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Preface to the First Edition

The attempt to understand the physics of the structure of stars and their change in
time – their evolution – has been bothering many physicists and astronomers ever
since the last century. This long chain of successful research is well documented
not only by numerous papers in the corresponding journals but also by a series of
books. Some of them are so excellently written that despite their age they can still
be recommended and not only as documents of the state of the art at that time.
A few outstanding examples are the books of Emden (1907), Eddington (1926),
Chandrasekhar (1939), and Schwarzschild (1958). But our science has rapidly
expanded in the last few decades, and new aspects have emerged which could not
even be anticipated, say, 30 years ago and which today have to be carefully explored.

This does not mean, however, that our ambition is to present a complete account
of the latest and most refined numerical results. This can well be left to the large
and growing number of excellent review articles. This book is intended rather to
be a textbook that will help students and teachers to understand these results as far
as possible and present them in a simple and clear manner. We know how difficult
this is since we ourselves have tried for the largest part of our scientific career to
understand “how the stars work” – and then to make others believe it. In these
attempts we have found that often enough a simplified analytical example can be
more helpful than the discussion of an exceptionally beautiful numerical solution.
Therefore we do not hesitate to include many simple considerations and estimates, if
necessary, even at the expense of rigour and the latest results. The reader should also
note that the list of references given in this book is not intended to represent a table
of honour for the (known and unknown) heroes of the theory of stellar structure; it is
merely designed to help the beginner to find a few first paths in the literature jungle
and presents those papers from which we have more or less randomly chosen the
numbers for figures and numerical examples (There are others of at least the same
quality!).

The choice of topics for a book such as this is difficult and certainly subject
to personal preferences. Completeness is neither possible nor desirable. Still, one
may wonder why we did not include, for example, binary stars, although we are
obviously interested in their evolution. The reason is that here one would have had
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viii Preface to the First Edition

to include the physics of essentially non-spherical objects (such as disks), while
we concentrate mainly on spherical configurations; even in the brief description of
rotation the emphasis is on small deviations from spherical symmetry.

This book would never have been completed without the kind and competent
help of many friends and colleagues. We mention particularly Wolfgang
Duschl and Peter Schneider who read critically through the whole manuscript;
Norman Baker, Gerhard Börner, Mounib El Eid, Wolfgang Hillebrandt,
Helmuth Kahler, Ewald Müller, Henk Spruit, Joachim Wambsganß, and many
others read through particular chapters and gave us their valuable advice. In fact it
would probably be simpler to give a complete list of those of our colleagues who
have not contributed than of those who helped us.

In addition we have to thank many secretaries at our institutes; several have left
their jobs (for other reasons!) during the five years in which we kept them busy.
Most of this work was done by Cornelia Rickl and Petra Berkemeyer in Munich
and Christa Leppien and Heinke Heise in Hamburg, while Gisela Wimmersberger
prepared all the graphs. We are grateful to them all.

Finally we wish to thank Springer-Verlag for their enthusiastic cooperation.

Munich and Hamburg Rudolf Kippenhahn
December 1989 Alfred Weigert



Preface to the Second Edition

Twenty years after its first publication, this textbook is still a major reference for
scientists and students interested in or working on problems of stellar structure and
evolution. But with the incredible growth of computational power, the computation
of stellar models has to large extent become a standard tool for astrophysics. While
the early computations were restricted to single choices for mass, compositions and
possibly evolutionary stage, by now models for the whole parameter space exist. The
first edition of this book was restricted to a few examples for low- and intermediate-
mass star evolution and lacked the broader view now being possible. There are even
semi-automatic stellar evolution codes that may be used remotely via the Internet.

However, stellar evolution programs should not be used without a thorough
understanding of the stellar physics. Therefore, a textbook concentrating on the
foundations of the theory and explaining in detail specific phases and events in the
life of a star is very much needed to allow scientifically solid modelling of stars.
This is the reason why this book deserved a second edition.

Much to our regret, A. Weigert passed away two years after publication of the
first edition. He left a gap that cannot be filled. Given the above mentioned need for
a second edition and the requirement to add up-to-date stellar models, it was decided
to have A. Weiss join R. Kippenhahn in preparing the new edition.

The two authors of this book came to discriminate between the eternal truth
and the mutable parts. The latter ones refer to the current state of modelling and
knowledge obtained from numerical models and their comparison to observations.
Such chapters were updated, extended, or added. As far as possible, the stellar
models shown were specifically calculated for this purpose, with the present, much
evolved version of the original code by Kippenhahn, Weigert, and Hofmeister. The
numerical results are therefore much more homogeneous and consistent than in the
first edition.

The eternal truth concerns the aforementioned basic physics and their under-
standing. These parts of the book have been left almost untouched, since the authors
(and those readers who were consulted) did not see any reason to change them.

The authors are indebted to many friends and colleagues who gave their advice
or comments, with respect to both necessary changes and the new text passages.
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x Preface to the Second Edition

The support of Santi Cassisi, Jørgen Christensen-Dalsgaard, Wolfgang Hillebrandt,
Thomas Janka, Ralf Klessen, Ewald Müller, Hans Ritter, Maurizio Salaris, and
Helmut Schlattl was essential for us.

We are also very grateful to all those colleagues who very generously provided
their own data to help filling gaps that we could not fill with our own models.
They were (again in alphabetical order) Leandro Althaus, Isabelle Baraffe, Raphael
Hirschi, Marco Limongi, Marcelo Miller Bertolami, Aldo Serenelli, and Lionel
Siess. Needless to say, their data also came with much wanted and helpful advice
and sometimes fruitful scientific discussions about details of the models.

