and the system of the differential equations
can be reduced to four first-order differential equations.

Since the outer boundary of a star is ill defined, some difficulties
arise in setting the outer boundary conditions for oscillations. In this
subsection we will discuss simple boundary conditions, assuming that
the pressure and the density near the surface decrease steeply outward.
In this case we can use a reflective outer boundary condition for the
pressure perturbation:

6p = 0 at r = R. (21.24)

The outer boundary condition for the perturbation of the gravitational
potential is obtained from the condition of continuity at the surface:

(145' <D’
dr '1‘ ([+1)'—r— — 0 at I' — R. (21.25)

Above two conditions are the same as those for adiabatic conditions. If
the radiation pressure is dominant at the outer boundary, the first

assumption that the pressure decreases steeply outward may not be
allowable. In such a case more careful treatment is necessary, and
replacing 6p with épga, (p305; gas pressure) in equation (21.24) is
probably better (see Shibahashi and Osaki, 1981a).

Another condition can be given by using the fact that there is no (or
negligible) inward radiative flux at the surface:

 

F. = 751 = 75% T“. (2126)

where J is the mean intensity and f); the Eddington factor, which is
reduced to 277 in the Eddington approximation. Perturbing equation
(21.26) in a Lagrangian sense gives

6FR (Sf); (ST
— = — + 4—. 21.27
FR fE T ( )

In order to obtain the perturbation of the Eddington factor 6f5,
however, it is necessary to solve nonlocal radiative transfer incorporat-
ing perturbations due to nonradial oscillations. Since this is a very
difficult problem (see Christensen-Dalsgaard and Frandsen, 1983a), this
term is not taken into account for simplicity in this chapter.

21.3 Progressive-wave Boundary Conditions in the Core of a Red-Giant

Star
As mentioned in Section 15.3.3, in the nondegenerate core of a
red-giant star the Brunt-Véiiséiléi frequency N is extremely large (N2~
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107 in units of GM/R3). Therefore, in such a star, any eigenmode with a
moderate eigenfrequency behaves like a short wavelength gravity wave
in the core. The radial wavelength is on the order of a thousandth of the
core radius in the inner part of the core. Since the wave traveling time
through the core is extremely long, the damping time is much shorter
than the traveling time [see equations (15.21) and (15.22)], which means
that waves traveling toward the center are damped before reaching and
being reflected near the center. Then, a nearly standing wave cannot be
formed in the core, and the wave penetrating from the envelope
propagation zone through the evanescent zone is absorbed in the core
without being reflected (cf. Pesnell, 1984). In other words, kinetic

energy of p-modes trapped in the envelope leaks into the core. In such a
case it is convenient to set a progressive-wave boundary condition at
the outer part of the core propagation zone (Osaki, 1977; Dziembowski,

1977a) rather than obtaining eigenfunctions throughout the core by

resolving their thousand spatial oscillations.
Since the thermal time scale is very long in the core of a star, we can

safely use the local adiabatic condition in the outer part of the core.
Furthermore, for g-waves with short radial wavelength in the core the
Cowling approximation may be used. Since the vertical component of
the group velocity of gravity waves has opposite sign to that of the phase
velocity (Section 15.2), the inwardly propagating wave has an outward
phase velocity. An asymptotic form of inwardly propagating adiabatic
gravity waves with o‘°'<<N2 is given, under the Cowling approximation,
by equation (16.62), which may be rewritten as

\F—1(;+1) v35 2 const.fiexp[i(m_/’ 1.3)].
(21.28)

Errz = 

The radial wave number k, is given for high-order g-waves as [see eq.
(15.19)]

k,= 1:2" = ”(1+1)” for 02 << 1v2 . (21.29) 

Differentiating equation (21.28) with respect to r, we obtain

21_2d_(___rr§,)_ —i,+[k _2_(dlnp+ dlnk,[”15 (2130)

r2

Substituting equation (21.30) into equation (21.12) with <D’=0 and
6S=0, we obtain the mechanical boundary condition
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1.1N2gdlnN _ pr'
7(21", 7 ?+74‘ dr )gr—(l ?)pcz . (21.31)

The other inner boundary condition, under the Cowling appromima-
tion, can be chosen as

as = 0 . (21.32)

Equations (21.31) and (21.32) form a set of progressive-yvave inner
boundary conditions for p-modes trapped in the envelope of a red-giant
star with highly condensed nondegenerate core.

22. Weakly Nonadiabatic Nonradial Oscillations

22.1 Degree of Nonadiabaticity

The ratio of thermal to dynamical time scales is one of the most
important parameters that govern the nonadiabaticity (entropy per-
turbation) of stellar oscillations. This fact is apparent in the dimension-
less equation of energy conservation. Multiplying equation (21.14) by
(pr/FR) = 4777'3p/LR, we obtain a dimensionless form of the linearized
equation of energy conservation,

    

  

 

Tm £_ 4flr3p(68 _ déLR )+ l(l+1) T,

ray" cp - LR N dM, dln T/dlnr T

i 477r3 p dL,
+l(l+1) r LR er , (22.1)

where the thermal timescale 7,), and the dynamical timescale tdyn are

defined as

477r3 pc T d R3
13,, = T&— and tdyn = GM . (22.2)

Equation (22.1) indicates that for a given energy excess [the right-hand
side of equation (22.1)] the entropy perturbation is smaller for larger
nhltdyn. Figure 22.1 shows 13,774”, as a function of the fractional radius

r/R for massive zero-age main-sequence stars of 7M9 (log L/LG) = 3.25)
and 20M® (log L/LQ = 4.64). The ratio Tm/tdyn is very large in the
interior of a star except near the stellar surface. Since 7,), is proportional
to the mass to luminosity ratio M/L, t,,,/tdy,, in the 7M9 model is larger

than in the 20M® model for a given r/R. Nonadiabatic eigenfunctions of
the f-mode with 1: 2 are shown in Fig. 22.2 taken from Saio and Cox
(1980) for the same models. The amplitude of the entropy perturbation

' is appreciable only near the surface, where the ratio t,h/Tdyn is
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Fig. 22.1 The ratio of thermal to dynamical time scales,t,,,/tdy,, versus fractional radius,

r/R, in massive zero-age main-sequence stars.
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ZAMS models of (a) 7M9 and (b) 20M® (taken from Saio and Cox, 1980).
They are normalized by §,/r = 1 at r/R = l. The two arrows indicate the
positions of peaks in the opacity in the He” ionization zone and around T =
1.5x105 K (see section 28).



NONADIABATIC OSCILLATIONS 219

comparable to or less than unity. The eigenfunction for the radial
displacement is almost identical to the adiabatic one shown by the
dashed lines in Fig. 22.2. In most of the stellar interior, oscillations are
almost adiabatic. Thus, the adiabatic period of oscillation is, in many
cases, a very good approximation for the period of nonadiabatic
oscillation.

In a highly evolved star with a low M/L the value of tm/rdyn could'be

small enough for nonadiabatic oscillations to significantly deviate from
the adiabatic ones. Even for large 7,h/rdy,, large entropy perturbation is

possible in the following cases. Equation (22.1) indicates that the
entropy perturbation could be large if the dimensionless frequency w is
very low. This corresponds to a thermal (or secular) mode for which the
imaginary part is much larger than the real part of the eigenfrequency.
The secular mode will not be discussed in this article (see e.g. , Hansen,

1978). Another possibility is having a large value for the right-hand side
of equation (22.1), which can be realized if the radial wavelength is very
short or if I is very large. Such oscillations, in which dynamical and
thermal effects couple strongly, have peculiar properties. We will
discuss very nonadiabatic oscillations in Section 23.

22.2 Quasi-adiabatic Approximation

When rm/rdyn (Ec4) is very large, entropy perturbation is, in most cases,
so small that the real part of the angular frequency is essentially the
same as its adiabatic value. In such cases, we can use a quasi-adiabatic
approximation, in which the terms of 0(c4_2) are discarded. In the
following part of this section we discuss the properties of weakly
nonadiabatic oscillations by using the quasi-adiabatic approximation as
well as the Cowling approximation.

In the quasi-adiabatic approximation, equations for nonadiabatic
nonradial oscillations can be reduced to forms similar to those for
adiabatic oscillations. Let us first express the entropy perturbation as a
function of E, and p’. First of all we need to express the luminosity
perturbation as a function of E, and p' to substitute into equation (22.1).
It is apparent from equation (22.1) that (SS/cp is the order of CI].
Therefore, we need the expression for (SLR/LR only to the order of 02;
i.e., we can neglect nonadiabaticity in equation (21.15) and in the
right-hand side of equation (22.1). Recalling that §h=p’/(02rp) under
the Cowling approximation and using the relations (21.16)—(21.17)
without the terms proportional to (SS, we obtain from equation (21.15)

(SLR =(4V.d—K.d- 1 d Vad)i+4_§L_ 1(1+1) p
LR VV dlnr p r 02,2 p
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  _ Vad d 6P -1

VV dlnr (T)+0(C4 )’ (22.3)

where c4 E r,h/tdy,, [equation (22.2)] and V is defined by (13.107).
In order to eliminate the term with d((Sp /p)/dlnr in equation (22.3), we
use the relations for adiabatic oscillation given in equations (15.1) and
(15.2);

1 d (6p)_1 d (pp' Vi)

lenr p ___ 312—- r

  =£(1—L22)P_'+(4—V—U+ '22) 5' +0(c;‘). (22.4)

 

P r10 p r

Substituting equation (22.4) into equation (22.3), we obtain

5"“ = 0.15, + 02”— + 0(c4-1), (22.5)
LR P

where

dln Vad

dlnr
 

2

D.a[4+V(x..—4V..)+ (A —4+v+u——’:)]r"

(22.6)

and

  DZE—;p(Kad—4Vad+ Vad dln Vad + Vad)+(_Vai_1) l(l+1)

VV dlnr V V 02,2 '

(22.7)

If we substitute equation (22.5) into equation (22.1), we have terms
proportional to d§,/dM, and d(p' /p)/dM,. To eliminate these terms we

again use relations for adiabatic oscillations given in equations (15.1)
and (15.2). After some manipulation, we can express the entropy
perturbation in terms of E, and p’ as

(SS _ ifi D4 p,
_ _ .—__ —2c, (M g, + 1W4 p + 0(c4 ), (22.8)

where 03 and D4 are defined by

3 _477r p( &v ng+ dLR Dl)+l(l+1) VrVVad —Dl( _£)+ le

D3 LR r dM, c2 dlnr
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-Dz(N2—02)r

(22.9)

and

D45 4flr3p(D2 dLR —£8N€ad)— l(l+1) 477r3 pqv+ l(l+1) Vad

LR er P ozr2 LR gr V

 rD, L, rN2 1102

2 (_—2_—)+D2+ dlnr ’c

respectively, and a) is the dimensionless frequency, o/(GM/R3)“2. The
relation EN = dL,/dM, was used in equation (22.10).

Substituting equation (22.8) into equations (21.11) and (21.12), we
obtain equations for nonadiabatic nonradial pulsations under the
quasiadiabatic and the Cowling approximations:

idvzé‘.) _(i+ iD—3UT)§r

(22.10)

r2 dr c2 (DC

L12) 1 D_4_vT]p_' _2
+ —— — =0 22.11

[( 02 c2 0264 (c ) ( )

and

 d(P')—<”—2+7—D4g"T>P—'g cm 10

+ (N2— 02— ti—l‘fi’i) 13,: 0(c4-2). (22.12)

Since these equations are similar to equations (15.1) and (15.2) for
adiabatic oscillation, we can use a way similar to that used in Sections 15
and 16 to discuss properties of quasi-adiabatic nonradial pulsations.
Following the discussion in Section 15.1, we introduce new variables 5N
and 77' N as follows:

810—= r23, exp [——/r(%++iw3—CUT)dr] (22.13)

and

"NE       
2

— (—N +i——D“3”T)dr], (22.14)
0 g (0C4

where the subscript N is used to distinguish variables for nonadiabatic
oscillations from those for the adiabatic oscillations used in Sections 15
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and 16. Using these variables in equations (22.11) and (22.12), we
obtain a canonical form of the differential equations:

 

 

déN _ r2 L?_ .D4c2vT -
dr " hN(r)?( 02 1+l—wc4)UN (22.15)

and

d’iN _ 1 2_ 2 -D3gUT 'dr — __rth(r)(o N +1 m4 )gN, (22.16)

where the terms of 0(c4—2) are neglected and hN(r) is defined as

hN(r) E exp{V/0'r[—1:—2—%+iwch4 (gD4-D3)]dr}. (22.17) 

These equations are quasi-adiabatic versions of canonical equations
(15.5)—(15.7) for adiabatic oscillations under the Cowling approxima-
tion. Furthermore, eliminating EN or m, from equations (22.15) and
(22.16), we obtain the second order differential equations

d2" 1 dP d" -—5~ — — N fr” —P~Q~§~ = 0 (22.18)  

  

 

 

dr2 PN dr

and

dzfiN 1 dQN dfiN - _
drz QN dr dr "PNQNWN - 0, (2219)

where PN and QN are defined as

_ rth(r) L12 . D4C2 UT
PN — 62 (fi—l'i'lw) (22.20)

and

1 2 2 .D3gv1)
E —N +— , 22.21

Q” rZhN(r) (0 ' wc4 ( )
respectively. Equations (22.18) and (22.19) are quasi-adiabatic versions
of equations (16.1) and (16.2). Equations (22.15)—(22.21) are used in an
asymptotic analysis given in the following subsection.

22.3 Asymptotic Analysis

Because equations (22.18) and (22.19) have the same forms as equations
(16.1) and (16.2), respectively, for adiabatic oscillations, we can use a
parallel argument here with that given in Section 16. Using a procedure
similar to that given in Section 16 (Lee, 1985a) with WKBJ-type
solutions for equations (22.18) and (22.19), we obtain, after some
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manipulation, eigenvalue conditions for high order nonradial pulsations
as

/ Re(k,)dr = n17 (22.22)
a

and

/ Im(k,)dr = 0 , (22.23)

where Re(k,) and Im(k,) are the real and the imaginary parts,
respectively, of the radial wave number and rd and rb are the radii at the

inner and outer boundaries, respectively, of a propagation zone. (Note
that rd and rb depend on the oscillation frequency as well as the

equilibrium structure of the star.) Under the quasi-adiabatic approxima-
tion the radial wave number k, is given by

2 2
k2 =_PNQN__i(02 —N2+ iD_3gUT)(L_1+iflC_UT).

c2 (DC4 0'2 (0C4

(22.24)

Or, using the fact that the imaginary part of the eigenfrequency, 01, is
much smaller than the real part, 0R, equation (22.24) is written as

k2=-i2[on”2(L_“S’TWURHC

 

(URC4

2

x[——1+(04C ”T —2L’2 “)1, (22.25)
wRC4 OR 0R

where wR means the real part of the dimensionless frequencyw
For high order g-modes (0R << N2, L12), we obtain from equation

(22.25)

~ LIN . UT 01% [)4C2 _ D3g)_fl }k,— ORC {1+1 2wm( L12 Nzr 0R . (22.26)

From the eigenvalue condition for the real part of k, given in equation
(22.22), we obtain

  

= Lg?) frb¥dn (22.27)

This equation is the same as the expression for the adiabatic frequency
for high order g-modes given by (16.41), which indicates that the effect
of nonadiabaticity on the real part of the eigenfrequency is of the order
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of C4_2. From the eigenvalue condition given by equation (22.23) for the
imaginary part of k, we obtain

01 __1_ n, OR2D4NI‘_ D38] UT _0R — 2f, [ 1(1+1) erch4 dr[/;rb1:/dr] (22.28)

Thus, the imaginary part of the eigenfrequency, 01, which determines
the growth- or decay-time of oscillation is a quantity of the order of c4— 1.

For high order p-modes (0%; >> L2, N2), the radial wave number k,
is reduced to

=3 ._a,_ vr 038. 2)”k, C {1+:[0R+2wRC4(00R D4c . (22.29)

In this case, from the eigenvalue condition for the real part of k, given in
equation (22.22), we obtain

n, dr -1

OR = rm 7 (22.30)

Again, the nonadiabatic effect on the real part of the eigenfrequency is
of the order of c4'2. From the eigenvalue condition for the imaginary
part of k, given by equation (22.23), we obtain

n, n, -—l

fl=i (D4c— D38 )fl—dr / $ (22.31)
0R 2 , 03c ch4

Thus, the first order correction from nonadiabaticity appears in the
imaginary part of the eigenfrequency which governs growth or decay of
the oscillation. Discussion on the modes which have two propagation
zones is given by Lee (1985a). Asymptotic analysis without using the
quasi-adiabatic approximation is discussed by Dziembowski (1977a).

 

  

 

 

23. Very Nonadiabatic Nonradial Oscillations

For stars with L/Mz 104LO/MQ, t,h/tdy,, is so small in the envelope that

radial pulsations or nonradial oscillations trapped in the envelope are
very nonadiabatic. In this case, it is difficult to identify oscillation
modes, because there is no one-to-one correspondence between the
adiabatic and nonadiabatic eigenfrequencies. Because of this complex-
ity, investigation on very nonadiabatic nonradial oscillations is not yet
well developed.

One way to investigate the properties of very nonadiabatic
oscillations is to artificially change the effect of the nonadiabaticity and
see what happens during the continuous change of the degree of
nonadiabaticity. Shibahashi and Osaki (1981a) used the procedure in
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Fig. 23.] Variation in real part (11,; of nondimensional eigenfrequencies for nonradial
pulsations with l = 10 with the multiplying factor a to the thermal time scale
(from Shibahashi and Osaki, 1981a).
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Fig. 23.2 Loci of complex eigenvalues in the complex w—plane with the variation of a for
some nonradial modes shown in Fig. 23.1 (from Shibahashi and Osaki, 1981a).
Symbols indicate a = 0 (filled circles), or = 1 (open triangles), a = 10 (open
squares), or = 100 (filled triangles), and a = 00 (open circles).
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which rm/tdyn in equation (22.1) is replaced by at,h/tdy,, and eigenfre-

quencies are obtained for various values of a.* In this numerical
experiment, a —+ O and a —> oo correspond to extremely nonadiabatic

and adiabatic conditions, respectively. Figures 23.1 and 23.2 show the
result of such a numerical experiment performed by Shibahashi and
Osaki (1981a) for 1: 10 modes of a high luminosity Population I model
with parameters (M/Mg, L/LQ, logTeff, R/R@)=(12, 105, 3.85, 207). In

Fig. 23.1 the real part of eigenfrequency is plotted against a, while in
Fig. 23.2 the change of the eigenfrequency is shown in the complex
w—plane, where the arrows indicate the direction of increasing a and the
open circle indicates the adiabatic eigenvalue with a = 00. Note that the
complex eigenfrequencies in the case of a = 1 (unmodified case) are
very close to those of a = 0. In other words, nonradial oscillations of the
unmodified model with l = 10 are extremely nonadiabatic.

The eigenfrequencies of the modes corresponding to the adiabatic
pr, p2-, and p3- modes do not vary very much with a large variation in a.
The frequencies of higher order p-modes at the limit of 01 = 0 tend to be
smaller than the corresponding values at the adiabatic limit (a = 00).

This is a manifestation of the decrease of the sound velocity from
Vl‘lp/p (adiabatic sound velocity) to prp/p (isothermal sound veloc-
ity). In the limit of a = O or Tm/‘Edyn = 0 [i.e., 6(8N— p-lV-F) = 0], no
thermal wave exists because the structure is adjusted to the thermal
equilibrium instantaneously. In this limit, all the coefficients of the basic
differential equations and boundary conditions for nonradial pulsations
become real numbers, and the frequency w appears only in the form of
a)2 as in the case of adiabatic oscillations. Then, if to = wR + iw. is an

eigenvalue, its complex conjugate, w = mg — iwl, is also an eigenvalue.
In fact, modes B and C form a complex conjugate pair in the limit of a =

0. We note that for radial pulsation, (SLR is constant in space in the
envelope in the limit of r,,,/tdy,, = 0, while doLR/dM, i 0 in the same

limit for nonradial pulsations because the perturbed radiation field is
not spherically symmetric.

Figure 23.1 shows that new oscillation modes enter into the
frequency range of low order p-modes when a is smaller than ~ 10 for
this model. Mode C has the positive imaginary part (damped oscillation)
of frequency which is comparable to the real part for any a. In the limit
of a = 0, the eigenfrequency of mode C is the complex conjugate to the
eigenfrequency of mode B, which continuously changes to adiabatic
f-mode as a changes to infinity. The imaginary and real parts of the
eigenfrequency of mode C increase rapidly as 01 increases in the range of

 

 

* The same experiment was applied to nonadiabatic radial pulsations by Saio, Wheeler,

and Cox (1984).
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>1. From this property of mode C it is inferred that a large entropy
perturbation and hence a large imaginary part of the frequency of mode
C are attributed to a large value of the right-hand side of equation (22. 1)
due to the steep gradient of the luminosity perturbation. Similar modes
appear even in radial pulsations (Saio et al., 1984).

Mode A has a very interesting property. The frequency of mode A

is purely real when 0: = 0, and it moves downward nearly vertically in
the complex w—plane (see Fig. 23.2) as or increases. When its imaginary
part approaches -1, it turns toward the imaginary axis. It finally settles
on the imaginary axis when or becomes very large. Since purely
imaginary modes in the adiabatic limit are convectively unstable
g_-modes, the mode A must originate from a convective mode. This
model has convective g‘-modes in the adiabatic case, because it has a

convectively unstable zone due to hydrogen ionization, which is located
just below the photosphere. This interpretation may well be supported,
because the eigenfunction of the mode A in the case of overstable
oscillation with a finite but non-zero a is trapped in the convective zone.

24. Numerical Method for Nonadiabatic Analysis ofNonradial Oscilla-

tions

As in the adiabatic case (Section 18), it is convenient to use
nondimensional variables in numerical analyses. As a simple extension
of the nondimensional variables defined in Section 18, we choose the

following variables:

 

 

y] = £’- , (24.1)

_ L P_' , _ 02’ Ehy2 _ y(p +45) [_ g r ], (24.2)

y = —l—¢' (24.3)3 gr 3

1 d¢'
Y4 - E dr , (24-4)

(SS
Vs = —, (24.5)

cp

and
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_ (SLR
Y6 _ LR ,

where y], yz, y3, and y4 are the same as Dziembowski’s (1971) variables
used in his adiabatic analysis. We choose the entropy perturbation
rather than the temperature perturbation as the fifth variable for the
following reason: Although the nonadiabatic effect is considerable in
the outer part of a star, the thermal time scale is much longer than the
period of the oscillations in the deep interior. Thus the oscillations are
almost adiabatic in the deep interior of the star, where the independ-
ence between the temperature and pressure perturbations tends to be
lost numerically. Therefore, choosing the entropy perturbation tends to
cause less trouble in the nonadiabatic analysis.

Using the variables defined in equations (24.1)—(24.6), the differen-

tial equations of linear nonadiabatic nonradial oscillations (21.11)—
(21.15) are written as

 (24.6)

 

 

 

(1 [1+1—y—' =(Vg —y3),+[( H)—V]y2+ng3+va5, (24.7)
dlnr

dyZ _ 2_ =1: *_ _ :1:
m—(Clw A )y]+(A U+1))’2 A y3+va5, (24.8)

d” =(1-U1y +y (249)dlnr 3 4’ °

71%: UA*y, + 0ng2 + [l(l+1) — UVg]Y3 — Uy4 — Uva5, (24.10)

dys =V[V (U-cw2)-4(V —V)+c]ydlnr ad I ad 2 l

[1+1
+V (C1a)_)(Vad V)-C2]Y2+VC2Y3+VVad)’4

+ V V(4 — Ks)y5 — VVy6 , (24.11)

{tow ‘051
and {grm m

dY6   

_ Q 16
=[l(l+1)—V“—dV—V—8ad63V])’1+[5adC3V-l(l+1)( VVd C3(02) Y2

J1“.
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   +[l(l+1) 7;" -EadC3V]Y3+[C38s- [(33) —iwc4]y5- ddlilLrR Y6,

vi ~< 1. _ £ . (24.12)

where I “

c2: (xad— 4vad)vv+ Vad(—d—l%:—r“d—+ v), (24.13)

C3 = 3:755:31, (24.14)

477r3 Tc
c4 = —L’:—”\/ i—fil, (24.15)

and c1, V8, and A* are defined by equations (18.19), (18.18), and
(18.21), respectively. The quantity c4 represents the ratio of a local
thermal time scale to the free-fall time scale of the star and haVe a large
value in the deep interior of the star (>105).
The central boundary conditions (21.21)—(21.23) are given by

y1 = lyz/(c1 wz), (24.16)

M = .lys, (24.17)

and

(24.18)1’5 = 0

near the center.

The outer bounda rfd-itions (21.24), (21.25), and (21.27) are
written as

y1{1 +[1(1+1)/w2 - 4 — (1)2/V} — y2

+ y;., {1 + [1(1+ 1)/w2 — 1— 1]/V} = 0, (24.19)

~(l+1)y3 + y4 = 0, (24.20)

and

(2_4Vadv)y1+4VadV(yZ—y3)+4y5_Y6= O (24.21) ‘

at r= R. The terms proportional to V"1 are retained in the mechanical
boundary condition in equation (24.19) [cf. equation (18.51)], because
these terms become leading terms when equation (24.19) is substituted
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into equation (24.21).
A Henyey-type relaxation method as described in Section 18.2 can

be used to obtain the eigenvalue (1) and eigenfunctions y,-(r). In the core

of a star the thermal time scale is so long compared to the oscillation
time scale that numerical instability sometimes occurs in the entropy
perturbation, y5. The amplitude of the numerical instability is, in many
cases, very small because the entropy perturbation is negligibly small
there, so that the numerical instability has no practical effect on the
results. Sometimes, however, the amplitude of the numerical instability
could be large enough to disturb eigenfunctions of other quantities. This
difficulty can be avoided by using the method invented by Sugimoto
(1970) for calculations of stellar evolution: In the Henyey-method a
differential equation

 in _dx — f.-(x,y,-) (24.22)
is converted to a difference equation

n+1_y.n
L——' = (1—0,-)f,-"+‘ + 6,-f,", (24.23)
xn+l —xn

where n indicates quantities at the n-th grid point. The average weight,
19,-, is usually set at 0.5 (centered difference scheme) for better accuracy.
According to Sugimoto’s (1970) prescription, the numerical instability is
suppressed if we adopt (65, 66) = (1,0) or = (0,1). Since adopting (05,
66) = (0.5, 0.5) is better for accuracy, a better way may be adopting (65,
66) = (1,0) or (0,1) in the deep interior (in the region where c4 is greater
than, say, 104) and = (0.5, 0.5) in the outer region.

In applying a Henyey-type relaxation scheme to solve the eigen-

value problem we sometimes encounter a difficulty, in that the matrix P1
in (18.78) is singular. In equation (18.78) three inner boundary
conditions and three difference equations are incorporated to obtain the
relation between the corrections for the eigenfunctions at the innermost
grid point and at the second grid point [equation (18.82)]. If we adopt
the three inner boundary conditions given in equations (24.16)—(24.18)
and choose three difference equations which correspond to equations
(24.7)—(24.9), for example, to construct a matrix equation such as
equation (18.78), then all the elements in the 6th column of the matrix
P1 are zero and P1 does not have its inverse matrix. This occurs because

the variable y6 does not appear in any of those equations. This difficulty
can be easily avoided by changing the order of equations so that all the
variables appear in equation (18.78). For example, we can exchange
between equations (24.9) and (24.11) or (24.12).
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If the nonadiabatic effect is small (i.e. , wl/wR << 1, where w, and wR

are the imaginary part and real part of the nondimensional frequency
w), adiabatic solutions for the eigenfrequency and eigenfunctions can be
used for trial values in the Henyey-type relaxation method described in
Section 18.2. However, for a very nonadiabatic case the real part of the
eigenfrequency could be far from the adiabatic eigenfrequency.
Furthermore, since there is no one-to-one correspondence between the
adiabatic and nonadiabatic eigenvalues, it is not certain whether all the
eigenvalues have been picked up for a certain region in the complex
(wR, w;)—plane. A way to obtain a good initial guess of complex
eigenvalue is to use Castor’s (1971) method (see Section 18.2)
generalized to complex variables, in which one boundary condition is set
aside in integrating differential equations for a trial eigenvalue, and the
boundary condition is used as the discriminant to see whether the trial
eigenvalue is close enough to a true eigenvalue.

In addition to generalization of Castor’s (1971) method to complex

variables, Dziembowski (1977a) and Shibahashi and Osaki (1981a)
invented a method of seaching for all the eigenvalues in a given region
of (wR,w[)-plane by introducing concept of mapping as follows. In their
method, a discriminant D(w) is produced from a boundary condition.

The discriminant is zero for an eigenvalue 6); i.e.,

0(a)) = 0, (24.24)

and 0(0)) must not have singular points in the parameter area
considered (see below). Let us consider the mapping from the complex
w—plane to the complex D-plane. A closed loop in the w—plane is
mapped into a closed loop in the D-plane. If the closed loop in the
D-plane winds n-times around the origin, there exist n eigenvalues

inside the loop of the w-plane. Figure 24.1 illustrates such a mapping

from the (1)—plane to the D-plane. The large rectangle ABCD on the
w—plane is mapped to the closed curve A’B’C'D' on the D-plane which
winds around the origin once. By dividing the large rectangle into two
by a straight line EF, we find that an eigenvalue exists inside the
rectangle AEFD but not inside the rectangle EBCF.

This can be understood as follows: If D(a)) is a regular function,
and there are J eigenvalues (21,0: 1,2,..., J) [i.e., J zero points of D(w)],
the discriminant 0(a)) can be written as

O

D(w)ocn(w — (21,-). (24.25)

Let arg (2) be the angle which the direction from the origin to the point
2 makes with the real axis in the complex plane. Then we have



232 NONRADIAL OSCILLATIONS OF STARS

 

lm D-plane w-plane

 

    

       
Fig. 24.1 Mapping from the w—plane to the D-plane. The cross (X) in the w—plane

indicates an eigenfrequency for which 0(6)) = 0 (from Shibahashi and Osaki,

1981a).

J

arg[D(w)] = zargflu — (21,-) + const. (24.26)
i=1

It can be shown that when (1) makes a closed loop C in the complex
w—plane, the net change in arg ((1)—(2),) is 277 if (I),- is within the loop and
zero if (I),- is outside the loop C. This can be expressed as

_ - _ 2n if (b,- is within the loop C;
fc d[arg(w wj)]_{0 if 6'0,- is outside the loop C. (24°27)

Therefore, we have

721—} d[arg(D)]=the number of eigenvalues within the loop C.
7’ C (24.28)

Thus, the winding number around the origin in the D-plane corresponds
to the number of eigenvalues within the loop of the w—plane. It should
be noted, however, that if the discriminant D(w) has singularities within
the loop C, the above relation does not hold. For example, if there is a
pole within the loop C, it decreases the value of the integral in equation
(24.28) by —27r; i.e., it decreases the winding number in the D-plane by
one.



Chapter V

EXCITATION AND DAMPING OF OSCILLATIONS

25. Energy Equation and Work Integral

The vibrational stability, as well as the dynamical and thermal stability,
is the problem of the exchange from one type of energy to another in a
system. Therefore, the energy equation provides us with the basis of a
theory with which the physical mechanisms of various kinds of
instabilities can be considered. From the basic equations (13.1)—(13.4),
an equation describing the total energy conservation is derived in what
follows. In this section, the viscous terms are neglected owing to their
smallness in the basic equations, as discussed in Section 13. The
equation of conservation of mechanical energy can be obtained by
taking the scalar product of equation (13.4) with v,

pg— (%V2) =—v-Vp—pv-V¢. (25.1)

Using the first law of thermodyndmics,

Tds=dU+pd(pi), (25.2)

equation (13.3) (i.e., equation of conservation of thermal energy) can
be reduced to

p%+V-@v)—v~Vp=pe~—V-F, (25.3)

where U d'enotes specific internal energy. In deriving equation (25.3),
the continuity equation (13.1) has been used and the radiative flux FR
has been replaced by the total flux F [see equations (13.17) and (20.23)].

Adding equations (25.1) and (25.3) to eliminate v-Vp, we obtain
the total energy conservation

p% (%12+U) +v-(pv+r)+pv-Vd>=psN. (25.4)

233
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Noting that
M M M ,

/ v-V<bdM,= —/0 dM,—dr ———d O—GdM,’
0 dt dr Ir—r I

, G

=_'//;1MdM'Ldt 8_ra(Ir—r’l)

, (dr' 8 dr' 8 G

=//;1M' dM'2 (d—t 8_r+ dt 8r') lr—r'l

, G

=_2/V/2MdM’d—t((Ir—r'I)

_ GdM dM,’
_-2 (TI Ir——r—’|

1 d

we integrate equation (25.4) over the whole volume of a star, obtaining
M

dE 1
W—A (8N—'p—V'F) er—f pV‘dS

r=R

 

M

=/ T—dM,— pv-dS, (25.6)
0 r=R

where E denotes the total energy of the star

E= M(iv2+i¢+u)dM (25 7)0 2 2 ,. .

In obtaining equation (25.6), we assumed that the total mass is
conserved. Equation (25.6) expresses the energy theorem. The total
energy E consists of the kinetic, potential, and internal energies. The
factor 1/2 in the potential energy in equation (25.7) is due to the
characteristics of the self-gravitating system as seen from equation
(25.5). The energy theorem states that change in the total energy of a
system is caused by either nuclear energy generation 3N in the interior or.
loss of radiative flux F at the surface or the outgoing wave flux pv, if no
work is done from the outside.

As mentioned in the beginning, at least one form' of energy
increases or decreases monotonically with time for an unstable
situation. For the dynamical instability, the first integral in the
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right-hand side of equation (25.6) can be neglected since the dynamical
time scale in a star is usually much shorter than the thermal time scale. If
the surface integral vanishes (as is usually the case in a star), kinetic
energy must increase at the expense of the potential and/or internal
energy. Therefore, if an equilibrium state has an adiabatically accessible
neighboring state having less potential and/or internal energy, the
equilibrium state is dynamically unstable. The Jeans gravitational
instability and the convective instability are examples of radial and
nonradial dynamical instabilities, respectively. In stable situations,
disturbances are subject to acoustic and gravity waves or oscillations.

In the case of thermal instability, the system can be treated as
hydrostatic with zero kinetic energy in the time scale considered. We
note that thermal instability could also occur as overstability (see, e.g.,
Unno, 1975b). When a star has no energy source (£~= 0), radiation loss
through the surface leads to the Kelvin contraction of the star.

To study vibrational instability, the kinetic energy must be
included. Vibrational instability is characterized by the existence of a
periodicity in the temporal behavior of perturbations. Integrating
equation (25.6) over one period of oscillation, we obtain

M

fd—Edt=j(dt/ (eN—iV-F) dM,—fdt/ pv-dS
dt 0 p r=R

M dS
=fd1/ T—dM,—j[dt/ pv-ds, (25-8)

0 dt r=R

where f dt indicates the integration over one period of oscillation. It is
useful to introduce the work integral W, which is defined as the increase
of the total energy E over one period of oscillation. The work integral W
is given by the first term in the right-hand side of equation (25.8) for a
real star if the pressure goes to zero at the surface (no shock waves going
outward). For a nearly strictly periodic oscillation (1. e. ,fé Tdt— 0 and
556Sdt ~ 0) W is given as (Eddington, 1926)

W=][d—EEdt=fdt/MdT—SdM,=fdt/‘M(Wigs—dM

6T 1
—fdt/O‘M76 (EN—FV.F) er. (25.9)

If W is positive, the star is vibrationally unstable. The energy increase is
provided from photon energy, which is originally produced by nuclear
reactions in the core. In other words, oscillation is generated if photon
energy is efficiently converted to kinetic energy through a certain
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mechanism. Equation (25.9) can be understood to express an energy
production through a completely periodic change, which resembles the
energy production of a Carnot-type heat engine.

Equation (25.8) indicates that if a finite value can artificially be
given to the surface pressure, a strictly periodic oscillation can be
produced by equating the first term in the right-hand side to the second
term. This corresponds to a strictly periodic imaginary oscillation, in
which all the excitation effect is consumed by the work done on the
artificially placed matter above the stellar surface. The work integral W
can also be defined as the amount of energy which must be removed
from the star in order for the star to oscillate strictly periodically (i.e.,
with constant amplitude). Baker and Kippenhahn (1962) introduced
W(r) defined by

Mr

W(r)= dt/ pv-dS(r)=][dt-/ in-(pv)dM, (25.10)
S 0

for oscillations artificially enforced to be strictly periodic. It represents

the work done on the overlying layer by the sphere of radius r, and its

surface value is W.
Both of the formulae for W are applicable to nonlinear periodic

oscillations and also to linear stability analysis. In the former case, W
may represent the nonlinear shock dissipation; in the latter case, the
condition W > 0 expresses the vibrational instability.

In the linear stability problem, the bilinear form of the energy
theorem (25.6) is often useful to investigate the restoring forces and
excitation mechanisms of oscillation. Following Eckart (1960), we
rearrange the basic equations (13.28), (13.29), and (13.83) in such a way
as giving the partial time derivatives 8v/ 8t, 8p’/ 8t, and 8(p’ — czp')/ 8

t; multiply these equations by pv, p’/(1"1p), and g2(p' - czp’)/ (pc4N2),
respectively; and add them. After somewhat lengthy manipulations, the
result turns out to be

865 , 8p’

81 (p at’

where the wave energy per unit mass, ew, is defined as

ew=%{*+ (5; ) 241W {(151}. "$2- 17:. (”7%)211 (25-12>
and

 aE (pew) +V-Fw=p6T (25.11)

   

Fw=p'v+pv<D'. (25.13)
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We can replace 8/ 8t by d/ dt in equation (25.11) because the difference
appears only in higher order terms. The second term in the right-hand
side of equation (25.11) can be incorporated into the global wave energy
Ew by integrating equation (25.11) over the whole volume of the star;

 

     

i.e.,

dEW=/M6Ti§£dM—/ FwdS, (25.14)
(11‘ 0 dt

where

M 1 p'

EW=/0 (ew 2 p )dM,. (25.15)

This equation states that change in the wave energy of a star is caused by

nonadiabatic processes in the interior and by the outgoing wave flux Fw
at the surface. The first term in ew is the kinetic energy and the other
terms represent the potential energies corresponding to the various
restoring forces. If there is a negative potential energy, monotonically
unstable modes could exist, because the kinetic energy can increase
without changing the total energy. For example, a dynamically unstable
convective mode (or g—-mode) arises if N2<0 somewhere in the stellar
interior, due to the exchange of energy between the first and the third
term in the right-hand side of equation (25.12). In the case of an
acoustic wave, the second term in ew is dominant, and the wave energy
averaged over one period is equi-partitioned into kinetic energy (1/2)v2
and acoustic potential energy (1/2)(p’/pc)2. When the third term is
dominant, the internal gravity wave (N2>0) or the convective mode
(N2<0) appears. The term proportional to ((SS)2 is related to
nonadiabatic effect. Although this term cannot be discussed indepen-
dently of the right-hand'side of equation (25.11), equation (25.12)
suggests that if this term is so large as to make the square bracket
negative, the convective mode (N2<0) could become oscillatory. This
phenomenon seems to be related to the vibrationary unstable mode
which was obtained and was traced to a convective mode in the
adiabatic limit by Shibahashi and Osaki (1981a) (see also Section 23).

The direct derivation of work integral W from equation (25.14) is
convenient for linear stability analysis:

W=j[dtdEw =fdtI/O'M6Td—65dM,—/Fw-dSI
S

_ 67‘ ___1_ . _ I I .—]{dtI/O'M76(66 pVF)dM, LR(p+p<1>)vds]. (25.16)
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This is equivalent to the linear version of Eddington’s work integral
(25.8) if the surface integral vanishes. The work integral W is related to
the growth rate a, of amplitude of oscillation, which is the imaginary
part of o(a = 0R+ial):

_ 1 W/Ew
0I_ 2 n 9

where [7 denotes the period. The factor 1/2 comes from the fact that the
energy is proportional to the square of amplitude. We consider that
|01/0R|<<1, since the ratio is of the order of magnitude of the
dynamical to thermal time-scale ratio. Then, 17 = 2770131. The total
energy of oscillation Ew is twice the time average of the kinetic energy
since there is equi-partition of the kinetic and potential energies of
oscillation in the time average:

 (25.17)

M O 2 M 0 2 M

Ew=/ <V2>AV er=TR/' §°E* dM,=—2R—/ IEIZer. (25.18)

0 0 0

Then, we have

=—— 2o, 2 RWI/0 |§| dM,I . (25.19)

There are several alternative expressions of W. The physical

mechanisms of excitation and damping may best be studied with
equation (25.16). However, for linear nonadiabatic numerical calcula-

tion, equation (25.10) issometimes more convenient. We have

W(r)=fdt/ Re(6p)Re(dd€')dS=47Tr2 Re(6p)Re(ioR§,)dt
S

. =4..2a.f( 610W )(ié‘r-iét)...