Norbert Grüner’s help in the difficult task of generating a useful index is
acknowledged, too.

Last, but not least, we thank Mrs. Rosmarie Mayr-Ihbe, who designed, corrected,
and improved the many figures that we added to this second edition.

Garching Achim Weiss
February 2012
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Part I
The Basic Equations



Chapter 1
Coordinates, Mass Distribution,
and Gravitational Field in Spherical Stars

1.1 Eulerian Description

For gaseous, non-rotating, single stars without strong magnetic fields, the only
forces acting on a mass element come from pressure and gravity. This results
in a spherically symmetric configuration. All functions will then be constant on
concentric spheres, and we need only one spatial variable to describe them. It seems
natural to use the distance r from the stellar centre as the spatial coordinate, which
varies from r D 0 at the centre to the total radius r D R at the surface of the star.
In addition, the evolution in time t requires a dependence of all functions on t: If we
thus take r and t as independent variables, we have a typical “Eulerian” treatment
in the sense of classical hydrodynamics. Then all other variables are considered to
depend on these two, for example, the density % D %.r; t/:

In order to provide a convenient description of the mass distribution inside the
star, in particular of its effect on the gravitational field, we define the function1

m.r; t/ as the mass contained in a sphere of radius r at the time t (Fig. 1.1). Thenm
varies with respect to r and t according to

dm D 4�r2%dr � 4�r2%v dt: (1.1)

The first term on the right is obviously the mass contained in the spherical shell of
thickness dr (Fig. 1.1), and it gives the variation of m.r; t/ due to a variation of r at
constant t; i.e.

@m

@r
D 4�r2%: (1.2)

1In most textbooks our function m.r; t/ is denoted by Mr:
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Fig. 1.1 The variation of m
with r at a fixed moment
t D t0. The quantities dm and
dr are connected by (1.2)

Since it is preferable to describe the mass distribution in the star by m.r; t/

(instead of %), (1.2) will be taken as the first of our basic equations in the Eulerian
description.

The last term in (1.1) gives the (spherically symmetric) mass flow out of the
sphere of (constant) radius r due to a radial velocity v in the outward direction in
the time interval dt:

@m

@t
D �4�r2%v : (1.3)

The partial derivatives in the last two equations indicate as usual that the other
independent variable .t or r) is held constant.

Differentiating (1.2) with respect to t and (1.3) with respect to r and equating the
two resulting expressions gives

@%

@t
D � 1

r2
@.%r2v/

@r
: (1.4)

This is the well-known continuity equation of hydrodynamics, @%=@t D �r � .%v/,
for the special case of spherical symmetry.

1.2 Lagrangian Description

It will turn out that, in the spherically symmetric case, it is often more useful to
take a Lagrangian coordinate instead of r , i.e. one which is connected to the mass
elements. The spatial coordinate of a given mass element then does not vary in time.
We choose for this coordinate the above defined m: to any mass element, the value
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m (which is the mass contained in a concentric sphere at a given moment t0) is
assigned once and for all (see Fig. 1.1).

The new independent variables are then m and t; and all other variables are
considered to depend on them, for example, %.m; t/: This also includes the radial
distance r of our mass element from the centre, which is now described by the
function r D r.m; t/. Since there is certainly no singularity of % at the centre, we
have here m D 0, while the star’s total mass m D M is reached at the surface
(i.e. where r D R/: This already shows one advantage of the new description
for the (normal) case of stars with constant total mass: while the radius R varies
strongly in time, the star always extends over the same interval of the independent
variable m W 0 � m � M: Although real stars do lose mass, for example, by stellar
winds or due to gravitational interaction in binary systems, over short timescales the
assumption of constant mass is justified nevertheless. In any case, the range of m
never changes by more than a factor of a few.

As just indicated, there will certainly be no problem concerning a unique
one-to-one transformation between the two coordinates r and m: We then easily
find the connection between the partial derivatives in the two cases from well-known
formulae. For any function depending on two variables, one of which is substituted
by a new one (r; t ! m; t), the partial derivatives with respect to the new variables
are given by

@

@m
D @

@r
� @r
@m

;

�
@

@t

�
m

D @

@r
�
�
@r

@t

�
m

C
�
@

@t

�
r

: (1.5)

Subscripts indicate which of the spatial variables (m or r) is considered constant.
Let us apply the first of (1.5) tom. The left-hand side is then simply @m=@m D 1,

and the first factor on the right-hand side is equal to 4�r2%, according to (1.2). So
we can solve for the last factor and obtain

@r

@m
D 1

4�r2%
: (1.6)

This is a differential equation describing the spatial behaviour of the function
r.m; t/. It replaces (1.2) in the Lagrangian description and shall be the new first
basic equation of our problem.

Introducing (1.6) into the first equation (1.5) gives the general recipe for the
transformation between the two operators:

@

@m
D 1

4�r2%

@

@r
: (1.7)

The second equation (1.5) reveals the main reason for the choice of the
Lagrangian description. Its left-hand side gives the so-called substantial time
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derivative of hydrodynamics. It describes the change of a function in time when
following a given mass element, for example, the change of a physical property
of this mass element. The conservation laws for time-dependent spherical stars
give very simple equations only in terms of this substantial time derivative. In
terms of a local time derivative, .@=@t/r , the description would become much more
complicated since the “convective” terms with the velocity .@r=@t/m [corresponding
to the first term on the right-hand side of the second equation (1.5)] would appear
explicitly.