 

 
2 2

= —47rztzlm(6p*§,). (25.20)

The term proportional to Re (6p§,) does not appear in the last line of
equation (25.20), because it has the temporal dependence exp(2ioRt)
and hence becomes zero by the integral over one period. As discussed
before, equations_(25.10) and (25.20) are applicable to the oscillation
which is artificially enforced to be purely periodic. In the linear analysis,
we can use equation (25.20) in the following way. First, we obtain an

adiabatic eigenfrequency cad by a numerical analysis based on the
method disussed in Section 18. Then we solve the equations of
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nonadiabatic oscillations assuming that the temporal dependence is
exp(i0Rt) with (IR: cad. In solving the equations of nonadiabatic

oscillations, the outer mechanical boundary condition (6p—>0 near the
surface) is disregarded. Then, we evaluate the work integral in equation
(25.20) by using the solution obtained in this way. Note that since the
solution does not satisfy the outer mechanical boundary condition, W=
W(R) has a finite value. Baker and Kippenhahn (1962) used this
formula for radial pulsations, but it can be used as well for nonradial
oscillations, as was done byoAndo and Osaki (1975). The work integral
for nonradial oscillations with the energy leakage at a boundary was
discussed by Osaki (1977).

There are two reasons why the work integral is useful in the
numerical analysis. One way it is useful is to check the consistency of the
imaginary part of the eigenvalue 0, between the direct nonadiabatic
numerical calculation and the evaluation by use of the work integral in
equation (25.19). For a quasi-adiabatic analysis 01 is obtained only by
using the work integral in the form of equation (25.16). [Note that
equation (25.20) is only for nonadiabatic analyses] The other reason to
use the work integral is to see where the excitation and damping zones
are located in the stellar interior. If W(r) or dW/dr is plotted as a
function of the position in the stellar interior, dW/dr is positive in an
excitation zone and negative in a damping zone.

We restrict ourselves to discussing the work integral in a spherically
symmetric star. However, it should be noted that, in some kinds of stars

such as Ap stars, deviation from the spherical symmetry or chemical
inhomogeneity should be taken into account (cf. Dziembowski, 1984b).

(
26. Work Integral 'in Quasi-Adiabatic Approximation

26.1 Work Integral for Quasi-Adiabatic Analyses

In quasi-adiabatic analysis the work integral W is estimated by using
adiabatic eigenfunctions as well as adiabatic relations. In this case we
should evaluate the work integral W by using the expression given in
equation (25.16). Let us decompose W into WN, WF, and WC, which are

related to the perturbations of nuclear energy generation rate, radiative
flux, and convective flux, respectively:

W=WN+WF+WC (26. 1)

with

 

M
77 6T*

WN—EA T (S8Ner, (26.2)
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77 “57* _daLR 1(1+1) FR 6T
  

 

WEE 0 T dM, +dln T/dlnr Fr“ T
W

+1(1+1)(—1~:—" 51’; —%%)]dM,,\ (26.3)

and afimg. J fideoni’ol Qw (mt VIC;
(\ - M

_ n 67* _doLc_i.,WC—K 0 —T—( __er pVFCL)dM,, (26.4)

where we neglected the surface integral f Fw-dS representing the
energy loss by the outgoing wave which vanishes for the trapped
oscillation. In the following discussion in this section we neglect the
effect of the perturbation of convective flux, WC, which will be
discussed in Section 30. The manner of decomposing terms into W; and
WC depends on how to neglect the effect of the perturbation of

convective flux. The above decomposition is due to the convention
chosen in Chapter IV (F2;i and 6LC = 0).

The complex conjugate of (ST appears in equations (26.2)—(26.4)
because we have integrated over the period of oscillation [cf. equation
(25.20)]. In the following part of this section, however, we consider that
physical variables represent only radial dependence [see equation
(13.59)]. In this case, the mass element dM, is regarded as an
abbreviation for 41rpr2dr. Furthermore, we assume that adiabatic

eigenvalues and eigenfunctions are purely real, which is true in most
cases. Therefore, for example, 6T*6T will be written as (6 T)2 in the
following discussion.

In evaluating WF we can use equation (21.15) for (SLR, as well as
adiabatic relations. However, Osaki (1976) claimed that a numerical

inaccuracy could arise in evaluating the luminosity perturbation because
of a numerical cancellation effect. For example, the eigenfunctions of
higher g-modes in evolved models oscillate spatially very rapidly and
have many nodes in the u-gradient zone just outside the convective
core. In such a case, the third and last terms in the right-hand side of
equation (21.15) become very large there, and they have opposite signs
that largely cancel each other out. If we calculate the d(o T/ T)/dlnr
term by a direct numerical differentiation of 6T/T given at discrete
mesh points, it will be subject to some numerical inaccuracy, which is in
turn magnified by the cancellation effect. To avoid this numerical
difficulty, we rewrite the term involving the derivative of the tempera-
ture perturbation by using the basic differential equations of adiabatic
oscillation. After some manipulation we obtain
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5LR_ 5r _ _ _ —1 5T Vad—Vl(l+1) P' ,LR _ r +[4 KT (1“3 1) xp]—T+ V 02,2 (p +45)

1 1 dan 6T+ V", _ _ g,+1 my
V(”’17 dlnr)—T+ V[(U C"" 4) dr]’ (265)
where the relation Eh: (p'/p+<1>')/ (02r) was used [equation (13.61)].
The homology invariants U and V, and c1 are defined in equations
(18.18) and (18.19), respectively. Equation (26.5) does not involve any
numerical. differentiation of perturbation variables since y4= (l/g) ddb'
/dr is the fourth variable of the basic adiabatic oscillation (see Section
18.1).

The luminosity perturbation calculated in this manner may be
seriously in error in the outer envelope of a star, because the thermal
time scale is short there and hence the nonadiabatic effect is large. To
avoid this difficulty the integration in equation (26.3) should be
terminated at a radius where the order-of-magnitude relation

wi~1 (26.6)
tdyn

is satisfied [see equation (22.1) and Cox (1974, §10)], where 1:”, and tdyn
are defined in equation (22.2).

26.2 Excitation Mechanisms
In order to reVeal the qualitative nature of excitation or damping
mechanisms of nonradial oscillations, we analyze, in this subsection, the

work integral W by using the quasi-adiabatic and Cowling (<D’=0)
approximations. Except for some possible nonadiabatic mechanisms, all
the important excitation and damping mechanisms should be revealed in

this way.
In quasi-adiabatic analysis the integral W is estimated by using

adiabatic eigenfunctions as well as adiabatic relations. In this approx-
imation equation (26.2) reduces to

WN=—/(;R EN 7;; 6T)2 47772de 

_l __50_ £2—0/(;R eN(eT+(F3-1 )( T ) 411r2pdr. (26.7)

This equation shows that the temperature and density dependence (both
are positive) of nuclear energy generation rate always have a destabiliz-
ing effect. This excitation is called the s-mechanism.
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We are going to modify the expression for WF given by equations
(26.3) and (26.5) to a form in which all the terms are proportional to
(6 T/ T)2 or [d (6 T/ T)/dr]2. In order to do so we have to express p’, E,
in terms of 6T/T and d(o T/ T)/dr. For the sake of simplicity, we
assume that the adiabatic temperature gradient Vad is constant. From
the relation between the Eulerian and the Lagrangian perturbations we

have

Ip _ 6p 5, dlnp: 1 fl+ ‘3; v, (26.8)   
p p r dlnr Vad T

  

Using equations (15.1) and (15.2) with equation (26.8), we obtain

   i~ —1 L12 5T iflr—(Vadao) [(1.] )—T +de,( 7.)] (26.9)
where

aOE4—U—fl+cw, , (26.10)
C10)2

and the Lamb frequency L,2 is defined in equation (13.67). Substituting
equations (26.8) and (26.9) into equation (26.5), we obtain

  

 

6LR~ 6T V—Vad_c1w2—U Hp d 6T
LR _" T +( V m, )Vad dr( T ) (26‘1”

where

= _ 1 Kp _ L12 clwz-Ua1—4 V... ——KT 1,3_1+(1 r102)( aoVad ). (26.12)

Substituting these equations and disregarding (15', we obtain, after
lengthy manipulations, an approximate expression for WF:

a_T)T2 d
“7:: I~‘=—§[€1’1LR(—TT—)(S ]=R——/Rdr( dr(0’1LR)

M < "‘ WMd—, < 6:11 "’$”(T“1 1V

R
(5T2 1 4—V 1 dL L+11+1 d [ ( '— R)

( )0 r V aOV c1092 dr r

   

 

  

2 2clw —U dL,1 d (clw LR-dL,/dlnr)]
, 26.13

clwzaOV dr +2 dr clwzaoV ( )

where L, and LR are, respectively, the total and the radiative
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luminosities at r.
The first and the second terms in the right-hand side of equation

(26.13) describe the K-mechanism. In the outer envelope in the radiative
equilibrium, LR is constant and the K-mechanism works for driving an
oscillation if

% (KT+r—3Kf—1) >0. (26.14)

If a region in the stellar envelope satisfies this condition, radiative flux
from the stellar interior is blocked by the effect of' the temperature and
density dependence of opacity. The blocked energy is converted to the
energy of the oscillation. The value of K7 increases in the inner part of
an ionization zone and decreases in the outer part. Therefore, the
excitation and damping zones due to the K-mechanism are located in,
respectively, the inner and outer parts of the ionization zone. In an
ionization zone an adiabatic exponent (F3 — 1) (>0) is minimum. This
spatial variation of (F3 — 1) enhances the effect of the K-mechanism.
This effect is sometimes called the y—mechanism (see Cox, Cox, Olsen,

King, and Eilers, 1966).
We note that the condition for the K-mechanism given in inequality

(26.14) is different from the condition derived in a one-zone model
(Baker, 1966). In the one-zone model, the value of [KT+ (F3 — 1)'1Kp] is
important rather than its spatial derivative. This is because the second
term in the right-hand side of equation (26.13) does not appear in the
one-zone model, and the opacity derivatives, KT and Kp, appear in a

term similar to the first term.
The sign of a1 affects the driving or damping when LR is not

constant. However, we have to be cautious if a strong driving or

damping is found in a zone in which LR changes due toa variation in the
convective energy flux. Because we are neglecting the effect of the
perturbation of the convective flux, such an excitation or damping could
be fictitious.

The second line of equation (26.13) arises from the radiative
diffusions of the thermal energy of oscillating gaseous elements. For
high order g-modes (clwz— U)/o:0 is very small. This indicates that a
superadiabatic region (V> Vad) excites high order g-modes. This
excitation mechanism is called the 6—mechanism in this monograph. This
excitation effect was first demonstrated by Cowling (1957), who showed
the overstability of g-modes for the superadiabatic stratification of
plasma stabilized by the existence of horizontal magnetic fields. The
same mechanism has been proposed for the excitation mechanism of
rapid oscillations of Ap stars by Shibahashi (1983). If the superadiabatic
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region is stabilized by a spatial gradient of the mean molecular weight,
the 6—mechanism corresponds to Kato’s (1966) mechanism. The
(S-mechanism does not exist for p-modes or radial pulsations, because in
such cases [(V— Vad) V‘1 —(c1w2— U)ao" 1] reduces to ~ - Vad/ V. This
term causes radiative damping for p-modes and radial pulsations
irrespective of the sign of (V— Vad).

These excitation mechanisms will be discussed in detail in the
following sections.

27. The e-Mechanism

The physical mechanisms and the positions in stars of the excitation of
the radial pulsation have been investigated in detail (see Cox, 1967,
1974; King and Cox, 1968). The situation is similar for nonradial

oscillations in some respects, but there are also significant differences.

The e-mechanism to be discussed in this section is much the same for
both radial and nonradial oscillations, except that the condition of the
trapping of oscillation in the interior is favorable for some g-modes.

The e-mechanism is usually unimportant for radial pulsation
because of the much smaller amplitude of oscillation in the interior than
in the envelope. Exceptions are the case of F1~ 4/3 and stars of less
central condensation. Very massive and supermassive stars (Ledoux,
1941; ,Osaki, 1966) are in the first category, and the upper mass limit of
main sequence stars is extensively studied in this connection (see e.g.,
Ledoux, 1978; Ledoux, Noels, and Boury, 1982). Also, radial fun-

damental modes of Wolf-Rayet star models are excited by the
e-mechanism of the central helium burning (Maeder, 1985; Cox and

Cahn, 1988). Less massive dwarfs of polytropic index 1.5 belong to the
second category (Gabriel, 1964). In those two situations, stabilities are
tested also for nonradial oscillations (Noels, Boury, Scuflaire, and
Gabriel, 1974; Aizenman, Hansen, and Ross, 1975). However, the

excitation of nonradial modes in the Wolf-Rayet stars is still controver-
sial (see, e.g., Scuflaire and Noels, 1986; Cox and Cahn, 1988).

The importance of the e-mechanism is emphasized for nonradial
g-modes, since the overstability is not restricted to special kinds of
models. In the latter part of this section we will discuss g-modes excited
by the e-mechanism for various stellar models. We will first discuss the
temperature dependence of 8N for the p-p chain reactions as an
example.

27.l p-p Chain Reactions

The work WN defined in equation (26.2) is always positive and
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contributes to excitation of oscillations. The physical reason is that the
entropy time-derivative is in phase with the temperature increase
because of the temperature sensitivity of the nuclear energy generation.
It should be noted that the values of £7 and 8p depend on the time scale
under consideration and are different from those calculated from the
equilibrium 8N. Let us take an example of the p-p chain reactions
represented as follows (cf. Reeves, 1965):

1H(1H,e+v)2H(1H,y)3He(3He,2‘I-I)4He (PPI)

3He(4I-Ie ,y)7Be(e— ,v)7Li( l H ,y)8Be—>24I-Ie
(PPII) (27.1)

7Be(ll-I,y)8B(,e“v)BBe—>24He,
(PPIII)

where, e.g. , 2H(ll-I, y)3 He means the 3 He formation fromzH by the 1 H
capture followed by y—ray emission. Let N,-, Cjk, and ij be the number
density of nuclei with the atomic weight j (j = e means electron), the

reaction rate of the j— and k-nuclei, and the energy generated (minus
neutrino loss) by a single reaction, respectively. The asterisk will stand
for 7Li in order to distinguish it from 7Be. The 8B- and 8Be-decays are
assumed to occur instantaneously. Then, we have

1 1
PEN = 7NTC11Q11+N2N1C21Q21+N3 (—N3C33Q33+N4C34Q34)

 

 

 

2

+N7(NeC7eQ7e+N1C71Q71)+NTN1C31Q31, (272)

aNl __ 2 _ 2
8t +V°(N1V)— N1C11 N1N2C21+N3C33

—N1N;C31—N1N7C71, (27-3)

881:2 +V'(N2V)=';—N%C11—N1N2C21, (27.4)

8N3
8t +V'(N3V)=N1N2C21—N3(N3C33+N4C34), (27-5)

8N4 at +V-(N4V)=%N§C33—N3N4C34+2N1N;C;1

+2N1N7C71, (27.6)
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881:7 + V-(N7V)=N3N4C34-N7(NCC7C+N1C71), (27.7)

6N; * * *
a: +V'(N7V)=N7NeC7e-N7N1Cn,

(27.8)

where Cjk’s are the function of temperature and Q” = 1.179, Q21

=5.493, Q33: 12.859, Q34=1.587, Q7c=0.06, Q71=10.9, and Q7*,
= 17.347 (in MeV) (Reeves, 1965). A factor 1/2 appears for reactions of
identical particles since sz ij counts a single reaction twice; a factor 2
appears in the rate equations (27.3)—(27.8) if two identical particles are
integrated or created by a single reaction, and in some terms these two

factors cancel each other out.

The terms on the left sides of equations (27.3)—(27.8) can be

comparable to the terms on the right sides, if the oscillation period and
the time scales of reactions are of the same order of magnitude. In that

case, 6N,- (and therefore (SEN) is not in phase with (Sp or (ST, and the
analysis becomes rather complicated. Fortunately, that is not the case
ordinarily, at least for the main reactions. Now, we consider the

situation where the lifetime of 2H is much shorter and those of other

elements are much longer than the oscillation period. Then, we have

1
N2=7N1(C11/C21) (27.9)

from equation (27.4) and

(SNl = 6N3 = 6N4 = 5N7 = 5N; =fl (27 10)
p

  

NI N3 N4 N7 N;

from the other equations. Equilibrium relations are derived if the right
sides of equations (27.4), (27.5), (27.7), and (27.8) are set to be zero. In

addition to equation (27.9), we obtain

b C l—b N2 CN2 =—‘N2(—”) , N =———'——‘( "), 27.1135 2 1 C33 E 35 2 N4 C34 E ( )
 

     bu Ni (C11) b111 (C11) bu (C11)
N =— = N , N* =—N * ,
75 2 Ne C71, E l C71 E 7E 2 l [571

(27.12)

and

—NIE=4N4E= (2—b1)N12C115, (27-13)
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where the branching factors b], b", and b1" satisfy

bl+bll+bIII=1a (27.14)

(1-b1)2/b1=2(N4/N1)2(C34/C11C33)E, (27-15)

blII/bll=(Nl/Ne) (C71/C7e)Ea (27-16)

and the subscript E denotes the equilibrium.
Taking the Lagrange variation of equation (27.2) and using

equations (27.9)—(27.12), we obtain

669V_ (5p 6T 6TTN -.,?+,7. =—+Zv.,-f.-,-— , (27.17)

where

V..=L“H_Cz2 f..= bQi
” dlnT’ '1 2,,b,-,-Q,-,-

Here b,-,- denotes the branching factor (1, b[, b", or bm) of the

ij—-reaction, and the summation excludes the very rapid reactions ( H
capture by 2H, ,B-decay, etc. ), but the associated energies (e. g., Q21)
should be added to the energies of the preceding reactions. The result
(27.17) is true also for the inclusion of the CNO cycle, if the branching
factors are redefined properly. We note that the CNO cycle involves
relatively slow ,B-decay, whose lifetime (order of minutes) could be
comparable to the oscillation period. In such a case, a more complex
treatment is necessary [see Cox (1955) and Kawaler (1988a)].

For the solar interior g—modes, contribution to ET arises mostly
from the 3I-Ie+3I-Ie-reaction. Since we obtain

v11=11.270(T/106)‘“3-2/3, 1111:0509, (27.19)

(27.18)

and

v33=40.925(T/106)‘“3 —2/3, f33=0.491, (27.20)

81 becomes 11.32 at T = 107K in contrast to the equilibrium £T(= v“:
4.56). This increase in 87 is crucial for the overstability of less massive
dwarfs (Noels et al., 1974).

27.2 Excitation of g-Modes of Lower Main-Sequence Stars

The internal structure of lower main-sequence stars with masses M <
1.2MG) is characterized by the radiative core and the convective
envelope. We discuss in this subsection the stability of nonradial g-mode
oscillations of the sun as a typical example. The possibility of excitation
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of low-order g-modes in the sun due to the e-mechanism of the high
temperature dependence of 3He + 3He reaction was first discussed by
Dilke and Gough (1972). They suggested that if the amplitude of

g—modes grows sufficiently, it could lead to intermittent mixing of the
core and a temporary depression of the solar neutrino flux. Unno
(1975a) discussed the most favorable modes for the overstability by

taking into account the property of wave trapping for nonradial
oscillations. Three groups (Christensen-Dalsgaard, Dilke, and Gough,
1974; Shibahashi, Osaki, and Unno, 1975; Boury, Gabriel, Noels,

Scuflaire, and Ledoux, 1975) have examined this suggestion indepen-
dently by a global stability analysis of relevant modes for the realistic
solar evolutionary sequence, and they have confirmed that some
low-order g-modes may become unstable due to the e-mechanism.

A large value of the temperature derivative of energy generation
rate ET is essential in order for the e-mechanism to work. The variations

of ET and 8N as well as hydrogen and 3He mass fractions in a solar model
are shown in Fig. 27.1. Due to the existence of the 3I-Ie+ 3He reaction
in the p-p chain reactions, the effective value of 8T is raised to ~ 11 from
4 — 5 for the p-p reaction itself. (The rapid increase of 87- very near the
center is due to the increase of the contribution from the CN cycle.)

Figure 27.2 shows work integrals for g,- and gz-modes ofl = 1 for a

1M9 model slightly younger than the present sun as well as the

eigenfunctions of the radial displacement and temperature perturba-
tion. Rapid increase in WN in the core indicates the existence of the
e-mechanism. The gradual decrease of W is due to radiative damping. In

the convective zone the work integrals are shown by dashed lines. A

fictitious excitation exists at the bottom of the envelope convection

zone, because the effect of perturbation of convective flux is not

r/ R

0 0.1 0.2 0.3 0.4 

 

 

 

  
O 0.2 0.4 0.6 0.8

M, / M

Fig. 27.1 Variations of the nuclear energy generation rate, EN (in units of erg s"1
g”), and its temperature derivative, ET, and the mass fractions of hyd-
rogen, X, and 3He as functions of M,(s 0.9MQ).
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Fig. 27.2 Displacement in the radial direction, 5,, the Lagrangian temperature per-
turbation, 6T/T, and the work integral, W, for the gl-mode (left) and the

gz-mode (right) of l = 1 in a IMO model [after Shibahashi et al. (1975)].
The effect of excitation due to the e-mechanism, WN, is also shown. Varia-

tions in W in the outer convection zone are shown by dashed lines. Norma-
lizations are arbitrary.

included. This false excitation prevents us from obtaining a definitive
answer on the stability of low-order g-modes of the sun and lower

main-sequence stars. If the stability is determined by the work integral

terminated at the top of the radiative zone (i.e., r/R= 0.78), the
gl-mode in Fig. 27.2 is unstable with a growth time of ~ 107yr, while the
gz-mode is stable. The results of stability determined by using such
“truncated” work integrals are shown in Fig. 27.3 for various evolution-
ary stages, where the growth rate, 11: —01/0R, is plotted against the
hydrogen mass fraction at the center (Xe). As seen in this figure, the g1-
and gz-modes of l = 1 are unstable in some early phases of evolution.
However, before the star evolves to the present sun (XC < 0.45), these

g-modes become stable because relative amplitude in the core decreases
due to the increase of the central condensation.

Since the lower main-sequence stars have essentially the same
structure as the solar models, one may naturally expect that low-order
g-modes of these stars are unstable. This was confirmed for 0.5MQ, and
1.1MQ models by Noels et al. (1974) and Noels, Boury, Gabriel, and
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Fig. 27.3 Growth rate, 17 = —o./0R as a function of the central abundance at the cen-

ter, XC, of evolutionary solar models for the g,-, g2-, and g3-modes of l = I

[after Shibahashi et al. (1975)]. The absolute value of the ratio of the
temperature perturbation at M, = O.1M® to that at the base of the convec-
tive envelope for the gl-mode of l = 1 is also shown in the upper panel.

Scuflaire (1976).
As noted above, the effect of the outer convective zone introduces

uncertainty into the stability of low-order g-modes. Using the time-
dependent convection theory derived by Unno (1967) and extended by
Gabriel, Scuflaire, Noels, and Boury (1975), Saio (1980) examined the
stability of low-order g-modes of the sun by a fully nonadiabatic

analysis. He found that a low-order g-mode of l = 1 with a period of
about 80 min is unstable even in the present Sun due to the e-mechanism

in the core and the K-mechanism (see section 28) in the hydrogen

ionization zone. The existence of unstable low-order g-modes in the

present sun is interesting because detections of some solar long period
oscillations, including the 160 min oscillation, have been claimed (see

Section 11.2). However, it must be cautioned that since the balance

between excitation and damping is rather delicate, the stability result
may be modified significantly when a better time-dependent convection
theory is developed.

27.3 Excitation of g-Modes in Shell-Burning Stars

The e-mechanism is stronger for nuclear reactions with larger tempera-
ture sensitivity (i.e., larger 87). Therefore, for hydrogen burning, the
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CNO cycle provides a more efficient e-mechanism than the p-p chain
reactions. Moreover, helium burning has larger 87 than the CNO cycle.
Another important factor in the e-mechanism’s ability to actually excite
a global mode is a lowering of the radiative damping in the envelope.
These conditions are satisfied by nonradial g-mode oscillations in
shell-burning stars. As discussed in Section 17, some gravity modes with
large value of spherical harmonic degree I are trapped in a u-gradient
zone. The trapped g-modes (Gn-modes) in a u-gradient zone accompa-
nied by a nuclear burning shell may well become overstable due to the
8-mechanism of the nuclear-burning shell.

Shibahashi and Osaki (1976b) found that GO-modes with I ~ 10 are
unstable for early stages of the hydrogen-s-hell burning phase of massive
stars (M 2 ZOMQ). A local analysis (Section 29.1 below) indicates that
the most favorable modes for overstability are those having small values
of l and small radial wave number n, because the radiative dissipation is
least for those modes. On the other hand, a large degree [is required for
effective wave trapping in the u-gradient zone (see Sections 16 and 17).
In addition to the radiative dissipation, we have to take into account the
leakage of wave energy at the stellar photosphere. Since the peak value
of the Brunt-Vaisala frequency in the ,u-gradient zone is much higher
than that at the surface for stars in the shell-hydrogen-burning stage,
low order G-modes behave like p-modes in the outer envelope and have
frequencies larger than the critical frequency necessary for the acoustic
wave to be reflected at the surface. These modes have progressive-wave

character in the atmosphere. Because of the existence of a wide
evanescent zone between the u—gradient G-zone and the envelope

P-zone, most of the wave energy is reflected, but a small fraction of the
wave energy leaks through the photosphere. Such oscillations can be

treated by using the progressive-wave outer boundary condition as
discussed in Sections 16 and 18, or by using the reflective boundary
condition and estimating separately the amount of energy leakage from

the eigenfunctions. The latter method was adopted by Shibahashi and
Osaki (1976b) in their quasi-adiabatic analysis. The effect of the energy
leakage on the work integral may be estimated as

2712

H

where H and c denote the period of oscillation and the sound velocity,
respectively, and the integration is taken over the stellar surface. The
total work integral to determine stability is _obtained by W+W1eak.

A summary of the stability analysis for Go-modes by Shibahashi
and Osaki (1976b) is given in Table 27.1. In this table a negative value

Wleak=_ —2p|5|2 CdS (27'21)
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Table 27.1 Pulsational properties of Go-modes in early hydrogen-shell-burning phase

 

 

M/MQ logi log T,” I (02 I'I(hr) tda,,,p(yr) W/WN wmk/WN

5 2.96 4.180 5 477.5 0.527 1.6 0.16 —1.3x102
6 525.4 0.486 2.0 x 10-' -0.09 —9.3 x 10l

11 4.18 4.372 7 499.2 0.761 8.2 0.09 —5.0x102
8 531.8 0.737 1.2 x 101 —0.13 —3.3 x 102

20 4.94 4.486 9 569.0 0.898 1.9 x 103 0.21 —9.3 x 10—l
10 593.9 0.879 —6.1x104 0.06 -3.5 x 10—2
11 616.0 0.863 1.6 x 104 —0.10 —1.5 x 10—3

40 5.60 4.582 10 430.3 1.16 1.6 x 103 0.46 —1.7
11 450.1 1.14 —5.9 x 103 0.37 —2.9 x 10—2

12 468.1 1.11 —7.8 x 103 0.25 —8.7 x 10—4
13 484.7 1.09 —1.5 x 104 0.13 —3.1 x 10—5
14 500.1 1.08 —4.5 x 105 0.004 —l.1x10“’
15 514.3 1.06 1.4 x 104 —0.14 —3.9 x 10'8
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Fig. 27.4 Propagation diagram for a pre-white dwarf model with 0.95MO at log (L/
L0) = 3.10 (from Kawaler, Hansen, Winget, 19853). The solid line is the
square of the Brunt-Vaisala frequency, N2 in units of $4. The dashed line
is the square of the Lamb frequency, L2,, for l = 1; the dotted line, for I =

2.

for the damping time of oscillation tdamp indicates that the correspond-
ing mode is overstable. Overstable Go-modes were found only for
models with M a: ZOMQ. They did not find any overstable higher order
gravity modes, Gm with n2 1. The stability of modes with large n is
explained by the increase of radiative dissipation in the propagative
zone. Note that for some modes Wleak is comparable to W and is the

main stabilizing agent for the e-mechanism.
The overstability of Go-modes occurs only in the earliest stage of

shell hydrogen burning. In a later stage the relative amplitude of a
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Go-mode in the nuclear burning region decreases because the position
of the peak of the Brunt-Vaiséila frequency shifts from the ,u-gradient
zone to the core and the peak value increases with the evolution of stars.
This change in the Brunt-Vaisaléi frequency is in turn caused by the
following two factors: the structure of the core changes from convective
to isothermal, and the central condensation of the models increases very
rapidly with evolution.

When the core evolves sufficiently and the electron gas partially
degenerates, the Brunt-Véiiséila frequency decreases there and the
above disadvantage for the e-mechanism disappears. Overstable g-
modes driven by the e-mechanism have been found for models of
planetary nebulae nuclei (Kawaler, Winget, Hansen, and Iben, 1986;
Kawaler, 1988a), of hot white dwarfs (DeGregoria, 1977), and of
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Fig. 27.5 (a)Work done as a function of fractional radius for the I = 1, gs-mode in a
0.60MO hydrogen-deficient pre-white dwarf model at log L/LQ = 3.208.

(b)The relative Lagrangian temperature perturbation for the mode described
in (a).

(c)The energy generation rate EN as a function of fractional radius. The sharp
peak is the helium-burning shell. The unis in (a) and (b) are arbitrary.
(From Kawaler et al., 1986.)
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accreting white dwarfs (Sienkiewicz, 1980). Figure 27.4 shows an
example of the propagation diagram for a hot pre-white dwarf star
(Kawaler et al., 19853). In this case the G-wave zone in the core is
bounded by the Lamb frequency le rather than by N2 in contrast to the
case of the early shell-hydrogen-burning phase (see above). Therefore,
lower 1 value is appropriate not only to suppress the radiative damping
in the G-wave zone but also to trap a g-mode in the core. Actually, for
these models g-modes with low values of l are overstable.

A sample unstable mode of 1 =1 for a hot pre-white-dwarf model
(Kawaler et al. , 1986) is shown in Figure 27.5, in which the derivative of
the work integral A W (=dW/dM,), the eigenfunction for temperature
perturbation, and the nuclear energy generation rate are shown as

functions of the fractional radius. This mode, whose dimensionless
angular frequency w is = 0.9, is trapped in the outer part of the core, a
favorable condition for the e-mechanism associated with the helium
shell burning to work. However, the periods of overstable modes thus

excited, which range from 50 s to 214 s, are much shorter than the

observed periods of variable hot pre-white-dwarf stars (see Section 10).

28. The K-Mechanism

As shown in Section 26.2, the K-mechanism for excitation of oscillations

works in an LR constant zone if the inequality (26.14) is satisfied. A

sample of the variations of the opacity derivatives in the interior of a star
is given in Fig. 28.1 for a Cepheid model. In most cases, the variation of
KT is more important than that of Kp, because, as seen in Fig. 28.1, KT

changes from ~ —4 to ~ 12 while Kp is bounded in 0<Kps 1. Since KT
increases outward in the inner part of an ionization zone and decreases

in the outer part, the excitation and damping of oscillations due to the
effect of the opacity derivatives occur in, respectively, the inner and
outer parts of the ionization zone. Also shown in Fig. 28.1 is F3 — 1 by
the dashed line. It is apparent that the variation of 1"3— 1 enhances the
excitation and damping effects due to the opacity derivatives.
_ Figure 28.2 [taken from Osaki (1977)] shows work integral W(r) for
f- (w = 3.02) and pl-modes (w = 4.46) of l = 7 for a similar Cepheid
model. Constant negative values of W(r) in the deep interior show the
energy leakage due to the progressive gravity waves from the envelope
to the core (see Sections 15.3.3 and 21.3). Two distinctive excitation

zones (where dW/dr>0) are recognized in these figures. One excitation
zone is associated with the hydrogen and first helium ionization zone
around log p = 3.7 and the other with the second helium ionization zone
around log p = 4.8. The relative importance of the two excitation zones



EXCITATION AND DAMPING OF OSCILLATIONS 255

 

 

    

log T

6.0 5.5 5.0 4.5 4.0
I I I I

14.”
.1

10.” -

r— -J

'.., 6.1- -
5:
£1

___—*7______V, '-

- F3 - 1 A

'2 " KT ..

’6. 1 1 1 1 1 1 l 1

ll. 9. 7. 5. 3.

log p

Fig. 28.1 The opacity derivatives KT and Kp are shown as functions of log p in the en-
velope of a Cepheid model. An adiabatic exponent F3 — 1 is shown by the
dashed line. The temperature variation is shown on the upper horizontal
axis.

in a given equilibrium model depends mainly on the distribution of
amplitude of the oscillation mode. Figure 28.2 shows that the
importance of the hydrogen ionization zone is larger for pl-mode than
for f—mode. This is explained mainly by the fact that the amplitude of

oscillation of 151-mode decreases rnore rapidly from the stellar surface

toward the interior than that of f-mode.
In Fig. 28.2, no excitation or damping is recognized above the

excitation zone associated with the hydrogen ionization zone; i.e. , W(r)
is nearly constant for log p < 3.6. This occurs because of a strong
nonadiabatic effect on the luminosity perturbation. The thermal time
scale [see equation (22.2)] decreases rapidly toward the stellar surface
with a decrease of the matter density (Fig. 22.1). The linearized
equation of energy conservation [equation (22.1)] indicates that in the
stellar envelope (dL,/dM, = 0) the Lagrangian perturbation of the
radiative luminosity, (SLR, is constant in the limit of t,;,/ rd," = 0. In this

limit, no excitation or damping of oscillation occurs [see equation
(26.3)]; i.e., W(r) is constant. The strongly nonadiabatic exterior is
separated from the quasi-adiabatic interior by a transition region whose
location in the stellar envelope is determined by the order-of—magnitude
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Fig. 28.2 The work integral W(r) normalized by Ew is shown for the nonradial I-
mode (upper panel) and the pl-mode (lower panel) of I = 7 in a Cepheid
model [from Osaki (1977)].

relation given in equation (26.6). Since the decrease of rm with r is very
rapid, the location of the transition region depends on the oscillation
modes only very weakly. For both of the oscillation modes shown in Fig.

28.2, the transition region is located in the hydrogen ionization zone.

Because of the existence of the transition zone, the damping zone
expected (in the quasi-adiabatic analysis) in the outer part of the
hydrogen ionization zone is suppressed (i.e., heat capacity is too small
there). Depending on the equilibrium models and the oscillation mode,
the transition region could be located in the second helium ionization
zone. In such a case the effect of the hydrogen ionization zone on the

stability of the oscillation is suppressed.
In many cases, an ionization zone exists in a convective zone

because of the high opacity in the ionization zone and low adiabatic
temperature gradient. The gradient of the radiative luminosity, dLR/ dr,
in the upper part of the ionization zone is positive due to the decrease of
the convective energy flux there. Then it is possible that d (LRaq)/dr< 0
because a, < 0 usually there [see equation (26.13)]. In this case the
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excitation zone extends into the upper part of the ionization zone. On
the other hand, a strong excitation zone sometimes appears near the
bottom of the convective envelope, because dLR/dr<0 and usually

aq>0 there. However, these excitation zones associated with a finite

value of dLR/dr could be fictitious because we are neglecting the
interaction between the oscillation and convection.

It is well known after Zhevakin (1953) that the K-mechanism in the
hydrogen and helium ionization zones is responsible for the Cepheid
instability strip of radial pulsations which extends from the classical
Cepheids in the giant region to 6 Scuti variables near the main sequence
(see Fig. 5.1). Nonradial oscillations are also overstable for models in
the Cepheid instability strip (Osaki, 1977; Dziembowski, 1977a; Lee,

1985b). In addition to that, blue edges of the instability region for some
nonradial modes are considerably bluer than that for the radial
fundamental mode (Shibahashi and Osaki, 1981a). If the effect of
convection-oscillation coupling is not included, the K-mechanism due to
hydrogen ionization destabilizes p-modes even for stars redder than the
Cepheid instability strip (Ando, 1976), including the sun (Ando and
Osaki, 1975). Since these stars have well developed convective
envelopes, however, the effect of convection-oscillation coupling is
expected to affect the stability results. The true excitation mechanism
for the five-minute oscillation of the sun is still controversial (see
Section 42).

Moreover, the K-mechanism in the hydrogen ionization zone is
responsible for the excitation of nonradial g-modes of the Z2 Ceti
variables (variable DA white dwarfs; DAV stars) (Dziembowski and
Koester, 1981; Dolez and Vauclair, 1981; Winget, Van Horn, Tassoul,

Hansen, Fontaine, and Carroll, 1982a; Cox, Starrfield, Kidman, and

Pesnell, 1987). Also, it has been established that overstable g-modes of

variable DB (helium envelope) white dwarfs are excited by the
K-mechanism in the second helium ionization zone (Winget, Van Horn,
Tassoul, Hansen, and Fontaine, 1983a).

The K-mechanism associated with hydrogen and helium ionization
zones does not work for massive main-sequence stars such as the [3’
Cephei stars because in such a star, the transition region is located

interior to the ionization zones. Stellingwerf (1978) found that the
K-mechanism associated with an opacity bump at a temperature close to
1.5x 105 K has a considerable effect on the stability of radial pulsations
in massive stars. This opacity bump originates from the coincidence of
the frequency maxium of the radiation flux with the second ionization
edge of helium at 54.4 eV (Stellingwerf, 1979). Figure 28.3 illustrates
the variation of Kad defined in equation (21.19) against the temperature
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of an equilibrium model of 12M@. The existence of the peak of Kad

associated with the opacity bump is apparent. Although a larger peak is
associated with the He II ionization zone (log T: 4.5), the density is too
low for this zone to affect the stability of radial or nonradial pulsations.
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Fig. 28.3 Variation in the opacity derivative Km, with the depth (log T) of an equilib-
rium model (M = 12MO, Mb”, = —5, and logTeff = 4.3) [after Lee and

Osaki (1982)].
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This figure indicates that an excitation zone should exist in the range of
5.1 s logT s 5.3, where dKad/dr is positive. An example of the work

integral for f-mode in a massive star of 7M0 is shown in Fig. 28.4. There
exists an excitation zone at the place expected from Fig. 28.3. However,
the strength of the excitation is not enough to excite radial pulsations
(Stellingwerf, 1978) or nonradial oscillations (Saio and Cox, 1980; Lee

and Osaki, 1982).
The K-mechanism associated with the ionization of carbon and

oxygen is also possible. Since the ionization of the K-shell electrons
occurs in a high temperature region (T ~ 106K), the K-mechanism could
be effective for the excitation of oscillations in very hot stars. This
mechanism is, however, ineffective in most stars, because oscillations in

the region with T ~106K are usually almost perfectly adiabatic, and the
amounts of carbon and oxygen are very small. A possible exception is
the case of very hot pre-white-dwarf stars (Teff ~ 105K), including
planetary nebula nuclei. Some of these stars are nonradial pulsators

called DOV stars (see Section 10). The effective temperatures of these
stars are high enough for the oscillation in the ionization zone to be
weakly nonadiabatic. Since most of the hydrogen-rich matter of these
stars has been lost, carbon/oxygen matter produced by helium burning

could be located in the temperature region of T ~ 106K. In such a case
the K-mechanism associated with the ionization of the K-shell electrons
of carbon/oxygen can excite global oscillations, as has been confirmed in
nonadiabatic analyses by Starrfield, Cox, Hodson, and Pesnell (1983),

and Starrfield, Cox, Kidman, and Pesnell (1984, 1985).

The rapidly oscillating Ap stars are at the lower portion of the
Cepheid instability strip on the HR diagram (see Section 9). Hence it
may be quite natural to suppose that the K-mechanism is responsible for

the excitation of those oscillations as in the case of classical Cepheids.
However, the diffusion hypothesis, which has been widely accepted for
explaining the chemical peculiarity of Ap stars, suggests that helium
settles deeply so that there is no helium ionization zone. If so, the
K-mechanism associated with the helium ionization zones does not
work. Matthews (1988) suggested the K-mechanism associated with
silicon as a possible excitation mechanism for the rapid oscillations in
Ap stars. Silicon is expected to be abundant in the envelope of an Ap
star. The ionization potential of Si IV is 45.1 eV. Since it is close to that
of He II, 54.4 eV, if the instability strip due to the K-mechanism of Si IV
exists, it is expected to overlap with, but be slightly cooler than‘, the
Cepheid instability strip. All the rapidly oscillating Ap stars so far
discovered are cool Ap/Fp stars located in the red portion of the
Cepheid instability strip, and this fact seems to confirm Matthews’
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(1988) suggestion. However, whether or not the abundance of silicon is
enough for the K-mechanism is not certain. Further quantitative studies
are needed. On the other hand, Dolez, Gough, and Vauclair (1988)

suggest that helium accumulates in the magnetic polar regions of an Ap
star and that the K-mechanism associated with helium may be
responsible for the excitation of the rapid oscillations in Ap stars.

29. The 6-Mechanism

29.1 Local Analysis

The 6—mechanism (or the Cowling mechanism) for excitation of
g-modes appears in the work integral given in equation (26.13). A better
understanding of this mechanism may be obtained by a local analysis.

We will discuss, in this subsection, mainly the 6-mechanism for high

order g-modes including the effect of magnetic fields under the perfect
MHD condition (but neglecting the effect of rotation). To simplify the

analysis we use the Boussinesq approximation, in which density is

treated as a constant in the equation of continuity and in the equation of
motion except for the buoyancy term (Oberbeck, 1879; Boussinesq,

1903; see also, e.g., Drazin and Reid, 1981). Because of this

approximation, the acoustic modes are eliminated and the discussion
will be limited to the gravity wave and secular modes.

Let us suppose a plane-parallel, gravitationally stratified layer of
fluid in hydrostatic and radiative equilibrium (i.e., FC= v0=0) with a
spatially uniform magnetic field. Then, in the Boussinesq approxima-
tion, the basic equations of oscillation (13.28), (19.7), (13.30), and
(19.8) are reduced to

 

  

 

“5:0, (29.1)

:25;in (“35%) —£’-V¢+(_B4%£, (29.2)

6:33ch 77: - 5; (V— Vad)] =e'N+pi[V-(KVT)]', (29.3)

and

861.34”)? (29.4)

where V, Vad, and K have been defined by equations (13.107), (13.82),
and (13.7), respectively, and Hp denotes the pressure scale height.