1.3 The Gravitational Field

It follows from elementary potential theory that, inside a spherically symmetric
body, the absolute value g of the gravitational acceleration at a given distance r
from the centre does not depend on the mass elements outside of r . It depends only
on r and the mass within the concentric sphere of radius r , which we have calledm:

g D Gm

r2
; (1.8)

whereG D 6:673�10�8 dyn cm2 g�2 is the gravitational constant. So the gravitating
mass appears only in the form of our variablem:

Generally, the gravitational field inside the star can be described by a gravita-
tional potential ˚ , which is a solution of the Poisson equation

r 2˚ D 4�G%; (1.9)

where r 2 denotes the Laplace operator. For spherical symmetry this reduces to

1

r2
@

@r

�
r2
@˚

@r

�
D 4�G%: (1.10)

The vector of the gravitational acceleration points towards the stellar centre and may
in spherical coordinates be written as g D .�g; 0; 0/with 0 < g D jgj. It is obtained
from ˚ by the vector relation g D �r˚ , where in our spherically symmetric case,
only the radial component is non-vanishing:

g D @˚

@r
: (1.11)

With (1.8), (1.11) becomes
@˚

@r
D Gm

r2
; (1.12)
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Fig. 1.2 Gravitational
potential and vector of
gravitational acceleration
(dashed) in a spherically
symmetric star

which is indeed a solution of (1.10), as is easily verified by substitution. The
potential then becomes

˚ D
Z r

0

Gm

r2
dr C constant: (1.13)

Unless otherwise mentioned we will fix the free constant of integration in such a
way that ˚ vanishes for r ! 1. ˚ has a minimum at the stellar centre. Figure 1.2
shows schematically the function ˚.r; t/ at a given time.



Chapter 2
Conservation of Momentum

Conservation of momentum provides the next basic differential equation of the
stellar-structure problem. We will derive this in several steps of gradually increasing
generality. The first assumes mechanical equilibrium (Sect. 2.1), the equation of
motion for spherical symmetry follows in Sect. 2.4, while in Sect. 2.5 even the
assumption of spherical symmetry is dropped. In Sect. 2.6 we briefly discuss general
relativistic effects in the case of hydrostatic equilibrium.

2.1 Hydrostatic Equilibrium

Most stars are obviously in such long-lasting phases of their evolution that no
changes can be observed at all. Then the stellar matter cannot be accelerated
noticeably, which means that all forces acting on a given mass element of the star
compensate each other. This mechanical equilibrium in a star is called “hydrostatic
equilibrium”, since the same condition also governs the pressure stratification, say,
in a basin of water. With our assumptions (gaseous stars without rotation, magnetic
fields, or close companions), the only forces are due to gravity and to the pressure
gradient.

For a given moment of time, we consider a thin spherical mass shell with (an
infinitesimal) thickness dr at a radius r inside the star. Per unit area of the shell, the
mass is % dr, and the weight of the shell is �g% dr. This weight is the gravitational
force acting towards the centre (as indicated by the minus sign).

In order to prevent the mass elements of the shell from being accelerated in this
direction, they must experience a net force due to pressure of the same absolute
value, but acting outwards. This means that the shell must feel a larger pressure Pi

at its interior (lower) boundary than the pressure Pe at its outer (upper) boundary
(see Fig. 2.1). The total net force per unit area acting on the shell due to this pressure
difference is

Pi � Pe D �@P
@r

dr: (2.1)

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics
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Fig. 2.1 Pressure at the
upper and lower border of a
mass shell of thickness dr,
and the vector of gravitational
acceleration (dashed) acting
at one point on the shell

(The right-hand side of this equation is in fact a positive quantity, since P decreases
with increasing r .) The sum of the forces arising from pressure and gravity has to
be zero,

@P

@r
C g% D 0; (2.2)

which gives the condition of hydrostatic equilibrium as

@P

@r
D �g%: (2.3)

This shows the balance of the forces from pressure (left-hand side) and gravity
(right-hand side), both per unit volume of the thin shell. Equation (1.8) gives
g D Gm=r2 so that (2.3) finally becomes

@P

@r
D �Gm

r2
%: (2.4)

This hydrostatic equation is the second basic equation describing the stellar-
structure problem in the Eulerian form (r as an independent variable).

If we take m as the independent variable instead of r , we obtain the hydrostatic
condition by multiplying (2.4) with @r=@m D .4�r2%/�1; according to (1.5) and
(1.6):

@P

@m
D � Gm

4�r4
: (2.5)

This is the second of our basic equations in the Lagrangian form.

2.2 The Role of Density and Simple Solutions

We have dealt up to now with the distribution of matter, the gravitational field, and
the pressure stratification in the star. This purely mechanical problem yielded two
differential equations, for example, with m as independent variable (a choice not
affecting the discussion),



2.2 The Role of Density and Simple Solutions 11

@r

@m
D 1

4�r2%
;

@P

@m
D � Gm

4�r4
: (2.6)

Let us see whether solutions can be obtained at this stage for the problem as stated
so far.

We have only two differential equations for three unknown functions, namely
r; P; and %. Obviously we can solve this mechanical problem only if we can express
one of them in terms of the others, for example, the density % as a function of P . In
general, this will not be the case. But there are some exceptional situations where %
is a well-known function of P and r or P andm. We can then treat the equations as
ordinary differential equations, since they do not contain the time explicitly.

If such integrations are to be carried out starting from the centre, the difficulty
occurs that (2.6) are singular there, since r ! 0 for m ! 0, though one can easily
overcome this problem by the standard procedure of expansion in powers of m; as
given later in (11.3) and (11.6).

A rather artificial example that can be solved by quadrature is % D %.m/; in
particular % = constant in the homogeneous gaseous sphere.

Physically more realistic are solutions obtained for the so-called barotropic case,
for which the density is a function of the gas pressure only: % D %.P /: A simple
example would be a perfect1 gas at constant temperature. After assuming a value
Pc for the central pressure, both equations (2.6) have to be solved simultaneously,
since %.P / in the first of them is not known before P is evaluated.

As we will see later (for instance, in Sects. 19.3 and 19.8), there are also cases
for which no choice of Pc yields a surface of zero pressure at finite values of r . In
the theory of stellar structure there is even a use for these types of solution.

Among the barotropic solutions is a wide class of models for gaseous spheres
called polytropes. These important solutions will later be discussed extensively
(Chap. 19). Barotropic solutions also describe white dwarfs, i.e. stars that really
exist (Sect. 37.1).

But in general the density is not a function of pressure only but depends also on
the temperature T: For a given chemical composition of the gas, its thermodynamic
behaviour yields an equation of state of the form % D %.P; T /: A well-known case
is that of a perfect gas, where

% D �

<
P

T
(2.7)

with the gas constant < D 8:315 � 107 erg K�1 g�1 (which we define per g instead
of per mole), while � is the (dimensionless) mean molecular weight, i.e. the average
number of atomic mass units per particle; in the case of ionized hydrogen, � D 0:5

(see Sect. 4.2).

1Throughout this book we will use the terms perfect and ideal gas synonymously, as they describe
the same physical concept.
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Once the temperature appears in the equation of state and cannot be eliminated
by means of additional conditions, it then becomes much more difficult to determine
the internal structure of a self-gravitating gaseous sphere. The mechanical structure
is then also determined by the temperature distribution, which in turn is coupled to
the transport and generation of energy in the star. This requires new equations, with
which we shall deal in Chaps. 4 and 5.

2.3 Simple Estimates of Central Values Pc; Tc

The hydrostatic condition (2.5) together with an equation of state for a perfect gas
(2.7) enables us to estimate the pressure and the temperature in the interior of a star
of given mass and radius.

Let us replace the left-hand side of (2.5) by an average pressure gradient (P0 �
Pc/=M; where P0.D 0/ and Pc are the pressures at the surface and at the centre.
On the right-hand side of (2.5) we replacem and r by rough mean valuesM=2 and
R=2; and we obtain

Pc � 2GM2

�R4
: (2.8)

From the equation of state for a perfect gas, and with the mean density

N% D 3M

4�R3
; (2.9)

we find with (2.8) that

Tc D Pc

%c

�

< D Pc
�

<
N%
%c

4�R3

3M

� 8

3

�

<
Gm

R

N%
%c
: (2.10)

Since in most stars the density increases monotonically from the surface to the
centre, we have N%=%c < 1 (Numerical solutions show that N%=%c � 0:03 : : : 0:01.).
Therefore (2.10) yields

Tc . 8

3

G�

<
M

R
: (2.11)

With the mass and the radius of the Sun (Mˇ D 1:989 � 1033 g, Rˇ D 6:96 �
1010 cm) and with � D 0:5, we find that

Pc � 7 � 1015 dyn=cm2; Tc < 3 � 107 K: (2.12)
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Modern numerical solutions (Chap. 29) give Pc D 2:4 � 1017 dyn/cm2, Tc D 1:6 �
107 K.

So we can expect to encounter enormous pressures and very high temperatures
in the central regions of the stars. Moreover, our assumption of a perfect gas turns
out to be fully justified for these values of P and T .

2.4 The Equation of Motion for Spherical Symmetry

Our equation of hydrostatic equilibrium (2.5) is a special case of conservation of
momentum. If the (spherical) star undergoes accelerated radial motions, we have to
consider the inertia of the mass elements, which introduces an additional term. We
confine ourselves here to the Lagrangian description .m; t as independent variables),
which is especially convenient for spherical symmetry.

We go back to the derivation of the hydrostatic equation in Sect. 2.1 and again
consider a thin shell of mass dm at the distance r from the centre (Fig. 1.1). Owing
to the pressure gradient, this shell experiences a force per unit area fP given by
(2.1), the right-hand side of which is easily rewritten in terms of @P=@m according
to (1.7):

fP D � @P
@m

dm: (2.13)

The gravitational force per unit area acting on the mass shell is, with the use of (1.8),

fg D � g dm

4�r2
D �Gm

r2
dm

4�r2
: (2.14)

If the sum of the two forces is not equal to zero, the mass shell will be accelerated
according to

dm

4�r2
@2r

@t2
D fP C fg: (2.15)

This gives with (2.13) and (2.14) the equation of motion as

1

4�r2
@2r

@t2
D � @P

@m
� Gm

4�r4
: (2.16)

The signs in (2.16) are such that the pressure gradient alone would produce an
outward acceleration (since @P=@m < 0), while the gravity alone would produce
an inward acceleration.