For the fully ionized ideal gas with radiation fields, the Eulerian
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perturbation of density p’ is given as

 
i__ T’ _1(alnp)

p _ v; T+§2Hp alnu p,TV#

_4—_3/3T’
13

where V“ is defined by equation (13.113), ,8 is the ratio of the gas
pressure to the total pressure, and the Eulerian perturbation of pressure
is neglected. The V” term in equation (29.5) is necessary for represent-

ing the effect of inhomogeneous chemical composition in the core.
We consider the higher overtones of gravity waves whose

wavelengths in the vertical direction are much shorter than the density
and pressure scale heights. This does not mean that the fluid is
incompressible, but it does imply that the density variations are very
small. This is the situation appropriate for the Boussinesq approxima-
tion, in which the density variations are taken into account only in the

term of the buoyancy, and the pressure perturbation p’ is neglected in
the energy equation (29.3) (Spiegel and Veronis, 1960). The temporal
and spatial dependence of the perturbation on an arbitrary quantity f is
taken as

 T+§ZH'1 V", (29.5)

  

      

 

f’(t,x,y,z) =f’~exp [i(kxx+kyy+kzz) +st]. (29.6)

Equations (29.1) and (29.2) are then reduced to

ikx§x+iky§y+ikz§z=0, (29.7)

. 2

8654—: [p+'+ ‘B47,-“(3k-—4;=)]‘3k) 2.6., (29.8)
2

s2§y=—i—S [p’+ —(Bk) 5,, (29.9)

and

_ ikz ,+ 131.: (B 1:)2
52§2"——p—[p+_4—77 (B5)]_ 477p——Ez

4——3fi T’ 52+g(—0 T—V“pH ). (29.10)

If the highest order in wave number k1s retained in the radiative loss
term, equation (29.3) is led to
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L'-
T

   s 5,, (V— Vad)]=(?jv7er— K k2) T' (29.11)
cpp T ’

where

k2=k3+k3+k§, (29.12)

and only the temperature dependence of 8N has been taken into

account. Equations (29.7) — (29.11) form a set of linear algebraic

equations for variables 5, 5, £2, p’/p, and T'/T. The determinant of the

coefficient matrix must be zero for the existence of a non-trivial

solution:

 

ikx iky ikZ 0 0

32+Uj—b18xkx —blBykx —blekx lkx 0

—bleky S2+Uj—b13yky "bleky lky 0 =0,

_blekz —blBykz 32+0'Az—blekz'i'gTE’E lkz — 4+”

0 O —SHp—l(V—Vad) 0 S—gN'i'lR

(29.13)

where

gN=£N£7/(c,,T), lR=Kk2/(c,,p), (29.14)

c 2 .

a}=(—f%, and b1=ffl:. (29.15)

This equation gives the dispersion relation (cf. Ledoux, 1974)

2
(52+OX) {53—(gN—IR)52+ (%N2+0Az) s

kl? 8 2
— (?TVH'FO'A) (gN_lR)}=09 (29.16)

p

where kh is the horizontal wave number defined by

kfi=k3+k§, (29.17)

and N2 denotes the square of the Brunt-Vaisala frequency which is
expressed, in the present approximation, as N2=gH‘,,‘1[(4—313),B—l
x ( Vad— V)+ Vu] [equation (13.112)].
For weak nonadiabaticity, which is usually the case, the roots of

equation (29.16) are given by

k; L
Sl’zzi'l. (?NZ'I'O'X) 2
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g k2 4—_3_fi k21é—(IRg~)—H k—ZT(V— V...)(N2k—’;—+o.%) (29.18)
and

Vzk k2 —Is3z—(IR—gN)(—Hg— 17,,—’,'+6,§——)(N2—’,'—+602) , (29.19)
H,, k k

in addition, 3 = iioA, which correspond to the Alfven wave.

The interpretation of the conditions for the convective instability
(N2<0), the thermal instablity (s3>0), and the g-mode overstability

[Re (sl‘z)>0] is self-revealing in the above equations.

29.1.1 Kato’s Mechanism

Let us discuss first the case without a magnetic field. In this case

equation (29.16) is reduced to

2
53—(gN—IR)SZ+:—:NZSE%HLVH(gN_-IR)=0 (29.20)

I)

Let the coefficients of equation (29.20) be denoted successively by
1, a1, a2, and a3. Then, the necessary and sufficient conditions for

stability [Re (8) < 0] are given by the Hurwitz criterion which states a1 >
0, a1 a2 — a3 > 0, and a3 > 0, or, equivalently, a2 > 0, a1 a2 — a3 > 0, and

a3 > 0. The dynamical instability is the violation of a2 > 0, or

_ .3V Vad— 4_—3fiVu>0, (29.21)

which is often called the Ledoux (1947) criterion for the convective

instability. The condition of thermal instability is al < 0 for the radial

mode (k,1 = 0) and a3< 0 for the nonradial mode (kh =1: 0). The

condition is identical for both cases in the present local theory, if 7,, >0:

gN > IR. (29.22)

On the other hand, the condition

lR>gN and Vu<0 (29.23)

is that of thermal instability for nonradial perturbations with an adverse

u-gradient. The condition (29.22) is only approximate for the radial
mode, since the pressure perturbation has been neglected. The

exception may be the thermal instability of the shell source model

(Schwarzschild and Harm, 1965; Weigert, 1966) in which the pressure
perturbation is less important (cf. HOShi, 1968; Unno, 1970, 1975b).
The nonradial thermal mode does not exist if V” = 0, since the
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hydrostatic condition requires the pressure and the density perturba-
tions to be spherically symmetric and a nonradial temperature perturba-
tion must be associated with a perturbation of the mean molecular

weight (Kippenhahn, 1967; Rosenbluth and Bahcall, 1973; Richstone,

1974; Gabriel and Noels, 1976a).
The condition of the vibrational instability, (alaz — a3 < 0), is

reduced, for the thermally stable case, to

V— Vad>0. (29.24)

The semiconvective zones in massive stars (M>10M@) appear by the

condition that

Vad+4—_g—3—Vu> V> Vad (29.25)

(cf. Schwarzschild and Harm, 1958). However, this condition is nothing
but the g-mode overstability, as pointed out by Kato (1966). A similar

situation was first studied by Veronis (1965) in the salinity convection.
In this monograph, following the above definition, the semiconvective
zone may be understood as a zone of varying molecular weight having a
superadiabatic temperature gradient which is dynamically stabilized by
a u-gradient. This definition has been adopted commonly by workers on

stellar stability, but it is slightly different from that used by those
working on stellar evolution.

The physical reason for the overstable convection in a semiconvec-
tive zone (Kato, 1966) is the radiative Cowling mechanism discussed in

Section 26. It is a very efficient mechanism of excitation, especially for

higher harmonics and high overtone modes (large k, hence large 1R).

However, as pointed out by Gabriel (1969) and Auré (1971), the

overstable convection is the gravity wave which may propagate to the

outer radiative zone and be damped before being reflected back to the

evanescent zone. The global stability analysis for the overstable
convection will be discussed in Subsection 29.2.

29.1.2 Magnetic Overstability

In the uniform sector of a magnetic field, the angular frequency of

oscillation is given by

khZ 1/2

0: (Nz—kT + 6}) , (29.26)

and the wave is called a “magneto-gravity wave.” The second term in

the right-hand side of equation (29.26) gives the frequency of the Alfvén
mode, whose restoring force is the magnetic tension. Equation (29.26)
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means that the layer may be dynamically stable even if N2 < 0.
However, if the temperature gradient is superadiabatic, the dynamically

stable layer is overstable as seen in equation (29.18). Whether the
motion in the layer is monotonically growing (a2 < 0) or overstable [a2
> 0 and Re(sl,2) > 0] is dependent on the superadiabaticity and the

Alfvén frequency 0.4 which itself is dependent on the wavenumber k and

the magnetic field B. The possibility of magnetic overstability was first

discussed by Cowling (1957). Shibahashi (1983) suggested magnetic
overstability as the cause of rapid oscillations in Ap stars. He supposed
that there is a superadiabatic layer, in which N2 < 0, associated with
hydrogen and helium ionization zones and that the magnetic field is a
dipole field—that is, the magnetic field is almost vertical at the magnetic
polar regions and almost horizontal at the magnetic equator of the star.
He then considered the motion having a short wavelength in the vertical
direction but a long wavelength in the horizontal direction as in the case
of high order p-modes with low degree. Since B-k is large in the
magnetic polar regions, the motion may be oscillatory and overstable
because of V - Vad > 0. The frequency is of the order of the observed

frequencies of the rapid oscillations in Ap stars if it is estimated as

2~ 2 ~10-4 ‘0 _l B 2 k 2 2 (29 27)
a ~0A — (10—7gcm_3) (103G) (10'8cm'1)s° °

On the other hand, the motion is supposed to be convectively unstable

(02 < 0) in the magnetic equator of the star, because B-k is small there.

An instructive explanation of the magnetic overstability as a possible
mechanism for the rapid oscillations in Ap stars was given by Cox
(1984). Shibahashi (1983) suggested that some nonlinear mode coupling
may induce a global mode, as observed, from the overstable motion

restricted in the magnetic polar regions. However, his suggestion is
based on local analysis, and thus extension of a global formulation is
highly desirable (cf. Biront, Goossens, Cousens, and Mestel, 1982;

Campbell and Papaloizou, 1986). Moreover, treatment without the

Boussinesq approximation is necessary (cf. Hermans, Goossens, Ker-
ner, and Lerbringer, 1988).

 

29.1.3 The 6—Mechanism in a Rotating Star

So far we have discussed the 6—mechanism in a non-rotating star. The
discussion based on local analysis is easily extended to the axially
symmetric modes of a rotating star (Goldreich and Schubert, 1967;
Fricke, 1968). Some useful conditions for stability have been well
known: the sufficient conditions for the dynamical stability are
collectively called the Solberg-Hoiland criterion and the instability
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associated with the violation of the sufficient condition for the secular
stability is known as Goldreich-Schubert-Fricke instability. Readers
who are interested in these instabilities should consult several reviews,

e.g., Fricke and Kippenhahn (1972).
The overstability can be studied by local analysis in a dynamically

stable case. The physical cause of the overstability is the 6—mechanism.
The sufficient conditions for stability,

p_‘Vp-(VadVlnp—VlnT) > 0 (29.28)

and

p"Vpx(VadVlnp—VlnT) = 0, (29.29)

were obtained by Shibahashi (1980) and were intensively discussed by
Knobloch and Spruit (1983). Rotation does not influence directly the
vibrational stability criterion, although it affects the stellar geometrical

configuration. In the case of a spherically symmetric star, the condition
(29.28) inhibiting the overstability becomes

Vad— V > 0, (29.30)

as shown by Kato (1966) (see subsection 29.1.1), and the condition
(29.29) is automatically satisfied. Condition (29.29) requires that the
direction of the effective gravity force must be parallel to the direction
of subadiabatic temperature gradient for the vibrational stability. The
instability induced by the breakdown of condition (29.29) is closely
related to the baroclinic instability in the dynamic meteorology.
Knobloch and Spruit (1983) named the vibrational instability “ABCD
instability,” in an abbreviation of “Axisymmetric, BaroClinic, Diffusive

instability.” In the case of hydrostatic equilibrium and Vln p x V In 11 =

0, condition (29.29) is satisfied if and only if the centrifugal force is the
gradient of a potential—that is, if the rotation law is cylindrical. This

condition is the same as one of the two conditions for secular stability in

the absence of u—gradient. Therefore, if the rotation is not cylindrical,

both secular instability and vibrational instability may occur. A global
formulation is desirable.

29.2 Global Analysis of g-Modes in Semiconvective Zone

During the main sequence evolution, semiconvection appears in a star
more massive than lOMQ. Schwarzschild and Harm (1958) noticed that

the boundary of the convective core of a massive main-sequence star
moved outward with evolution and that physical inconsistency occurred

if the whole convective region was chemically homogenized. Between
the convective core and the radiative envelope they inserted a
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semiconvective zone, in which the distribution of the chemical composi-
tion was adjusted by a partial mixing to satisfy the convective neutrality
by a criterion

V: 17,“: Vad, (29.31)

where de represents the temperature gradient expected when all

energy is transported by radiation. Equation (29.31) indicates that all
energy is assumed to be transported by radiation in the semiconvective
zone. However, Sakashita and Hayashi (1959) pointed out that the
criterion for the convective neutrality in the existence of the chemical
composition gradient should be Ledoux’s criterion [i.e., N2 = 0 in
equation (13.112)]

.3
V: Vrad= Vad+WVW (29.32)

The treatment of the semiconvective zone in very massive stars is

important because it affects their later evolution significantly. There has
been considerable controversy as to which criterion should be used and
how partial or complete mixing is achieved. Equation (29.32) is the
criterion of dynamical stability, and thus it is the criterion for ordinary
convection. However, as discussed in the preceding subsection, even
when the medium is dynamically stable in the sense of equation (29.32),
overstable convection occurs in a medium of varying molecular weight if
the temperature gradient is superadiabatic; i.e., V > Vad. This was first
pointed out by the local stability analysis of Kato (1966). Strictly

speaking, overstable convection is a problem of vibrational instability of
nonradial g-modes, and it can be settled only by global stability analysis
of a whole star. Gabriel (1969) and Auré (1971) criticized Kato’s (1966)

result because it was a local treatment. They argued that the dissipation
in the outer radiative zone was strong enough to damp locally overstable
convection and that vibrational instability of g-modes might not occur.
On the other hand, as discussed in Sections 15—17, one of the most

important characteristics of nonradial oscillations is a wave-trapping
phenomenon. In particular, the ,u-gradient zone left behind by the
receding convective core in massive stars behaves like an ideal potential
well that traps gravity waves. The effect of wave trapping was not
considered in the studies of Gabriel (1969) and Auré (1971), because it
was not well known at that time. Shibahashi and Osaki (1976a),

Scuflaire, Noels, Gabriel, and Boury (1976), and Gabriel and Noels
(1976b) have studied the vibrational stability of gravity modes in
massive stars with semiconvective zones, and they have confirmed by a
global stability analysis that some gravity modes trapped in the
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,u-gradient zones are in fact overstable due to Kato’s (1966) mechanism.

A summary of Shibahashi and Osaki’s (1976a) analysis is given.
Evolutionary models used in the stability analysis were those for

stars of 30MQ and 15M® with the initial chemical composition X = 0.70

and Z = 0.03. Ledoux’s (1947) criterion for convective stability (i.e. , N2
> 0 for stability) was used and no partial mixing was assumed to occur to

construct the semiconvective zone, for the purpose was to examine the
possible overstability that may cause mixing. Here, the semiconvective
zone is defined as the region where a composition gradient exists and
the temperature gradient V is larger than Vad but smaller than Vad +
[3(4—36)‘l V“. Figure 29.1 shows the variation of the extent of the
superadiabatic layer in the u-gradient zone (shown by hatched regions)

with evolution. Equilibrium models in the core hydrogen-burning stage
consist of the homogeneous convective core, the u-gradient zone
formed by the retreating convective core where the temperature
gradient is mostly superadiabatic (i.e., semiconvective zone in the

present definition), and the radiative envelope. The extent of the
semiconvection zone is larger in more massive stars.

The stability was examined using the quasi-adiabatic approximation
for the models 21 for both the 30M® and the 15M® star. The degree of

superadiabaticity is illustrated in Fig. 29.2. It is typically V — Vad 2 0.01
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for the 30M® star, and V — Vad = 0.002 for the 15M® star. The

propagation diagram for the 30M® model is given in Fig._ 17.6. In a star
with a well-developed )u-gradient zone there exist Gn-modes well
trapped in the u-gradient zone as discussed in Section 17. Shibahashi
and Osaki (1976a) found that some Gn-modes for large I are overstable

with the growth time of _103— 104yr. Among the modes for the 30M®
s_tar listed in Table 17.2, Gn-modes with n = 1, 2..., 6 and l = 15 and all

Gn-modes with l = 30 are found to be overstable (see also Fig. 17.8).
The eigenfunctions of Gn-modes have large amplitude only in the
u-gradient zone, so that Kato’s (1966) mechanism for the overstability in

the semiconvective zone works effectively. Since the wave trapping is
incomplete for smaller I (see Table 17.2), Gn-modes for smaller I tend to
be stabilized by the effect of radiative damping in the envelope. No
overstable mode was found for l s 4 for the 30M® star.

For the 15M® star, superadiabaticity in the semiconvective zone is
small compared with the 30M® star, as seen in Fig. 29.2, so that the

gestabilizing effect is correspondingly weak. For the 15M® star, only
G3- and G4-modes for l = 15 are overstable with the growth time of ~

104yr, and all modes are stable for I S 8. Roughly speaking, the

magnitude of the destabilizing effect may be represented by a product of
(V — Vad) and l(l+1) as seen in equation (29.18), because [R 0c k2:
(N2/ 02)k;;7' 0: l(l+1). This is consistent with the numerical result that the
lowest 1 for which unstable modes are found is l = 15 for the 15M® star

and I: 8 for the 30M® star, because (V — Vad) in the 15M® star is about

one-fifth of that in the 30M® star.

The e-folding time of oscillations for unstable modes is typically 103
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— 104yr, which is shorter than the evolutionary time of the stars. In

general, modes having larger 1 are more unstable. Since the molecular
and radiative viscosities are not important in the stellar interior, we
expect that overstable convection grows to a finite amplitude
(Stevenson, 1979) and that some kind of mixing occurs. In this sense,

Schwarzschild and Harm’s (1958) criterion in equation (29.31) is

preferable to Ledoux’s (1947) criterion in equation (29.32) (cf. Langer,
El Bid, and Fricke, 1985), although the model with penetraive

convection constructed by use of the non-local mixing length theory
(Xiong, 1985) may be more realistic.

Semiconvective zones are present in stars of about 1M9 as well as in
massive stars. As a small convective core in such stars expands due to

the growing importance of the CNO cycle, the opacity is larger at the
outer side of the convective core boundary than at its inner side.

Therefore in such models a shallow semiconvective zone [i.e., Vad < V

< V ad + [3(4-31‘3)"l Vu] is found just above the convective core.

Gabriel and Noels (1977) studied the vibrational stability of some

g-modes of large 1 in stars of 1, 1.1, and 1.5MQ during central hydrogen
burning. Most of these models have been found to be stable, instabilities
occur in only two models of the 1.1MQ sequence. This is because

semiconvective zones in such stars are shallow and the degree of

superadiabaticity is small. Baglin (1971) also discussed overstability of
the semiconvective zone in a white dwarf where the u-gradient was

formed due to the gravitational settling of elements.

30. Convection

Convection fluctuates with oscillation and works back on the oscillation,

as shown by (20.31) — (20.33) and (20.57) — (20.59). The effect of the

convection-oscillation coupling on the stability of the oscillation is seen
explicitly in the work integral such as that given in equation (25. 16). The

perturbation of convective flux appears in WC defined by equation

(26.4). In addition to WC convection affects the stability of oscillation
through turbulent pressure and viscosity, whose effects have been

neglected so far in this monograph. The effect can be divided into

mechanical and thermal works, Wm“), and W,,,. The thermal work W”, is

evaluated as 62 (1 + (52)”1 times the total work integral W [equation
(26.1)] in the rough approximation adopted in equation (20.33). The
mechanical work, Wmech, arises due to the Reynolds stress [see

equations (20.7) and (20.32)]:
M

wmech=_g/ p-IRe[v*. div 59;]dM,. (30.1)
0
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We assume that

—div 9”, =—Vp,+V(u,V-v)+(V-M,V)v (30.2)

as suggested by the mixing length theory (cf. Unno, 1969), in which the
turbulent convection is simulated to nrolecular motion in producing

diffusive processes, where 11, represents the turbulent viscosity defined

in equation (20.13). Then we can express Wm“), as

Wmech= Wpr+ Wstra (303)

where

7r M1 ' M1
Wp,=——/ —Re(v’*-Vp,’)dM,=7r ——Im (pfiV-§*)dM, (30.4)

0 0 P 0 P

and

M

w,,,= g/ piRe[v'*-V(u,v-v') + v’*-(V-p,V)v')]dM,
0

M

=_..a/ %<Iv-412+Iv4|2>dMn (395)
0

where the ij-component of V5 is agj/axi in Cartesian coordinates. The

work by viscous stresses Wm is always negative, but the evaluation of

the work by the turbulent pressure WP, is possible when the time-

dependent convection is solved. The order of magnitude of WP, is
estimated to be |W,,,| ~ (V)2Mca2, where (V) denotes the representa-
tive velocity of convection, MC the mass of the convection zone, and a

the relative amplitude of oscillation, viz. , IV - E] or |6p/pl. Likewise, we
estimate the viscosity work as IWWI ~ (017C)(V)2Mccv2, where rC
denotes the representative time scale of convection, l,/ (V). Here we
have assumed that u,~p( V)l,, 1, being the mixing length. Since the
luminosity L is mainly due to the convective flux and is roughly
estimated to be L ~ (V)2MC/rc, both WP, and W," are not negligible
compared with |W,,,| which is of the order of Laz/ 0, depending on the
01C value and on whether the wave is trapped in the convection zone.

Thus, positive and negative contributions to the work integral are of the
same order of magnitude even in the most favorable case of overstabil-

ity; the coupling between convection and oscillation has to be taken into

account in stability analysis, although the time-dependent convection
theory has not been so well established.

Convection-pulsation coupling has been formulated by Unno
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(1967, 1977), by Gabriel, Scuflaire, Noels, and Boury (1975), and by

Xiong (1978). The effect must be important in late-type stars with
extended outer convective envelopes (Baker and Gough, 1979; Gonczi
and Osaki, 1980; Gonczi, 1982). For solar five-minute oscillations, the

problem has been discussed by Antia, Chitre, and Narasimha (1982)
and Gabriel (1988). The excitation mechanism of the five-minute
oscillation is still somewhat controversial (see Section 42).

The influence of convection on oscillation appears in equations
(20.32) and (20.33) through the quantities 61, 62, 11,, and F’C. The effect
of turbulent pressure and energy in the form described by (51 and 62 in
equations (20.32) and (20.33) is adequate when arc» 1 and hence
|Wp,|<<|Ws,,|, as discussed in Section 20. In the opposite case of
orc<<1, we have |Wp,|<<| W,,, I. Therefore, we can take 61 and 62 to be
small corrections that may be neglected in the qualitative study. For 11,,

only the equilibrium value is needed, as discussed above. The
convective flux PC is given by equation (20.22),

FC,0=<p0(hC+122—)V>=(CppoTCV>0_(KI/2)V(< V2>0)

=[(CpT0)1/2YO—Kt(d/dr) (Xo/Po)]en (30-6)

where e,(= Vr) denotes the unit vector in the radial direction, and the
second term has been reduced by use of the gradient diffusion
approximation. To derive "the perturbation of the convective flux, FC' , it
is convenient to use the gradient diffusion approximation from the
beginning so that

C——[Ktv(cp<TC2>1/2+(1/2)<V2>)]'

=(KHKJFCQ-KIVKZCpT/p)1/221/2‘1'p— l/ZX] '

 _(K;/KI)FCO— (K72)v[(2c,,T0Z0/p0)1/2(Z'20 4:72;?) 5: )

X' _fl+ X 1”(2 —)]. 30.7( 6/po) X—O--p0 ( )

Thus, only the evaluation of K, , X', and Z’ remains in the problem of

convection oscillation coupling.
The eddy conductivity, K}, is proportional to (6101/21, as expressed

by equation (20.13), and, therefore,

KI/KFM’z/IIF(1/2)[(X'/Xo)+(P'/po)+2(lz’/lr)]- (30-8)
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The relative perturbation of the mixing length, lf/l, , however, requires

some consideration. Gough (1976) treated this problem in the time-
dependent mixing-length theory. Here, a simple qualitative approach
(Unno, 1977) to determine lf/l, will be introduced. We treat the
Lagrangian perturbation,

(Sl/l,=l;/l, +(dlan/dr)§,=l,'/l,—(V/Hp)§,, (30.9)

since the mixing length is a concept concerned with the transport of
conserving quantities.

Let us assume that a convective element born at time t' has a mixing

length equal to the instantaneous local scale height Hp(= —8r/alnp)
initially and evolves according to the law p13; = constant during its
lifetime rc. Then, the relative excess 61,/l, is given by (6Hp/Hp)e"‘f" at

its birth and will be further increased by (—1/3)(<5p/p)(e’°’—em"),
where 6p/p at time t is written as (6p/p)e’°’, explicitly expressing the
time dependence. For the average convective element, we obtain

fleiatz/ { 6H2 eiat'_l_$(eiot_eiot')}

p
0

 

 

1, HP 3

x exp (— 2:: ) d(ttzt) (30.10)

or

61, _ 1 (5HE _ iatc E

l, —1+i0TC( Hp 3 p )’ (3011)

assuming a constant birth rate and constant lifetime for the convective
elements. The variation of Hp is calculated from its definition,

 (SH 6;: 6 6p
_fl= r _ .—Hp ar +Hpar( p ). (30.12)

The formulation is now completed, if we assume

rc=(%W)—1=(%k2)'l (30.13)

in equation (30.11) where k denotes the representative wave number of
a convective element (see Section 20).

Thus, the problem of the convection-oscillation coupling is reduced
to the problem of evaluating X’ and Z’ from the basic equations
(20.57)—(20.59) of convection under the influence of oscillation, as it
should be.

Linearizing equation (20.57)—(20.59), we have
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[io+(2/3)V-§+D1]X'+(io§,D,+D{)Xo

=BIY'+B;YO, (30.14)

[io+(1+D,I;‘,)+D2]Y'+(io§,D,+D§)Y0

=BzZ’+BéZ0+B3X'+BgXo, (30.15)

and

[10+D3]Z'+(io§,D,+D§)ZO =(2/3)[B3Y'+BgY0], (30.16)

where 8N has been neglected in the outer convective zone,

D,=a/ar, (30.17)

D1=2(MJpo)k2, Di=D1[(#2/14)-(p'/p6)-2(l'/lt)].(30-18)

 

  

 

 

 

  

02:2 Cp—l K+ ”(4. "I k2,

Po
(30.19)

D’Z _ (Cp—IK)'+M1'+K1’ _LI_211'_ —1 ,
Dz Cp K+H1+Kz Po 1:

"K+K D' (C—IK)'+K' p’ l’D =2—cL—’k2, —3= P_ ' - 2—', 30.20
3 Po D3 Cp 1K+Kr Po 1: ( )

_ —l/2 r_ - 5” _il’
Bl—U7'g(CpT0) , Bl—Bl [10? 2 T0 , (30.21)

4 -1/2 , - gr 1 T'Bz=2ng(cpT0) , B2=31 [la——— ], (30.22)
g 2 T0

B3=(2/3) (cpTor/z (V— 7.0/H,
(30.23)

B,=B VI_ V'ad _i TI]

3 3 V(I—Vad 2 T0 ,

and

I pI -l T,V=(V0/H)[D,( )—V0 D,( )1. (30.24)
P0 T0

Solving equations (30.14)—(30.16), we obtain X’, Y', and Z’.With the

values of X’, Y’, and Z’, the Eulerian perturbation of convective flux,
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F6, can be calculated by use of equation (30.7). Thus, we can evaluate

the work integral due to convective flux, WC.
The dynamical convection-oscillation coupling appearing as WP,

and Wm arises where arc ~ 1. However, the phase relation between

61,”, and 6p/p is rather complicated in the computation of WP, and Wm.

The result will be stabilizing or destabilizing, depending on the mode of

oscillation and on the stellar model. Numerical investigation seems to be
necessary. It should also be noted that the theory of the stellar

convection zone is still very incomplete for both the time-independent

and dependent cases and that an exact nonlocal theory avoiding the use
of the mixing length is very much desired.





Chapter VI

NONRADIAL OSCILLATIONS OF

ROTATING STARS

31. Introductory Remarks

In a non-rotating non-magnetic spherical star, no force is exerted on a

non-divergent flow along a level surface. This corresponds to the

existence of the trivial solution with toroidal flow discussed in Section
13. If the star rotates, the conservation law of angular momentum plays
an essential role in fluid motions in the star, and the toroidal flow can no

longer be steady. When we describe fluid motions in a rotating star
using an inertial frame, the effect of rotation appears in the inertial term
v- Vv in the momentum equation [see equation (13.4)], where v is
composed of rotation 0 x r and perturbation of velocity v’ with 0 being
the angular velocity of the stellar rotation. This inertial term appears as
two kinds of fictitious forces: the Coriolis force and the centrifugal force
in the momentum equation in the co-rotating frame. The centrifugal

force in a uniformly rotating star, which may be written in the form of a

potential force V(Iflx 112/2), can be treated together with the gravita-
tional force. The latitudinal dependence of effective gravity (true

gravity plus centrifugal force) deforms the equilibrium structure of the
star, which in turn modifies oscillation frequencies. Since the linearized
momentum equation can be written in a form in which the effect of the
centrifugal force appears only through the modification of the distribu-

tion of the equilibrium structure, a new type of wave is not expected
from the centrifugal force. Equilibrium structures of rotating stars are
extensively discussed in an excellent monograph by Tassoul (1978).

On the other hand, the Coriolis force, -20 x v’, has a form which

does not exist in a nonrotating nonmagnetic star. The Coriolis force not
only modifies the oscillation frequencies of g-, p-, and f-modes but also
generates new waves: Rossby-type waves and inertial waves, all of
which are sometimes called inertial waves inclusively. The r-mode,

which is the global Rossby wave, was introduced in Section 19. We will
discuss, in Section 33 by using a local analysis, the mechanism of the

277



278 NONRADIAL OSCILLATIONS OF STARS

r-mode oscillation and its relation to the prototype Rossby wave which

is familiar in geophysics. We will also discuss other inertial waves
including a wave which is generated by a mechanism similar to that of
the Rossby wave. Waves in a rotating fluid are extensively discussed in
the literature of geophysics. The authors found books by Greenspan

(1968) and by Pedlosky (1979), for example, useful.

We discussed the effect of rotation on the oscillation frequencies of
spheroidal modes (g-, f-, and p-modes) in Section 19 by using a
perturbation analysis with a small parameter of the ratio of the rotation
frequency to the oscillation frequency (fl/o).The perturbation analysis is

not applicable to the case of Q/ozl. This chapter discusses such
oscillations strongly modified by rotation, in which many peculiar
phenomena arise.

In 'contrast to the effect of rotation on nonradial oscillations,

nonradial oscillations in a rotating star can affect the equilibrium
distribution of the angular momentum, because nonaxisymmetric

nonradial oscillations can transport angular momentum from place to
place when they are nonconservative (i.e., when there exists effect of
dissipation and/or leaky boundary conditions). This effect may be
important for the evolution of stellar rotation. This basic mechanism
will be described in Section 36.

32. Basic Equations

The basic equations that describe oscillations of a rotating star are
equations of hydrodynamics given by (13.1)—(13.3). As in Section 13,

we restrict ourselves in this chapter to the case without turbulent

convection and magnetic field. The basic equations of hydrodynamics

are then given by

—a—p+V-(pv) = 0, (32.1)at

ap(§+v-V)v= —vp—pV¢> , (32.2)

and

apT(E+v-V)S=p£N—V-FR , (32.3)

where the velocity without turbulent convection is denoted by v. By
setting the time derivative to zero in equations (32.1)—(32.3), we obtain

equations governing the equilibrium state:
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V ' (90%) = 0 , (32~4)

(vo-V) v0: — ivPO—W" , (32.5)

and

POT0( V0 ' V)50 = 908m) — V ° FR.0 , (32-6)

where the subscript 0 denotes the equilibrium state. Let us now discuss
the equilibrium state with the velocity due to rotation,

m=OXr, o2n

where 0 denotes the angular velocity of a star at equilibrium. We
assume 0 is axially symmetric so that

0=[Q(r,0)cos6, —Q(r,6)sin6, 0] (32.8)

in the spherical polar coordinates. We suppose that the equilibrium
state is also axially symmetric. Since the equilibrium velocity field is
solenoidal,

V. v0=0 , (32.9)

and the scalar product of v0 with a gradient of any scalar quantity f leads
to

8
vo-Vf= %, (32.10)

equation (32.4) is automatically satisfied, and equation (32.6) is reduced
to equation (13.9). Equation (32.5) is reduced to

OXOXr= —Bl—VP0—V<D0 , (32.11)
0

where the left-hand side represents the centrifugal force.
The linearized basic equations are derived in the Eulerian form as

follows: -

ap’

8t
 +V-(p0v' +p’v0)=0 , (32.12)

av, I I I

947 + (V0°V)V +(V ‘V)V0 +P (V0°V)V0

= —Vp'—pIV¢O—pov¢', (32.13)

and
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85'
P0T0[W+(V0 ' V)S' + (V' 'V)50] +(PT)'(V0 ' V)50

=(p8N)’—V-F;;. (32.14)

With the help of equations (32.9) and (32.10), the linearized mass-
conservation equation (32.12) and energy equation (32.14) are reduced

to

<9 <9 , , _

and

8 8 , I , I
pOTO [(57+0—a—6—) S +(V' V)S()]=(pEN) "V ‘ FR, (32. 16)

respectively. The operator (8/8t+ 98/84)) appearing in the above
equations represents the temporal derivative referring to a local rotating
frame with the angular velocity 0. Inserting equations (32.7) and (32.5)
into the linearized equation of motion (32.13), and using the relations

among the unit vectors (19.36)—(19.38), we obtain 4
sLmH ‘11:, A’su-l .n.

 

a a / I I . .[(E+Q$)vi]ei+20><v +(v VMr sm6e¢

= _ _1_vp'_vq>'+ F; Vpo. (32.17)
100 p 0

The first term in the left-hand side of equation (32.17) represents the

time derivative of the velocity referring to a local rotating frame; the

second term stands for the Coriolis force, and the third term is due to
differential rotation. The Eulerian velocity perturbation v’ is related to

the displacement E, with the help of (13.26), (32.7), (32.10), and
(19.36)—(19.38), by 4 11.. a

V'=[(a—i+9%)§i]€i‘ (1;de sin6e¢. (32.18)

Supplementary equations are needed to complete the description of a
system. They are the same as those given in Section 13. For example,

the Poisson equation is given by

V24? =41er' . (32.19)

From equation (13.83), the Lagrangian entropy perturbation is repre-
sented in terms of the Lagrangian density perturbation and the

Lagrangian pressure perturbation as
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v
————= -—6S. 32.20
P0 F1 P0 Cp ( )

By using relations between Lagrangian perturbations and Eulerian

perturbations given by equations (13.21) and (32.18), we represent the
entropy perturbation in terms of the Eulerian density and pressure

perturbations:

(—a+0 _8)(_p_ — _p)+v’ - (Vlnp0——1—Vlnp0)
8t 84) p0 Flpo a I”.

UT 8_ _ ?(E+“$)6S' (32.21)

Equations (32.15)—(32.19), (13.50), (13.51), and (13.84) are the basic
equations for linear nonadiabatic nonradial oscillation in rotating stars.
In the adiabatic approximation, equations (13.50) and (13.51) are not
needed, and the right-hand sides of equations (32.16) and (32.21) are
neglected.

It is instructive to describe a fluid motion in terms of vorticity

defined by

wEva , (32.22)

which represents the local and instantaneous rate of rotation of the
fluid. Let us derive an equation governing the change of vorticity.

Taking the curl of equation of motion (32.2), we obtain

%+Vx(wx v)+V><(pivp)=0. (32.23)

In deriving equation (32.23), we have used well-known formulae in

vector analysis,

%V|v|2=vx(VXV)+(v-V)v (32.24)

and

V x(V¢)=O. (32.25)

Since

V-w=V-(V><V)EO, (32.26)

the second term of equation (32.23) is rewritten as

Vx(wxv)=(v-V)w-(w-V)v+-(V-v)w. (32.27)

Then, equation (32.23) is reduced to
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at

In combining equations (32.1) and (32.28), we obtain

(_8+ v- V)w-(w- V) v+ (V - v)w+Vx (inp)=0. (32.28)

a w w 1 1—+v-V)— —(—-V)v+—Vx(—V )=0. 32.29
(at p p p p p ( )

We can rewrite the term of p‘ le in the above equation in terms of

enthalpy and entropy as

pivp = Vh — TVS (32.30)

by using a thermodynamic relation

dh= TdS+—dp£, (32.31)

where h denotes the enthalpy. Then, the third term in equation (32.29)
is rewritten in terms of the temperature gradient and the entropy
gradient as

Vx(p"‘Vp)= —VX(TVS)= —VTXVS. (32.32)

Hence, the vorticity equation (32.29) can be written as

(—‘9+v.v)fl—(£-V)v—ivrxvs=0. (32.33)
at p p p

The vorticity equation (32.33) is useful to understand the physical
nature of the waves caused by rotation of the fluid, and is used in the

following section.

By substituting the equilibrium quantities such as p0, p0, and v0 into
equation (32.29), we obtain an equation governing the equilibrium
state: ‘

(v0 - V)&—(fl . V)v0+iVx(ivp0)=0, (32.34)
PO P0 P0 Po

where

wOEVXV0=VX(QXr)=20. (32.35)

The first term of equation (32.34) is zero because of equations (32.7),
(32.8), (32.10), and (32.35). Then equation (32.34) is reduced to

—(2fl-V)(fl><r)+Vx(—pl—0Vp0)=0. (32.36)
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If the rotation law is cylindrical (80/8z=0) or uniform, equation
(32.36) leads to

Vpo >< Vpo= 0, (32.37)

which means that the isobaric surface and the isopycnic surface
coincide. The fluid layer in this case is called “barotropic.” Otherwise
the condition (32.37) is not satisfied, and the isobaric and the isopycnic
surfaces are inclined each other. The fluid layer in this situation is called

“baroclinic.”
The linearized equation of vorticity equation (32.28) is given by

[(g+0$)ww’,]e,-+(w’ - V0)rsin6e¢+(v' - V)20—(20 ' V)V'

+(V. v')2n+Vx(pivp)=0. (32.38)

In what follows, we omit subscript 0 for equilibrium quantities
unless there is confusion.

'33. Local Analysis

Prior to the full discussion of the oscillations in the rotating stars, it is
instructive to examine locally the effect of uniform rotation on

oscillations. This enables us to understand the basic physical aspects of
the waves newly introduced by rotation.

33.1 Dispersion Relation

To make the local analysis tractable, some simplifications are employed.
We assume the rotation is uniform. The adiabaticity is also assumed for

disturbances. We adopt the Cowling approximation and discard the
perturbation of the gravitational potential. The simplified forms of
equations (32.15), (32.21), and (32.17) are

      

       

    
Dt

Dp’ , _Dt )— O, (33.1)

Dp’ 1 Dp’
Dt c2 Dt (33.2)

and

D'Ui, = —i ’ p’

—e,-+20><v’ p Vp + 2 (33.3)
p

where
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D _ 8 8

denotes time derivative following the unperturbed rotation, and

AEVlnp— FL Vlnp. (33.5)
1

The temporal and spatial dependence of any perturbed quantities
are assumed to be proportional to exp[i(at + k - r)], in which the angular
frequency a should be defined in a rotating frame. The perturbed
elements are assumed to have small dimensions compared with the scale
length of equilibrium pressure, density, etc. , and the effect of sphericity
is neglected. The resulting equations then become

I

io£+ik- v' =0, (33.6)
p

ia£-—i29!L+v'-A=0, (33.7)
P c P

and

iov’ +2nx v’ = -ikP—+(ivp)i. (33.8)
p p 10

Equations (33.6)—(33.8) form a set of linear simultaneous algebraic
equations for variables p’/p, p’/p, and v’, and its characteristic equation

gives a dispersion relation '

 a[ci:—{k2+ 4:22 +i(k- Vlnp)}02—{k- [20xV1n(p/p2’“)]}a

+{Nzki+(2n-k)2+i(2n-k)(2n-Vlnp)}]=0, (33.9)

where

N2=p'1Vp-A (33.10)

denotes the square of the Brunt-Vz'iisaléi frequency and kl denotes the
horizontal component of the wave number vector which is perpendicu-
lar to the apparent gravity. In deriving equation (33.9), we have used
the barotropic relation given by equation (32.37), which is consistent
with the uniform rotation.

The orders of magnitude of the three terms in the first brace as the
coefficient of 02 in equation (33.9) are O(kz), O(QZ/CZ), and O(k/Hp),
where Hp denotes the characteristic scale height of equilibrium
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quantities. We suppose

k2 >> 112/c2 >> k/Hp, (33.11)

which is justified in most cases in the stellar interior. Let 6 be

_ 02

and we suppose

1 2

The coefficient of OJ in equation (33.9) is dependent on the direction of

the wavenumber vector, but it is, at maximum, of the order of 8’2k3c,

and the three terms in the third brace in equation (33.9) are, at
maximum, of the order of N2k4c2, 6k4C2, and 63k4c2, respectively. The
imaginary parts in the two brace brackets in equation (33.9) make the

wavenumber k complex, which leads to a slow variation of amplitude of
disturbance with depth corresponding to the density variation with
depth (attenuation effect). According to the above assumption (33.11),
this effect is small enough to neglect compared with the scale of

perturbations. Whether the third term or the fourth term in the square
bracket in equation (33.9) is larger is dependent on the direction of the
wavenumber vector. Thus we retain both terms, though We neglect the

last term in the third brace in equation (33.9).
In a limiting case of

|N2kf+(2n-k)2|>>kc|k-[20x1n(p/p2/“)]|, (33.14)

equation (33.9) is reduced to
4

a[iz—kzaz+{Nzkf+(2n-k)2}]=0. (33.15)
C

Equation (33.15) leads to the following modes:

02 z kzc2 (33. 16)

and

2
Nzkf+(20- k)2

0 z .
k2

Equation (33.16) represents a pair of high-frequency acoustic modes,
and equation (33.17) represents a pair of low-frequency modes related
with rotation and buoyancy. We call the mode given by equation (33. 17)

 (33.17)
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the inertia-gravity wave. In the case of (2:0, the inertia-gravity wave
tends to a simple gravity wave:

 
~sz

02: k; (33.18)

In the case of N2=0, the inertia-gravity wave is reduced to

20.1.202: LT) , (33.19)

which is called the inertial wave. It should be noted that equation
(33.17) describes oscillatory motion even if N2 <0 when (20 - k)2 is large
enough.