Equation (2.16) would give exactly the equation of hydrostatic equilibrium (2.5)
if the second time derivative of r vanished, i.e. if all mass elements were at rest
or moved radially at constant velocity. Moreover, the term on the left-hand side is
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certainly unimportant if its absolute value is small compared to the absolute values
of any term on the right, i.e. if the two terms on the right-hand side cancel each
other nearly to zero. Then the hydrostatic condition is a very good approximation,
and the configuration moves through neighbouring near-equilibrium states. In this
sense we are allowed to apply the simpler hydrostatic equation to a much wider
class of solutions than those fulfilling the strict requirement @2r=@t2 D 0. To
illustrate this further we assume a deviation from hydrostatic equilibrium such that,
for example, in (2.16), the pressure term suddenly “disappears”. The inertial term on
the left would then have to compensate the gravitational term on the right. We now
define a characteristic time-scale �ff for the ensuing collapse of the star by setting
j@2r=@t2j D R=�2ff. Then we obtain from (2.16) R=�2ff � g, or

�ff �
�
R

g

�1=2
: (2.17)

This is some kind of a mean value for the free-fall time over a distance of order
R following the sudden disappearance of the pressure. We can correspondingly
determine a timescale �expl for the explosion of our star for the case that gravity
were suddenly to disappear: R=�2expl D P=%R, where we have replaced @P=@r by
P=R after writing 4�r2.@P=@m/ D .@P=@r/=% (P and % are here average values
over the entire star). We then find that

�expl � R
� %
P

�1=2
: (2.18)

Since .P=%/1=2 is of the order of the mean velocity of sound in the stellar interior,
one can see that �expl is of the order of the time a sound wave needs to travel from
the centre to the surface.

If our model is near hydrostatic equilibrium, then the two terms on the right
side of (2.16) have about equal absolute value and �ff � �expl. We then call this
timescale the hydrostatic timescale �hydr, since it gives the typical time in which a
(dynamically stable) star reacts on a slight perturbation of hydrostatic equilibrium.
With g � GM=R2; we obtain from (2.17) up to factors of order 1 that

�hydr �
�
R3

GM

�1=2
� 1

2
.G N%/�1=2: (2.19)

In the case of the Sun we find the surprisingly small value �hydr � 27min. Even in
the case of a red giant (M � Mˇ; R � 100Rˇ/, one has only �hydr � 18 days,
while for a white dwarf (M � Mˇ; R � Rˇ=50), the hydrostatic timescale is
extremely short: �hydr � 4:5 s. In most phases of their life the stars change slowly
on a timescale that is very long compared to �hydr. Then they are very close to
hydrostatic equilibrium and the inertial terms in (2.16) can be ignored.
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2.5 The Non-spherical Case

Up to now we have dealt with spherically symmetric configurations only. It is easy
to see how the equations would have to be modified for more general cases without
this symmetry.

After rewriting (2.16) for the independent variable r , we easily identify it as a
special case of the Eulerian equation of motion of hydrodynamics

%
dv

dt
D �rP � %r˚; (2.20)

where v is the velocity vector, and the substantial time derivative on the left is
defined by the operator

d

dt
D @

@t
C v � r : (2.21)

The general form of (1.4) has already been shown to be the continuity equation of
hydrodynamics

@%

@t
D �r � .%v/; (2.22)

and, as described in Sect. 1.3, the gravitational potential ˚ is connected with an
arbitrary distribution of the density by the Poisson equation (1.9):

r 2˚ D 4�G%: (2.23)

We see in fact that the stellar-structure equations discussed up to now are just special
cases of normal textbook hydrodynamics.

2.6 Hydrostatic Equilibrium in General Relativity

To help with subsequent work (Chap. 38), we briefly refer to the change of the
equation of hydrostatic equilibrium due to effects of general relativity. For details
see, for example, Zeldovich and Novikov (1971).

Very strong gravitational fields, as in the case of neutron stars, are described by
the Einstein field equations

Rik � 1

2
gikR D �

c2
Tik; � D 8�G

c2
; (2.24)
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whereRik is the Ricci tensor, gik is the metric tensor and the scalarR is the Riemann
curvature. Tik is the energy-momentum tensor, which for a perfect gas has as the
only non-vanishing components T00 D %c2; T11 D T22 D T33 D P (% includes
the energy density, P = pressure). We are interested in static (time-independent),
spherically symmetric mass distributions. Then the line element ds, i.e. the distance
between two neighbouring events, is given in spherical coordinates (r; #; ') by the
general form

ds2 D e�c2dt2 � e�dr2 � r2.d#2 C sin2 # d'2/ (2.25)

with � D �.r/; � D �.r/. With these expressions for Tik and ds, the field equations
(2.24) can be reduced to three ordinary differential equations:

�P

c2
D e��

�
�0

r
C 1

r2

�
� 1

r2
; (2.26)

�P

c2
D 1

2
e��

�
�00 C 1

2
�02 C �0 � �0

r
� �0�0

2

�
; (2.27)

�% D e��
�
�0

r
� 1

r2

�
C 1

r2
; (2.28)

where primes denote derivatives with respect to r . After multiplication with 4�r2,
(2.28) can be integrated giving

�m D 4�r.1� e��/: (2.29)

Here m denotes the gravitational mass inside r defined by

m D
Z r

0

4�r2% dr: (2.30)

For r D R;m becomes the gravitational mass M of the star. It is the mass a distant
observer would measure by its gravitational effects, for example, on orbiting planets.
It is not, however, the mass which we naRıvely identify with the baryon number times
the atomic mass unit: M contains not only the rest mass, but the whole energy
(divided by c2/. This includes the internal and the gravitational energy, the latter
being negative and reducing the gravitational mass (just as the binding energy of
a nucleus results in a mass defect; see Chap. 18). The seemingly familiar form
of (2.30) is treacherous. First of all, % D %0 C U=c2 contains the whole energy
density U as well as the rest-mass density %0, and the changed metric would give
the spherical volume element as e�=24�r2 dr instead of the usual form 4�r2 dr [over
which (2.30) is integrated].