In the other limiting case of

|N2kf+(2n-k)2|<<kc|k-[20xV1n(p/p2’“)]| , (33.20)

the inertia-gravity wave disappears. Instead, equation (33.9) leads to

o302 7—ak2—{k-[20xV1n(p/p2m)]}]=0. (33.21)

This equation gives

02:1:sz (33.22)

and

k- [20 x Vln( p/pZ/")]_ k2 .

The latter mode propagates in the direction of rotation (prograde),

since V ln(p/p2/n) is usually toward the stellar center throughout a star.
In general cases, the dispersion relation (33.9) provides a pair of

high-frequency acoustic modes

02 z kzcz + 402 , (33.24)

 (33.23)

a pair of low-frequency modes with mixed characters of inertia-gravity

wave and low-frequency prograde wave

~ _ _1— . 2m0— 2k2 {k [20len(p/p )]}

i3112210:-[20xVln(p/p2”“')l}2+4kle2kf+(20-:02] ”2,

(33.25)
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and a unique zero-frequency mode. Equation (33.25) gives a pair of

complex conjugate frequencies if N2 is negative and INZI is large enough,

which are the overstable convection modes propagating in the direction

of rotation of the star.

In the following subsections, we discuss the physical properties of

each mode.

33.2 Zero-Frequency Mode : Geostrophic Motion

There always exists a zero-frequency mode, whose frequency measured

in an inertial frame is the same as the rotation frequency of the star. In
this case, equation (33.7) is reduced to

v’ ~A=0 , (33.26)

and this means that the motion is horizontal. Equation (33.6) leads to

k- v’ = 0 . (33.27)

The momentum equation (33.8) gives

[2.0x v’]l= — :3— ip’ , (33.28)

which means that the horizontal component of the Coriolis force is in
balance with the horizontal gradient of pressure. This mode is called
“geostrophic mode” or “gebstrophic motion” in geophysics.

33.3 Inertial Wave

Pure inertial waves are waves in the homentropic fluid layer (N2=0)
whose restoring force comes from the Coriolis force. To discuss the

physical properties, the Boussinesq approximation is convenient. In this

approximation, equations (33.6) and (33.7) are shown to be

k- v' =0 (33.29)

and

 1'05 + v’-A=0 , (33.30)

respectively. Since we consider the homentropic layer,

A=0 , (33.31)

so that equation (33.30) means the Eulerian density perturbation is
zero. Then the equation of motion is reduced to

Dv’_ ,_.p’
Dt- 2flxv lp  k . (33.32)
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As easily seen from equation (33.29), the motion of the inertial wave is
perpendicular to the wavenumber vector k. Therefore, the scalar
product of equation (33.32) and 1" leads to

Dv’r. =0 , (33.33)
V Dt

which means that the direction of acceleration is perpendicular to the
direction of motion. This indicates that the particle motion of the

internal wave has a circular orbit.

 

33.4 Low-Frequency Prograde Wave

The characteristics of the mode given by equation (33.23) can clearly be
seen in the case of

0-k=0 (33.34)

in a homentropic layer

VS =0 . (33.35)

In this case, the nature of the wave in consideration is clearly separated
from that of the inertial wave, and equation (33.23) gives

_ _ k-[ZQlenp]
k2

The mode given by equation (33.36) cannot be obtained from the
dispersion relation derived with the use of the Boussinesq approxima-
tion. But if we adopt the anelastic approximation instead of the
Boussinesq approximation, we can obtain it (Ando, 1989). This is
because the density variation of a fluid element with its movement in the

stratified medium is essential in the physical property of this mode.
Ando (1985) and Ishibashi and Ando (1985, 1986) showed numerically
the existence of such a mode even without anelastic approximation.

In the following, we discuss the dynamic property of this mode by

examining the linearized vorticity equation (32.38). Since we assume the

rotation is uniform, the second term of equation (32.38) disappears. We
discard the third term of equation (32.38) by supposing the rotation is
uniform and by discarding the curvature of the coordinates. Due to
assumption (33.34), the fourth term of equation (32.38) is zero. With
the help of equation (32.32), the sixth term of equation (32.38) is

reduced to

 (33.36)

Vx(p-'vp)'_ = —VT' xVS—VTXVS' . (3337)

It becomes zero because of equation (33.35) and S ’ = 0 which is derived
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from the assumption of the adiabatic perturbation in the homentropic
layer. Therefore, in the present situation, insofar as we approximate

(20-V)v’ =i(20-k)v’, (33.38)

the linearized vorticity equation is given by

D (0,!
—e,-+(V-v’)20=0 . (33.39)
Dt

In the case of uniform rotation, the Eulerian perturbation of vorticity is
equal to its Lagrangian perturbation:

(5605 w’ + (E- V)20 = w’ . (33.40)

Since

V- v’ = —dlnp/dt , (33.41)

where d/th8/8t+v-V denotes the Lagrangian derivative, equation
(33.39) gives

D 6‘01 dln

Dt e‘ dt

Using equation (33.42), we can understand the mechanism of this
wave. If a fluid element at a point (say point A) on the equatorial plane

moves toward the center, a positive vorticity is generated as a result of
increase of density of the element. The flow associated with this
vorticity pushes a fluid element at a point (say point B) just east (larger
4); the direction of the stellar rotation) of point A toward the center. As
before, the element at point B attains a positive vorticity. The flow
associated with the vorticity pushes a fluid element at a point (say point

C) just east of point B toward the center, while it pushes the element of
point A toward its original position. In this way, the restoring force is
exerted to point A and the phase of perturbation propagates eastward
from A, B, C, ; i.e., in the direction of the stellar rotation (Ishibashi

and Ando, 1986). Thus, the mechanism of the wave generation is similar
to the Rossby wave which will be discussed in the next subsection.

Therefore, it is concluded that the essential dynamic aspect of this
mode is the conservation of vorticity. It is now quite clear why this mode
cannot be retained in the Boussinesq approximation, in which the
density variation is taken into account only in buoyancy, not in the
variation of volume of a fluid element.

Equation (33.25) indicates that the real part of the frequency of
overstable convection is the same as the frequency of the low frequency
prograde wave considered in this subsection. Therefore, the nature of

”20:0 . (33.42)  
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propagation of overstable convection modes is caused by the conserva-
tion of vorticity as in the present case.

33.5 Rossby Wave

So far we have discarded the effect of curvature of the stratification. If
we take it into account, a new type of wave appears, which is called the
Rossby wave. The prototype of the Rossby wave is generated essentially
by rotation and the curvature of the stratification. To make our

discussion simpler, we consider a slowly and uniformly rotating
spherical star, in which the centrifugal force is negligible. One way to
extract purely rotational effect separated from gravity is to consider the
radial component of vorticity associated with a motion on a level
surface. The radial component of the linearized vorticity equation
(32.38) is written as

1(8vf,> 1
 ia—

a I

r v”)+2n,(v- v')—[2n-vv'], = 0. (33.43)
86 _ sinB 34>

We suppose that the vertical velocity is much smaller than the horizontal
one; i.e. ,

|v',|<<|v’9|,|v’¢| . (33.44)

Furthermore, we use the Boussinesq approximation, which is a good
approximation for a low-frequency wave:

8v’ 8v’
1( 0+ .1 ¢)=0

86 sm6 84>

Under these conditions equation (33.43) is reduced to

8v’ 8v’ '
io%( 4’ 1 6)— 298mg 05:0. (33.46)

V-v’~
' r

 (33.45)

 
86 _ sin6 84> r

Since

d(20cos 6) _ , . _Lb 8(20cos 6)
—dt— (v0+v) V(20cos6)— r ___—86

20 sin 6125 (33 47)

r

and the Lagrangian and the Eulerian perturbations of vorticity are the
same in the case of uniform rotation as shown in equation (33.40),
equation (33.46) can be written as

% (Z; + ZQcosfl) = 0, (33.48)
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where the radial component of the Lagrangian perturbation of vorticity
C is defined as

 

1 81);, 1 805

T( 89 sin6 a4; ) '

Note that QcosB is the radial component of the angular velocity of
rotation and that (Z; + 2Dcos 6) is the radial component of total vorticity
seen in an inertial frame. Then equation (33.48) means that the radial
component of vorticity is conserved with the motion.

Let us define a local Cartesian coordinate (x, y, 2) as

dx = rd6, dy = r sin6d¢, dz = dr, (33.50)

CE 6(1),: w',= (33.49)

and

v;=v’9, v'y=v:,,, v'z=v',. (33.51)

In this coordinate system equations (33.45) and (33.46) are, respective-
ly, written as

  

   

8v; 8vyI
8x + 8y =0 (33.52)

and

. 8vyI 8v; 8112
10( 8x — 8y) 2 8x v;=0, (33.53)

where 3

02 -=— Qcos6. (33.54)

Assuming that the spatial dependence of the wave is expressed as

exp(ikxx+ikyy), we obtain from equations (33.52) and (33.53)

802 ky

2 ex 1.14.1.2, '
This gives the angular frequency of the “local” Rossby wave, which was
first derived by Rossby (1939). In geophysics, the latitudinal derivative
of the Coriolis parameter, —28Qz/8x(=20sin6), is called ‘beta’, and the

approximation in which the ‘beta’ is treated as a constant is called
‘beta-plane’ approximation. We note that the Rossby wave cannot be
obtained by simply replacing the curl of equation (33.8) by [ikx(33.8)],
because the geometric effect plays the essential role of the Rossby wave

while such an operation misses the latitudinal dependence of the unit
vector in the radial direction.

Equation (33.55) indicates that the Rossby wave is a retrograde (in

 0: (33.55)
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the co-rotating frame) wave generated by the latitudinal dependence of
the vertical component of the angular velocity of rotation. The

mechanism by which the Rossby wave is generated can be understood
based on the conservation law in equation (33.48) as follows: Let us
consider a series of points on a latitudinal line on the northern
hemisphere (0< 6< 17/2). We call the points A, B, C, in the order of
decreasing d) ( or decreasing y) direction. Suppose that a fluid element
at point A moved toward the pole of rotation (northward). According to
equation (33.48), the element should get a negative value of I; at the

displaced position. Thus generated flow (whirl) pushes the fluid element
at point B northward. Then, a negative C is generated at the position
displaced from point B as at the element from point A. The flow
generated around B pushes point C northward and pushes point A
southward. The latter effect works as the restoring force for point A. In
this way the Rossby wave is generated and its phase propagates in the
decreasing (b direction; that is, it retrogrades in the co-rotating frame.

The angular frequency of the global Rossby wave can be obtained
by introducing the stream function 11) such that

 ,=_ 1 8w
”9‘ rsin6 a¢ (33°56)

and

, = 1 81!)
U¢——r —86. (33.57)

The velocity fields given above satisfy equation (33.45) automatically.

Substituting equations (33.56) and (33.57) into equation (33.46), we

obtain

. 20 81/1
2 ———-=10V11p+ ’2 34’ 0. (33.58)

If the angular dependence of the stream function 1]) is given by a
spherical harmonic, Y,’"(l9,¢), equation (33.58) yields

0_ 2m!)

— l(l+1) '

This corresponds to the r-mode discussed in Section 19.3. The exact
analogy between equations (33.55) and (33.59) becomes apparent when
we recognize that l(l+ 1) and m correspond to kzx+k§ and kysin 6,
respectively. This confirms that the cause of the r-mode is the same as
that of the prototype Rossby wave.

We note here that the conservation of the specific total vorticity

(33.59)
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plays an essential role in generating both the prototype Rossby wave
and the low-frequency prograde wave discussed in the previous
subsection. The restoring force arises due to the latitudinal dependence
of the vertical component of the equilibrium vorticity for the former

wave, and it is due to the density stratification of the equilibrium state
for the latter mode. In this sense, the low-frequency prograde wave
discussed in the previous subsection is sometimes called the “general-
ized Rossby wave” in geophysics.

34. Global Analysis

One of the conspicuous effects of rotation on the global nonradial
oscillations is the well-known m-splitting of the oscillation frequency, in
which an oscillation frequency designated by (n,l) in a nonrotating star
is split into equally spaced (2l+1) frequencies in the existence of
rotation (Section 19). The m-splitting is derived as the first-order term
in a perturbation analysis, in which the ratio of the rotational angular
frequency to the pulsation angular frequency (in the co-rotating frame),
Q/ac, is assumed to be much smaller than unity. (In the following part of
this chapter, the subscript c is attached to oscillation frequencies in the
co-rotating frame.) Extending such an analysis to the second order is
straightforward but very complex (Chlebowsky, 1978; Saio, 1981;
Smeyers and Martens, 1983; Martens and Smeyers, 1986) because the

effect of deformation of the equilibrium structure due to the centrifugal
force may be the same order of (1)/092. The fraction of the rotational
deformation of the equilibrium structure is on the order of 02/(GM/R3).
Since the frequencies of the p-modes are larger than (GM/R3)“2 (see
Section 14), the effect of the deformation must be included in the

second-order analysis for the p-modes. If the second-order effect is
included, the frequencies are not equally spaced even in the case of
uniform rotation, while the first-order effect leads to an unequally
spaced m-splitting only if the rotation frequency has a latitudinal
dependence (Section 19; Hansen, Cox, and Van Horn, 1977). In the

case of 0/0021, a perturbation analysis is not applicable, for which
rotation makes qualitative modifications in the properties of the
nonradial pulsations. For example, the angular dependence of the
variations of a nonradial oscillation mode cannot be described by a
single spherical harmonic, Y,’"(6,¢). In other words, a pulsation mode in
a rotating star cannot be referred to by a set of (l,m). In this section we
discuss such low-frequency adiabatic nonradial pulsations of rotating
stars.
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34.1 Differential Equations

We use spherical harmonics Y,’"(6,¢) to describe the 6— and ¢-
dependence of the perturbations. Then, only m-value can be assigned;
in other words, only the (1)-dependence, exp(im¢), can be assumed. For
a given value of m, the perturbed quantities should be expressed by a

summation of the components which are proportional to Y{"(6,¢) with l
2 |m|. We write the displacement vector 5 for a nonradial oscillation
mode with a given m as

75:Z {c,E,(r) +89 [H1(r)a—:+ T’(r)_si% £1Ialml

+e¢ [H,(r)—Si%6—%—77053—1} YI"(0,¢)exp(iot), (34. 1)

where e,, co, and e¢ are the unit vectors in r-, 6—, and (1)-directions,

respectively, and 0 represents the angular freqency of oscillation seen in

an inertial frame. The terms proportional to H,(r) and T,(r) are,

respectively, the spheroidal and the toroidal components of the

horizontal motion. The perturbation of any scalar quantity, f’(r,6,¢,t),

is expressed as
I = a:

f'(r,6,¢,t>=2fl(r)Y/"(0,¢>exp(iot). (34.2)
IEIMI

For low-frequency oscillations (oc<\/GM/R3), the effect of the
deformation of the equilibrium structure [mflz/(GM/R3)] is small
compared to the terms proportional to (1)/0,92 which originate from the
Coriolis force. Therefore, we can assume that the equilibrium structure
is spherically symmetric. Moreover, we assume that the angular velocity

of rotation 11 is a function only of the distance from the stellar center.

To describe adiabatic nonradial oscillations, we use the continuity
equation (32.15), the momentum equation (32.17), the Poisson equa-
tion (32.19), and the adiabatic relation obtained from equation (32.20)
by setting (SS =0. In treating the horizontal components of the
momentum equation, it is more convenient to use the equation obtained
by taking the divergence in the 6- and (1)-directions of equation (32.17)
[i.e. , V1 - (32.17)] and the equation for the radial component of vorticity
[i.e., the -r-component of equation (32.38)] rather than using equation
(32.17) itself for the horizontal components. If we substitute equations
(34.1) and (34.2) into those equations, we obtain a set of equations
which contain not only terms whose 6- and ¢-dependences are
expressed by YI"(0,¢) but also terms proportional to cosBY{"(6,¢) or
sin68YI"(6,¢)/86, etc. To treat the latter terms, the following relations
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of spherical harmonics are useful:

. 3Y1’"(92¢) m m
$11197:Ul+1qu64’)‘ (144)]! 1—1(92¢) (34.3)

and

COSBYI'"(92¢)=J'111Y'I'l1(92¢)+JImY'I"-1(92¢)2 (34-4)

where

2- 1/2

[’2’"] . if l>|m|;
0(41-1) (34.5)

if ISImI.
We define the 0variables y,-"s (i=1, 2, 3, 4) as

1 P1 ,_ dbl, , ld‘ply’=:2(r) y2= g, (p +9), y.— g, , y4=?_d (346)
where the variables with superscript or subscript I represent the radial
variations of the terms proportional to W(6,¢) [see equations (34.1)
and (34.2)]. Then, the governing equations for low frequency nonradial
oscillations of a rotating star are written in the form of the following
infinitely coupled differential equations:

 

 

d I

dlfilr =(Ve‘3M— VgUé-y§)+l(l+l)Hz, (34.7)

d I (““12

dlfizr ={C1wg+rA—cl_n_dln r-[1 (J 1+1)2-(11'")2]}y{+(1—U—rA)y§

+rAyg-2mclwcr‘1 H, - 21¢l (0612“!—1)];"T,_1—(l+2)J','.‘HT,+1]

A

d“ m _ m m

+C1—dln:(Jm—IJI YI 2+] [+2] I+lyI+2)’ (34'8)
t?

[l(l+1)-mfl]Hz-in ITl—IU 2-1)JI'"+IT1+11(1+2)J'1'3+1

 

1 2102 m
={ +—2 2111—(I+3)(J1.0281481!myi

1 21132 - ... m _+1(1+1) :32— w, dlnr{(l+1)Jl—IJIYI2

"'11 512171882], (349)
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i[(l+ 1) (1+2)-”"I]TI+ 1 ‘77Il(l+2)-’741H1+(l+1) (1+3), 73+2HI+2I

 

m m d0()2
=—n[(l+2)J ,+1y1—(l+1)J’,"+Zy’.+2]+—w2 dln(———J 1+1Y1+J 1+2.YI+2)2

(34.10)

dyg _ _ I Idln r _(1 U)y3+y4, (34.11)

and

 
d41

duff,="AUYI+V8UY2+W+1)- VgUlys- Uy4. (34.12)

where i is the imaginary unit, (I is the dimensionless rotation frequency

defined by

(‘1 =m/R3/GM, (34.13)

(0,, denotes the dimensionless oscillation frequency in the frame rotating

with 0 given by

  

w(.Ew+m(2, (34.14)

and n is defined by

= 20 = 20. (34.15)
0‘. we

We note that equations (34.9) and (34.10) are algebraic equations

originating from the momentum equations for horizonontal motion. If

there is no rotation (Q = 0), equations (34.9) and (34.10) are reduced to

H,=y'2/(c1w2) and T1+1=0, respectively. In this case the variables
belonging to each of l are decoupled from others, so that equations

(34.7), (34.8), (34.11), and (34.12) are reduced to usual equations of
adiabatic nonradial oscillations (18.14)—(18.17) for y’l, y’z, y’3, and y’4.

For a 'finite rotational angular frequency 0, equation (34.8) ‘
indicates that the spheroidal components associated with l couple with

toroidal components T&I. Furthermore, equations (34.9) and (34.10)
indicate that the toroidal components TH] couple with the spheroidal

components associated with l and 121:2. Thus, we have two independent
sets of infinitely coupled equations; one consists of the spheroidal
variables, {y’,-(i= l, 2, 3, 4)} and {H,}, and the toroidal components
{T1421} associated with l=|m|, |m|+2, ...; and the other set consists of
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the spheroidal variables {y’,-(i=1, 2, 3, 4)} and {H1}, and the toroidal
components {T,_1} associated with I: |m|+1, |m|+3, . We call, for
the sake of convenience, the former even-modes and the latter
odd-modes. We note that the r- and (1)-components of displacement
vector, 5, and 34,, are symmetric to the equator and the 6—component,

59, is antisymmetric for even modes, while 5, and 15¢ are antisymmetric

and 59 symmetric for odd modes.

In the following discussions we assume, for simplicity, that rotation
is uniform (Q: constant) and that the Eulerian perturbation of the
gravitational potential is negligible (the Cowling approximation). Let us
introduce the column vectors with infinite dimensions, Y1, Y2, H, and T,

whose j-th (i=1,2,...,00) elements are given by y’., y’z, H,, and Tr,
respectively, where

{l=lml+2(/—1), l=|ml+2]-1 for even modes; (34.16)
l=|m|+2j—1, l'=|m|+2(i—1) for odd modes.

Then equations (34.7)—(34.10) are written in slightly simpler forms:

(“’1
dlnr
 =(Vg—3)Y1—VgY2+AH, (34.17)

 j]: =(c1w3+rA)Y1+(l—U—rA)Y2—2mc1w(.fiH—2ic1wc(2C T,

\ (34.18)

 LH—in T= YZ, +mnA-‘ Y1, (34.19)
clwc

and

—nMH+il-2T= — nKYl. (34.20)

The j-th elements (i=1,2,...,00) of the diagonal matrices A, L, i, are

given by_

 

m1)
Aii=l(l+1)a («17:1—m2

— m" . > (34.21)

L..— 1 —————(1+1) (1+2) for even modes,

.U_ m"

1 W for odd modes.



298 NONRADIAL OSCILLATIONS OF STARS

The non-zero elements of the infinite bi-diagonal matrices C, K, M, and

M are defined by

ij=—(l+2)J'I'-'+12 C(j+1)j=(l+1)173+22 ‘

’1" ’1" 2

.for even modes, (34.22)
I m [+3 m

ij=m 1+1, Mj(i+l)=m 1+2,

1+2 m - 1+1 ,,,
ij=m 1+1, M(i+l)j=l—+2— 1+2  

and

ij=(l+1).l(m, Cj0+1)=—(l+2)1731.1,

11'" 1',"

Ki'=—T’ K0“)???
1 for odd modes. (34.23)

1+1 ,,, 1 ,,,
1",):le 2 M(j+1)j=m11+1,

- 1—1 ,,, - 1+2 m
ij=“l—Jl , Mj(j+l)=m~l 1+1  J

The usual boundary conditions for adiabatic nonradial pulsations
(Sections 12.2, 16.1) may be used; i.e., E is regular at the center, and

(Sp = 0 at the surface. In a numerical analysis, a truncated system of the

above infinite series of differential equations is solved with the
boundary conditions as an eigenvalue problem. We note, however, that
a different approach is also possible using a general variational principle
(Clement, 1986; Unno and Saio, 1987).

34.2 Numerical Analysis for g- and r-Modes

In order to calculate eigenfrequencies and eigenfunctions we have to
truncate the infinite series of terms in equations (34. 1) and (34.2). Here,
we use a drastic truncation for the sake of simplicity by taking into

account only the first two components for each mode. In other words,
we assume that the angular dependence of perturbed quantities is

approximately represented by a linear combination of two spherical
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Fig. 34.1 Dimensionless eigenfrequencies in the co-rotating frame for even modes
with m= -2 are plotted as functions of the rotation frequency. The dashed
lines labeled L2 and L, are asymptotic lines for the gn-modes and the g”-
modes, respectively (taken from Lee and Saio, 1987a).

harmonics; i.e. , the spheroidal variables associated with YITNI and Yfrn|+2

and toroidal components associated with Yl'i'an and Yffn1+3 are included
in an even mode, and the spheroidal variables associated with Y|7n|+1

and Yffnl+3 and the toroidal components associated with YI’I‘nI and 1’17an

are included in an odd mode.

A sample of numerical results is given in Fig. 34.1 for even modes

with m = —2 of a 10M® zero-age main-sequence model (Lee and Saio,
1987a). In this figure, dimensionless angular frequencies of g- and
r-modes in the co-rotating frame are shown as functions of the
dimensionless rotation angular frequency, 0. There are two series for

each type of mode. This corresponds to the fact that in the absence of
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rotation, there exist an infinite number of series corresponding to
different 1 values for a given m (12 Iml). Only two series appear in the
numerical result because only two spherical harmonics are included in
this analysis. We call these two series of modes gn-mode and gn-mode

for g-modes and rn-mode and fn-mode for r-modes. The gn-mode and

gn-mode tend to gn-modes associated with I: Iml and l = |m|+2,
respectively, as Q—> 0. The rn-mode and fn-mode tend to toroidal modes

associated with l=|m|+1 and l=|m|+3, respectively, as Q—>0.
In a non-rotating star the eigenfrequency of a gn-mode tends to zero

as n—> 00, while Fig. 34.1 indicates that the limiting frequency is not zero
but ~01!) (L2) for gn-mode and ~1.050 (L4) for gn-mode. This
corresponds to the existence of the inertial wave term (211-102 in
equation (33.17) in the local analysis. Since the eigenfrequency of
gn-mode increases more rapidly than that of gnl-mode as the rotational
angular frequency increases, the curve for a gn-mode in the (Q,
wc)-plane crosses the curves for gnr-modes. Actually, the crossings are

“avoided crossings,” as shown in Fig. 34.2, which magnifies the
crossings of two prograde modes: (a) gzo and g2“ at 020.03, and (b) gzo
and gm at 020.085. Through an avoided crossing, the properties of the
normal modes are exchanged.

  

  
     
 

320 " éw 820 ” éeo

I T l T

("c
(a)

E40

0.13561- 320 - —0.1278

0.1354 — 8 40.1276
20

0.1352 8.2 —+ 0.1274

L l 1 1 I 1
0.029 0.030 0.031 0.085 0.086 0.087

n {I

Fig. 34.2 Large-scale views of selected regions of Fig. 34.1 to show the avoided cros-
sings (a) between g2" and g4" and (b) between g2" and gm (taken from Lee
and Saio, 1987a).
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The r-modes are retrograde waves in the co-rotating frame; i. e. ,the

eigenfrequency is negative for negative m In the limit of Q—>0, the

frequency of an r--mode tends to w(,=2mQ/[l’(l’+1)],where l’= |m|+1
for an rn-mode and 1': |m|+3 for an r,,--.mode The limiting frequency for
Q—>0 is independent of the radial wave number 11 (see section 19.3).
The absolute value of the eigenfrequency for a finite rotation frequency
is less than Iwol. This trend is consistent with the numerical results of
perturbation analysis by Provost, Berthomieu, and Rocca (1981) and

Saio (1982). Since in our discussion the effect of deformation of the
equilibrium model due to rotation is neglected, the true value of |wc| for
r5 is probably larger than the value shown in Fig. 34.2. The effect of the
deformation is, however, very small for higher overtone modes (Provost

et al., 1981).

34.3 Traditional Approximation

The term “traditional approximation” is often used in the literature of

geophysics (e.g., Eckart, 1960). In this approximation the horizontal
component of the angular velocity of rotation, -0 sin 699, is neglected.
Physically, this means that we neglect the Coriolis force associated with

radial motion and the radial component of the Coriolis force associated
with horizontal motion. This approximation is a reasonably good
approximation for low-frequency nonradial modes, in which the
horizontal motion dominates the oscillation. In astrophysics, Berth-
omieu, Gonczi, Graff, Provost, and Rocca (1978) reached the same

approximation by considering the properties of the low frequency

nonradial modes. Under this approximation the governing equations for

nonradial oscillations are considerably simplified and can be reduced to

forms similar to the equations for a non-rotating spherical star. Thus,

employing the traditional approximation helps us to understand the
qualitative character of nonradial oscillations of a rotating star.
However, we must keep in mind that this approximation can cause some

difficulty near the stellar center, where the radial motion is comparable
with the horizontal motion even for low frequency modes.

34.3.1 Equations

The last two terms in equation (34.18) arise from the radial component
of the Coriolis force associated with the horizontal motions. The last
terms of equations (34.19) and (34.20) arise from the horizontal
components of the Coriolis force associated with the radial component
of velocity. These four terms are discarded in the traditional approxima-

tion. Thus, under the traditional approximation, equations (34.17)—
(34.20) are: reduced to
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d Y1 Wdln =(V—3)Y1+(c1—w_c—Vg)Y2’ (34.24)

Y
dlnr 2-1-—rA)Y1+(1 U—rA)Y2, (34.25)

—1 Y2H=A W—z, (34.26)
Clwc

and

i T: nix 'MH, (34.27)

where W is a symmetric tridiagonal matrix defined by

W=A(L—n211'1i.-‘M)-‘, (34.28)

or the elements of the matrix W‘1 are given by

— _ 1 mn r12(12-1)(J'")2
(W l)jj—I(IT1){1— - I 

 

 
,7 21(1+2) (173.02 } (34.29)

(1+1)2[1-m]

and

(W’l),-(,-+1)=(W_l)(j+1),-=—n21,+IJ,+2/[(l+1)(l+2)-mn],(34.30)

where the relation between 1' and 1is given by equation (34.16). To the
first order in fl/wc the j--th diagonal element of the matrix W is
[(1 + 1)+ m1]. The off-diagonal elements consist of the terms of the order
of (1)/(1)32, which cause coupling among the terms proportional to
Y,(19, 4)) with different I [see equations (34. 1) and (34.2)]. This shows
that expanding the perturbation in spherical harmonics Y,’"(0,¢) is not
the best way for nonradial pulsations with fl/wcz 1. It is more
convenient to change the basis, which will bring the matrix W into a
diagonal matrix and lead to a decoupled system of equations.

Let B be the matrix which diagonalizes the matrix W. Since the
matrix Wis a symmetric real matrix for a real pulsation frequency, B is a

unitary matrix; i.e., 'BB=I, where 'B (=B'1) and I stand for the-

transposed matrix of B and the identity matrix with infinite dimensions,
respectively. Multiplying equations (34.24) and (34.25) by B"1 from the
left, we obtain
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511?, =(vg_3)z,+( €133 —vg) zz, (34.31)

and

de 2
dln r =(c1wc +rA)Z1+(1—U—rA)Z2, (34.32)

where

21:13—‘1/1 and 22:3—‘1’2, (34.33)

and the matrix D is the diagonal matrix given by

D=B“WB. (34.34)

W1iting‘ the j-th components of the column vecotors Z1 and Z; as Z]
and Z5, respectively, we rewrite equations (34.31) and (34.32) as

  

 

 

 

   

 

   
 

2124 _ j 25;") _
dlnr _(vg 3)zl+( 6le v8) 25 (34.35)

and

:3 ?(c1w§+rA)Z{+(1— U—rA)Z£ , (34.36)

I l J" (—2) (_2) I 11—21 I
100 43 5 _

4 4‘93”

5:: 2 W

go Even Modes m=-2 g

0 " A (11112)) -- A 2:2) _
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Fig. 34.3 Some eigenvalues 16"" of 30x 50 truncated matrix for the infinite matrix W
are shown as functions of Q/wc for even modes with m = — 2. Here, l,-= 2j.
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4       
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Fig. 34.4 Same as Fig. 34.3 but for odd modes with m= —2. Here, I-=2j+ 1.

where 119") denotes the j--th eigenvalue of the diagonal matrix D with
l,=|m|+2(i— 1) for even modes and l=|m|+2j— 1 for odd modes.
Equations (34. 35) and (34.36) become the same equations as those for

nonradial pulsations of a nonrotating star if 2):") is replaced by l(l+1). In
order for the notations to be homogeneous when Q/wc—>0, let us order
the eigenvalues such that 2);") ===l(l+1)+mn when lnl «1 with the I value
given by (34.16). In order to make this ordering apparent, we set

l-=|m|+2(/'— 1) for even modes and I: |m|+2j— 1 for odd modes. In
Figs. 34. 3 and 34.4 some of the eigenvalues AV") are plotted as functions

of fl/wc for m= —2 in Fig. 34.3 (even modes) and Fig. 34.4 (odd
modes). (The figures for m= 2 are obtained by changing the sign of the

horizontal axis.) In order to obtain the eigenvalues the matrix W with
infinite dimensions was reduced to the SOXSO truncated matrix. The
negative values of we correspond to retrograde wave modes, whose
phases progress in the direction opposite to the rotation in the
co-rotating frame.

‘Based on these figures, we can discuss some qualitative properties
of the low--frequency oscillations of a rotating star by using the fact that

the term A)m)/(c (1),?)1n equation (34.35) plays the same role as the term
l(l+1)/(c1w2)1n the corresponding equation for a non-rotating star. In a
non-rotating star l(l+1) is always positive and g-modes have positvie

c112 while g‘-modes (convective modes) have negative (1)2 (i.e., a) is
purely imaginary). For low-frequency oscillations of a rotating star,
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positive values of 2S7") give g+-modes similar to the usual g+-modes of

non-rotating stars, while the existence of negative values of [19") makes it
possible for g-modes to have real frequency (we >0). This may be
understood as meaning that rotation completely stabilizes some

convective modes [see equation (33.17)]. For fl/wc>0, thechange of
sign of a 29") occurs through a singular point. The value of Q/wc at the
singular point is smaller for the eigenvalue 213’") with larger 1'. In the
negative region of Q/wc, 119") changes its sign twice, once through a

singular point and once through zero. The zero points of 29"”s are due
to the poles of the elements of the matrix W‘1 [equations (34.29) and
(34.30)]. These points correspond to the largest frequencies of r-modes
(global Rossby waves), |2mQ/[l’(l'+1)]|, for the toroidal velocity fields
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Fig. 34.5 The latitudinal dependencies of functions Y,."',(04)) for m= —2. Thin lines
correspond to the case of no rotation. The thick solid and dashed lines are
for the prograde and retrograde modes, respectively, in the co-rotating
frame. The numbers along the lines indicate the values of O/wc.
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proportional to spherical harmonics Yfi"(6,¢). The eigenvalue 2);") has a
positive value for a large negative value of fl/wc, which corresponds to

the existence of the Rossby waves (or r-modes in astrophysics).
The transformation from Y, and Y2 to Z1 and Z; in equation (34.33)

corresponds to changing the basis of the expansions in (34.1) and (34.2).

The new basis is composed of linear combinations of spherical
harmonics, defined by

917(6,¢)=2 Bi,- z+2._2(e,¢), (34.37)

where u is defined by

_ {Iml for even modes;
”— |m|+1 for odd modes. (34.38)

The function Y’"(6, 4)) has the same (1)-dependence as that of the

spherical harmonic Y,“ , while its latitudinal dependence changes as the
parameter (l/wc changes. Some examples of the latitudinal dependence
of Y’"(6,¢) are shown in Fig. 34.5, where the maximum value is
normalized to be unity for each case. Generally, relative amplitude

around the equator tends to increase as IQ/wcl increases. For a given
IQ/wcl the degree of the concentration is larger for larger 11):").

We note that the angular dependence of radial displacement and
perturbed scalar quantities for a given mode associated with 11?") can be
expressed by a single Y'"(6,(p); but to express the angular dependence of
the horizontal displacement, we need an infinite series of terms
proportional to different Y,(6, 49)’5 [see Lee and Saio (1989b) for
details].

34.3.2 Asymptotic Analysis

Equations (34.35) and (34.36) are identical to equations for adiabatic
nonradial oscillations of a nonrotating spherical star under the Cowling
approximation, if Ag") is replaced by l(l+1) [see equations (18.14) and
(18.15)]. Therefore, we can use the results of the asymptotic analysis
developed in Section 16. The asymptotic form for high-order g-modes
given in equation (16.41) is written in this case as

;m)l/2

=59“)——/.V—'c—A—d', (34.39)

where rd and rb are the inner and the outer boundaries of the G-wave

zone, respectively. For high-order g-modes of a massive main sequence
star, which has a convective core and a radiative envelope, ra is
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approximately the radius of the outer boundary of the convective core

and rb the radius of the star. Since 113'") is a function of Q/wc, we can

obtain the angular frequencies of high order g--modes combining
equation (34. 39) with the Q/wc- Sm) relation such as is shown in Figs.

34.2 and 34.3. Equation (34. 39) is also used for r-modes, which

correspond to retrograde waves with small positive AV"). Since they have
positive values of AS“), the boundaries of the propagation zone are the
same as those for g--modes.

In order to compare the numerical results obtained by using
asymptotic analysis with those shown1n Fig. 34.1, only two components
of spherical harmonics are included. Figure 34.6 shows 2?") versus Q/w
for this case. A comparison between Figs. 34.6 and 34.3 indicates that

the qualitative nature of oscillations does not depend on the manner of
truncation. The eigenfrequencies obtained by combining equation
(34.39) and Fig. 34.6 are nearly identical to those shown in Fig. 34.1,
which are obtained without using the traditional approximation (Lee
and Saio, 1987a). We note that since in the asymptotic analysis under
the traditional approximation, gn-mode is independent of gnr-mode, no
avoided crossing occurs (they simply cross). This is analogous to the fact
that since in a non-rotating star an oscillation mode is independent of a
mode associated with different values of I, an accidental degeneracy of
eigenfrequencies is possible between two modes with different value of
l. The avoided crossings are reproduced in an asymptotic analysis if the
effect of the deviation from the traditional approximation is taken into
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Fig. 34.6 Same as Fig. 34.3 but for the 2 X 2 truncated matrix for W (taken from Lee
and Saio, 1987a). Here, I,=2j.
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account (Lee and Saio, 1989a).
Using Fig. 34.6, we can interpret the qualitative property of

eigenfrequencies shown in Fig. 34.1. At (2:0, 115—2) = 6 and 112-2) = 20.
Therefore, gn- and gn-modes in Fig. 34. 1 are associated with 115-2) and

232), respectively. As seen in Fig. 34. 6, AS2) has singular points at
Q/wc~10 andA Q/wc~—1.3, while 1132) has singular points at Q/wc
~ 0.95 and at Q/wc~ —0. 6. At these singular points AS’") changes its sign.
The singular points for A32) and 252) correspond to the asymptotic
lines L2, and L4, respectively,1n Fig. 34.1. In other words, the singular

points correspond to the low-frequency cut-off of gravity waves for a

rotating star, because in a frequency range where )1}? is negative, waves

are not propagative in the radiative equilibrium zone (—rA = er/g>0)
[see equation (34.39)]. Below the cut-off frequency waves are propaga-
tive in a convective zone. Such a wave correponds to a convective (g_-)

mode which is stabilized by the existence of rotation. The stabilized

convective mode trapped in the convective core in a massive main

sequence star becomes overstable when it couples with a g-mode in the
envelope (Section 35 below).

In the retrograde wave region (wc<0)1n Fig. 34. 6, AS’"”S have zero
points at Q/wc=l’(l'+1)/(2m) with l’—- Iml + 1 and Iml + 3. The zero
point corresponds to the high-frequency cut-off for r_-m-odes. For a given
rotation angular frequency, the Rossby waves with angular frequency

|ch smaller than the high-frequency cut-off are propagative in the
radiative equilibrium zone.

35. Excitation Mechanisms of Nonradial Oscillations in Rotating Stars

Various excitation mechanisms of both radial and nonradial oscillations

have been proposed for massive near-main-sequence stars, for which

the usual K-mechanism does not work (see Section 28), and discussed in
connection with the variabilities of [3 Cephei stars and variable B-type
stars. These are reviewed by, e.g., Osaki (1982) and Cox (1985). In this
section we discuss excitation mechanisms in which rotation plays a
crucial role.

35.1 Overstable Convective Modes

Stellar rotation tends to stabilize convective instability. In the analysis

using the traditional approximation developed in Section 34, we learned

that if rotation is sufficiently rapid, some convective modes are

stabilized and become purely oscillatory. For slower rotation, perturba-
tions in a region with a superadiabatic temperature gradient are
overstable. In other words, some periodicity exists in a convective zone
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in a rotating star. Usually, these perturbations are confined to the

convective zone. To extract the periodic motion from the convective

core, Osaki (1974) considered a resonance coupling between the
overstable convection in the core of a massive star and a nonradial
oscillation mode in the envelope. Osaki (1974) proposed this mechan-

ism as the excitation mechanism for B Cephei stars. If a star has a rapidly

spinning core compared to the envelope, the angular frequency of a

large-scale overstable convective mode may coincide with the angular

frequency of a nonradial f-mode in the envelope, which has a similar
angular frequency to those of [3 Cephei stars. In addition to the [3 Cephei
stars, many B-type stars have been found to be variable, with periods
longer than those of ,B Cephei stars (see Section 8). Since rotation and a
convective core are common to these stars, Osaki’s (1974) mechanism is
a promising candidate for the excitation mechanism of the nonradial
oscillations in these stars. Furthermore, because the periods of

variability of the variable B stars are comparable to typical rotation

periods of these stars, a large differential rotation between the core and

envelope is not necessary in explaining these variations by Osaki’s

(1974) excitation mechanism.
Lee and Saio (1986) confirmed that Osaki’s mechanism actually

works for a uniformly rotating massive star. They solved the differential
equations (34.7)—(34.12) assuming uniform rotation for 3 10M@
zero-age main-sequence model, in which the superadiabatic tempera-

ture gradient, V— Vad, in the convective core is assumed to be 10‘3. The

infinite series of the differential equations was truncated by including
the first two spherical harmonics. Complex eigenfrequencies (in the
co-rotating frame) of convective modes for even modes are shown (solid

lines) in Fig. 35.1 as functions of the angular frequency of rotation.

When there is no rotation, a convective mode has a purely imaginary
frequency; i.e., it grows (or decays) exponentially. For a finite value of

the rotation speed, the angular frequency of a convective mode is

generally complex. Since the differential equations and boundary

conditions described in Section 34.1 have purely real coefficients (after
eliminating iT), if a complex we is an eigenfrequency, its complex

conjugate is also an eigenfrequency.
When rotation is very slow, the real part of the frequency of a

convective mode is approximately written as

chsznKz (35.1)

in the co-rotating frame, where C", (>0) is a numerical constant which

depends on the eigenfunction of the convective mode for Q=0A[see
equations (19.46) and (19.47)]. Therefore, for a sufficiently small 0, an
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Fig. 35.1 Dimensionless eigenfrequencies in the co-rotating frame for overstable and

stable convective modes for m = — 2 even modes as functions of the dimen-
sionless rotation frequency (based on Lee and Saio, 1986). The abscissa is
the rotation frequency, and the ordinate of the upper (lower) frame is the
real (imaginary) part of the eigenfrequency. The dotted curve represents
the eigenfrequency of a stable convective mode obtained by imposing zero-
boundary conditions at the outer boundary of the convective core. The
dashed lines labeled L2 and L4 have the same meanings as in Fig. 34.1.

overstable convective mode is a retrograde wave (travelAs opposite to

rotation) in the co-rotating frame, as seen in the small 0 part of Fig.
35.1. As 0 increases, however, ch becomes positive (prograde wave).
These overstable convective modes are generally confined to the
convective core and no motion penetrates into the outer envelope. If the
confinement is maintained, the convective modes are completely
stabilized when the rotation frequency is increased sufficiently. Exam-
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ples of the transition from overstable to stable can be seen for the modes
labelegl A4 and A5 in Fig. 35.1. Since for a complex we a curve in the
(ch,Q)-plane represents a complex and its complex conjugate eigenfre-
quencies, it appears that a curve branches off in the same plane when
the convective mode is completely stabilized (i.e., we becomes purely
real). A

The modes labeled 3,, in Fig. 35.1 behave differently when (I is
gradually increased. Before ch attains a maximum, the eigenfunction is

well confined in the convective core. With further increase in Q, ch

and loud] decrease steeply and, more importantly, the relative amplitude
in the outer envelope grows. In the envelope, the eigenfunction behaves
as a g-mode with a large number of radial nodes. A sample of
eigenfunctions for a mode which has large amplitude in the convective
core and the outer envelope is given in Fig. 35.2, where the amplitude of
radial displacement IrEll is shown as a fqnction of the location in the
stellar interior for the 81 mode at 0:0.162 (ch=3.31 x 10'2,
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Fig. 35.2 The radial displacement IrE,| of the even Bl-mode with m= —2 for (1
=0.162 is shown as a function of log p. The solid and broken curves indi-
cate the components with I= Iml and I: Iml + 2, respectively. The short ver-
tical line attached to the upper horizontal axis shows the location of the
edge of the convective core.
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del =4.40 X 10'4). The solid and the broken curves indicate the
components with I: Iml and I: Iml +2, respectively. We note that at
the surface the horizontal displacement is much larger than the radial
displacement (lHlmII/IEImII = 7.8 X 102) and that the toroidal component
is about 60% of the horizontal displacement for the spheroidal

component. This phenomenon is the appearance of a mixed convective/

g-mode by a resonance between a convective mode and an envelope
g-mode, just as Osaki (1974) expected. Lee and Saio (1987b) found that
this mode is overstable even if the nonadiabatic effect is included. Thus,

this mechanism is a promising candidate for the excitation mechanism
for variable B-type stars.

The coupling with an envelope mode is essential in order for a

convective mode to be overstable for the rotation frequency larger than

the value corresponding to the ch peak. If we solve the B, mode by

suppressing the coupling with an envelope g-mode, we have purely real
frequencies at the location shown by the dotted line in Fig. 35.1. This

solution was obtained by solving eigenfunctions only in the convective

core with zero boundary condition at the outer boundary of the
convective core. This figure indicates that if there were no envelope

mode which could couple with the convective mode, the B 1 mode would
be stabilized completely when the solid curve encounters the dotted
line, just as An modes are stabilized at sufficiently high rotation rates.
Note that there is no envelope g-mode in the region between L2 and the

horizontal axis (see Fig. 34.1), where the An modes are stabilized by
rotation. The frequency spectrum in high-order g-modes is so dense that
a convective mode can find an envelope g-mode for any rotation

frequency. However, in a differentially rotating star, where the core

rotates more rapidly than the envelope, a convective mode with wffi’e in

the convective core can couple with an envelope g-modAe with
(053" = wffi" — m(Ocon, — Dem.) in the envelope, where 0am. and (law are

the dimensionless rotation frequencies of the core and of the envelope,

respectively. If the core rotates rapidly enough compared to the
envelope, the real part of the eigenfrequency of the convective mode
enters into the frequency region for low-order g-modes in the envelope.
In such a case, a convective mode is overstable only when it can find a

g-mode in the envelope to couple with (Lee, 1988). The necessity of
coupling between a convective mode and a g-mode in the envelope is
discussed in detail, using an asymptotic theory, by Lee and Saio (1989a),

who also show that only prograde waves can be overstable as a result of

the coupling.
In the above numerical analysis, a large superadiabatic temperature

gradient V— Vad=10‘3 in the convective core was assumed. The
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rotation frequency at the peak of ch of a Bn mode is proportional to

(V— Vad)“2 [cf. equation (34.39)]. Therefore, if the true superadiabatic
temperature gradient in the core is smaller than 10—3, overstable
convective modes coupled with envelope g-modes appear for rotation

slower than that shown in Fig. 35.1.

In an observer’s frame, the real part of angular frequency of the

overstable convective mode coupled with an envelope g-mode is

_ core A ~ A
wR - ch —mncore— _chore a (35-2)

carebecause ch is very small compared to mam". Equation (35.2)

indicates that if more than one oscillation period is detected for a star,

each period corresponds to a mode with different m, and that m times
the observed period associated with m is approximately independent of
observed periods. These properties are just those observed for some
variable B-type stars (e.g., Gies and Kullavanijaya, 1988). Observa-
tionally, the product of the observed period multiplied by m is called the

“superperiod,” while, theoretically, it must be the rotation period of the
convective core if the overstable convective mode coupled with an
envelope g-mode is responsible for these variations. It is fair to note,
however, that the existence of retrograde waves, which cannot be

excited by the above mechanism, in rapidly rotating stars is suspected
(see Section 8). Since to obtain the oscillation frequency and the phase
velocity in the co-rotating frame of the stellar surface, one needs to

know the accurate rotational velocity of the star, further observations
are necessary to confirm the existence or nonexistence of retrograde
waves.

35.2 Kelvin-Helmholtz Instability in Differentially Rotating Stars

Another mechanism of instability in which rotation plays a crucial role is
the Kelvin-Helmholtz instability (or shear instability). This mechanism
was first suggested by Papaloizou and Pringle (1978) as a possible cause

of early-type variables and was examined in detail by Ando (1981).

However, there are several problems with this mechanism. One of them

is that stable stratification tends to stabilize the shear instability. The
interior of a differentially rotating star may be locally approximated as a

plane stratified medium with shear flow. In the case of plane shear flow,
a necessary condition for instability is that the Richardson number

defined by

N2

(dU/dz)2 ’

is less than 1/4, where N denotes the Brunt-Véiiséiléi frequency measuring

R,- (35.3)
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the stratification, while dU/dz measures the vertical shear. When

applied to a rotating star, this condition shows that stratification
stabilizes most of the differential rotation even in a rapidly rotating star.
Furthermore, even if Kelvin-Helmholtz instability occurs somewhere,

generated waves tend to change the rotation profile very rapidly in such

a way as to suppress this instability.

36. Angular Momentum Transfer by Nonradial Oscillations

36.1 General Theory

We discussed the effect of rotation on nonradial oscillations in the
previous sections of this chapter. In contrast, we will discuss, in this

section, the effect of nonradial oscillations on rotation. One of the most

important aspects of nonaxisymmetric (m #0) nonradial oscillation is
that they can transport angular momentum from one part of the star to
another when they are nonconservative (i.e. , when there exists an effect

of dissipation or leaky boundary conditions). As reviewed by McIntyre
(1980), the interaction of wave and mean flow (e.g., rotation) has long
been familiar in many branches of science such as fluid dynamics,
acoustics, and electromagnetics. The subject has been revitalized in
geophysics by recent evidence that wave-induced streaming takes place
on a very large scale in the earth’s atmosphere and also perhaps in the
atmosphere of Venus. Investigations of convection-rotation interaction
in the sun may be classified into the same category. Nonradial

oscillations were recently discovered in several rapidly rotating early-
type stars (e.g. , Be stars). Interaction between the nonradial oscillations
and rapid rotation may play essential roles in various phenomena in

these stars.
In order to discuss the effect of waves on rotation, we should start

with a nonlinear momentum equation. The momentum equation (32.2)

combined with the continuity equation (32.1) is written in the form

 821:0 +vV-(pv)+p(V°V)V= _vp_pv¢, (36.1)

and its (1)-component is written in the conservation form of the angular
momentum

8( wpv¢> ap aqb
T+V-(pwvv¢) — —-a7_p—5(p—, (36.2)

where

(DE rsin6. (36.3)
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Let us decompose the physical quantities into the quantity averaged in
the azimuthal direction and the residuals. For example, velocity may be
written as

V: i'+ V, (36.4)

where the overline means the zonal ((1)-direction) average (V: 0). It
should be remarked that V given by equation (36.4) is not necessarily
small enough to be regarded as the linear perturbation of the velocity.
We assume that the mean velocity field is only due to rotation; i.e.,

v: o x r. (36.5)

[See Andrews and McIntyre (1978) for more general discussion.] After
decomposing the other physical quantities into the azimuthally averaged
values and the residuals, we take the zonal averages of equation (36.2)

to obtain

 

 

81:1 8,— ,— —
PW+ 117500 V4») + VI' (hp Vp)+ V1‘(WPV¢Vp)

, acp'
= ‘10 34) , (36-6)

where the terms proportional to the zonal mean of the product of three
perturbed quantities is discarded, and the overbar above p is dropped
for simplicity. In equation (36.6) h is the specific angular momentum of
rotation defined as

iza 6120, (36.7)

VP is the poloidal component (i.e., r- and 9—components) of oscillatory
velocity defined as

VP E V,e, + V9129 , (36.8)

and V, is the poloidal component of the differential operator V; i.e.,

a 1 8

a—r’ 7.9—0’ ) (369)
Needless to say, the pressure gradient term does not appear in equation
(36.6) because 8(...)/8¢=0. The last term in the left-hand side of
equation (36.6) comes from the Reynolds stress, which represents here
the divergence of the angular momentum flux. The right-hand side of
equation (36.6) represents the effect of longitudinal torque generated by
self-gravity. The second and the third terms in the left-hand side of
equation (36.6) are expected to be small (Ando, 1981). In the following

v1=<
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discussion, we adopt the Cowling approximation (<D’= 0), and take into
account only leading terms in equation (36.6) for the sake of simplicity
(cf. Ishibashi, 1987); i.e., we adopt

8h —
p7= — V,- (pwVpV¢). (36. 10)

Strictly speaking, nonlinear wave solutions for VP and V¢ should be

employed to evaluate the right-hand side of equation (36. 10). However,

in order to give clearly the physical interpretation for wave-induced
forcing, we use only the linear perturbation of the velocity, and
discarded the higher-order perturbation so that

V: v' , (36.11)

where v’ in the right-hand side is the linear perturbation of velocity in
the sense used in the other sections (Iv’l/Ii'l «1). Then the right-hand
side of equation (36.10) denoted by r can be estimated with the help of
the basic equations for linear nonradial oscillations of rotating stars.
These equations are given by equations (32.15), (32.17), and (32.21). If

the wave motions are assumed to behave as exp[i(ot+m¢)], these
equations lead to

           

 

  

 

i(o+ mQ)v;, — Z—Zvfip V,w= (36.12)
(H

. , L ,, -_ _ imp'z(a+mfl)v¢,+ m V], V,h— pw , (36.13)

i(0+m0)(£ — Fplp + tug): — v},-A, (36.14)
P

and

i(a+mfl)p' +v,- ”“0 v'¢=0. (36.15)      

The overbars above the zonal averaged quantities are omitted here and
in the subsequent discussions.

After some manipulation, we obtain

2:2 —2v1- (10va v1») = - Rele- (pwV'pv'$)1

“122102
-lml"

( VL°p_'V1P)V',3"° A
(v* + m0)2

  p(oR + m0)0.|v4,|2 — mpImm['
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2 ./mp{ par 1 )R , ,* x’ -\ .

- — e o+m0 v v -Vh} .1).
w \mzrip |<7+m0|2 [( ) p ¢](_ 1". f

 —pIm[(V;’. 14+ VL‘VIX V'p*'Vll:l)] w.__()_

(0* +mfl)
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’+ pwlm[v'$ (0+ mQ)vT%] + mpRe]
P

(36.16)

where OR and 01 are the real and imaginary parts, respectively, of

eigenfrequency 0 (cf. Ando, 1983). It is difficult to discuss the physical
properties of equation (36.16) directly. We assume that the stars rotate
slowly and the oscillation frequency is large enough (i.e., 0R >> 0). In

this approximation, the first two terms and the last two terms dominate
in the' right-hand-most side of equation (36.16), and after some

manipulation, equation (36.16) can be reduced, using the eigenfrequen-
cy and eigenfunction for a non-rotating star, to (Ando, 1983)

r: t,,+t~A, (36.17)

where

l(l+1)2|
a m.=aRomp[—' 1612+ 121612]1Y 12 (36.18)

and

_ 1 6p * (Sp m 2 .

Here 5, and 15,, are the radial and the horizontal components of the

displacement, such that

(v;,v.:)=io(§,, 51%, ghggwmem (36.20)
In the course of derivation of equation (36.19), the terms up to the order
of 01/01; have been kept with the assumption of |01/0R|<<1.

The imaginary part 01 of the eigenfrequency in 17,, comes from the
time derivative of the wave amplitude. Thus, this term may make a large

contribution to the wave-induced forcing in the course of either wave

passage, growing, or damping, while it becomes zero in the steady state
limit. This term is called “wave transience” by McIntyre (1980). For
example, a growing prograde wave (m<0, 01<0) propagating in the
same direction as rotation can accelerate rotation. The WA is similar to
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the work integral discussed in Chapter V for each fluid element except
for some factors including m. In the excitation region, wave energy is

supplied through a thermal process, and the corresponding angular
momentum is dredged up from, or deposited to, rotation depending on

whether the wave is prograde or retrograde. In the dissipative region,

the situation is similar, but the sense is reversed. In the stars, owing to

the conservation of the total angular momentum, nonradial oscillations
may accelerate rotation at one depth and latitude at the expense of a
corresponding deceleration at another depth and latitude.

In the case of rigid rotation and/or strong differential rotation, the
third and the fourth terms of the right-hand-most side of equation
(36.16) might be important, and, under certain conditions, Kelvin-
Helmholtz instabilities may occur, in which case the energy will be

supplied from the rotation energy. The detailed discussion about the
exchange among energy of pulsation, rotation, and gravity is given by
Ando (1985).

36.2 Nonradial Oscillation as a Possible Excitation Mechanism for

Be-Phenomena

It is now well known that Be stars eject their mass from the equatorial
region quasi-periodically at intervals ranging from several years to some
decades, and that this mass forms a cool gas disc around them. In the
active mass-eruption phase, Be stars show Balmer line emissions. In the

quiescent phase, they show normal B type spectra.

The mechanism of the episodic mass-loss in Be stars is as yet
unknown. Previously, Be stars were presumed to be at break-up
velocity and to eject their mass from the equator. However, it is now

confirmed that there is no observational evidence that any Be star is at

break-up velocity. Other mechanisms, such as magnetic fields, stellar

winds, and mass accretion in close binary systems have also been

proposed, but none succeeded in explaining all the key aspects of
observations.

New detector devices such as Reticon and CCD systems have

opened up the field of high-precision spectroscopy. Walker, Yang, and
Fahlman (1979), Baade (1981), and Bolton (1982) discovered that

several Be stars in addition to the well-known early type variables (,8
Cephei and 53 Persei variables) pulsate nonradially. In particular, Vogt
and Penrod (1983) showed clearly the short-term variations with

timescale of several hours in He] 6678 absorption line of C Oph, in
which a small “bump” travels from blue to red as shown in Fig. 8.1. A

correlation between this short-term variability and long-term mass-loss

activity in Be stars has been suspected. Vogt and Penrod (1983) pointed
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out the possible mass-loss by shock waves generated by nonradial
oscillations, and suggested that the pulsational energy in nonradial

oscillations of Z; Oph is large enough for an ample amount of its
envelope to be ejected.

Here the relation between nonradial oscillations and mass-loss in

Be stars will be discussed from a different point of view. As discussed in
the previous subsection, the prograde nonradial oscillations propagating
in the same direction as rotation seen in the co-rotating frame accelerate

rotation in the radiative damping region, while the retrograde nonradial

oscillations decelerate it there. Osaki (1986a) discussed a possible
mechanism of episodic mass-loss in Be stars by nonradial oscillations on
this basis.

If we assume that prograde nonradial oscillations are excited in the
deep interior of the star by some mechanism, angular momentum

transported by nonradial oscillations is deposited near the surface due to

dissipation. This may result in an increase in rotational velocity at the

surface, leading eventually to the break-up velocity and to mass-loss at
the equator. Once the mass-loss starts, nonradial oscillations will leak

into the newly formed extended envelope and mass-loss may be

accelerated. In the meantime, nonradial oscillations will be damped
owing to increased dissipation in the extended envelope, and conse-
quently the mass-loss will come to an end. The star remains quiet until
new nonradial oscillations are built up to sufficient amplitude and a new
episode begins.

This model only requires prograde nonradial oscillations, while the
existence of retrograde nonradial oscillations is reported in some Be
stars as well. Based on the working hypothesis that the actual

observations reflect the fact that either prograde or retrograde
nonradial oscillation is predominant in a certain phase of Be star,

though both modes exist, the way these two nonradial oscillations
modify the rotation profile in the envelope of Be stars has been
investigated by Ando (1986). In this situation, wave-rotation interaction
plays a crucial role.

It is very difficult to attack this problem generally. Following the

assumptions given below, Ando (1986) formulated the time evolution of

azimuthal velocity (rotation) 1E deviating from the uniform rotation at
the equator by using equations (36. 10) and (36.19). His assumptions are
(1) this interaction is at work only near the equator; (2) a steady sectoral
g-mode, which is composed of a superposition of a retrograde and a
prograde traveling wave, is considered, and the effect of wave
dissipation and excitation on rotation is taken into account; (3)
quasi-adiabatic approximation is applied to estimate the radiative
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damping of a wave; (4) eddy viscosity is introduced for the sake of
simplicity as a relaxation mechanism of the strongly differential
rotation, since the shear instability is too complicated to incorporate.

According to Ando’s (1986) formulation, even uniform rotation is

secularly unstable in the envelope of early-type stars, and there is a

possibility that the rotation profile may vacillate quasi-periodically

around uniform rotation. This kind of phenomenon is already recog-
nized in meteorology as the quasi-biennial oscillation of the zonal wind

in the tropical stratosphere.

In the 20 M9 ZAMS model regarded as a simple Be star model, the
oscillatory motion of the rotation profile was actually confirmed by

Ando’s (1986) numerical calculations. The time scale is inversely
proportional to the wave energy. For the reasonable models of Be stars,

it ranges from one year to several decades, which is in good agreement

with the observational time span of Be episodic mass-loss. The
amplitude of acceleration of U7, amounts to the order of phase speed of

nonradial oscillations. It actually takes 10 km s'1 to 100 km 5—1
depending on the period and m value of nonradial oscillations, which is
large enough to push the surface velocity to the break-up velocity in the
Be stars.

The two conspicuous observational aspects predicted by this model
should be checked to confirm this model. One is the quasi-periodic
variation (acceleration and deceleration) of the rotational velocity at the

equator. The other is that a prograde nonradial oscillation is dominantly

seen during the acceleration at the surface and a retrograde nonradial
oscillation during the deceleration. Regarding the former aspect, more
precise line-profile observations should be accumulated over the whole
cycle of a Be episode. In any case, confirmation of both aspects is

important, although it is a time-consuming task.



Chapter VII

HELIO— AND ASTEROSEISMOLOGY

37. Theoretical Overview

The identification of the solar five-minute oscillation as the global
eigenmodes of the sun has opened a new field of research called

“helioseismology,” in which the observed oscillations are used to probe
the solar internal structure, which can never be observed directly. Study

of the solar internal structure by means of helioseismology is worth
doing for the following purposes.

The detection of solar neutrinos was a unique method of examining
the physical state of the central region of the sun. The observed flux of
solar neutrinos is only 1/3 of the theoretical expectation based on the

standard solar model, and this inconsistency has been an unsolved

problem in astrophysics. I-Ielioseismology provides another diagnosis of

the solar internal structure and is expected to yield a useful key to
solving the solar neutrino problem.

Since helioseismology can diagnose a wide range of the solar

interior, it is a powerful tool in studying the structure and evolution of

the sun. Though rotation is considered an important factor governing
stellar structure, the internal rotation of stars and its evolution have not

yet been definitely understood. We will be able to defin the internal

rotation law of the sun through helioseismology. Rotation is one of the
key factors of solar and stellar activity. The knowledge of solar internal
rotation will be helpful in understanding the solar dynamo and activity.

Solar internal rotation is related to a famous test of Einstein’s
theory of general relativity. According to Einstein’s theory, the
perihelion of Mercury precesses, and its theoretically expected value is
consistent with the observed value. However, if the sun has a rapidly

rotating core, the gravitational field is deformed, and this affects
Mercury’s perihelion. If we take this effect into account, Einstein’s

prediction might become inconsistent with the observed value. Hence,
in order to conclude whether Einstein’s theory is correct or not, we have

321



322 NONRADIAL OSCILLATIONS OF STARS

to know the solar internal rotation rate. It is not so easy to measure the
deformation of the solar disk shape due to the centrifugal force from the
circular disk, and the information on solar internal rotation derived

from the solar oscillations is more reliable. Hence, helioseismology
provides a unique test of Einstein’s theory of general relativity.

In this chapter, we discuss various aspects of helioseismology after
overviewing the sun as a pulsator in the next section. These aspects
include observational technique and data reduction (Section 39), the
forward problem (Section 40), the inverse problem (Section 41), and the
excitation mechanism (Section 42). We also discuss, in Section 43, the

stellar version of seismology called “asteroseismology,” which is still in
its infancy but is expected to develop in the near future. There are many
useful reviews and proceedings of conferences on helio- and asteroseis-
mology. Since these fields are rapidly developing, readers should also
consult these soures. For example, as reviews, see Leibacher and Stein
(1981), Christensen-Dalsgaard (1982b, 1984a), Gough (1982, 1985b),

Scherrer (1982), Deubner and Gough (1984), Christensen-Dalsgaard,
Gough, and Toomre (1985b), Leibacher, Noyes, Toomre, and Ulrich
(1985), Brown, Mihalas, and Rhodes (1986), and Libbrecht (1988c); for

proceedings, see Hill and Dziembowski (1980), Gough (1983, 1986a),
Belvedere and Paterno (1983), Ulrich, Harvey, Rhodes, and Toomre

(1984), Durney and Sofia (1987), Christensen-Dalsgaard and Frandsen
(1988), and Rolfe (1988).

38. The Sun as a Pulsator

Let us consider the characteristics of the sun as a pulsator. As seen in
Chapter III, the oscillation property of a star is represented by the
internal distribution of Brunt-Vaisala frequency and that of the sound
velocity. As the sun has a convective envelope, the square of the
Brunt-Vaisala frequency is negative there. Insofar as we suppose a
standard evolution theory of the sun, the u-gradient zone induced by
nuclear evolution leads to a gradual plateau of the Brunt-Vaisala
frequency near the solar core. The maximum of the plateau is about 0.4
mHz. Hence, all the g-modes have frequencies lower than about 0.4
mHz, and the frequencies of g-modes concentrate on the peak
frequency with the increase of the degree I. As the frequency of a low

order g-mode becomes higher with increasing 1, it comes to be close to

that of the f-mode with the same I, which is approximately given by
(Gough, 1980)

aE=(GM/R3)1 . (38.1)
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Fig. 38.1 The (l, v)-diagram of a standard model, where v E 0/211. “Avoided
crossings” of the f-mode and some g-modes are realized near I = 7 ~ 18.

From Christensen-Dalsgaard (1986).

As noted in Sections 15 and 16, however, degeneracy of these modes
never occurs, but “avoided crossing” is realized. Figure 38.1 shows the

(l, v)-diagram of a standard solar model, and we can see the “avoided

crossings” near I z 7 — 18.

The sound velocity increases with the depth and reaches its
maximum near r/R === 0.1. In the deeper interior, since the mean
molecular weight becomes larger because of the increase of helium
produced by the nuclear reaction, the sound velocity slightly decreases.
The Lamb frequency, however, being proportional to the sound velocity
over the radial distance, monotonically increases toward the center. The
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propagation diagram is given in Fig. 15.10. [The unit of the ordinate of

Fig. 15.10 is GMQ/Rg) (=3.9349 X 1043-2)]. Since the inner turning
point of the acoustic mode cavity (P-zone) is given by (see Section 15)

L? = 02 , (38.2)

the penetration depth, r,, of acoustic modes is estimated in terms of

 c(r,) = a
r, W . (38.3)

Figure 38.2 shows the penetration depth r, estimated with equation
(38.3) by supposing v ?— 0/217 = 3.3 mHz. As seen in this figure, the
nonradial acoustic modes with the period of five minutes with l = 1

provide us information on the solar interior as deep as r/R ~ 0.05. As far
as the p-modes in the five-minute range are concerned, modes with

degrees lower than about 60 can penetrate into the radiative zone

beneath the convective zone, and those with higher degrees are trapped
within the convective zone.

In the chromosphere, there is a temperature minimum so that the
acoustic cut-off frequency has a local minimum there. This situation is
seen in the propagation diagram of Fig. 15.10. The slow decrease in N2
with height in the lower chromosphere is caused by the slow increase in
temperature, while the small hump in the higher chromosphere is due to
the ionization effect of hydrogen. The rapid increase in N2 near the top

of the chromosphere is due to steepening of the temperature gradient.

 1000 1 1 1 1
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Fig. 38.2 The penetration depth r, of nonradial p-modes of frequency v E 0/21r = 3.3
mHz as a function of l estimated from equation (38.3).
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The Brunt-Véiiséila frequency N finally settles to a constant value of 1.4
X 10'38—l in the corona. On the other hand, the Lamb frequency L,
remains practically constant in the chromosphere because of near

constancy of the sound velocity, and it then jumps to the coronal value,

which is 2.5 x 10-3s-l for 1 = 10 and 4.8 x 10—23—1 for 1 = 200. For
higher p-modes with low horizontal wavenumbers kh s 0.2Mm",
waves can propagate acoustically in the corona where a > N and 0 > L,.

Thus some of the wave energy is leaked to the corona by running waves.

However, the effect of wave leakage on the stability of modes is small in
most cases. This is because the evanescent zone, which exists between
the inner cavity of acoustic waves (i.e., the convection zone) and the

outer propagation zone of the corona, is so wide that the wave energy is

reduced greatly when waves appear in the corona. In the case of high
horizontal wavenumbers kh 2 0.2Mm", p-modes are evanescent in the
corona, and there is no leakage of waves in the corona. However, a new

mode appears in this case: The p-modes with high degree I can be

trapped in the chromosphere (Ando and Osaki, 1977; Ulrich and

Rhodes, 1977), and indeed they have been observed as the chromo-

spheric modes (Deming, Glenar, Kéiufl, Hill, and Espenak, 1986).

Eigenfunctions of various eigenmodes are shown in Fig. 38.3.

39. Observational Technique and Data Reduction

Observation of solar oscillations is unique in the sense that the
two-dimensional solar disk can be resolved and hence the patterns of
oscillations on the solar surface are directly seen. Therefore the degree I

and the azimuthal order m of individual eigenmodes are uniquely

identified. As described in Section 11, at the early stage of helioseismol-

ogy, the observations were mainly done by means of one-dimensional
devices such as a Reticon array or a cylindrical lens; hence the

identification of individual modes differing in not only I but also m was
not satisfactorily done. However, since the mid 19805, various instru-

ments for fully two-dimensional observations have been devised, and

the fully two-dimensional observations have been successfully done by
various groups. The possible observational methods are mainly divided
into two categories: one is observation of velocity fields on the solar
surface by measuring the Doppler shift of spectroscopic lines, and the
other is measurement of the brightness over the solar disk. The largest

velocity amplitude of a single p-mode of the sun is less than a few tens of

centimeters per second. Some extremely accurate measurement systems

have been devised, and fully two-dimensional Doppler shift observa-
tions over the solar disk have already succeeded and will be performed
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systematically at several places all over the world [e.g. , GONG (Global

Oscillations Network Group)-project]. On the other hand, the bright-
ness observation is strongly influenced by the sky conditions. The

brightness amplitude of an individual mode included in the five-minute
oscillations is as small as AL/L ~ 10—6, which means that variation in

the sky background prevents us from detecting individual modes from
the brightness oscillation. Indeed, ground-based observations have not
been successful in detecting such small amplitudes of individual modes
(e.g., Jimenez, Pallé, Roca Cortes, Domingo, and Korzennik, 1987).

However, since the brightness observation has some advantages which
will be discussed later, fully two-dimensional observations of brightness
over the solar disk will be done from space in the near future. Noyes and
Rhodes (1984) reported prospects of observations of solar oscillations
from space. Brown (1988) reviews techniques for observing solar
oscillations. Readers should also consult these works for more detailed
description.

In the Doppler velocity observation, the most important instrument

is an excellent narrow-band filter to measure the Doppler shift of some
spectroscopic lines. Various instruments have been devised: the

resonance scattering method using a magnetic optical device (Brookes,

Isaak, and van der Raay, 1978), a magneto-optical filter (Cacciani and
Fofi, 1978; Cacciani and Rhodes, 1984), a Fourier Tachometer (Brown,

1984), a Fabry-Perot filter (Rust, Appourchaux, and Hill, 1988), and a

birefringent filter in combination with a KD*P electro-optical crystal

(Libbrecht and Zirin, 1986). Since it is essential to have an observation

covering a long time in order to get high-frequency resolution, the

instruments must be very stable. Furthermore, since the largest velocity

 

Fig. 39.1 A velocity image of the sun, made using the Doppler effect. Bright is
approaching, dark receding, with the total range in velocity being about
3 km s__'. The gradient shows the solar rotation, and the mottling outlines
supergranulation. After Libbrecht et al. (1986).
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amplitude of a single p-mode of the sun is less than a few tens of
centimeters per second, an extremely accurate measurement system is
required. These instruments enable us to take two-dimensional solar
images of very narrow bands of both wings of an appropriate
spectroscopic line such as Ca A6439.

Figure 39.1 shows such a picture taken at the Big Bear Solar

Observatory with a birefringent filter in combination with a KD*P
electro-optical crystal set (Libbrecht, Popp, Kaufman, and Penn, 1986).

The filter is set to pass only the light whose wavelength is at the wing of
the spectroscopic line (see Fig. 39.2). Two-dimensional solar images at
appropriate wavelengths of both the red wing and the blue wing are
alternatively taken. The Doppler velocity Up at a point on the solar disk
is related with the intensity level of both wings by

  l+-I_ _ —I dlnl Up (39.1)

l++l_— dln/I c...’

where L. and l- are the intensity level of the red wing and the blue wing

of the line, respectively, Idln l/dlnAl is the gradient at the wings, and c,
denotes the light speed (see Fig. 39.2). By comparing the intensity level

of the picture taken by the red wing of the spectroscopic line and that
taken by the blue wing of the same line, we can then measure the
velocity in the line-of—sight direction at any place on the solar disk. The
most dominant contribution comes from the solar rotation, and the

spinning and the orbital motion of the earth also contribute to the

II
 

       
Fig. 39.2 A schematic picture of a spectroscopic-line profile and positions at which a

narrow band filter is set.
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Doppler shift of the line. The latter motions, however, are constant
anywhere on the disk, and hence insofar as the relative velocity fields at
places on the solar surface are concerned, we do not have to take
account of these motions, while we do have to calibrate them in
measuring the velocity due to the radial modes. The solar rotation is
supposed to be axially symmetric. It is removable by averaging over a
long time-span and by assuming spatial symmetry. The residual velocity

field consists of oscillation patterns of eigenmodes and some other local
velocity fields associated with granules. The oscillation velocity fields
can be, in principle, distinguished from others by their spatial pattern
and the temporal periods.

The following is the mathematical principle with which to extract

information on individual modes from the observed velocity fields. For

the sake of simplicity, we suppose that the rotational velocity of the

earth has already been removed and there is no velocity field on the
solar surface except for oscillations and the rotation. The velocity field
associated with a single mode is given by

8 (9 m .
anm- Ur.m Uhma—Q, 111mm Y1 (09¢)exp(lanlmt)° (39-2)

The observed velocity field is only the line-of—sight component of

the superposition of various eigenmodes differing in the quantum

numbers n, l, and m and the rotational velocity of the sun. If we take

into account of the angle between the solar equator and the line-of-
sight, BO, the line-of-sight velocity component is-given by

vD(x’yat)=[ Z anm+ a Xr]'el.s.

nlm

=2 [Um Y["(0,¢) (cos BO sin 6sin ¢+sin Bo cos 9)
nlm

+th,,% Y,’"(6,¢) (cos BO cos 6 sin (1)—sin BO sin6)

8 m .
+ ”hmWY! (954’) COS 30 COS 4’] CXP(10nlmt)

+r0 sin 6cos Bo cos ¢ , (39.3)

since the unit vector 91.3. along the line-of—sight is given by

e”, =(cos Bo sin 0 sin ¢+sin Bo cos 0)e,
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+(cos BO cos 6 sin (p—sin Bo sin 6)e9

+(cos 3., cos ¢)e¢, , (39.4)

where (0, «12) are the spherical polar coordinates associated with the

solar rotation axis. Here, (x, y) are the two-dimensional coordinates on

the solar disk. We take the x-axis and y-axis along the westward

direction and the northward direction, respectively, and assume the
origin of x = 0 and y = 0 at the solar disk center. If we normalize the
radius of the solar disk image as unity, then

x=sin(6+ B(,)sin 4) (39.5)

and

y=cos(6+ 30) . (39.6)

and inversely, I

0=cos—' y—Bu (39.7)

and

¢=sin‘l [x/sin(cos_l y)] . (39.8)

We suppose that the solar rotation is steady and axisymmetric. Then we

can distinguish the solar rotational velocity from the oscillation velocity

field by taking a time average with a long time-span, and we can extract

the velocity field due to the oscillations. That is, the line-of-sight

component of the oscillatory velocity field at an arbitrary point (x, y) on

the solar disk is given by

UDJM'C (XJJ) = UDUJJ)— UD(X»Y) 9 (399)

where vD(x,y) means a time-average of vD(x,y,t) with a long time-

span.
The next task is to identify each of individual mode by performing a

spherical harmonic analysis with respect to space and a Fourier analysis

with respect to time. The procedure for the spherical harmonic analysis

is integration over the spherical surface after multiplying the complex

conjugate of spherical harmonics. If the observable quantity due to a

single mode is proportional to a single spherical harmonic and if we have

all the data over the spherical surface, this analysis gives the amplitude

of each spherical harmonic component. It should be noted here,

however, that the line-of-sight component of oscillation velocity of an

eigenmode is not given by a single spherical harmonic. Though the

radial velocity component of an eigenmode is proportional to a spherical
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harmonic, the horizontal component proportional to Vi Y,’"(6, 4)) also
contributes to the line-of-sight velocity and hence it causes some

contamination in the spherical harmonic analysis. The ratio of the
amplitude of the radial component of the velocity to that of the

horizontal component at the surface is l/w2[El(GM@/RE§)/02], where
the factor 1 comes from V]. In the case of five-minute oscillation, the
ratio is about 10‘3 X 1. Furthermore, the visible solar disk is restricted

to half of the solar surface. If we could see the whole surface of the sun,
since the spherical harmonics consist of an orthogonal complete set, we
could identify the unique quantum numbers I and m of each of the
individual modes. However, as the available information is only on the

visible half of the solar surface, a spherical harmonic analysis leads to

some extra contamination in addition to the true values of l and m of an
eigenmode. That is, the result obtained after such a procedure,

6(1,m,t)s/ / vDAosc(x,y,t)Y,m*(6,¢)sin 6d0d¢, (39.10)
0 0

is not exactly identical to the amplitude of the eigenmodes of the degree

I and the azimuthal order m. However, this procedure is in practice one
of the best. An alternative method is to take cross-correlation among
the data of each (x, y) and search for a characteristic pattern of spherical
harmonics (Christensen-Dalsgaard, 1984b; Duvall and Harvey, 1984).

Performing a Fourier analysis of DU, m, t) with respect to time, we

distinguish individual eigenmodes belonging to the same degree I and

the azimuthal order m but differing in the radial order n, since the

eigenfrequencies differ:

6(1,m,a)=/ 17(1,m,t)exp(—iat)dt. (39.11)
0

Figure 39.3 shows the result of this process obtained by Duvall,

Harvey, Libbrecht, Popp, and Pomerantz (1988), which shows the
amplitude 0(l,m,a) against v = o/27r for various values of 1. Since the
observational run is finite, there appear sidelobes around the peaks at
the true eigenfrequencies. Furthermore, time gaps between consecutive

observing times lead to aliasing noises; that is, there appear “false

peaks” separated from each other by the frequency corresponding to the
time gaps. Figures 11.9-11.12 show. the (l, v)-diagrams of the result thus
obtained by Duvall et al. (1988). On those diagrams the eigenmodes
differing in the azimuthal order m but with the same I and n are not

distinguishable, because the m-splitting of frequencies is so minute.

The observation of brightness by broad-band photometry yields, on

the other hand, a superposition of scalar eigenfunctions, each of which
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Fig. 39.3 Observed power spectra 0(l,v) for the data obtained at the Big Bear Solar

Observatory. From Duvall et al. (1988).

   
is proportional to a single spherical harmonic:

Al(x,y,t)= Z 41,... (Rm (0,4)exp(io.,mt). (39.12)
nlm

Here we assume that the effect of the limb darkening has been removed
from A1. Therefore, in the ideal case of no noise, the brightness

observation is advantageous in resolving individual eigenmodes to the

Doppler velocity observation. If we could get the brightness distribution

on the back half-side of the solar surface, spherical harmonic analysis
would provide us the amplitude of individual eigenmodes, Aln,m(R).
Since the visible disk is, however, restricted to half of the solar surface,

even in the brightness observation the individual eigenmodes cannot be
completely resolved in a mathematical sense: the spherical harmonic
analysis of only the visible half solar surface leads to

I(l,m,t)=/ / AI(x,y,t) Y["*(6,¢) sin 6d6d¢, (39.13)
0 0

which has some contamination in addition to the true amplitude due to
the eigenmodes with the degree I and the azimuthal order m. We treat
I(l, m, t) thus obtained as an approximation of EAInlm (R) exp(ia,,,mt).

By performing a Fourier analysis with respect tb time and by finding
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notable peaks in the power spectrum, we eventually resolve individual
eigenmodes:

i(l,m,o)=/ I(l,m,t)exp(—i0t)dt. (39.14)
0

Intensity observations around CaII K line have been performed and led
to successful data (Duvall et al., 1988).

Resolving individual modes differing in m with the same value of
(n, l) is important in order to investigate. the solar internal rotation. To
do so, an observational run as long as possible is desirable. The
m-splitting caused by the solar rotation is invisible in Figs. 11.9-11.12.
Figure 39.4 is a useful diagram to see the m-splitting of frequencies, on

which m/l (—1 s m/l _<_ 1) is plotted against frequency v E 0/277
(Libbrecht, 1989). If the solar internal rotation is rigid, or if the angular

velocity is only a function of r, the frequency splitting is linearly

proportional to m (see Section 19) and hence the (v, m/l)-diagram

shows straight lines. On the other hand, if the internal rotation depends
also on the latitude, the frequency splitting is dependent on m in a more

complicated way, and the (v, m/l)-diagram deviates from a straight line.