Differentiation of (2.26) with respect to r gives P 0 D P 0.�; �0; �0; �00; r/.
When �; �0; �0; �00 are eliminated by (2.26), (2.27) and (2.29), one arrives at the
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Fig. 2.2 The piston model. Gas of mass m� (with pressure P; density %, temperature T / is held
in a container with a movable piston of mass M�. The gravitational acceleration g acts on the
piston. The container is embedded in a medium of temperature Ts; a possible heat leak is indicated
(dashed) in the right wall of the container. In Chap. 2, only the mechanical properties of the model
are discussed

Tolman-Oppenheimer-Volkoff (TOV) equation for hydrostatic equilibrium in general
relativity:

dP

dr
D �Gm

r2
%

�
1C P

%c2

��
1C 4�r3P

mc2

��
1 � 2Gm

rc2

��1
: (2.31)

Obviously this reverts to the usual form (2.4) for c2 ! 1.
For gravitational fields that are not too large (small deviations from Newtonian

mechanics), one can expand the product of the parentheses in (2.31) and retain only
terms linear in 1=c2. This gives the so-called post-Newtonian approximation:

dP

dr
D �Gm

r2
%

�
1C P

%c2
C 4�r3P

mc2
C 2Gm

rc2

�
: (2.32)

2.7 The Piston Model

From time to time we shall make use of a simple mechanical model which in some
respects mimics the behaviour of stars, and which is shown in Fig. 2.2. A piston of
mass M � encloses a gas of mass m� in a box. G� D gM � is the weight of the
piston in a gravitational field described by the gravitational acceleration g. A is the
cross-sectional area of the piston and h its height above the bottom. Then V D Ah

is the volume of the gas, while its density is % D m�=V:
In the case of hydrostatic equilibrium, the gas pressure P adjusts in such a way

that the weight per unit area is balanced by the pressure:

G� D PA: (2.33)
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If the forces do not compensate each other, the piston is accelerated in the vertical
direction according to the equation of motion

M �d2h
dt2

D �G� C PA: (2.34)

In a similar manner to our considerations of Sect. 2.4, we can define two timescales
�ff and �expl:

�ff �
�
h

g

�1=2
; (2.35)

�expl � h
� %
P

�1=2 �M �

m�

�1=2
: (2.36)

In the limit of hydrostatic equilibrium both timescales are the same, and we then
call �ff D �expl the hydrostatic timescale �hydr.



Chapter 3
The Virial Theorem

3.1 Stars in Hydrostatic Equilibrium

While the virial theorem generally plays a relatively minor role in physics, it is
of vital importance for the understanding of stars. It connects two important energy
reservoirs of a star and allows predictions and interpretations of certain evolutionary
phases.

If we multiply (2.5) by 4�r3 and integrate over dm in the interval Œ0;M �, i.e.
from centre to surface, we obtain on the left-hand side an integral which can be
simplified by partial integration:

Z M

0

4�r3
@P

@m
dm D �

4�r3P
�M
0

�
Z M

0

12�r2
@r

@m
P dm ; (3.1)

where the term in brackets vanishes, since r D 0 at the centre and P = 0 at
the surface. With (1.6) the integrand of the last term in (3.1) is reduced to 3P=%.
Therefore, after multiplication by 4�r3 and integration, (2.5) gives

Z M

0

Gm

r
dm D 3

Z M

0

P

%
dm : (3.2)

Both sides of (3.2) have the dimensions of energy and can be easily interpreted. We
define the gravitational energy Eg by

Eg WD �
Z M

0

Gm

r
dm : (3.3)

Consider a unit mass at the position r . Its potential energy due to the gravitational
field of the mass m inside r is �Gm=r . Therefore Eg is the potential energy of all
mass elements dm of the star (normalized to zero at infinity). The energy �Eg.> 0)

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics
Library, DOI 10.1007/978-3-642-30304-3 3, © Springer-Verlag Berlin Heidelberg 2012

19
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is necessary to expand all mass shells into infinity, and it is released when the stellar
configuration forms out of an infinitely distributed medium.

We see that Eg varies if the configuration undergoes expansion or contraction: if
all mass shells inside the configuration expand or contract simultaneously, then Eg

increases or decreases, respectively. And the same must be true for the integral on
the right of (3.2). Note that these radial motions must be slow compared to �hydr in
order that hydrostatic equilibrium is always maintained, otherwise (3.2) would not
hold.

In order to understand the meaning of the term on the right of (3.2) we first
assume a perfect gas. Then

P

%
D <
�
T D .cP � cv/T D .� � 1/cvT; (3.4)

where cP ; cv are the specific heats per unit mass (and we make use of <=� D cP�cv
and replace cP =cv by � ). For a monatomic gas � D 5=3, and we have

P

%
D 2

3
u ; (3.5)

where u D cvT is the internal energy per unit mass of the perfect gas. Therefore
(3.2) can be written as

Eg D �2Ei (3.6)

with the total internal energy of the star

Ei WD
Z M

0

u dm : (3.7)

Equation (3.6) is the virial theorem for a perfect monatomic gas. For a general
equation of state we define a quantity � by

�u WD 3
P

%
: (3.8)

For a perfect gas � D 3.� � 1), in the monatomic case � D 5=3, and therefore
� D 2. For a pure photon gas, P D aT 4=3; and u% D aT 4 (a = radiation density
constant), giving � D 1. If � is constant throughout the star, (3.2) leads to the more
general virial theorem:

�Ei C Eg D 0 : (3.9)

We now define the total energy W of our configuration,

W D Ei C Eg ; (3.10)
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where for a gravitationally bound system W < 0, and with (3.9) we find that

W D .1 � �/Ei D � � 1
�

Eg : (3.11)

In the case of � D 1 .� D 4=3) the total energy vanishes.
But in general W , Eg, and Ei are coupled. A change of the total energy of

the configuration is then connected with a change of its internal energy and with
expansion or shrinking. A gas of finite temperature must radiate and W must
decrease. Let L be the luminosity of the star, i.e. the total energy loss per unit time
by radiation; then conservation of energy demands that .dW=dt/ C L D 0, so that
with (3.11) we obtain

L D .� � 1/
dEi

dt
D �� � 1

�

dEg

dt
: (3.12)

We have seen that PEg < 0 for contraction of all mass shells (where the dot denotes a
derivative with respect to time t). For a perfect gas (3.12) gives L D � PEg=2 D PEi,
which means that half of the energy liberated by the contraction is radiated away
and the other half is used to heat the star .L > 0; PEi > 0). The surprising fact that
a star heats up while losing energy can be described by saying that the star has a
negative specific heat (cf. the gravothermal specific heat defined in Sect. 25.3.4).

We have to keep in mind that it is the luminosity that causes the shrinking:
a configuration in hydrostatic equilibrium has a finite temperature and therefore
radiates into the (cold) universe.

3.2 The Virial Theorem of the Piston Model

Let us consider the situation for the piston model of Sect. 2.7 for the case of a perfect
gas. Assuming M � � m�; we define Eg WD CG�h, where the free additional
constant is chosen such that Eg D 0 for h D 0. Hydrostatic equilibrium (2.33) with
m� D Ah% and (3.4) demands that

hG� D P

%
m� D .� � 1/cvT m

� : (3.13)

The internal energyEi of the gas is Ei D cvTm
�, and we find that

Eg D .� � 1/Ei ; (3.14)
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which is the virial theorem for the piston model. Differentiating with respect to time,
with � D 5=3, results in

dEg

dt
D 2

3

dEi

dt
: (3.15)

Hence we see that in contrast to the situation in stars, a reduction of Eg is connected
with cooling of the gas. Indeed the piston can only sink if the gas cools.

This different behaviour comes from the fact that the gravitational field is
assumed to be constant here. In order to demonstrate this we now assume
the weight G� to be a function of h and differentiate (3.13) with respect
to h W

G�.1CG�
h / D .� � 1/dEi

dh
(3.16)

with G�
h W D .d lnG�=d lnh). Indeed, if G�

h D 0 (constant gravity), we see that Ei

increases with h. If, however,G� decreases sufficiently with increasing h (such that
G�
h < �1), then Ei increases with decreasing h; corresponding to the behaviour of

stars. In fact in an expanding star each mass shell also loses weight with increasing r .

3.3 The Kelvin–Helmholtz Timescale

Returning now to consider stars, since according to (3.12) L is of the order of
jdEg=dtj, we can define a characteristic time-scale

�KH WD jEgj
L

� Ei

L
(3.17)

called the Kelvin–Helmholtz timescale (after the two physicists who estimated this
as the evolutionary timescale for a contracting or cooling star).

A rough estimate for jEgj is

jEgj � Gm2

Nr � GM2

2R
; (3.18)

where quantities with a bar indicate mean values for m and r (which we have
replaced by M=2 and R=2/: Then we have

�KH � GM2

2RL
: (3.19)

For the Sun, with L D 3:827 � 1033 erg/s, we find �KH � 1:6 � 107 years. In the
early days of astrophysics the source of stellar energy was still uncertain, and it
was suggested, among other proposals, that the Sun “lived” from its gravitational
energy Eg. Our estimate shows that this can work only for some 107 years, after
which time it would have contracted to a very condensed body. As it became obvious
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that the Sun has been radiating in roughly the same way for some 109 years, the
contraction hypothesis had to be abandoned. But there are phases in a stellar life
when Eg is the main or even the only stellar energy source (Chap. 28); then the star
evolves on the timescale �KH. A more detailed discussion of the evolution of a star
in time appears in Sect. 4.5.

3.4 The Virial Theorem for Non-vanishing Surface Pressure

One often needs the virial theorem for gaseous spheres imbedded in a medium of
finite pressure. In this case, at the surface .m D M/,P D P0 > 0 instead of P D 0.
Consequently the first term on the right of (3.1) does not vanish at the surface, and
(3.2) is modified to

Z M

0

Gm

r
dm D 3

Z M

0

P

%
dm � 4�R3P0 : (3.20)

Correspondingly we find, rather than (3.9), that

�Ei C Eg D 4�R3P0 : (3.21)



Chapter 4
Conservation of Energy

Since we do not wish to interrupt the derivation of the energy equation for stars with
lengthy formalisms, we first provide a few thermodynamic relations which will be
used extensively later on.

4.1 Thermodynamic Relations

The first law of thermodynamics relates the heat dq added per unit mass,

dq D du C Pdv; (4.1)

to the internal energy u and the specific volume v D 1=% (both also defined per unit
mass).