From the shape on the (v, m/l)-diagram, we can outline the dependence
of the solar internal rotation upon the latitude. If the equatorial zone
rotates faster than the polar region, the derivative of a curve on the (v,

m/l)—diagram becomes smaller with increase of Im/l I, since the modes
with high azimuthal order are mainly trapped in the equatorial zone
while. those with low azimuthal order are concentrated within the polar
regions. On the other hand, if the polar region is spinning faster than the
equatorial zone, the inclination of the curve becomes steeper with
increase of lm/l |. Figure 39.4 shows that the deviation from the straight
line expected from the rotation rate at the equator on the photosphere is
not so conspicuous. This indicates that the dependence of the solar
internal rotation on the radial distance r and the latitude 6 is not so
significant. The data have been inverted to infer the solar internal
rotation, and the inverted results show that the rotation rate in the

convection zone is roughly independent of depth, showing a latitudinal

differential rotation equal to that seen at the solar surface (Libbrecht,
1988d). Since the integrals in equation (19.44) giving the m-splitting of
frequencies due to rotation are symmetric in m, the frequency
perturbation for slow rotation is antisymmetric with respect to m. Thus,
in the presence of latitudinal differential rotation we expect

Onlm —O'n10 = -00m 'I' 02m3 'I' ..., (39.15)

where 00, 02, are the expansion coefficients. The observed
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m-splitting of frequency is sometimes represented by means of series
expansion of Legendre functions [cf. Durney, Hill, and Goode (1988)]:

0",", -0,,,0 = l(l+1): a,P,-(—m/l), (39.16)

where a,-’s are the expansion coefficients and P,’s are Legendre

polynomials. These coefficients, fitted to various observational data of
m-splitting, have been published by Brown (1985, 1986), Brown and
Morrow (1987a, b), Duvall, Harvey, and Pomerantz (1986), Libbrecht

(1986, 1989), and Rhodes, Cacciani, Woodard, Tomczyk, Korzennik,

and Ulrich (1987). The coefficients a2, a4, should be zero if the solar

structure is spherically symmetric and the values of a2, a4, have been

recognized as a measure of accuracy of observations. However, Kuhn
(1988) suggests that there is a possibility of a2 # 0 and a4 =# 0, which
indicates the anisotropy of solar structure. These data are used to infer
the solar internal rotation by means of the inversion method (Korzen-

nik, Cacciani, Rhodes, Tomczyk, and Ulrich, 1988).

 
3040 3060 3080 3100 3120

Frequency 11 (,u Hz)

Fig. 39.4 Power spectra on the (v, m/l)-diagram. Each trace is a piece of a power
spectrum for different m with l = 20. The peaks in the m = 0 spectra at v =
3047, 3080, and 3114 qu are from modes with (n, l) = (15,19), (15,20), and
(15,21), respectively. Note that l = 19 and 21 modes are contaminations due to
the spherical harmonic analysis on half of the solar surface. Peaks at 1:11.6sz
are temporal sidelobes arising from the observing window. After Libbrecht
(1989).
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40. Forward Problem

As soon as the solar five-minute oscillation became recognized as a

superposition of eigenmodes of the sun, attention was paid to the

possibility of using this tremendous number of modes as diagnostics of
the internal structure of the sun. There are two approaches to probing
the solar structure using the oscillations. One of them is based on the
so-called “forward problem,” in which theoretical eigenfrequencies are
calculated for a given equilibrium model of the sun. First, we construct a
series of theoretical models of the sun with varying parameters, and
then we calculate theoretical eigenfrequencies for each of the models by
solving the equations of oscillations. The theoretical frequencies are
compared with the observed frequencies, and then we search for the
best fit model. The other approach is called the “inverse problem,” in

which functional forms of certain physical quantities of the sun are
determined as the solutions of integral equations which are formulated
with the observed eigenfrequencies. In this section, we discuss the
forward problem, and the inverse problem is described in the next
section.

Inference of the depth of the solar convection zone from the
five-minute oscillation data is a good example of the forward problem.
Five-minute oscillations with high degree do not penetrate into the sun
very deeply. The order of magnitude of the effective depth, d, of the
five-minute oscillation may be estimated by d ~ n/kh for the lowest
p-modes because f§_dk,dr ~ 17 and k, ~ kh for the pl-mode. The

observed power of the oscillations is conspicuous in the wavenumber

range from kh ~ 0.2 Mm‘l to 1 Mm‘l so that we can probe the
subsurface layer with a depth of 3 to 15 Mm directly by the high-degree

five-minute oscillations in this wavenumber range. These oscillations
penetrate at least the superadiabatic boundary layer beneath which the

solar convection zone is stratified almost adiabatically. Since the
structure of this superadiabatic boundary layer determines the depth of

the convection zone, we can in principle infer the depth of the solar
convection zone from the five-minute oscillations, provided that the
conventional convection theory is correct. As seen in Section 11, the

observed ridges of the power of oscillations appear systematically below
the theoretical eigenfrequencies calculated by Ando and Osaki (1975),
which were based on the solar envelope model with «5 l,/Hp = 1.0 and
the convection zone about 105 km deep. Roughly speaking, the
eigenfrequencies of p-modes are determined by the traveling time of the
sound wave in the p-mode cavity. Hence, the fact that the eigenfrequen-
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cies of the model are higher than those of the real sun means that the

sound velocity in the convective zone of the model is higher than that of

the real sun—that is, the temperature in the convective zone of the

model is higher than that of the real sun. Since the surface temperature

is fixed, the above fact indicates that the temperature gradient of the

model is steeper than the real sun. This in turn means that the estimated

convective energy transport used in the model is less efficient than in the

real sun. As a consequence, the solar convective region should be
deeper than expected by the model with a = 1.0. Ulrich and Rhodes
(1977) calculated eigenfrequencies of p-modes for the solar envelope
models with different depths of the convection zone by varying the
mixing length. Their results show that the convection zone is about

2X105 km deep. Their conclusion was confirmed by an independent

calculation performed by a group of workers at Nice Observatory

(Berthomieu, Cooper, Gough, Osaki, Provost, and Rocca, 1978).

However, there remains a slight discrepancy between theory and

observation in such a sense that the theoretical eigenfrequencies lie
slightly above the observed ridges of power in the (kh, o)-diagram. In

the above investigations of high degree p-modes, the varying parameter

in constructing models is the depth of the convection zone.

Even for five-minute period range p-modes with degrees 1 lower

than about 60 penetrate the radiative region beneath the convection

zone. Therefore, we have to use models of the whole of the sun. Theory

of stellar structure and evolution is one of the well-established research
fields in astrophysics, and there is a standard recipe for computing a
model of a star near the main sequence. A standard solar model is
constructed in the following procedure: We first make a model of the

sun at zero-age by assuming that the sun was chemically homogeneous

at zero-age and then evolve it to its present age along the lines of the

standard theory of stellar evolution. We suppose the sun to be

spherically symmetric and ignore the effects of rotation and magnetic

field. During evolution, the mass of the sun is assumed to be unchanged.
As for the initial chemical abundance of the zero-age main-sequence
model, we assume that the ratio of the mass fraction of heavy elements

(Z) to that of hydrogen (X) is the same as the surface value of the
present sun, and we adopt the spectroscopically observed value for the

present sun as Z/X. The luminosity of a star for a given mass and an age

is essentially determined by chemical abundance. We treat the initial

abundance of the remaining element, helium, Y = l—X—Z, as a

parameter in order to adjust the luminosity of the model at the solar age
to the present solar luminosity. The radius of the model at the solar age
must be equal to the solar radius, and is strongly dependent on
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efficiency of convection. However, there is uncertainty in theoretical

treatment of convection, and there remains a parameter to determine
the efficiency of energy transport by convection— a mixing length

within the framework of the mixing-length theory. We treat the mixing

length l, as a parameter to adjust the radius of the model at the solar age
to the solar radius. The two parameters, the initial helium abundance

and mixing length, should be uniquely determined to adjust both the

luminosity and the radius of the model to the solar luminosity and the

solar radius. However, uncertainties in the input physics, such as
nuclear reaction rates, opacity, and so on, lead to some tolerant range of

parameters.
Once a solar model is constructed, its eigenfrequencies can be

calculated by the procedure described in Section 18.
Figure 40.1 shows the comparison of the eigenfrequencies of a solar

 

fl I I I I

A
v
(
#
H
Z
)

   J 1 1
2.0 2.5 3.0 3.5 4.0

y (mHz)

 

Fig. 40.1 Comparison of the theoretical eigenfrequencies of a standard solar model
computed by Christensen-Dalsgaard (1982a) and the frequencies observed by
Harvey and Duvall (1984). The ordinate and the abscissa are the frequency
difference, vobs—vmwm and the frequency vmflw, respectively. The modes

belonging to the same degree I are connected with continuous (l S 20) and
dashed (I 2 40) lines. From Christensen-Dalsgaard and Gough (1984a).
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model constructed by Christensen-Dalsgaard (1982a) by the standard

procedure with the observed frequencies. As seen in this figure, there
are some discrepancies in the sense that theoretical eigenfrequencies of
low degree modes are lower than the observed values while those with

high degree are slightly higher than the observed frequencies. As

discussed previously, the fact that the eigenfrequencies of high degree
p-modes of the model are higher than the observed frequencies means
that the convection zone of the real sun is deeper than that of the model.

The p-modes with low degrees penetrate into the deep interior. The
fact that the eigenfrequencies of p-modes with low degrees of the model
are lower than the observed frequencies indicates that the sound
velocity, and hence the temperature too, in the solar deep interior are

higher than those of the model. This indication seems to be contradic-
tory to the solar neutrino problem. The experiment of solar neutrino
detection performed by Davis and his colleagues in Brookhaven has
provided us with the puzzling finding that the observed neutrino flux is
only about one-third of the theoretical expectation. Since the nuclear
reaction producing boron neutrinos is very sensitive to temperature, the
results of Davis’s (1988) experiment and of the recent Kamiokande data

(Totsuka, 1988) suggest that the temperature near the solar center may
be lower than in the standard solar model. In contrast, the low degree
p-modes indicate that the temperature in the deep interior may be
higher than the model. The oscillation data, however, suggest only that

the sound velocity in the solar deep interior may be higher than the

model. This does not necessarily mean the temperature is also higher,

since the sound velocity is higher for lower mean molecular weight. One

of the possibilities for solving this dilemma is to consider a solar model

with low helium abundance. It is found that this model results in a

shallow convective envelope, which contradicts observations of high-

degree p-modes. Thus, models with low helium abundance do not solve

the discrepancies between theoretical eigenfrequencies and the
observed frequencies.

There remain some ambiguities in input physics in constructing a

standard solar model. They are (1) treatment of convection, (2)

equation of state, (3) opacity, and (4) nuclear reaction rate. It is fair to

say that we are not yet certain how to treat theoretically stellar

convection. There are various ways in treating of convection other than

the local mixing length theory (cf. Section 20). Ulrich and Rhodes
(1984) and Ulrich (1986b) compared theoretical frequencies of p-modes
in the five-minute range based on various convection theories and the
observed frequencies. For the deep interior, the simplest equation of
state may be that for the fully ionized perfect gas, and it is indeed often
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adopted in computation of stellar structure and evolution. The equation
of state for solar models used in helioseismology has to be more precise
than in conventional stellar evolution theory, since the relative accuracy
of observation in eigenfrequency is as minute as 10‘4 and hence

theoretical frequencies also must be calculated with the same degree of
accuracy. The ionization degree based on Saha’s equation in the deep

interior is not quite 100%, though it is expected that very high pressure
lowers the continuum level of an atom so that ionization is complete.
The latter expectation introduces the concept of “pressure ionization”
and it is formulated for practical use in some of the evolution codes
(e.g., Eggleton, Faulkner, and Flannery, 1973). The high pressure
changes the energy levels of discrete excitation states slightly. Ulrich

(1982) introduced the concept of scattering state and of Plank-Larkin’s
partition function in the equation of state. By considering this as well as
electron screening that leads the gas in the solar deep interior to the
fully ionized state, he constructed a solar model. Ulrich and Rhodes

(1983, 1984), Shibahashi, Noels, and Gabriel (1983), Noels, Scuflaire,

and Gabriel (1984), and Kaisig, Knélker, and Stix (1984) also examined

the equation of state following Ulrich (1982), and computed solar
models. They compared the theoretical eigenfrequencies of the models
with observed frequencies, but the discrepancies still remain. The

Planck-Larkin partition function introduced by Ulrich is originally
formulated in the case of pure hydrogen plasma. Dappen, Anderson,
and Mihalas (1987), Hummer and Mihalas (1988), Mihalas, Dappen,

and Hummer, (1988), and Déippen, Mihalas, Hummer, and Mihalas
(1988a) have studied more extensively the equation of state and

formulated in more practical cases. Opacity appears in the equation of

radiative transfer among basic equations governing stellar equilibrium.
Hence the temperature distribution in the radiative region is dependent
on opacity. So far extensive calculation of opacity in a wide range of
temperature and density has been performed by two major groups: the
Los Alamos group and the Lawrence Livermore group. The calculation
requires detailed information on ato’mic physics and is done with some
approximations. The opacity calculated by these groups is not identical;

but some discrepancies remain. Korzennik and Ulrich (1989) investi-
gated the solar structure by the inverse problem approach and suggested

that the opacity may be an important source of the discrepancy between

the theoretical frequencies of models and the observed frequencies. As
for the nuclear reaction rate, the cross-sections for pp- and pep-
reactions are purely theoretical. The measurement of the cross-sections

for other reactions has been done only for high energy regions, and one

has to extrapolate cross-sections to the relevant energy. Another
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problem with the standard solar models is that there are small

differences among models calculated by different evolutionary codes
even though the input physics is almost the same (e.g., see Dziembows-

ki, Paterné, and Ventura, 1988). The causes of these differences are

unclear, but they may be the differences of numerical computation

schemes. Most of the stellar evolutionary codes were developed earlier

than the opening of helioseismology, and numerical accuracy as high as

the requirement of helioseismology, 150/ 0 < 10”, was not required in

stellar evolution theory at that time. Therefore, to define quantitatively
the discrepancies between the real sun and a standard solar model, we

have to examine carefully the accuracy of the evolutionary code itself as
well as the input physics (Bachall and Urlich, 1988; Turck-Chieze,

Cahen, Casse, and Doom, 1988).

Apart from the tolerance of the input physics in constructing the
standard solar models, we can extend the area of the parameters to find

models yielding a better fit. Some groups of researchers have examined

“non-standard” solar models by supposing material mixing (e.g., Ulrich

and Rhodes, 1983) or turbulent diffusion (Berthomieu, Provost, and

Schatzman, 1984; Lebreton, Berthomieu, Provost, and Schatzman,

1988) or the existence of exotic elementary particles (Spergel and Press,

1985; Gilliland, Faulkner, Press, and Spergel, 1986), WIMPs, which are

described below. Since there remain discrepancies between theoretical
frequencies of standard solar models and observed frequencies of the
real sun, it is worthwhile to consider such “non-standard” solar models.

Oscillations of solar models taking account of WIMPs were studied by
Faulkner, Gough, and Vahia (1986), Déippen, Gilliland, and Christen-

sen-Dalsgaard (1986), and Gilliland and Déppen (1988). WIMPs are

weakly interacting massive particles, and their existence has been

suggested from the standpoint of the grand unified theory for
elementary particles and is used as a possible explanation for the missing

mass problem of cosmology. If we suppose that WIMPs are spread over

the universe, they are expected to be accumulated in the central regions

of stars, where the density is so high that interaction with WIMPs and
other particles is frequent. The WIMPs at the solar center are expected
to increase the conductivity, and hence the temperature gradient near
the solar center would be reduced. As a result, the temperature at the

region responsible for the boron neutrino is expected to become lower,
while the temperature near the center but outside the boron neutrino
region is expected to become higher. Therefore, the boron neutrino
production rate will be less than the standard theory and the
eigenfrequencies of low degree p-modes will be higher. In this way the

WIMPs solar models are expected to solve both the solar neutrino
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problem and the discrepancies of observed eigenfrequencies of the sun

and theoretical frequencies. More extensive studies will be done in
relation to cosmology and the evolution of stars in general.

41. Inverse Problem

There is no definitely established guideline for constructing models

other than the procedure for the standard solar model. Hence, even if

we succeed in constructing a non-standard solar model providing a

better fit to the observation of oscillations, we cannot exclude other
possibilities for the solar structure. On the other hand, functional forms
of certain physical quantities such as the sound velocity distribution can

be directly determined by solving integral equations which are provided

by eigenfrequencies. Such an approach is called the “inverse problem,”
which is an opposite approach to the “forward problem.” Hence, in
order to determine the solar internal structure using a seismological

approach, the inverse problem would be more useful, and it may also be

useful in clarifying the cause of the discrepancy between the real sun and

the standard model.
There are various approaches to the inverse problem. They are

divided into two categories: the inversion methods based on a reference

model and those without any reference model. We first discuss the

former in the next subsection, 41.1. The latter is described in subsection

41.2.

41.1 Inversion Methods Using a Reference Model

Let us first consider how to deduce the density structure of the sun by

means of an inversion method. To do so, we first introduce a reference

model, and, on the basis of the variational principle, we formulate an

equation which gives the change in eigenfrequencies induced from

virtual changes in the equilibrium structure. Then, by regarding this
equation as an integral equation, of which the known function is the
differences between the observed eigenfrequencies and the eigenfre-
quencies of the reference model and the unknown to be solved is the
difference in physical quantities between the real sun and the reference
model, we shall obtain the amounts of physical quantities that must be
modified from the reference model to fit the observational data.

The practical procedure is as follows. From equation (14.24),
adiabatic eigenfrequency is given by

M M
02/ §*'§er=/ 5"" .93 (§)er- (41-1)

0 0
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Here .55 is an operator including the pressure and density of the
equilibrium state and their derivatives. This equation implies that the
eigenfrequencies are weighted averages of these equilibrium quantities
with weighting functions dependent on the eigenfunctions E. The

observed eigenfrequencies are supposed to satisfy equation (41.1)

where the equilibrium quantities in the operator 3 are those of the real
sun. Eigenfrequencies 0(2) of a reference model satisfy also equation
(41.1), but the operator :5 consists of quantities of the model (p0, p0,

and their derivatives). We subtract these two equations and obtain an
equation for A 02 E 02 — 08 as a linear functional of the differences of

the physical quantities Ap E p — p”, A p E p — p0, etc., if the reference

model is close enough to the real sun. Imposing the constraint of

hydrostatic equilibrium, we can express the equation for A02 only in

terms of Ap if we assume the equation of state is known. The resultant
equation is symbolically written as

2 R

A3"! =/ KnI(X0.§0J') ’A—pdr- (41-2)
0"! 0 p

Here A0%,/03,, is a known while Ap/p is an unknown, and Kn,(X0, 50,

r) is a sensitivity function, where X(, denotes some physical quantities of

the reference model and 50 is the eigenfunction of the model. It should
be recalled that equation (41.1) is stationary to variations in the
functions 5", (see Section 14). Hence, in the expession of A03”, the

difference in the eigenfunction 5—50 does not appear, but 2103,, can be
expressed in terms of 50 alone. A set of equation (41.2) for various
modes can be regarded as an integral equation whose unknown and

known functions are Ap/p and A0fi,/0?,,, respectively, and K", is the

kernel. As for the kernel Km, if we have a good equilibrium model of

the sun, it is theoretically calculated. At the moment, we suppose that
the so-called standard model is sufficiently good to evaluate the kernel

K”, and we regard the kernel of equation (41.2) as known. There are

various ways to solve this equation, and in the following we outline the
spectral expansion method, the method based on the Moore-Penrose
generalized inverse matrix, and the Backus-Gilbert method.

Another important approach based on the inverse problem is to
deduce the solar internal rotation from the m-splitting data of
frequencies. Since there is no standard theoretical model of the stellar
internal rotation, the forward problem approach is meaningless, and the
inverse problem approach is the unique method of inferring the solar
internal rotation. As noted in Section 14, in the case of non-rotating
stars, eigenfrequencies of modes belonging to the same n and l

degenerate with respect to the azimuthal order m. However, this
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degeneracy is lifted in the presence of rotation, and eigenfrequencies of

modes differing in m differ slightly in the form of equation (19.43). If we
get eigenfrequencies of many modes differing in n, l, and m, we can
regard equation (19.43) as an integral equation, whose known function
is the frequency difference between the (n,l,m)-mode and the (n,

I,0)-mode {A 0,,,,,,} while the unknown function is Q(r,6). For the sake
of simplicity, we consider here the case in which 0(r,6) depends only on
r. The integral equation is then written as

R

Aonlm =/ Knlm (X(,,§(,,r)0(r) dr, (413)

0

where K,,,,,, is the kernel corresponding to the terms in equation (19.43).
In what follows, we symbolically write the integral equations (41.2)

and (41.3) as
R

W,’=/ Ki(X0,§0,r)u(r)dr, (41.4)

0

where w,- is the observationally known data, K,- is the kernel, u(r) is the

unknown function to be solved, and i denotes the ordering suffix of the

mode.

41.1.1 Spectral Expansion Method

A spectral expansion method is a familiar method of solving a linear
inverse problem; it is called so since it provides the solution by means of
an expansion in terms of the kernel. Let A),- be

R

AijE/ [<in dr, (41.5)
0

where i and 1' denote the ordering suffix of modes. The matrix A),- thus
defined is positive-definite and symmetric, and it can be diagonalized
with an orthogonal matrix U),-

A = US'U, (41.6)

where S is a diagonal matrix whose elements are

2;,- = 4151;, (41.7)

with

A, 27122 >0. (41.8)

Here 15,-,- is Kronecker’s delta and Ai’s are the singular values of the

matrix A.

Now consider the functions 'I’,(r) defined by
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9140:7151” 2 U,,- K,(r). (41.9)
i

The set of lI’,-(r) is an orthonormal set:
R

0

Therefore we may consider an expansion of the solution u(r) in terms of

them:

u(r) =2 a.- '1’.- (r), (41.11)

where the expansion coefficients a,- are given by
R

O’iE/ q]; u(r) dr =11;— I/2 2 UI',‘ Wj . (41.12)

0 I

The standard error of each coefficient oz,- is proportional to 11,7 “2. Then
the uncertainty of 0,- increases with decreasing A). It should be noted

here that the convergency of the expansion is not guaranteed.

This spectral expansion method has been quite often used in
terrestrial seismology and has been applied in helioseismology (e.g.
Gough, 1984c, 1985a; Korzennik, Cacciani, Rhodes, Tomczyk, and
Ulrich, 1988; Korzennik and Ulrich, 1989).

One of the variations of this method was applied to Duvall and
Harvey’s (1984) observational data on frequency splitting by Duvall,
Dziembowski, Goode, Gough, Harvey, and Leibacher (1984) and
Leibacher (1984) to infer the solar internal rotation. The data are the

frequency differences of sectoral modes m = :t l of various n and I. Since
these sectoral modes have large amplitudes in the equatorial zone, we
can infer the solar internal rotation near the equator by inverting these

data. Duvall et al. (1984) and Leibacher (1984) employed a piecewise
constant function,

7 _ 1, ifr,-<r<r,-+l;

111'. (r)-{0, otherwise, (41'13)

as an expansion basis rather than W(r) given by equation (41.9), since
the function W(r) given by equation (41.9) oscillates with large
amplitude in the surface regions. The inverted result is shown in Fig.
41.1. The dashed line is the equatorial angular velocity of the
photosphere. The error bars represent the standard errors of the
averages Q,- arising from the estimated errors in the data. As seen in this
figure, the solar internal rotation in the equatorial plane is nearly
constant in 0.3 < r/R< 1.0. The rotation rate is so slow that it cannot
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Fig. 41.1 Inferred rotation rate in the equatorial plane. The dashed line is at the
equatorial angular velocity of the photosphere. The error bars represent the
standard errors arising from the standard errors in the data of Duvall and

Harvey (1984). After Duvall et al. (1984).

affect significantly the precession of Mercury’s perihelion. Hence the
observed value of the precession rate of Mercury’s perihelion is
consistent with Einstein’s prediction based on his theory of general
relativity (Duvall et al., 1984). The relatively large error bars in the
deep interior are caused by the following facts: The observed quantities
are the frequency differences between sectoral modes on,” — 0,,‘,‘_,,

which are proportional to I so that the significance of the observational
error of Iow-degree modes is larger than that of high-degree modes.
Since the modes penetrating into the deep interior are low-degree

modes, the error bar of the inverted results in the deep interior is

consequently larger than that in the outer part. Whether or not the dip
near r/R = 0.25 is real has not yet been certain. More recent data of

m-splitting of frequencies are obtained by means of fully two-
dimensional observations of the solar disk, and they are inverted to
determine both the radial and latitudinal dependences of the solar
internal rotation (see Section 39). The inverted results based on the
1986 data set taken by Libbrecht are seen in Libbrecht (1988d) and in
Korzennik et al. (1988). The inverted results based on the Mt. Wilson

data obtained by means of magneto-optical filter are presented by
Korzennik et al. (1988).

41.1.2 Method Using the Moore-Penrose Generalized Inverse Matrix

We replace the integral in equation (41.4) with the summation by
discretizing the radius R with N mesh points:
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W,‘ = Z K,-(rj)u(rj) Ar}. (41.14)

Let w E {w,-} be a vector composed of the known quantity of i-modes.

Also let K E {Kij} be a matrix composed of a set of kernels for i-modes
times Ax], where j denotes the the ordering number of discrete mesh
points of the fractional radius, that is, the suffix of xi (= r,-/ R). Equation
(41.14) is then written as

w = Ku, (41.15)

where u E {uj} is a vector composed of the unknown u(rj). The
left-hand side of equation (41.15) is observationally given, and the
kernel matrix K is theoretically given. Then the problem becomes how

to solve algebraic equation (41.15).
Let the dimension of w be M x 1. Then the dimensions of K and u

are M X N and N X 1, respectively. The existence and uniqueness of a
solution of the algebraic equation (41.15) depend on the rank r(s
min[M, N ]) of the matrix K and, in the case of M > r, on the consistency
of the data w. We classify the following four cases:

(a) r = N and w consistent
(b) r = N and w inconsistent
(c) r < N and w consistent
(d) r < N and w inconsistent.

In the case of (a), the solution is uniquely determined. No solution is
given in the case of (b), but the least squares solution is uniquely
determined. In the case of (0), there are an infinite number of u

satisfying equation (41.15). In the case of ((1), there is no solution, while

even the least squares solution is not uniquely determined.
In the cases of (c) and (d), some prior information is required to

select a solution (case (0)) and a least squares solution (case (d)) among

possible solutions. A well-known way to do this is to choose the solution
of minimal norm among an infinite number of solutions or least squares
solutions, that is, to choose u which minimizes ulz. The solution thus

determined is called “the minimal norm solution” in the case of (c) and

“the least squares minimal norm solution” in the case of (d). An
example of the adoption of the least squares minimal norm solution in
helioseismology is in Denis and Denis’s (1984) attempt to infer the solar
equilibrium structure.

It should be noted here that the kernels Kn,(r) of high order

p-modes are quite similar to each other near the outer part of the sun.
In evaluating the rank of the matrix K, we adopt a parameter 6; we
regard numbers smaller than 6 as zero to avoid getting practically
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meaningless principal values of K. Besides that, because of round-off
error in the course of numerical calculation, the set of equation (41.15)

becomes slightly inconsistent, and then the practical case corresponds to
case ((1) among the above four categories.

When the matrix K is not a regular square matrix, the inverse

matrix of K is not defined, and then some alternative definition of the

inverse matrix is required. In general, a matrix K can be uniquely
expressed by means of the so-called singular value decomposition, in
which K is written as

K: UZ’V, (41.16)

where U and V are unitary matrices of M X M and N X N, respectively,
and Z is a diagonal matrix of M x N whose elements are

Aiéija If 15157,

2'”: {0, otherWise, (41'17)

with

1121.22.21.90 . (41.18)

Here 6,-,- is Kronecker’s delta and /1,-’s are the singular values of the
matrix, and they are given by the square root of eigenvalues of the

square matrix ’KK, where ’K denotes the transposed matrix of K.
By introducing this singular value decomposition, we rewite

equation (41.15) as

Zu’ = w’ , (41.19)

where

u' E 'Vu (41.20)

and

w’ E ’Uw. (41.21)

Let 2“ be a NXM matrix composed of

17'6- iflsiSr-THE l 1}» ,

Z" {0, otherwise. (41°22)

Then it can be shown that

u'LSMN E ZTw’ (41.23)

is the least squares minimal norm solution of equation (41.19). As a
consequence, the least squares minimal norm solution for u is given by
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"LSMN 5 V2“UW

E KWV, (41.24)

since unitary transformation keeps the norm unchanged. The matrix KT
is known as the Moore-Penrose generalized inverse matrix of K and it is

obtained, in practice, through the singular value decomposition (Rao
and Mitra, 1971). This type of generalized inverse matrix is useful, and

Kozrennik et al. (1988) and Korzennik and Ulrich (1989) applied the

generalized inverse matrix to the helioseismological inverse problem.

The least squares minimal norm solution is simple, but it is not
always suitable in the context of helioseismology. The requirement of

the “minimal norm” is not based on some physical arguments but is an a

priori assumption. The solution shows some unrealistic fluctuation
around the true value. To avoid such unrealistic fluctuation, Phillips

(1962) introduced another alternative procedure in which a criterion for
smoothness is satisfied for the solution. In their method, however, the
solution is no longer one of the possible least squares solution, and the
weighting factors for the the smoothness and for the least squares of the

solution is arbitrary. Their method has been applied to the inverse

problem of helioseismology by Jeffrey (1988). Sekii and Shibahashi

(1988) propose another concept of the “least square maximal smooth-

ness solution”, which satisfies both the conditions of the least squares
and those of the smoothest solution, and a mathematical procedure to

obtain it.

41.1.3 Backus-Gilbert Method

Backus and Gilbert (1968) devised aninversion method by which well

localized averages of the unknown function are given. By taking linear
combinations of the data, we can compute any functionals of the form

R

W = Z .31 W =/ E .31K1(X0,§0,r) “(05”, (41-25)
1' 0 i

where ,B,-’s are a set of constants. If the coefficients could be chosen so

that ZfiiK; (r)is a Dirac delta function centered at r-— r0, then w given
by equation (41.25) would become u(r) at r—- r0. Practically, if 213,- K,- (r)
resembles well the delta function, w leads to well localized averages of
u(r), centered at r = r0. Backus and Gilbert (1970) showed how to
choose [3,- so that the functions of EiifiiKiU) are concentrated as much as

possible on a chosen r = r0 and small elsewhere. This method has been
applied to helioseismology by Gough (1982), Duvall et al. (1984), and
Hill, Gough, and Toomre (1984a,b) and discussed in detail by
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Fig. 41.2 An example of optimal averagin kernels §fl,K,-(r) based on the kernels for
the rotation. Normalization is j; I2.13,~K,.(r)dr= 1. After Christensen-Dalsgaard

and Gough (1984a).

Christensen-Dalsgaard and Gough (1984a) and Gough (1984b,c,
19853). Figure 41.2 shows examples of functions ZiifiiKiU) based on the
kernels for the rotational splitting of frequency, As seen in this figure,
we can make the function w localize fairly well. One of the defects of

this method is that the kernels for high overtones resemble each other

and the function 21.3/3,- K,-(r) is not satisfactorily localized at the outer part
of the sun.

41.2 Asymptotic Inversion Method

Though those methods are promising, one of their defects is that
uniqueness and convergency of the solution are not always satisfied. In
order to avoid these problems, Brodsky and Levshin (1979) and Gough

(1984a) developed another method based on an asymptotic expression
of eigenfrequencies, from which an Abel type integral equation is
derived. Brodsky and Levshin (1979) devised their method to apply it to
torsional oscillations of the earth, and Gough (1984a, 1986b) first

introduced the asymptotic inversion method in the field of helioseismol-
ogy. The solution of the Abel type integral equation is analytically
obtained, and hence the solution is unique insofar as the integral
equation is numerically given. Gough’s (1984a) method was applied by
Christensen-Dalsgaard, Duvall, Gough, Harvey, and Rhodes (1985a) to
determine the sound speed of the solar interior from Duvall’s (1982) and
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Harvey and Duvall’s (1984) observational data sets of frequencies of

oscillations. Shibahashi (1988) and Sekii and Shibahashi (1987, 1989;

see also Shibahashi and Sekii, 1988) presented an improved inversion

method of inferring the sound velocity distribution, which is also based

on an asymptotic method and applied to the observational data

compiled by Duvall, Harvey, Libbrecht, Popp, and Pomerantz (1988)
and Libbrecht and Kaufman (1988) after performing some numerical

simulations to evaluate its prospects. The observational data consist of

those obtained by Pallé, Perez, Régulo, Roca Cortes, Isaak, McLeod,

and van der Raay (1986a,b), Grec, Fossat, and Pomerantz (1983),
Harvey and Duvall (1984), Henning and Scherrer (1986), and Libbrecht
and Zirin (1986) in addition to those obtained by Duvall et al. (1988)
and Libbrecht and Kaufman (1988). Brodsky and Vorontsov (1988) and

Vorontsov (1988) also developed inversion methods based on an
asymptotic theory, and applied them to the real observational data

quoted above. Christensen-Dalsgaard, Thompson, and Gough (1988)
and Kosovichev and Gough (1988) also tried to improve an asymptotic
inversion method and inverted the above observational data. Gough

(1984a) also formulated an asymptotic inversion method to infer the
solar internal rotation; his method was discussed in Duvall et al. (1984),

and was extended to the case of latitudinal differential rotation by Lee

and Shibahashi (1986). In what follows we discuss the asymptotic

inversion method of inferring the solar internal sound velocity distribu-

tion from p-mode data. The following description follows Shibahashi

(1988) and Sekii and Shibahashi (1989).

41.2.1 Acoustic Potential and Acoustic Radius

The wave equation for linear, adiabatic, nonradial oscillations of stars is

a fourth order differential equation with respect to the distance from the
stellar center, r. But if we neglect the perturbation of gravitational

potential, which is small enough except in the cases of low order and low
degree modes, it becomes a second-order differential equation. Further-
more it tends to be a 'Sturm-Liouville type in the limiting cases of high

order p-modes or high order g-modes, as was shown in Chapter III,
Section 14. The resultant equation is further reduced to a form of the
Schrédinger equation in quantum mechanics, which is, in the case of
high order p-mode oscillations, formally written as

d2 1
W ‘I’n1(r)+c—(r)—2 [031—¢1(7)Wn1(r)=0 , (41-26)

where 1p",(r) is the radial part of an eigenfunction 1]) of a mode with

radial order n and degree I, that is,



HELIO— AND ASTEROSEISMOLOGY 351

1P (r,99¢,t)= 114.1 (r) Ylm(69¢)exp(i0nl t) , (41.27)

0", denotes the corresponding eigenfrequency, and c(r) means the sound

velocity, and the other notations have their usual meanings. Here <D,(r)

plays the role of potential, and hereafter we call the term <D,(r) the

“acoustic potential.” The square of eigenfrequency 03,, should be
regarded as the eigenvalue in the potential. So the wave function 1])", has

the propagating-wave character in the region of <D,(r) < 0%,, while it is
evanescent in the other region, and the turning points r = r1 and r2 are

the roots of

42, (r)=o,2,,. (41.28)

The exact forms of 1p",(r) and ¢,(r) depend on the approximations
adopted to derive equation (41.26), but the acoustic potential can
generally be expressed as the combination of the square of the Lamb
frequency, L,2 E l(l+1)c2/r2, which is dominant in the deep interior of a
star depending on the degree [of the mode, and the l-independent term

W(r), which is related to the density scale height and dominates mainly
in the outer part of a star:

42, (r)=l(l+1)c(r)2/r2+ W(r) . (41.29)

If we adopt the approximation used by Deubner and Gough (1984), w
and W(r) are given by

1p=pU2c2V-§ (41.30)

and

 2 1 2W(r)=c(r) [71d— (21211,, )+(2Hp H, (41.31)

respectively, where 5 denotes the displacement vector, p the density,
and Hp the density scale height. Figure 41.3 shows the acoustic potential
9D,, expressed by equations (41.29) and (41. 31), the Lamb frequency L,

and the l-independent term‘l’ as functions of acoustic radius ‘5, which18

defined by

t(r)=/d—’—c—)(r, (41.32)

for the model 1 for the sun of Shibahashi, Noels, and Gabriel (1983).

Since the sound velocity c(r) becomes faster with increasing depth, the
Lamb frequency term dominates in the deep interior over the
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Fig. 41.3 Acoustic potential (D, (thick curve), the square of the Lamb frequency L,2 =
l(l+ l)c(r)2/r2 (thin curve) in the case ofl = 10, and the l-independent part of
the acoustic potential, lP(r), given by equation (41.31) as functions of the
acoustic radius 1'. The sharp dip of W is at the bottom of the convection zone.
From Sekii and Shibahashi (1989).

l-independent term W(r). On the other hand, since the density scale

height is small in the outer envelope, lP(r) is the dominant term of the
potential <D,(r) in the outer part. As the degree 1 decreases, W(r) comes

to contribute more significantly to the acoustic potential.

41.2.2 Integral Equation

It should be noted here that neither the exact form of eigenfunction 1])",

nor that of the l-independent part of the acoustic potential W(r) is

necessary in the following analysis. Instead, only the following general

characters of the acoustic potential are taken into account: i) <D,(r) is

concave and has only one minimum in the region of space considered,

and ii) the potential is dominated by the Lamb frequency in the deep

interior, while it is almost independent of l in the outer part. The WKBJ

asymptotic analysis of the wave equation (41.26) leads to the quantiza-
tion rule

mosh!) 6'”
(n+6)7r=/ [0,2,1— <.‘b,(r)]“2 —— (41.33)

“(031.0 c(r)
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for the eigenmode of radial order n. Here, r, and r2 are the inner and

outer turning points at which the integrand of the right-hand side of
equation (41.33) becomes zero. Since these turning points are deter-

mined by the frequency 02 if a form of the acoustic potential (D, is given,

which itself is dependent on the degree of the mode 1, we have written

03,, and l as the arguments of r1 and r2. The quantity 6 represents a phase

correction due to the reflection at the turning points, and it does not

depend much on the mode.

Strictly speaking, this quantization rule gives only the relation

between discrete eigenvalues an, and the corresponding integers n and I.

But, hereafter, we extend this relation to non-integers n and l by

interpolation and treat equation (41.33) as a relation which gives a

continuous function n of continuous variables I and 02, and omit suffix

nl attached to 0. From observational data of the p-mode spectrum, we

can identify the frequency 0, the degree I, and the order n of many

modes so that such interpolation can be easily done.

41.2.3 Gough’s Inversion Method

Gough (1984a, 1985a, 1986b) was the first to develop the inversion

method based on the asymptotic theory to infer sound velocity

distribution in the sun from the p-mode oscillations spectrum. As a first
approximation, he disregarded the l-independent term in the acoustic

potential lP(r) and, instead, dealt with the data of whole [’3 together.
He and Christensen-Dalsgaard et al. (1985a) then derived the relation

(n+6)7T_ r2 _1(1+1) uz__0—/r. [c(r)2 2 dlnr (41.34) 
O

by dividing the quantization rule (41.33) by 0. This relation reminds us
of the so-called Duvall’s relation which is empirically obtained from
Duvall’s (1982) observational data on p-modes and indicates that (n +
a4)/0,,, is a function of 0,,,/\/l(l+1) with a E 1.5 (see Fig. 41.4). Indeed,
Gough (1984b) and Christensen-Dalsgaard et al. (1985a) showed that

Duvall’s relation can be derived from equation (41.34) if we replace the
upper limit of the integral in the left-hand side of equation (41.34) by R
and choose an appropriate constant a in place of 6 in equation (41.34) to
absorb the influence of the replacement of the upper limit of the
integral:

 

 (n+a)rr_ R r2 _1(1+1) uz__U_/ [60), 02 dlnr. (41.35)

They regarded l(l+1)/02 as a continuous variable and (n+ar)1r/0 as a
known continuous function of it. Then they regarded equation (41.35)
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Fig. 41.4 The observed frequencies a of solar p-modes can be reduced quite well to a
single curve if plotted as (n+a)/a vs o/\/l(l+1). After Duvall (1982).

 

as an integral equation with the unknown to be solved rZ/c2 and the
known function (n+a)1r/o. Differentiation of equation (41.35) with
respect to o/\/l(l+l) leads to an Abel’s integral equation, which can be
analytically inverted. The final solution is given by

c(r)/r
r _ _3 l(l+1) ’2 —1/2 dF
i—exp[ 7,1me 02 c(r)2) d[U/\/l(l+1)] d[o/Vl(l+1)] ,  

(41.36)

where F = F(a/ Vl(l+ 1)) denotes the left-hand side of equation (41.35).
Equation (41.36) gives r for a given r/c.

Though the procedure outlined above is mathematically beautiful,
disregard of the l-independent term W(r) in the acoustic potential <D,(r)
makes the asymptotic treatment of the wave equation for low-degree
modes inaccurate, since the l-independent term lP(r) contributes
significantly to the acoustic potential in the case of low degree I as seen
in Fig. 41.3. Since it is such low degree modes that penetrate to the deep
interior of the sun and provide us information from there, disregard of
the l-independent term lP(r) leads to the larger discrepancy between the
inverted result of c(r) and the true value.
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41.2.4 Asymptotic Inversion Taking l1l1(r) into Account

By transforming variables, we rewrite the right-hand side of equation
(41.33) as an integral with respect to the level of the potential. As a first
step to do so, we rewrite it as an integral with respect to the acoustic
radius r:

’2 dr2 _ 1/2 =
'/; [U ¢l(r)] c(r) t (02 l)

where r. and 1:2 are the turning points corresponding to r, and r2
measured in the acoustic radius, respectively — that is, 1:. = t(rl) and 1'2

= t(rz). Here we have explicitly written again 02 and l as the arguments
of the turning points I] and 1'2. As the next step, we regard the
coordinate t as a function of (1),. It should be noted here that the

function r(<D,) is two-valued; that is, each value of the acoustic potential

corresponds to two different values of 1.’ (see Fig. 41.5). Accordingly, the
integral in the right-hand side of equation (41.37) must be divided into
two parts before replacing dr by (dt/d¢,)dd>,, one from 1' = 1." to t = t0
and the other from 1' = to to I = :2, where to is the acoustic radius at

which the potential is the minimum value (151mm, i.e., <D,(r0) = ¢z.m1ni

t2(02,l) f0“)

/ [02—(1>,(1:)]“2 dt =/ [1)2—<1>,(r)]”2 drl
1(02J) t1(02J)

12(02J)

[02—<D,(r)]“2dt, (41.37)

72(0211)

+/ [02-¢[(T)]U2 dTn , (41.38)

t0(1)

where we have written the function t((Dl) in these two ranges as 1' =

r1 ((1),) and r = t" ((1),), respectively. I-Iere, since the acoustic potential is
dependent on I, the position of its minimum also depends on I, so that 1:0

= 10(1). We can now replace dn and dt" by (dtl/d¢1)d¢1 and
(dru/dd>,)dd>,, respectiyely. The limits of integration with respect to (D,

are evidently 02 and 49mm, so that
to(l) r2(02.l)

/ [02—¢[(t)]l/2dtl+/ [02-¢,(t)]“2dr"
t

 

1(0291) t0(l)

02

d 1: d r=/ [“2—¢’]l/2('Wl:" d(p'l)dd>,. (41.39)
¢l.min

We define the “acoustic length,” s(¢,), as the distance measured in

terms of acoustic radius between the two branches of the potential curve
for a given 1, r; and r", at a given level of the potential 9D,:
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Fig. 41.5 A schematic picture of the acoustic potential ¢,(r) for a given 1. The function
1(4),) is two-valued.

170(1) tll(¢l)

S(¢[)E dT[+/ dl'" . (41.40)

TI(¢I) T0“)

With use of the acoustic length, the term (drn/drb, — dn/dd>,) in the

right-hand side of equation (41.39) is simply written as ds/dd’h which
represents the dependence of the distance between the two branches of
the potential curve upon the potential level. Then, combining equations
(41.33), (41.37), (41.38), (41.39), and (41.40), we eventually rewrite the
quantization rule as

2

0 ds+ = 2 _ 1/2 __(n 6)” f4» . (0 (1’1) dd),

For a fixed I, the left-hand side of equation (41.41) is now regarded

as a continuous, known function of 02, and hence equation (41.41) is

regarded as an integral equation, in which the unknown to be solved is
ds/ d915, and the kernel is (o2 — (1),)“2. Differentiation with respect to 02

leads equation (41.41) to an Abel type integral equation (Shibahashi,
1988),

d¢,. (41.41)

 81402.1) _ 2 -... ds
ZHT— d), .(0' (p1) dd), d(D], (41.42)

whose solution is analytically obtained. Here, we have assumed

86 an
—<<— 41.43
802 802 ( )

and discarded 86/ 80 2.
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In equation (41.42), the left-hand side is the known function which
is obtained from observational data, the kernel is (o2 — (15,)‘1/2, and the
unknown function to be solved is ds/chI. The recipe for solving an Abel
type integral equation is well known: Applying famdoz to equation

(41.42) with a parameter a after dividing it by a—o , we obtain

a an
277/ 2 (a—02)_1/2d02'

<1» 80
[.min

 

2

=/. f {(0—<1>)(a— 02)] —‘f;—d dado
(1"(.min ¢I.min

0’ a

= L5 dd), [(02—0) (cv—oz)]_l/2 doz. (41.44)
(DIJm'n d¢l ¢I

In the far right-hand side of this equation, we have changed the order of
integration. The second integral in the far right-hand side of equation
(41.44) is 77, and equation (41.44) is then reduced to

a an a ds
2 a—oz “1’2d02=/ —d¢ =s a . 41.45A 802( ) (p 6,4,, , ( > < )

[.min I.min

 

By writing (D, in place of a, we eventuallyobtain the analytic solution of
the Abel type integral equation:

<1):

s(<D,)=2/ a—fl] (¢1—02)_“2 doz. (41.46)
dam... 80 I

Since the acoustic length 3 (d))) is the distance between the two branches
of the potential curve determined by a given 1, equation (41.46) gives
the distance between the two turning points determined by both a form
of the potential, which itself is dependent on I, and the level in the
potential considered, d), = 02. Hence, hereafter, we regard the acoustic

length as a function of both 02 and l, and we rewrite it with the two
arguments

 3(02,l)=2/ 808721(0 2—o’2) 1/2do’2. (41.47)
¢I.min

In this expression, 02 represents a level of the potential, I should be

regarded as the parameter which determines the potential profile, and
we write do’2 in place of do2 in equation (41.46). The acoustic length
thus deduced from the integral equation is the time required for the

sound wave of a given frequency a to propagate between the two
turning points:
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3(02,I)E/ 2dr = r2(02,l)-—1:.(02,l). (41.48)

In equations (41.38)—(41.48), the minimum of the acoustic potential

(Dhmm is practically obtained by an extrapolation from a sequence of the

square of observed frequencies with respect to the radial order n,

¢l.min = lim 03/ 4 (41-49)

for each value of l. The formula for extrapolation is not unique, but the

final solution 3(02, 1) of the Abel type integral equation is not so
significantly dependent on the manner of extrapolation.

41.2.5 Separation of Sound Velocity Term

The acoustic length 5(02, 1) is the length of the cut of the acoustic

potential (D, for the degree I at the level of (D, = 02 measured in terms of

the acoustic radius. The acoustic potential itself consists of two terms, as

shown in equation (41.29), of which the first is directly related to the

sound velocity distribution. Since only that term depends on the degree I

of modes, we can separate the sound velocity term by examining

l-dependence of 3(02, 1) once we get the acoustic lengths for various

values of I. It is convenient to use l(l+1) instead of l as one of the

arguments of 5, since the acoustic potential 4), depends on the degree I

only in terms of l(l+1). So we write hereafter the acoustic length as s =
S(O‘z, L2), where

L2E1(l+ 1) . (41.50)

Differentiation of 3(02, L2) defined by equation (41.48) with respect to

L2 leads to

as = 812(02,L2) _ 81'.(02,L2)

8L2 8L2 8L2
 

_ 1 8r2_ 1 ar.
002) 8L2 C(ri) aL2 ’

where r1(02, L2) and r2(02, L2) denote the radii of the inner and the

outer turning points, respectively. Since the acoustic potential is

generally dominated by the Lamb frequency in the deep interior and by

the l-independent term in the outer envelope, as we note in the previous

section, the inner and the outer turning points are at

22
LC(’1)=02

r2.

 (41.51)

(41.52)
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and

111(r2)=a2 , (41.53)

respectively. Differentiating equations (41.52) and (41.53) with respect
to L2 while keeping 02 constant, we obtain

  

 

8r] 1 1 drl
=- 41.54

8L2 0- 2L2 dln[C(rl)/r|] ( )

and

87'2]

=0. 41.55[.912 < )

Substitution of equations (41.54) and (41.55) into equation (41.51)

yields

dlnr, 2 as], (41.56)

d[C(r1)/r1] :2 3L7

The suffix 1 appearing in the left-hand side of equation (41.56) means

that the quantities c(r) and r should be evaluated at the inner turning

point at which equation (41.52) is fulfilled. Then we rewrite equation
(41.56) as

d In r

da(r)
 

 

85_ 2

a(r)=o/L _ZL 8L2 L2 ’ (4157)

where

a(r)Ec(r)/r. (41.58)

The right-hand side of equation (41.57) can be evaluated by numerical

differentiation of the acoustic length 3(02, L2) obtained by equation

(41.47) as the solution of the integral equation (41.42). Then equation

(41.57) provides the gradient of the sound velocity at the inner turning
point of the mode. Once we get the acoustic lengths for various values of

L2 and 02, we then obtain d In r/da as a function of a in a wide range in
which the inner turning points of the modes are distributed, and we can

regard equation (41.57) as a differential equation with respect to
r= r(a). By integrating it with an appropriate boundary condition, we

get r=r(a) and then eventually c=c(r) from its inverse function.

The boundary condition for equation (41.57) should be given at the

surface as

r=R at a=c(R)/R, (41.59)

but it is in practice given as follows at the outermost point among the
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turning points in hand, where c = c(r) can be inferred from a theoretical
model with little uncertainty. Since the outermost point is close enough
to the surface, the sound velocity c(r) is well approximated by

2 L_L)c (r)oc ( r R . (41.60)

Then the logarithmic derivative of a(r)= c(r)/ r with respect to r is
estimated as

dlnr

dlna

Equation (41.61) is useful to estimate the radial distance r/R of the
outermost point corresponding to the smallest value of a.

 =—2(1—r/R). (41.61)

41.2.6 An Alternative Complementary Inversion Method

We have extended the quantization rule between discrete eigenvalues
and the corresponding integers to a continuous function of n = n (02, l),
and have derived the integral equation (41.42), of which the known

function is 8n/802. In practice, we can estimate 8n/802 from numerical
differentiation of discrete eigenvalues 0%, with respect to the radial

order n while keeping l constant; (802/8n)_'. In the case of a low
degree I, insofar as the frequency a is high enough, we can accurately

calculate the numerical differentiation, since many radial overtones
differing in n are available. However, in the case of a high degree l(>
600), since the number of overtones differing in the radial order n for a
given 1 is limited to only a few, such numerical differentiation of 02 with

respect to n is in practice inaccurate.

So, in order to efficiently extract information from p-modes with
high degree modes such as l 2 600, we need to derive an alternative
complementary integral equation in place of the integral equation
(41.42). Differentiation of equation (41.41) with respect to 1 leads to

 

27: a—’—"(a°2’)= —(21+1) (62-<1>,)-“2 (11qu (10,, (41.62)
¢I.min

where

dx _c(r)2 ds _c(r) dr

dd>,_ ,2 d¢,‘ r2 d¢,(r)’ (“'63)
since

a?—--=(21+1(’) 1)———c('). (41.64)
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Here, in estimating 8n/8l, we have to first estimate the non-integer
values of n = n(02, l) for each of l at any arbitrary values of 02 by
interpolation with respect to both 02 and 1. Such interpolation can be
done even if there are only a few overtones, as in the case of high degree

such as l 2 600. The left-hand side of equation (41.62) is then
observationally available, and it is regarded as a known function of 02

for a fixed I, which itself is obtained from observational data. Equation
(41.62) is now regarded as an Abel-type integral equation with the

unknown function to be solved dx/d¢1 and the kernel (02 — <D,)‘“2.
The integral equation (41.62) can be analytically solved by a procedure
similar to that described in the previous subsection, and the final
solution is given as

_ ”c(r) 2 02 an 2 ,2 —1/2 ,2x(oz, l)=/ —dr=——/ [—] (0 —o ) do .
r1 ,2 (21+ 1) (1,/Mi” 8 l 02

(41.65)

Here, since x((DI) is determined by the level in consideration in the

potential, which is itself determined by the degree 1, we regard x as a
function of both 02 and l, and we rewrite it with the two arguments.
Once we get x(az, l) for a wide range of l, by differentiating both sides
of the second equality in equation (41.65), we obtain

dlnr =_21(l+1) _81

d[a(r)_1] a(r)=a/L 2l+1 81 02'

which eventually gives the sound velocity distribution as equation
(41.57) does.

If we use the following formula in order to estimate an/ao2 for
high degree modes such as l > 600, we may still use equation (41.42)
even in the case of l 2 600:

8n(02,l)__[8n(02,l)/81]02
802 _ [802(n,l)/81],, ’

where the numerator is estimated by direct numerical differentiation
and the denominator 802/81 can be easily estimated from the
inclination of the curve connecting the modes of the fixed radial order n
on the (l, v)-diagram (or (k, o)-diagram). One of the disadvantages in
using equation (41.67) to estimate 8n(02, l)/<9o2 is that we have to
perform numerical differentiation twice. So we are better off using
equation (41.62) rather than equation (41.42) with the help of equation
(41.67).

 (41.66)

 (41.67)
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41.2.7 Application to the Real Observational Data

The validity of the present asymptotic inversion method has been
verified by Sekii and Shibahashi (1989) (see also Shibahashi and Sekii,

1988). They carried out numerical tests using a solar model and solved

the inverse problem by regarding the theoretically calculated eigenfre-

quencies as the observed values to see how well the sound velocity
distribution is reproduced. The practical procedure is the same as that
used in the previous section 41.2.5. They used 1971 p-modes which are
actually observed in the real sun. In order to determine the sensitivity of
the method to the observational errors in eigenfrequencies, they

prepared ten sets of simulate observational frequencies, which are
distributed within the observed standard deviation around the true

frequencies. Figure 41.6 shows the solutions together with the solution
in the case of error-free data and the true sound velocity of the model.

The ten sets of solutions are statistically distributed due to the statistical

distribution of the frequency data itself around the solution in the case
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Fig. 41.6 The square of the sound velocity c(r)2. The thin curves show the envelope of a
set of solutions obtained by inversion of the erroneous data of eigenspectrum
of 1971 p-modes. The thick curve shows the result of inversion of error-free
eigenspectrum. The smooth thin curve shows the true value of the model, of
which eigenspectrum of p-modes is used in the inverse problem. After
Shibahashi and Sekii (1988).
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Fig. 41.7 The relative error of the squared sound velocity obtained as the solution of the
inverse problem of p-mode oscillations in comparison with the true value of
the model; [c (rfinv - C(r)f,ue]/c(r)f,ue. The thin curves show the envelope of a
set of solutions obtained from the errorneous data of eigenspectrum of 1971
p-modes. The thick curve shows the result of inversion of error-free
eigenspectrum. After Shibahashi and Sekii (1988).

of error-free data. The thin curves in this figure indicate the envelopes

of the solutions, and they define the most reliable range for true sound

velocity distribution. Figure 41.7 shows the relative difference between
the true sound velocity distribution and the solutions deduced from the

sets of p-mode spectrum. We see that the inversion method reproduces
the true sound velocity in the range of 0.20 s r/R s 0.80.

Since we have verified the usefulness of the present inversion
method by performing numerical simulations, we now apply the method
to the real observational data compiled by Duvall et al. (1988) and

Libbrecht and Kaufman (1988). To estimate the error in the result of the
deduced sound velocity distribution caused by observational error in the
frequencies of modes, Shibahashi and Sekii (1988) constructed 72 sets of

frequency spectra of 1971 modes in the range of 1 S l s 600 by adding

some amounts within the standard deviation to the reported frequen-
cies. The thin curves of Fig. 41.8 show the envelopes of the set of sound
velocity distribution deduced from each of the frequency spectra. We
regard the belt surrounded by the envelopes in this figure as the reliable
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Fig. 41.8 The square of the sound velocity c(r)2. The thick curve shows the inversion
result from the observational data of 1971 modes compiled by Duvall et al.
(1988) and Libbrecht and Kaufman (1988). The thin curves show the
confidence level of 10 due to the observational error in frequency spectrum.
The smooth thin curve shows the value of a theoretical solar model of
Shibahashi et al. (1983). After Shibahashi and Sekii (1988).

sound velocity inferred from the observational data which was compiled
by Duvall et al. (1988) and Libbrecht and Kaufman (1988). The thick
curve in the same figure indicates the sound velocity deduced from the
reported frequencies without taking account of standard deviation. In
the same figure, we plot the sound velocity distribution of the model 1 of
Shibahashi et al. (1983). Figure 41.9 shows the difference between the
sound velocity distribution deduced from the observational data and
that of the theoretical model: (ciznv — c?mdel)/c3nodel. Since 72 statistical
sets of frequency spectra have been used, the confidential level shown
by these envelopes is estimated as 10. We find that the sound velocity
c(r) in the range of 0.20 s r/R S 0.40 deduced from the p-mode
spectrum is slower than that of the model.

As seen in Fig. 41.8, the gradient of the sound velocity c(r)2
significantly varies near r/R E 0.70, and this is the manifestation of the
transition between the radiative core and the convective envelope
(Christensen-Dalsgaard et al., 1985a). From the inversion of the
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Fig. 41.9 The relative error of the squared sound velocity obtained as the solution of the
inverse problem of p-mode oscillations in comparison with a theoretical model
of Shibahashi et al. (1983); [C(r)12nv - c(r)f.,ode.]/c(r)‘:'node.. The thick curve
shows the inversion result from the observational data of 1971 modes compiled
by Duvall et al. (1988) and Libbrecht and Kaufman (1988). The thin curves
show the confidence level of 10 due to observational error in the frequency
spectrum. After Shibahashi and Sekii (1988).

observational data, we reach the same conclusion as that of the forward

problem approach concerning the depth of the convective envelope —
that is, the convective envelope is about 2.1 X 105 km deep
(Christensen-Dalsgaard et al., 1985a). The gradient of the sound
velocity also varies significantly very much at the ionization zone, and
the amount of variation is dependent on the chemical abundance of the
corresponding element. Gough (1984b) and Déippen and Gough (1984,
1986) derived a method of inferring the helium abundance by using the
derivatives of the sound velocity.

42. Excitation Mechanism

For the excitation of observed oscillations, there exist two different

models. One of the possibilities is the linear overstability of the
eigenmodes, which is thought to be responsible for the pulsations of
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Cepheid variables. Ando and Osaki (1975) found by linear stability
analysis that many nonradial p-mode oscillations of the sun are
overstable due to the K-mechanism of the hydrogen ionization zone.

However, they completely neglected the effects of turbulent convection

on the p-mode oscillations because it was rather difficult to estimate
them reliably. Indeed, whether or not p-modes are overstable depends
on the treatment of convection (Ulrich and Rhodes, 1977; Goldreich

and Keeley, 1977a; Antia, Chitre, and Narasimha, 1982; Antia, Chitre,

and Gough, 1988; Gabriel, 1988; Chitre, 1988) as well as on the

treatment of radiation in the optically thin region (Christensen-
Dalsgaard and Frandsen, 19833). On the other hand, Goldreich and

Keeley (1977a, b), and Goldreich and Kumar (1988) and Kumar,
Franklin, and Goldreich (1988) examined the possibility of stochastic
excitation of eigenmode oscillations by turbulent convection. This

mechanism is essentially similar to the phenomenon in which the
oscillations of a system are excited at resonant frequencies and
maintained at some level by the Brownian motion of individual particles
that compose the system. Goldreich and Kumar (1988) estimated the

energy of oscillations excited by this mechanism and concluded that the

stochastic excitation model can explain the amplitudes of observed
five-minute oscillations. The results might be, however, sensitive to the
velocity of convection and the spectrum of the large eddies because they
determine the absolute value of the energy of the resonant eddies. At
present, it will be fair to say that the question of the excitation of the
five-minute oscillation has not been settled yet.

We now compare the result of stability analysis with observations.

If we discard the effects of turbulent convection on oscillations and

adopt the Eddington approximation for the radiative transfer in the
optically thin atmosphere, p-modes are overstable in wide ranges of n
and I. For a given I the growth rate first increases with radial order of

modes, but after reaching a maximum it decreases, and p-modes finally

become stabilized for a Z 0.03 s“. The most unstable modes are those
with a period around 300 s and with a wide range of degrees. The
stabilization of higher p-modes is due to the strong radiative dissipation
in the upper atmosphere. The general pattern of instability of p-modes
appears in reasonable agreement with the distribution of observed
power. However, f-modes almost always appear stable, because the

excitation mechanism (K-mechanism) does not operate for these modes

due to their solenoidal nature (i.e., V-E E 0). On the other hand,

observations show that the amplitudes of f—modes with high degree I are

comparable with those of p-modes with the same range of I. This fact
casts a serious suspicion on the justification of the hypothesis of
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self—exciting overstability of oscillations. Observations show that the
individual mode damps with the lifetime of the order of a few days. If we
assume the p-modes are self-excited, the amplitudes of these modes will
grow until some nonlinear effects suppress them. Some people claim,

however, that the observed amplitudes seem too small to induce such
nonlinear effects. A stochastic excitation hypothesis seems favorable for
explanations of these two problems: the observation of f-modes and the
lifetime of modes. According to this hypothesis, the turbulent convec-
tion generates acoustic noise, and acoustic noise in the sun’s resonant
cavity results in the excitation of the cavity’s normal modes. The kinetic
energy of modes is stochastically supplied by the turbulence, and the
radiation works to damp the modes. The excited modes in this process
are considered p-modes in the five-minute range because of the spectra
of turbulence. These modes are thought to induce three-mode coupling,
by which the kinetic energy of p-modes is transferred to f-modes
(Kumar and Goldreich, 1989). The amplitudes of modes are determined
by balance of power of turbulence and radiation damping. The
amplitudes estimated by Goldreich and Keeley (1977b) were much
smaller than the observed values. Goldreich and Kumar (1988)

reinvestigated the efficiency of the generation of acoustic noise in the
gravitationally stratified layer and found that the expected amplitudes
are comparable with the observed amplitudes.

It is seen in Fig. 11.6 that width of peaks in the power spectrum of
low-degree modes becomes broader with the increase of frequency 0.
This tendency seems common in the higher range of l. The top panel of
Fig. 42.1 shows the observed linewidth of modes with l = 19 — 24 and l
E 60 (Libbrecht, 1988b). The middle panel of Fig. 42.1 shows power per

mode normalized to represent the mean square surface (radial) velocity

per mode in (cm s—l)2. The bottom panel of Fig. 42.1 shows total energy
per mode as a function of frequency derived from the observation and
theoretical calculation of modes. Libbrecht (1988b, (1) has discussed

these data in relation to the possible excitation mechanisms. Theoretical
growth rates are, however, not very accurate due to the uncertainty of
convection-oscillation coupling, and the relation between the linear

growth rate and the power of oscillations is not straightforward. More
extensive theoretical investigations are highly desirable. Observations
of the phase relationship between the velocity amplitude and the
brightness amplitude of individual modes will provide helpful keys for
estimating of the damping/excitation rate of modes and for understand-
ing the excitation mechanism.

For g-mode oscillations, stability analysis shows that these modes

are stable. Stochastic excitation mechanisms do not work to excite these
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modes, because the time scales of oscillations and of turbulence differ

significantly. In order to explain reported observations of g-modes,
nonlinear mode coupling has been discussed by Dziembowski (1982,
1983), and a possibility of excitation due to the magnetic torque has
been discussed by Dziembowski, Paterno, and Ventura (1985).

43. Asteroseismology

The periods of the pulsations in classical variables have been used to get
information about the structure of those stars. Although most of the
classical pulsating variables present only a single mode (the radial
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fundamental mode or the first overtone), the period has provided us a
measure of the mean density of the star. Some of those stars, such as the
double-mode Cepheids, are pulsating in two different modes, and then
the stellar mass can be determined as one more item of information
from the pulsations in addition to the mean density. Thus, the increase
of pulsating modes in a star leads to the increase of the amount of
information derived from the pulsation. The most successful case is the
sun. Stimulated by the success of helioseismology, a similar attempt to
probe the internal structure of stars in general is encouraged. In recent
years, small amplitude pulsations have been discovered in many stars
which were hitherto regarded as non-pulsating stars as reviewed in
Chapter II. The most important characteristic of pulsations in these
newly discovered variables is that their pulsations consist of many more
eigenmodes than those in classical variables. This fact opens the
possibility of a seismological approach to stars in general, and the
research field probing the internal structure of stars in general is now
called “asteroseismology.” In this section, we evaluate the prospect and
review the present status of asteroseismology. Some other useful
reviews on the subject have been given by Christensen-Dalsgaard
(1984c, 1986), Dziembowski (1984a), Shibahashi (1986), and Dappen,
Dziembowski, and Sienkiewicz (1988b). Harvey (1988) reviewed
techniques for observing stellar oscillations.

Though the success of helioseismology is quite encouraging, the
seismological approach to stars in general is much more difficult than
that to the sun. In most cases, the stellar image cannot be resolved into a
two-dimensional disk image. Hence, the degree of the detectable
oscillations is restricted to 0 S l S 4. Otherwise the stellar surface is

divided into many small regions oscillating in different phases, and the
contribution of each region is canceled by others, so that the total
amplitude of the variability of the star is too small to be detected. Some
exceptions are rapidly rotating stars, in which rotationally broadened
line profiles help the visibility of variation caused by intermediate
degree modes up to l E 10 (see Section 7.3). As a consequence, the
number of observed eigenmodes in an individual star is much less than
in the solar case, and it is in many cases only a few. The degree I of a

mode is not always uniquely determined since the stellar image cannot
be resolved. The adjacent overtones are not always observed, and then

it is difficult to determine the radial order n. Except for the sun and
some binary stars, the radius and mass of a star are not determined

precisely from other independent observations. If these quantities could
be known, they would give strict constraints to the seismological
approach. In practice, instead, these quantities also have to be
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determined by using the oscillation data themselves. All of the facts
described above make asteroseismology more difficult than helioseis-
mology. Nevertheless, since asteroseismology is the unique method of

probing observationally the interior of stars which can never be seen in
principle, it is worth investigating. Indeed, solar-like oscillations have
been reported in some stars, and a useful theoretical method of
determining stellar mass and age has been proposed. The rapid
oscillations in Ap stars are now regarded as a unique tool to investigate
stellar internal magnetism. In this section, we discuss first the
asteroseismology of sun-like oscillations, the rapidly oscillating Ap
stars, and white dwarfs.

43.1 Sun-Like Oscillations
High order p-modes with low degrees such as l = 0 — 4 penetrate the
stellar deep interior, and may be useful to the seismological approach.

By assuming Goldreich and Keeley’s (1977a, b) mechanism for the
stochastic wave excitation by convective motion in late type stars,
Christensen-Dalsgaard and Frandsen (1983b) estimated the amplitudes
in brightness of high order p-modes with low degrees of those stars as
A I/ I E 10’5, which is much smaller than the photometric noise level for
the ground-based observation (E millimagnitude). Some aspiring
attempts to detect such small amplitude oscillations have been made;
two groups (Noyes, Baliunas, Belserene, Duncan, Horne, and Widrow,

1984; Gelly, Grec, and Fossat, 1986) have so far reported possible
detection of them in stars a Cen (G2V) and a CMi (FSIV) and 8 Eri
(K2V), respectively, and Frandsen (1987) reported an upper limit on
p-mode amplitudes in ,3 Hyi (G21V). According to the asymptotic
theory of oscillations (Tassoul, 1980; see Section 16), the angular

eigenfrequency on, of the mode with the radial order n and the degree
I (n >> I E 1) is given by (16.35), and the eigenfrequencies v E o/21r of
p-modes with even and odd I alternate, to first order, with equal spacing
of V0/ 2. Since the signal-to-noise ratio of these data is still marginal and
the periodic oscillation is not conspicuous in the raw data, those two
groups first calculated the power spectra of the data for variability and
then searched for expected regular patterns in them. The Nice group
(Gelly et al., 1986) reported in this way sun-like oscillations around v E
3mHz with an equi-distance of 827qu for a Cen and those around v E
1.5mHz with an equi-distance of 437qu for a CMi from their

observation of radial velocity by means of their sodium cell spec-

trophotometer. Noyes et al. (1984) performed nightly monitoring of the
intensities of the Ca H and K lines, and they also reported the sun-like
oscillations in e Eri around v E 1.7mHz with an equi-distance of 86qu.
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By using the frequency spacing thus obtained, we can impose some
constraints on the physical parameters of those stars. The quantity v0
represents the inverse of the time required for the round trip of the
sound wave between the surface and the center, and it is roughly
proportional to (M/R3)”. Therefore, by assuming the mass of a star,
we can estimate its radius from the observed quantity of spacing
between eigenfrequencies of p-modes with low, even and odd degrees,
v0. For a CMi, the radius thus obtained is 1.87RQ and it seems

reasonable (Gelly et al., 1986). Since a Cen is a member of the closest
multiple star system, its mass is well measured as M = 1.09MQ.
Furthermore, the precise measurement of its temperature and of its
distance leads to R = 1.23 :l: 0.04RG). However, the radius inferred from

the value of v0 is R = 0.93R® and hence there is an evident contradiction

(Demarque, Guenter, and van Altena, 1986; Gelly et al., 1986).

According to the asymptotic theory (Tassoul, 1980), the departure
from the true equi-distance of the power spectrum is given by

0n,,—o,,_1,,+2E(4l+6)Av% /0,,,,E21r (41+6)D0 , (43.1)

where

R dcAEVO“ [c(R)/R— —r
0 dr

Since A is sensitive to conditions near the center of the star (Provost,

_1dr] . (43.2)
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Fig. 43.1 The location of the ZAMS (solid line) and of a 1M9 evolution sequence

(dashed line) in a (vu, D.,)-diagram, where V.) E [2fl,R c"dr]'l and D0 E
(0,,,,— 0,,_..,+2)/[21r(4l + 6)]. In this diagram, we evaluate Do at n= 22 and l

= 1. From Christensen-Dalsgaard (1984c).
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1984), the departure from the equi-distance strongly depends on the
evolutionary stage of the star. Hence, we can distinguish various models
differing in mass and age on a two-dimensional (v0, D0)-diagram

(Christensen-Dalsgaard, 1984c, 1986, 1988; Ulrich, 1986a, 1988;

Gough, 1987), if the chemical composition is given, as we can do on the

HR diagram. Figure 43.1 shows the evolutionary track of a solar model
on the (V0, D0)-diagram. Plotting the observed values of v0 and Do on

this diagram, we can determine the mass and age of a star. Precise

measurements of eigenfrequencies of p-modes will become a powerful
tool to determine these fundamental quantities of stars.

Guenter and Demarque (1986) compared the calculated oscillation

spectrum and the location on the HR diagram of models of e Eri with

the observation by parameterizing the mass, the metallicity, and the

mixing length. The best fit among their models has M = 0.8MQ, Z =

0.02, ox = 1.00, R = 0.80RQ, and an age of 11.5 Gyr. This model is so old

that the high chromospheric activity (the observation was carried out by

monitoring Ca H and K lines) and rapid rotation rate of the star seem to
contradict their conclusion (Guenter, 1987). Soderblom and Déippen
(1986) have proposed another possibility, that of a young stellar model.
A precise measurement of D0 will be useful to examine their

conclusions.
Though the quality of the observations so far made is not yet

satisfactory, the attempts described above provide us with hope that we
can develop the seismology of sun-like stars in the near future. In order

to detect their very minute variability, a high precision in photometry

and/or spectroscopy is required. Some groups are applying the

instruments for solar oscillations, and some other groups are now

developing instruments dedicated for this purpose (e.g., Connes, 1985;

Butcher and Hicks, 1986; Rhodes, Cacciani, and Tomczyk, 1986;

Pietraszewski, Reay, and Ring, 1986a; Pietraszewski, Ring, and

Forrest, 1986b). Uninterrupted, continuous observations to get high
resolution in the power spectrum are also required. The best way to
achieve these requirements is to observe from space, and some projects

are now in progress (e.g., Praderie, Mangeney, Lemaire, Puget, and

Bisnovatyi-Kogan, 1988; Soderblom, 1988). Though the range of l of
detectable modes is limited to 0 s l _<_ 4, if many overtones differing in
radial order are detected we can, in principle, infer the sound velocity

distribution in the stellar interior as the inverse problem. The recipe is

essentially the same as that outlined in Section 41 for the inverse
problem of solar oscillations. Whether or not such an inverse approach
is practically applicable depends on the quality of observations; at the
present moment, it is quite uncertain.
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43.2 Rapidly Oscillating Ap Stars

The rapidly oscillating Ap stars are another group of stars which reveal

high-order p-mode oscillations with low degrees 1. Therefore, discus-

sions in the previous subsection are also valid for these stars. Another
interesting and unique feature is that the oscillations in Ap stars seem
significantly influenced by the stellar magnetism as well as the rotation.

We mainly discuss this aspect in the following.

Let us consider a uniformly rotating, magnetic star, whose

magnetic axis is inclined to the rotation axis by the angle ,8. We assume
here that the effect of the magnetic field upon the oscillations dominates

over that of the rotation. Then a form of normal modes labeled by the
azimuthal order m (m= —l, ..., l) with respect to the magnetic axis is
given by equation (19.84) (Kurtz and Shibahashi, 1986), and the
observable luminosity variation due to a normal mode is given by

equation (19.92). Equation (19.92) means that even if only a single

mode is excited, (21 + 1)-fold frequency components, (0(0) + 0mm“ +
mflcosfi) — m’Q for m’ = —l, ..., l, with spacing equal to the rotational

frequency (1 of the star with respect to an inertial frame are observed as
a result of the variation in the aspect angle of the eigenmode with the

rotation of the star. Here, ,3 is the angle between the rotation axis of the

star and the magnetic axis (see Fig. 19.1). Furthermore, equation

(19.92) indicates that the relative amplitudes of those components are

not equal to each other but are dependent on the rotation and the

magnetic field of the star (Dziembowski and Goode, 1985, 1986). This
leads to the possibility of using the observed fine structure of oscillation

frequencies as a diagnosis of rotation and the internal magnetic field of

Ap stars (see Section 9; Fig. 9.4). In this sense, the observation of the

rapidly oscillating Ap stars will open a new aspect of asteroseismology.

Let us consider an axisymmetric mode with respect to the magnetic
axis of the star (m = 0). Let A,” denote the amplitude corresponding to
a frequency component 0: 0(0) + agi'gag- m’ 9. Then equation (19.92)
leads to simple relations among the amplitudes of the (21 + 1)-fold fine
structure (see Fig. 9.4):

Aim, +147"! = 2d(0)m'(fl)d(2v0 (i)

A? 4% (WEB (i)
 (43.3)

since

(151-”(m= —d‘.°.,- (fl) . (43.4)
and



374 NONRADIAL OSCILLATIONS OF STARS

z‘Ilm,'—1‘I[—mI _ m' CM!)

Ar'+A,-m' 6.9):gs—a.<ml):ag’
where 6 and 1' denote the angle between the rotation axis and the

magnetic axis and that between the rotation axis of the star and the
line--,of-sight respectively. In equations (43. 3) and (43.4), d512," (,8) and
d(,,’,)m(i) are defined by equations (19. 69) and (19. 88), respectively, and
they are constants depending on the mode considered and the

geometrical configuration. Equation (43.3) means that the ratio of the
summation of the amplitudes of :l:m’-components to the amplitude of
the central component of the fine structure provides us information

about the geometrical configuration. Equation (43.5) means that the
relative difference of the amplitudes of :l:m’-components gives a ratio

between the effects of the rotation and of the magnetic field upon the

oscillation. It should be noted that in equation (43. 5) the magnetic effect

on the oscillation appears only in terms of algl’fgg— 0,332?“ since the
eigenfunction_with m = 0 is modified by the Coriolis force to be mixed

only with m =:l:1 components. It should also be noted here that the

exact form of the magnetic perturbation to frequency o(lfimag is not
necessary in deriving the above formulae. Only axial symmetlry is taken

into account. For 1—— 1, equations (43. 3) and (43. 5) are reduced to

 (43.5)

 

  

 

  

1 —1
%=tanfltani (43.6)

I

d _3" A}-A1'= C,, 10 (43 7)
A } +A 1—1 olflfmgg—ofin1 imag. .

Also for l = 2, those equations are reduced to

A§+A52 = 3 sinzfisinzi (43 8)
A3 (3 cosZfi—1)(3 coszi—l) ’ °

A%+A;2 2ano
= ’ , 43.92134.52 6.592386111241144 ( )

Azl—Afl _ 12 sinBcosfisinicosi (43 10)

A3 (3 coszfi—l) (3 coszi—l) ’ '

and

AE'AZ- — ano (43.11) 

Aé+A21—0|(,,1,Tmag—Ol(mlimag

By using these formulae, if we obtain fine structures in the power
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Table 43.1 Application of equations (43.6) and (43.7).
 

 

 

. CM!)
I-ID tan/3 tant 00“)"‘ag—0lmmag 17,0t He Reference

6532 2.14 0.295 197858 Kurtz and
Kreidl (1985)

83368 9.65 0.10 2.85 —700~+700 G Kurtz and

Shibahashi (1986)
 

spectrum, we can compare the relative importance of the effects of the
magnetic field and of the rotation on the oscillations and derive some
constraints on the geometric configuration of the star. The latter can be

verified by using the variation in the observed magnetic field, if we
apply the oblique rotator model for the magnetic field. Table 43.1 lists

the results of the application of equations (43.6) and (43.7) to some of
the rapidly oscillating Ap stars listed in Table 9. 1. The second and the
third columns give tan,B tan 1' and C,,1_10/(0l(”"“’ 6'23sz) derived
from those equations, respectively. The fourth and the fifth columns
give the rotational periods and the surface magnetic field strength
obtained from other independent observations. For HD 6532, the

surface magnetic field has not yet been measured. Comparing the values

of CQ/ (0|(,,,')’;‘gg— 0'22me and the rotation period of this star and of HD
83368, we expect that the surface magnetic field of HD 6532is of the

order of 300 G insofar as we suppose 01m)1’"“g 0c H2 (Kurtz and
Shibahashi, 1986). The measurement of the surface magnetic field

strength H, of HD 6532 may allow examination of this prediction based
on the asteroseismological approach to Ap stars.

So far we have not specified a form of 0mm“. In the case of a
dipole magnetic field, the denominator of the right-hand side of
equation (43. 5), 0(1)|”“’g — afglm‘fi is positive. Then, equation (43.5)
predicts that the amplitude of the lower frequency-component in the
fine structure is higher than that of the higher frequency-component
(see Fig. 9.4). Table 43.] shows that this is the case for HD 6532 and

HD 83368. We can infer the internal magnetic field strength of Ap stars
from equation (43.5). Although the directly observable magnetic field
strength, He, gives us only the magnetic field strength at the stellar
surface, the information of the magnetism yielded by the oscillation data

provides us a field strength averaged in the stellar interior by means of
the eigenfunctions. Such information will provide us useful concepts for
the understanding of the physics of Ap stars.
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43.3 White Dwarfs

Since the number of modes of an individual pulsating white dwarf is

larger than those of other type pulsating stars except for the sun,

asteroseismology of white dwarfs may be promising. The oscillations in

white dwarfs are regarded as nonradial g-modes. According to the
asymptotic theory for high order g-modes with low degrees I, there is a

simple relation given by equation (11.8) among the periods, the degree

I, and the radial order n (Tassoul, 1980; Section 16) as in the case of

p-modes. Kawaler (1987a,b, 1988b) applied this relation to obtain some
constraints on the physical quantities of some of pulsating white dwarfs.

Cooling rates of pre-white dwarfs are thought to be rapid enough to
enable us to detect the resultant period change of pulsations (Winget,

Hansen, and Van Horn, 1983). Hence, detection of such a period
change will provide us a direct measurement of stellar evolution. The
frequency of each eigenmode is very sensitive to the internal distribu-
tion of the Brunt-Véiisiiléi frequency, which is sensitive to the internal

temperature of the white dwarf as well as the stellar radius. At the

pre-white dwarf stage, as the star becomes more compact, the period

becomes shorter. At some later stage, the effect of the cooling of the

internal temperature upon the frequency of g—mode oscillations may
dominate that of the decrease of the stellar radius, and the period tends

to increase. Kawaler, Hansen, and Winget (1985a) theoretically showed

that the transition from negative to positive dH/dt occurs at nearly 1000
solar luminosity for a wide variety of the planetary nebula nuclei and

pre-white dwarf models, and dH/dt is near zero only for a very short
time. Since the cooling time scale of DO pre-white dwarfs is only of the

order of 106 yr, while it is 107‘8 yr (109 yr) for DB (DA) white dwarfs,
Winget et al. (1983) expected that the period change in oscillations of

PGllS9 variables was detectable within 2-3 years. In fact, such a

measurement of period changes was later realized by Winget, Kepler,

Robinson, Nather, and O’Donoghue (1985). The observed period

change rates H/I7 are =1.4 X 106 yr for PGllS9—035 (Winget et al.,
1985) and IH/fll > 6.9 X 108 yr for a ll Ceti star, G117-BlSA (Kepler,
Winget, Robinson, and Nather,1988). Though these absolute values

are in agreementllwith the expectation, the sign of [7 for PG] 159-035 (II

= —1.2 X 10 l5 sl) is contrary to the theoretical expectation of

Kawaler et al. (1985a). Kawaler, Winget, and Hansen (1985b) claimed

that this may indicate that some other important factors such as the

rotation, the diffusion of chemical elements, and so on should be taken
into account to estimate 17. Measurement of period change will give us

some clues to understand the evolutionary stage of pulsating hot
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pre-white dwarfs.

The eigenfrequencies of g-modes are mainly governed by the
Brunt-Vaisala frequency distribution in the star. Therefore, we can, in

principle, obtain some information about the Brunt-Vaisala frequency

distribution in the star by means of a seismological approach. The

Brunt-Vaisala frequency is related with the entropy gradient, which is

itself dependent on the past nuclear reaction, cooling rate, degeneracy,
diffusion of elements, and convection. None of these fundamental

processes have been well understood. Therefore, the seismological
study based on the inverse problem of white dwarf oscillations may
provide a unique tool to investigate these elementary processes, and
hence it is worth doing, though such an attempt using the available data

at the moment seems somehow ambitious. The following is an inversion
method developed by Shibahashi, Sekii, and Kawaler (1988), which is a

variant of an inversion method described in Section 41.2 to probe the
sound velocity distribution in the sun from the p-mode oscillations of the
sun.

The wave equation governing the radial part of g-mode oscillation
is, in some limiting cases, reduced to a form similar to the Schrodinger
equation in quantum mechanics, which is written as

(120 l(l+1)
dr2+]:/2 0.10111)0. (43.12)  

Here, 1)) denotes an eigenfunction, l(l+1)/0 is regarded as the

eigenvalue, and E,(r) is the “gravity wave potential” which consists of a

product of l(l+1) and the inverse of Brunt-Véiiséiléi frequency and the

l-independent part @(r):

3,0)_ l(lN+21)———+@(r). (43.13)

The first term in the right-hand side of equation (43.13) dominates over
Q(r) in the inner part of a white dwarf, while @(r) becomes large in the

outer part. Based on the WKBJ asymptotic method, the quantization

rule leads to

(n+6)7r=/.2[l(l:1)— 3,(r) “2 Nd (43.14)

where n is the radial order of the mode and r. and r2 are the turning

points at which the integrand of the right-hand side of equation (43.14)

vanishes. The quantization rule gives only a relation between discrete
eigenvalues l(l+1)/02 and the corresponding integers n. But hereafter

we extend this relation to nonintegers n by interpolation and deal with
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equation (43.14) as if it were a relation among continuous variables

l(l+1)/ 02, n, and I. If we can identify each of the observed modes, then
we can regard equation (43.14) as an integral equation, in which (n +
€)1T is the known function of l(l+1)/ 02, the kernel is [l(l+1)/02—E,]“2,
and the unknown to be solved is N/r, since, for a fixed value of l, the

left-hand side of equation (43.14) is a function of l(l+1)/02.
The mathematical procedure to solve this integral equation is

parallel to that to solve the integral equation for p-mode oscillations,
equation (41.33). The solution gives the distance between two turning
points measured with the gravity wave velocity:

5051,05 gdr

'1

:1 8n

:2/ ___[5"’(’+1)/02]‘“2 d[l(l+1)/02] .
[l(l+1)/02],,,,.,, 8 [1(1+ 1)/0 2]

(43.15)

Here, the lower limit of the integral region corresponds to the minimum

of the gravity wave potential, and it is obtained by extrapolating
eigenvalues to n = 0. Once we get solutions (43.15) for some different
degrees, we can obtain

d[1/N(r.)]/d ln r.=(21+1)/[21(1+1)]-(as/al)—' (43.16)

by differentiating solutions (43.15) with respect to 1 since the inner
turning point of r, is approximately given by

N2(r1)=02. (43.17)

The right-hand side of equation (43.16) is evaluated at a given
l(l+1)/02; thus, by using equation (43.17), we should regard equation
(43.16) as an equation to give (I [1/N(r1)]/d In r] as a function of N(rl).
By using a reasonable range of l, we eventually obtain the Brunt-Vaisaléi
frequency distribution in the white dwarf.

Figure 43.2 shows the result of the numerical simulation performed
by Shibahashi et al. (1988). It shows the true Brunt-Vaisala frequency of
the model (thin curve) as a function of f6 N/ r dr (lower scale) and the
Brunt-Vaisala frequency obtained as the solution of the inverse problem
of 95 eigenmodes of g-modes with l = 1 — 10 (thick curve), which are
shown in the (l,[l(l+1)/02]”2)-diagram of Fig. 43.3. In solving the
integral equation, Shibahashi et al. (1988) supposed that the modes
were well identified and used wider ranges of 1 than the actually
detectable modes in order to examine the validity of the inversion
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Fig. 43.2 The Brunt-Vaisaléi frequency distribution in the pre-white dwarf model of
Shibahashi et al. (1988) (M = 0.60MQ, L = lOOLG) (thin curve) as a function
of fi,’ N/r dr and the inverted result from the g-mode oscillations spectrum
(thick curve). The upper scale of the abscissa indicates r/R as a reference.
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performed by Shibahashi et al. (1988). The ordinate and the abscissa indicate!

and [l(l+1)]“2/o, respectively.



380 NONRADIAL OSCILLATIONS OF STARS

method itself. As seen from this figure, the inversion method itself

works quite well to reproduce the true Brunt-Vaisala frequency. In
practical cases, the radial orders n and the degrees I of observed modes
cannot be uniquely identified prior to the application of equation
(43.14); or, rather, they should be determined from equation (43.14)
itself with an initial guess of N2(r) and a constraint that they must be

integers for observed modes. Once the values of n and l are fixed, then
we apply the inversion method to obtain the profile of N2. Such
processes are iteratively repeated until the best solutions for both the
mode identification and the gravity wave potential are obtained. The
number of modes observed for an individual pulsating white dwarf is at
the present moment at most 28 (Winget, Robinson, Nather, and

Fontaine, 1982b), which is too small to be applied to the integral
equation (43.14) to infer the spatial variation of the Brunt-Vaisala
frequency in the star. If more oscillations with minute amplitudes are

detected in future with the development in observations, the inference

of N2-profile following the recipe outlined here will become possible.
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symbolical forms of boundary conditions in Sect. 18
quantity defined by equation (29.14); [= ENET/(CPTH
column vector composed of H, in Sect. 34
observed magnetic field strength of a star in Sect. 9 and 43
spheroidal component of relative horizontal displacement vector
El/r defined by equation (34.1) in Sect. 34
pressure scale height; [= — dr/dlnp = p/(pg)]
enthalpy
specific angular momentum in Sect. 36
function defined by equation (15.7)

imaginary part
the order of differential equation in Sect. 18.2
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(39.13) _
Fourier component of I with respect to time defined by equation
(39.14)
quantity defined by equation (19.23)
brightness variation
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mean intensity [see equation (21.26)]
quantity defined by equation (34.5) in Sect. 34
bi-diagonal matrix defined by equation (34.22) in Sect. 34
kernel matrix in Sect. 41
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radiative conductivity; [= 40c... T3/(3Kp)]
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linear operator with respect to E defined by equation (14.45)
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stellar luminosity
number of boundary condition including normalization condition in
Sect. 18.2
number of inner boundary conditions in Sect. 18.2
convective luminosity
radiative luminosity

1/2

Lamb frequency; { = Elli
luminosity at radius r
quantities defined by equation (18.69) in Sect. 18.2
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l(l+ 1) in Sect. 41
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quantity defined by equation (29.14); [= KkZ/(cpp)]
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= Iml +2(i— 1) for even modes; = Iml +2j-1 for odd modes in
Sect. 33
mixing length
linear operator with respect to 5 defined by equation (19.11)
matrix defined by equation (19.27)

bi-diagonal matrices defined by equation (34.22)
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macroturbulence velocity in Sect. 7.6
mass of the convective zone
mass inside thte radius r
quantities defined by equation (18.76) in Sect. 18.2
bolometric magnitude
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mass of the atomic mass unit
light amplitude in magnitude
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number density of nuclei with atomic weight j in Sect. 27
number of g-type nodes (cf. Sect. 17)
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normalization constant of spherical harmonics
radial order of mode [ordinal number of modes; (= Np — Ng)]
number of nodes in u-gradient zone in Sect. 17
number of nodes in envelope gravity-wave zone in Sect. 17
number of nodes in envelope acoustic-wave zone in Sect. 17
matrix defined by equation (19.26)
Reynolds stress in Sect. 20 and 30
matrix defined by equations (18.79), (18.87), and (18.97) in Sect.
18.2
function defined by equation (16.3) in Sect. 16
function defined by equation (22.20) in Sect. 22
Ferrers’ associated Legendre polynomials
pressure
turtulent pressure

gaseous pressure
radiation pressure
p-mode trapped effectively in the envelope in Sect. 17
n-th overtone of nonradial p-mode belonging to spherical harmo-
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matrix defined by equations (18.80), (18.88), and (18.98) in Sect.
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pulsation constant (Q-value); [=H(p’/p‘®)“2]
function defined by equation (16.4) in Sect. 16
function defined by equation (22.21) in Sect. 22
energy generated by nuclear reaction of j-and k-nuclei in Sect. 27
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gas constant
matrix defined by equations (18.83), (18.91), and (18.94) in Sect.
18.2
stellar radius
distance from the origin of the phase diagram in Sect. 16
Richardson number in Sect. 35
solar radius; (=6.960 x 1010 cm)
real part
position vector
matrix defined by equations (18.84), (18.92), and (18.95) in Sect.
18.2
radial coordinate
penetration depth r at the turning point defined by equation (38.3)
in Chapter VII
stress tensor
matrix defined by equations (18.86) and (18.96)
entropy
velocity amplitude of spheroidal component in Sect. 7
temporal dependence of perturbations; f’ 0: exp(st) in Sect. 29
acoustic length defined by equation (41.40) in Sect. 41
column vector composed of T, in Sect. 34
temperature
velocity amplitude of toroidal component in Sect. 7
toroidal component of relative displacement vector E/r defined by
equation (34.1)
effective temperature
time
orthogonal matrix diagonalizing the matrices A or K in Sect. 41

specific internal energy
homology invariant; (= dln, — M,
velocity including turbulent convective velocity fields

vector composed of unknown u(r)) in Sect. 41
unknown function to be solved in integral equation in Sect. 41
convective velocity; (= V,+ V,)
unitary matrix diagonalizing the matrix K in Sect. 41
laminar convective velocity
poloidal component (r- and G-components) of velocity in Sect. 36
turbulent convective velocity
pulsation velocity due to spheroidal mode [see equation (7.1)]
pulsation velocity due to toroidal mode [see equation (7.2)]
homology invariant; (= — ‘2': = 0:”)
equatorial rotational velocity
quantity defined by equation (18.18); (= — 1T1 22‘?)
representative velocity of convection in Sect. 30
velocity fields other than convection
group velocity
phase velocity
poloidal component of linear perturbation of velocity in Sect. 36
variable defined by equation (16.9) in Sect. l6
component of v0.0“ proportional to Yf"(0, 4)) defined by equation

dlnM, _ 4mjp  
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(39.10)
Fourier component of 1) with respect to time defined by equation
(39.11)
observed Doppler velocity in Sect. 39
oscillatory velocity field observed on the solar disk in Sect. 39
=[8In(1/p)/8InT],,
quantity defined by equation (20.54) in Sect. 20
symmetric tridiagonal matrix defined by equation (34.28)
variable defined by equation (16.15) in Sect. 16

work integral; (= W~+ WN + WC)

work due to the variation of convective energy flux defined by
equation (26.4)
work due to the variation of radiative energy flux defined by equa-
tion (26.3)
work due to nuclear energy generation defined by equation (26.2)

kinetic energy leaked by running waves in Sect. 27
mechanical work defined by equation (30.1); (= W,,,+ W_,.,,)

a part of mechanical work due to turbulent pressure defined by
equation (30.4)
a part of mechanical work due to turbulent viscous stress term de-
fined by equation (30.5)

thermal work
derivative of the work integral (=dW/dM,) in Sect. 27
matrix defined by equation (18.103) in Sect. 18.2
vector composed of w,- in Sect. 41
variable defined by equation (16.10) in Sect. l6

observationally known data in Sect. 41
hydrogen abundance
quantity defined by equation (20.48) in Sects. 20 and 30
mass fraction of an element 1'
mass fraction of 3He
nondimensional radius fraction; (=r/R)

one of the two-dimensional coordinates on the solar disk in Sect.
39
column vector composed of y,-’ in Sect. 34
helium abundance
quantity defined by equation (20.49) in Sects. 20 and 30
spherical surface harmonics defined by equation (13.58)
function defined by equation (34.37)
one of the two-dimensional coordinates on the solar disk in Sect.
39
nondimensional variables defined by equations (18.1)—(18.4) for i

= 1, 2, 3, and 4 and by equations (24.5) and (24.6) for i=5 and 6

nondimensional variables defined by equation (34.6) wih super-

script representing terms proportional to Y,"'(0, 4)) in Sect. 34
i-th nondimensional variable y,-(x) at x=x,, in Sect. 18 and 24

matrix defined by equation (18.105) in Sect. 18.2

column vector defined by equation (34.33) in Sect. 34

mass fraction of heavy elements

quantity defined by equation (20.50) in Sects. 20 and 30
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height
matrix consisting of eigenvectors in Sect. 19
ratio of the mixing length to the pressure scale height; (= l,/H)
relative amplitude of oscillation IV-EI or |6p/pl in Sect. 30
quantity defined by equation (26.10)
quantity defined by equation (26.12)
expansion coefficient of 5“” in a rotating star defined by equation
( 19.19)
ratio of the gas pressure to the total pressure
angle of the rotation axis to the magnetic axis of a star
expansion coefficients of E“) in a rotating star defined by equa-
tions (19.20) and (19.31)
adiabatic exponent; [= (3—3)_;]
adiabatic exponent; [= 1/{1 — (81nT/81np)s}]
adiabatic exponent; [= ( 3:3)“; + 1]
ratio of the specific heats; [= cp/cv]
ratio of the specific heats for the ideal gas
quantity defined by equation (18.35) in Sect. 18
expansion coefficients of 5“” in a rotating star defined by equa-
tions (19.20) and (19.32)
quantity defined by equation (17.6)
Lagrangian perturbation, e.g., 6T, 6p, etc.
Kronecker’s delta
quantities defined by equation (20.28)
argument of complex variable 5”,, in Sect. 4

rate of nuclear energy generation
entropy dependence of nuclear energy generation rate;

1: cp( 8:9“;N )p]

temperature dependence of nuclear energy generation rate;

1= ( 21?”)..1
rate of viscous dissipation
pressure dependence of nuclear energy generation rate; [= ( 2'31““
density dependence of nuclear energy generation rate; [= ( ?;gfh]
small quantity
phase correction term in the quantization rule defined by equation
(41.33) in Sect. 41
variable defined by equation (16.14) in Sect. 16
radial component of vorticity w in Sect. 33
toroidal modes defined by equation (19.21)
growth rate; (= — ol/oR)
quantity defined by equation (34.15) in Sect. 34
canonical variable; [= S—exp (— Io ”Tdr)] in Sect. 15
canonical variable defined in Sect. 22
l-independent part of gravity wave potential defined by equation
(43.13) in Sect. 43
polar angle in polar coordinates (r, 0, ¢)
polar angle measured with respect to the magnetic axis of a star in
the co-rotating frame in Sect. 19.5
polar angle measured with respect to the rotation axis of a star in
an inertial frame in Sect. 19.5
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polar angle measured with respect to the line-of-sight in an inertial
frame in Sect. 19.5
polar angle measured with respect to the rotation axis of a star in
the co-rotating frame in Sect. 19.5
average weight in difference scheme in Sect. 18 and 24
inverse of penetration depth of the evanescent wave; [K2= — k3]
opacity
entropy dependence of opacity with constant pressure; [= cp(%':—")p]
temperature dependence of opacity with constant density;

1= ($4,211
pressure dependence of opacity with constant entropy; [= ( ‘9'")3]

. . . alnp

densnty dependence of opacnty With constant temperature;

1: (:ler)T]

eddy conductivity
diagonal matrix consisting of the characteristic values
of the matrix 0
diagonal matrix defined by equation (34.21) in Sect. 34
quantity defined by equation (18.70)
wavelength of spectral line
eigenvalue in Sect. 18.2
horizontal wavelength
roots of characteristic equation in Sect. 18.1
characteristic values of matrix A in Sect. 41
j-th eigenvalue of the diagonal matrix D in Sect. 34
phase angle of the phase diagram in Sect. l6
wavelength measured from the line center in Sect. 7
rotational width of spectral line in Sect. 7
mean molecular weight
= cos 0 in Sect. 13
ordering number defined by equation (34.38) in Sect. 34
turbulent viscosity
frequency; (= o/217= l/I'I)
characteristic frequency defined by equation (9.2)
frequency of the main pulsation in Sect. 10
temperature dependence of nuclear reaction rate of i- and j-nuclei
[see equation (27.18)]
radial component of the relative displacement vector Elr in Sect. 34
gravity wave potential in Sect. 43
displacement vector
radial part of the displacement in the horizontal direction
radial part of the displacement in the radial direction
(k', l', m’)-mode in Sect. 14
canonical variable; [= r25, exp(— Iorfzdrfl in Sect. 15
canonical variable defined in Sect. 22
matrix defined by equation (18.102)
period of oscillation
characteristic period of oscillation defined by equation (11.9)
number 11
radial coordinate in cylindrical coordinates (w, 0, z) in Sect. 36
density

 

 



tHK

INA

tdamp

tdyn

tr!
Ir05C

LIST OF SYMBOLS 409

stellar mean density

= (312:) T.X,-

matrix defined by equation (18.101) in Sect. 18.2 and by equation
(41.7) in Sect. 41
angular frequency of oscillation; e.g., f’ 0: exp (iot)
Alfven angular frequency defined by equation (29.15)
imaginary part of angular frequency
real part of angular frequency
angular frequency of oscillation in the co-rotating frame of the star
acoustic cut-off angular frequency in a plane isothermal atmo-

sphere; [= c/(2Hp)]
angular eigenfrequency of adiabatic oscillation in Sect. 25

= @1011

Stefan-Boltzman constant
perturbation in angular frequency of the mode with azimuthal
order m due to rotation
perturbation in angular frequency of the mode with azimuthal
order m due to magnetic fields
angular frequency of oscillation in the absence of rotation
quantity defined by equation (36.16) in Sect. 36
acoustic radius defind by equation (41.32) in Sect. 41
representative time scale of convection
Helmholtz-Kelvin time scale defined by equation (12.2)
quantity defined by equation (36.19) in Sect. 36
damping time
dynamical time scale given by equation (12.3) or (22.2)

free-fall time scale defined by equation (12.1)
oscillation time scale
thermal time scale given by equation (12.3) or (22.2)
travel time in Sect. 15
quantity defined by equation (36.18) in Sect. 36
acoustic radius at which the acoustic potential is the minimum in
Sect. 41
acoustic radii at the inner and outer turning points in Sect. 41
gravitational potentlal
acoustic potential defined by equation (41.29) in Sect. 41
azimuth angle in polar coordinates (r, 0, 4))

azimuth angle measured with respect to the magnetic axis of a star
in the co-rotating frame in Sect. 19.5
azimuth angle measured with respect to the rotation axis of a star
in an inertial frame in Sect. 19.5
azimuth angle measured with respect to the line-of—sight in an iner-
tial frame in Sect. 19.5
azimuth angle measured with respect to the rotation axis of a star
in the co-rotating frame in Sect. 19.5
phase of nonradial oscillation
quantity defined by equation (41.65) in Sect. 41

= (aI—np)'r

 

= (m1:
l-independent part of acoustic potential <19, in Sect. 41
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:E
C

’
D
D
D
'
G
'
S

e
s
;

:3

< >

— (overbar)
— (overbar)

- (overbar)
- (overbar)
suffix C
suffix c

suffix nlm

suffix Q
suffix _]_
suffix 0
suffix R
suffix 1
superscript (0)
superscript (l)
superscript (sph)
superscript t
superscript ‘1'

Sgn(x)

function defined by equation (41.9) in Sect. 41
stream function in Sect. 33
eigenfunction such as p"2c2V-§ in Sect. 41 and 43.3
angular velocity vector of stellar rotation
angular velocity vector of a rotating frame in Sect. 19
angular frequency of stellar rotation
dimensionless angular frequency of stellar rotation;
[=o/(GM/R3)“2] in Sect. 34
angular frequency of a rotating frame
vorticity
dimensionless frequency; [= o/(GM/R’)
real part of w
imaginary part of w
dimensionless angular frequency in the frame rotating with Q;
[=w+m0]
dimensionless critical cut-off angular frequencies in Sect. l8
nondimensional angular frequency of r-mode in the limit of Q—>0
in Sect. 34
temperature gradient; (=dInT/dlnp)
adiabatic temperature gradient; [= (alnT/alnp)_g]
radiative temperature gradient
gradient of mean molecular weight; (= dlnu/dlnp)
poloidal component of the differential operator V defined by equa-
tion (36.9) in Sect. 36
Eulerian perturbation; e.g., p’, T’, etc.
Lagrangian perturbation; e.g., 6p, 6T, etc.
nonlinear contribution to fine average from small-scale turbulence
local spatial average in Sect. 20
trial value in Sect. 18.2
zonal (azimuthal) average in Sect. 36
time average with a long time span in Sect. 39
convective quantities of state; e.g., pp, TC, etc.

quantities at the stellar center; e.g., Tc, pr, etc.

specification of the mode with radial order n, spherical degree I,
and azimuthal order m
quantities associated with the sun; e.g., MQ
horizontal component; e.g., 51’ Vi, etc.
equilibrium quantities
real part
imaginary part
zero-order term in perturbation analysis
first-order term in perturbation analysis
spheroidal mode in Sect. 18
transposed matrix; e.g., 'K
Moore-Penrose generalized matrix; e.g., K 1

sign of x; (E |x|/x)

I/2]



Subject Index

A

ABCD instability of differentially rotating

star, 266

accretion disk, 66, 202

acoustic cut-off frequency, 69

acoustic radius (or length), 351, 355

acoustic potential, 350ff, 356

acoustic wave, 115

;propagation zone, 139

ACRIM, 76

adiabatic oscillation (see linear adiabatic

oscillation)

Airy function, 134

Alfven wave, 263

amplitude modulation, 23, 54

anelastic approximation, 203

angular momentum transfer, 314ff

Ap stars, rapidly oscillating, 18, 47ff, 192

; asteroseismology for, 373ff

;excitation mechanism, 259, 265

associated Legendre polynomial, 9, 95

asteroseismology, 368ff

asymptotic analysis, 8

; for adiabatic oscillations, 130ff

; for Iow-frequency oscillations in

rotating stars, 3061f

; for quasi-adiabatic oscillations,

222ff

asymptotic method,

; for inversion in helio- and astero-

seismology, 349ff

avoided crossing of modes, 144

; during stellar evolution, 120,

121, 151, 156

; in a diagnostic diagram, 323

; in a rotating star, 300

411

azimuthal order m, 10

B

Baade’s pulsation test (Baade-Wesselink

method), 24

Backus-Gilbert method, 348

baroclinic instability, 266

barotropic state, 283

basic equations

; for oscillations in a rotating star,

278ff

; linearized, 91ff

; of fluid, 87

Be stars (see also early type 0, B vari-

ables), 44, 318

beat phenomenon, as evidence for nonra-

dial oscillation, 23

; of [3 Cephei stars, 40

; of white dwarfs, 59

B-type variables (see early type 0, B vari-

ables)

B Cephei stars (or variables), 6, 25, 39ff

; excitation mechanism, 309

; general properties, 18

beta-plane approximation, 291

Bohr-Sommerfeld’s quantization rule (see

quantization rule)

boundary condition, 104, 105, 162ff, 214ff

; for propagating (or progressive)

wave, 146, 148, 167, 215, 216

Boussinesq approximation, 203, 260, 261

Brunt-Vaisala frequency, N, 114, 116ff,

262, 284, 313, 322, 326, 376ff

;definition, 13, 93, 102, 103

; for isothermal atmosphere, 70

; inversion of, 378, 379
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C

canonical form of equations

; for linear adiabatic oscillation,

113

; for linear quasi-adiabatic oscilla-

tion, 222

cataclysmic variable (see also white dwarf

variables), 66

centrifugal force, 179, 277, 279

Cepheid instability strip (see instability

strip)

Cepheid variables, 4

characteristic equation

; for boundary condition, 163

chromosphere and corona, 324, 326

chromospheric mode, 326

classification of modes (see modal classi-

fication)

CNO cycle, 247, 251

coarse graining average, 198, 201

completeness of eigenfunctions, 108, 182

composition stratification, of white dwarfs,

129

condition for eigenoscillation

;of dual-character mode, 142, 143

;of g-mode, 138

;of leaky wave, 147, 148

;of p-mode, 136

convection (see also turbulent convection)

; in oscillating medium, 203ff

; influence on oscillation, 198ff,

272

; -pulsation coupling, 272

; time scale, 271

convective flux, perturbation of, 272

convective (in)stability, 93

convective (or g'-)mode in a rotating star,

309ff

convective velocity, 198

cooling time of (pre-) white dwarfs, 59,

376

Coriolis force, 81, 179, 189, 277, 301

Cowling approximation, 85, 86, 113

Cowling mechanism (see 6—mechanism)

critical frequency, 114

; at outer boundary, 165

D

DAV stars (see white dwarf variables)

damping

; of oscillation, 233ff

; rate due to wave leakage, 147ff,

251

;time, 125, 252

DBV stars (see white dwarf variables)

degeneracy of eigenfrequencies, 3, 11, 187

degenerate variable stars (see white dwarf

variables)

degree I (see harmonic degree)

6—mechanism, 243, 260ff

; in a rotating star, 265, 266

6 Set stars, 18, 20, 54

diagnostic [or (kh, o)-, or (I, v)-] diagram,

70, 115, 157

;of a standard solar model, 323

;of solar five-minute oscillation,

71, 73, 79, 80, 332

difference equation, 168

differential rotation, 313, 318

diffusion approximation, 199

diffusion mechanism (see 6-mechanism)

dimensionless (or normalized) frequency

;definition, 110

; in the co-rotating frame, 296

dimensionless variables, 160, 227

discriminant, for eigenvalue, 177, 178, 231,

232

dispersion relation, 114

; for adiabatic oscillations in a

rotating star, 284

; for nonadiabatis oscillations, 262

; in isothermal atmosphere, 69

distribution of eigenfrequencies, 110, 323

distribution of hydrogen

;inside a 1 Me stars, 123



; inside a 10 Mo stars, 119

Doppler imaging, 26, 33

DOV stars (see white dwarf variables)

Duvall’s relation, 353, 354

dynamical phenomena

; as evidence for nonradial oscilla-

tion, 25

dynamical (in)stability, 2, 234

dynamical time scale, 2, 12, 86, 217

E

early type 0, B variables, 7, 18, 38ff

;excitation mechanism, 312, 313

Echelle diagram, 76, 77

eclipsing binary, 21

Eddington factor, 215

eigenfrequency

; for a polytrope, 110

; for a standard solar model, 323

;for a 10 Mo star, 153, 154

; for a 30M® star, 158

; general properites of, 109

;of high-order g-mode, 83, 139

;of high-order p-mode, 53, 137,

371

eigenfunction

; for a 10 M9 in an advanced

stage, 152

;for a polytrope, 111

; for a white dwarf model, 129

; for an evolved 30 MG star, 156

; for the sun, 325

;for massive ZAMS models, 118,

218

; general properties of, 109

;of a convective mode coupled

with envelope g-mode, 311

; of a g-mode in a pre-white dwarf

model, 253

;of g-modes for a 1M0 model,

249

eigenvalue condition (see condition for

eigenoscillation)
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eigenvalue problem, 104, 214, 298

energy equation, 233ff

energy theorem, 234ff

e-mechanism, 5, 241, 244ff

equation of state, 339

equafions

; of oscillation, 90ff

;of stellar structure, 89

equilibrium model

;of a 1 MG star, 123, 248

;of a 10 MG star, 119, 151

;of massive stars with semi-

convective zone, 268, 269

equilibrium state, 89

Eulerian perturbation, 90, 91

evanescent zone, 14, 140

even mode, 297

evolutionary track

; for a 0.6MQ star, 127

;for a 10 MG star, 151

excitation mechanism, 4, 24111

; of 8 Cephei pulsation, 309

;of DOV stars, 259

;of early type 0, B variables,

312, 313

; of rapidly oscillating Ap stars,

259, 265

;of solar five-minute oscillation,

365ff

; of variable DBwhite dwarfs, 257

;of ZZ Ceti stars, 257

extra node, 151

F

53 Persei stars, 18, 31, 4lff

five-minute oscillation (see solar five-

minute oscillation)

f-mode, 14, 110

; of l = 1, 111

; frequency of, 322

forward problem of seismology, 335ff

Fourier analysis, 330ff

free-fall time, 2, 86
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frequency of oscillation (see also eigenfre-

quency)

; in the co-rotating system, 29

frequency spacing

; of high-order p-modes 53, 371

fully nonadiabatic oscillation

; boundary condition, 214ff

;equations, 209ff

; numerical method, 227ff

; very nonadiabatic oscillations,

224ff

G

y—mechanism, 243

y-velocity, 31

generalized Cowling’s nomenclature, 152

generalized inverse matrix (see Moore-

Penrose generalized inverse matrix)

geostrophic motion (or mode), 287

giant stars, 124

g-mode, 14

;g'-mode, 14, 108

; g+-mode, 14

; in lower main-sequence stars,

247ff

; in massive stars with semi-

convective zone, 26611

;in rotating stars, 299, 300, 311ff

; in shell burning stars, 2501f

; in upper main-sequence stars,

119ff, 153ff

; in white dwarfs, 126ff, 376ff

; solar oscillation, 82, 323, 325

; trapped in u-gradient zone,

155ff, 251ff

g-node, 152

Goldreich-Schubert-Fricke instability, 266

gradient diffusion approximation, 199

gravity wave, 115

; potential, 377

;propagation zone, 139

group velocity, 116

growth rate, 249

; relation to the work integral,

238

H

harmonic degree, I, 10

Harvard-Smithsonian reference atmos-

phere (HSRA), 124

helioseismology

; forward problem, 335ff

; inverse problem, 3411f

helium-burning shell, 3, 253

helium star, 20

Helmholtz-Kelvin time, 86

Henyey method, 168ff

Hermiticity (see also self-adjointness), 109

Hertzsprung-Russel (HR) diagram, 17, 19

homology invariant, 86, 102

Hurwitz criterion, 263

hydrogen-burning shell, 251

1~K

inertial wave, 286, 287

inhomogeneous chemical composition (see

u-gradient zone)

instability strip

; of B Cephei stars, 41

;of Cepheids, 19, 257

; of variable white dwarfs, 55

integral equation, 343

;of Abel type, 354, 356

inverse problem of seismology, 3411f

; asymptotic inversion method,

349ff

; Backus-Gilbert Method, 348

;spectral expansion method, 343ff

ionization zone, 254ff

K-mechanism, 8, 243, 254ff

Kato’s mechanism, 244, 263ff

Kelvin-Helmholtz instability, 313, 314

kernel of integral equation, 342ff

kinetic energy density, 130, 143, 165

k-problem, 46

(kh, o)-diagram (see diagnostic diagram)



L

Lagrangian perturbation, 90, 91

Lamb frequency, L,, 114, 116ff, 127, 326

;definition, 12, 97

Lamb wave, 70, 115

late-type stars, 18

; dwarfs (see lower main-sequence

stars)

;giants, 124

leakage of wave energy (see wave leakage)

Ledoux’s criterion, 263

length of periods

; as evidence for nonradial oscilla-

tion, 22

line profile variation, 25ff

;due to intermediate and high 1

modes, 33ff

; due to low 1 modes, 30ff

; of B Cephei star, 26

;of C Ophiuchi stars, 44

; of 53 Persei stars, 31

line profile modeling, 26

linear adiabatic oscillation,

; as a boundary value problem,

1031f

linear operator, 9, 108

Liouville transformation, 133

(l, v)-diagram (see diagnostic diagram)

local analysis

; for adiabatic oscillations, 114ff

; for adiabatic oscillations in rota-

ting stars, 283ff

; for nonadiabtic oscillations,

260ff

local stability analysis

;of gravity waves, 260ff

long-period global oscillation of the sun,

82, 83

low-frequency prograde wave in a rotating

star, 288, 289

lower main-sequence stars, 122, 249

luminosity perturbation (or variation), 24,
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240, 241

;for oblique pulasator, 196, 197

M

macro- and micro-turbulence

; as evidence for nonradial oscilla-

tion, 25

main-sequence stars, 117, 122, 249

magnetic field

;force free, 191

;dipole, 192

; influence on oscillation, 179ff,

191ff

magnetic overstability, 264, 265

magneto-gravity wave, 264

mass-centered velocity, 198

massive star model, pulsational property

of, 118, 121, 150ff, 218, 225

mean molecular weight gradient (see also

u-gradient zone), 5, 14

mechanical work of convection, 270

method of calculation, 167ff

MHD approximation, 179

mixing-length, 271, 337

; perturbation of, 273

; theory, 271

modal analysis, 130ff

modal classification, 149ff

modal pattern

; for axisymmetric dipole mode,

51

; for higher-harmonic tesseral

mode, 21

;for l = 3, 11

;for I = 4, 97

mode identification based on line profile

variation, 37, 45

mode-mixing, 144

mode bumping (= avoided crossing), 7,

121

mode trapping condition, 143

modulation of amplitude (see amplitude

modulation)
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Moore-Penrose generalized inverse matrix,

345ff

u-gradient zone, 119, 157

;in the sun, 322

; structural changes with evolu-

tion, 120, 122

; trapping in, 157, 251

m-splitting, 59, 293

N

nonadiabatic equations (see fully nona-

diabatic oscillation)

nondimensional variables (see dimension-

less variables)

nonlinear coupling, 61

nonlocal effect of turbulent convection,

206

nonradial oscillations

; basic properties of, 1, 8ff

;classification of, 149ff

; historical background, 6

;modal patterns, 11, 21, 51, 97

; observational evidence for, 20ff

nonradial thermal instability, 3, 263

normal mode, 3, 4, 10

; analysis, 9

normalization condition, 168, 177

normalized frequency, 110

novae, 66

NRP (= nonradial oscillation)

nuclear energy generation rate (see also 8-

mechanism)

; logarithmic derivatives, 213, 248

;spatial variation, 248, 253

numerical method

; for adiabatic oscillations, 159ff

; for nonadiabatic oscillations,

227ff

(v0, Do)-diagram, 371

(v, m/O-diagram, 333, 334

0

oblique pulsator model for rapidly oscillat-

ing Ap stars, 23, 49ff

oblique rotator model

; for cataclysmic variables, 22

; for Ap stars, 51, 375

observational evidence for nonradial

oscillation, 20ff

odd modes, 297

one-zone model, 243

opacity (see also K-mechanism), 88, 339

; logarithmic derivatives, 213, 254,

255, 258

ordinal number of mode, 153

orthogonality of eigenmodes, 106, 107

Osaki’s mechanism, 309

overstable convection

; due to the gradient of the mean

molecular weight, 267

;due to magnetic field, 265

;due to rotation, 308ff

;coupled with an envelope g-

mode, 313

P

patterns (see mordal patterns)

penetration depth of nonradial p-modes,

324

period

; of cataclysmic variables, 66

; of high order g-modes, 83

; of nonradial oscillation for a

white dwarf model, 128

;of the early type variables, 40ff

; of white dwarf variables, 55ff

period change,

; of cataclysmic variables, 66

; of hot pre-white dwarf stars, 65,

129, 376

;of variable DA white dwarfs, 59

period-luminosity relation of white dwarf,

128

perturbation equations, 179ff

P01159 stars (see white dwarf variables)

phase diagram, 139, 149



; for a 10 M0 in an advanced

stage, 154

; for ZAMS model of 10 MO star,

150

;of g-mode, 141

; of mixed character mode, 145

;of p-mode, 141

;schematic sketch, 140

phase shift of pulsation, 21

phase velocity, 116

;of traveling wave, 10, 29, 188

photon diffusion, 87

photon mean free path, 86

plane wave, 69

planetary nebula nuclei, 65, 259

p-mode, 14

; in Ap stars, 53, 373ff

; in upper main-sequence stars,

120ff, 151ff

; solar five-minute oscillation,

73ff, 322ff

pinode, 152

Poisson equation, 88, 93

; formal solution of, 108

polytrope, pulsational property of, 110,

1 11, 1 17

p-p chain reaction, 244ff

precession of Mercury’s perihelion, 321,

345

pre-white dwarf variables, 65

profile variation (see line profile variation)

prograde wave (or mode), 29

progressive wave, l45ff

; boundary condition (leaky-

wave), 146, 148, 167, 215, 216

propagation diagram, 1161f

; for a 5 MG star in the red giant

stage, 125

;for a 1 MG star, 122

; for a hot pre-white dwarf model,

252

;for a polytrope, 13, 117

; for a solar model, 123
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; for a white dwarf model, 126

; for evolved models of a 10 M0

star, 120

; for the ZAMS model of a 10

MG star, 118

;of an evolved 30 MG star, 155

; of an idealized stellar model,

132

;of an idealized stellar model in

an advanced stage, 146

propagation zone (or region), 14

pulsation constant, 28

pulsational property

;for a 1 M0 star, 249, 250, 322ff

;for a polytrope, 110, 111, 117

; for a rotating massive ster,

299ff, 310ff

; for massive (7-30 Me) stars,

118, 121, 150ff, 218, 225

; for (pre-) white dwarfs, 126ff,

253, 379

p-wave (see acoustic wave)

Q~R

quantization rule (see also condition for

eigenoscillaitons), 136, 143, 147, 352,

356, 377

quantum number, 3

quasi-adiabatic approximation, 219, 239

Q-value (see also pulsation constant)

; of 8 Cephei pulsations, 41

radial order n, 4

radial pulsation, 1, 24, 112

; historical background, 6

radial velocity

; of a nonradially oscillating rotat-

ing star, 27ff

; of B Cephei stars, 39

radiative conductivity, 88

radiative Cowling mechanism (see 6-

mechanism)

radiative diffusion, 88, 243

radiative damping (or dissipation), 125,
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244, 251ff

radiative transfer, 215

relaxation method, 1681f

renormalization, 199, 200

resolved stellar image, 20ff

resonant coupling

;of an eigenmode with overstable

convection, 308ff

restoring force, 4, 13, 115

retrograde wave (or mode), 29, 190

r-mode (0r toroidal mode), 188ff, 292, 301

; line profile variation, 3Sff

;stream lines of, 36

Rossby wave, 190, 290ff

rotating magnetic star, 192

rotation

; influence on oscillation, 185ff

; solar internal, 333

rotational splitting of eigenfrequencies, 23

rotational velocity

;of Ap stars, 52

; of the early type variable stars,

39ff

;of the sun, 81, 333, 345

; of white dwarf variables, 59

running wave (see progressive wave)

S

salinity convection, 264

Schwarzschild criterion, 270

Schwarzschild discriminant, 93

sectoral mode, 10, 32

secular stability (see thermal stability)

self-adjointness (see also Hermiticity), 106,

107

semiconvection (zone), 268

;definition, 264

shell-hydrogen—burning stage, 251

singular value decomposition, 347

solar convection zone

;depth of, 335, 336, 365

solar five-minute oscillation (see also

helioseismology), 6

; amplitude of, 72, 73, 76

;diagnostic diagram, 71, 73, 79,

80

;excitation mechanism, 365ff

; influence of the chromosphere

and the corona, 324, 326

; linear stability analysis, 366

; observational technique and data

reduction, 3261f

; observations, 67ff

solar-like oscillation (see sun-like oscilla-

tion)

solar g-mode oscillation, 82ff, 247ff

solar model

; non-standard, 340

;standard, 336ff

solar neutrino, 321, 338

solar oscillation, 321

; five-minute oscillation (see solar

five-minute oscillation)

; long-period oscillation, 82, 83

solar rotation, 333

; inversion for, 342ff

solar seismology (see helioseismology)

Solberg-Hoiland criterion, 266

sound velocity

;definition of, 12, 96

; near the surface, 360

;of solar interior, 353, 362ff

spectral expansion method, 343ff

spectral line variation by nonradial oscilla-

tions (see line profile variation)

spherical degree (see harmonic degree)

spherical (surface) harmonics, 3, 8, 95

spherical harmonic analysis, 330ff

spheroidal mode (or component), 294

splitting of frequency (see m-splitting)

stability of rotating stars, 266

standing wave, 10, 125

stars related to B Cephei stars, 38ff

Stellingwerf opacity bump, 257ff

Stefan-Boltzman constant, 24

stellar oscillation, 21f



; historical background, 6ff

stellar stability, 2ff

stochastic excitation of oscillation by con-

vection, 366, 367

stream function, 292

Sturm-Liouville type, 12, 112, 131

sun, 18

; five-minute oscillation (see solar

five-minute oscillation)

; global oscillation, 82

; rotation (see solar rotation)

;sound velocity, 353, 362ff

sun-like oscillation, 18

; asteroseismology for, 370ff

superadiabatic temperature gradient, 309,

312

superadiabaticity,

; in the u-gradient zone, 269

symmetry axis of oscillation, 49, 192

supergiants, 18, 19

superperiod, 45, 313

T

temporal dependence of perturbed quanti-

ties, 166

tesseral mode, 10

thermal (in)stability, 2, 235

;condition, 263

;of rotating stars, 266

thermal time scale, 2, 12, 86, 217

thermal work of convection, 270

thermodynamic relation, 93, 98ff, 200, 282

time-dependent convection theory, 210

toroidal mode (or component) (see also

r-mode), 98, 182, 294

total energy

; of a star, 234

; of oscillation, 237

traditional approximation, 301ff

transition region, 255, 256

trapping of oscillation (see also wave trap-

ping), 113ff

; in white dwarfs, 130
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traveling bump across line profile, 33ff

travel time, of wave, 124

traveling wave, 10, 32

trivial solution, 97, 98

;for f-mode, 111

tunnel effect, 121

turbulent convection

; local theory, 206

; statistical treatment, 205ff

;velocity, 198

turning-point equation, 132

U~Z

unit vectors, azimuthal derivative, 185

variable degenerate stars, 55ff

variation in line profile (see line profile

variation)

variational principle, 108

velocity field, influence on oscillation,

l79ff

vibrational (in)stability, 3, 235

;condition for, 264

; for g-modes of a 1 MO star,

247ff

vorticity, 281ff

wave energy, 236

;conservation law, 108

;flux, 114

wave leakage, 146ff, 251

wave number, 114

; for high order gravity wave, 124

wave trapping (see also trapping of oscilla-

tions), 248, 267

white dwarf (variables), 8, 18, 126

; asteroseismology for, 376ff

; cataclysmic variables, 66

; excitation mechanism, 257, 259

; variable DA white dwarfs (DAV

stars, ZZ Ceti variables), 18,

551f, 257

;variable DB white dwarfs (DBV

stars), 18, 62ff, 67, 257

; variable DO stars (DOV stars,
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PGllS9 stars), 18, 65, 259

white dwarf models, pulsational property

of, 126ff, 253, 379

WIMP, 340

WKBJ approximation, 8, 222

work

; by turbulent pressure, 271

; by viscous stress, 271

work integral, 233ff

;contributlon of wave leakage,

251

; derivation of, 235ff

; for a g-mode in a shell-helium

burning model, 253

; for f- and p-modes in a main-

sequence model of 7M9, 258

; for g-modes in the sun, 249

; for oscillations in a Cepheid

model, 256

; for massive main-sequence stars,

258

; for quasi-adiabatic analysis,

239ff

zero-boundary condition, 105

C Ophiuchi stars, 18, 43ff

zonal mode, 10

ll Ceti stars (see white dwarf variables)
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