We now assume rather general equations of state, % D %.P; T / and u D u.%; T /.
Usually they will also depend on the chemical composition, but here this is assumed
to be fixed. With the derivatives defined as

˛ WD
�
@ ln %

@ lnP

�
T

D �P
v

�
@v

@P

�
T

; (4.2)

ı WD �
�
@ ln%

@ lnT

�
P

D T

v

�
@v

@T

�
P

; (4.3)

the equation of state can be written in the form d%=% D ˛dP=P � ıdT=T .
We also need the specific heats:

cP WD
�

dq

dT

�
P

D
�
@u

@T

�
P

C P

�
@v

@T

�
P

; (4.4)

cv WD
�

dq

dT

�
v

D
�
@u

@T

�
v

: (4.5)
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With

du D
�
@u

@v

�
T

dv C
�
@u

@T

�
v

dT (4.6)

and with (4.1) we find the change ds D dq=T of the specific entropy to be

ds D dq

T
D 1

T

��
@u

@v

�
T

C P

�
dv C 1

T

�
@u

@T

�
v

dT: (4.7)

Since ds is a total differential form, @2s=@T @v D @2s=@v@T and

@

@T

�
1

T

�
@u

@v

�
T

C P

T

�
D 1

T

@2u

@T @v
; (4.8)

which after the differentiation on the left is carried out gives

�
@u

@v

�
T

D T

�
@P

@T

�
v

� P: (4.9)

Next we derive an expression for .@u=@T /P , taking P; T as independent variables.
From (4.6) it follows that

du

dT
D
�
@u

@T

�
v

C
�
@u

@v

�
T

dv

dT
; (4.10)

and therefore
�
@u

@T

�
P

D
�
@u

@T

�
v

C
�
@u

@v

�
T

�
@v

@T

�
P

D
�
@u

@T

�
v

C
�
@v

@T

�
P

�
T

�
@P

@T

�
v

� P

�
; (4.11)

where we have made use of (4.9). From the definitions (4.4), (4.5) and from (4.11)
we write

cP � cv D P

�
@v

@T

�
P

C
�
@u

@T

�
P

�
�
@u

@T

�
v

D
�
@v

@T

�
P

�
@P

@T

�
v

T: (4.12)

On the other hand, the definitions (4.2) and (4.3) for ˛ and ı imply that

�
@P

@T

�
v

D �
�
@v
@T

�
P�

@v
@P

�
T

D Pı

T ˛
; (4.13)
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and therefore

cP � cv D T

�
@v

@T

�
P

P ı

T ˛
D Pı2

%T ˛
; (4.14)

where we have made use of T .@v=@T /P D vı D ı=%; hence we arrive at the basic
relation

cP � cv D Pı2

%T ˛
: (4.15)

For a perfect gas this equation reduces to the well-known relation cP � cv D <=�
[see (4.33)].

We have now derived all the tools for rewriting (4.1) in terms of T and P: The
first step is to write it in the form

dq D du C Pdv D
�
@u

@T

�
v

dT C
��
@u

@v

�
T

C P

�
dv

D
�
@u

@T

�
v

dT C T

�
@P

@T

�
v

dv (4.16)

by making use of (4.9), and then with (4.5) and (4.13) we have

dq D cvdT � T

%

�
@P

@T

�
v

d%

%
D cvdT � Pı

%˛

d%

%

D cvdT � Pı

%˛

�
˛

dP

P
� ı

dT

T

�
D
�
cv C Pı2

%T ˛

�
dT � ı

%
dP: (4.17)

The terms in parentheses in the last expression are, according to (4.15), simply cP
and therefore

dq D cP dT � ı

%
dP: (4.18)

Next we define the adiabatic temperature gradient rad, a quantity often used in
astrophysics, by

rad WD
�
@ lnT

@ lnP

�
s

; (4.19)

where the subscript s indicates that the definition is valid for constant entropy. Since
for adiabatic changes the entropy has to remain constant, i.e. ds D dq=T D 0, we
can easily derive an expression for rad from (4.18), i.e.

0 D dq D cP dT � ı

%
dP (4.20)
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or .dT=dP/s D ı=%cP and

rad �
�
P

T

dT

dP

�
s

D Pı

T%cP
: (4.21)

4.2 The Perfect Gas and the Mean Molecular Weight

For a perfect gas consisting of n particles per unit volume that all have the molecular
weight �; the equation of state is

P D nkT D <
�
%T ; (4.22)

with % D n�mu.k D 1:38 � 10�16 erg K�1 = Boltzmann constant; < D k=mu D
8:31 � 107 erg K�1 g�1 = universal gas constant;mu D 1 amu D 1:66053� 10�24 g
= the atomic mass unit). Note that we here use the gas constant with a dimension
(energy per K and per unit mass) different from that in thermodynamic text books
(energy per K and per mole). This has the consequence that here the molecular
weight � is dimensionless (instead of having the dimension mass per mole); it is
simply the particle mass divided by 1 amu.

In the deep interiors of stars the gases are fully ionized, i.e. for each hydrogen
nucleus, there also exists a free electron, while for each helium nucleus, there are
two free electrons. We therefore have a mixture of two gases, that of the nuclei
(which in itself can consist of more than one component) and that of the free
electrons. The mixture can be treated similarly to a one-component gas, if all single
components obey the perfect gas equation.

We consider a mixture of fully ionized nuclei. The chemical composition can be
described by specifying all Xi ; the weight fractions of nuclei of type i; which have
molecular weight �i and charge number Zi . If we have ni nuclei per volume and a
“partial density” %i ; then obviouslyXi D %i=% and

ni D %i

�imu
D %

mu

Xi

�i
: (4.23)

(Here and in the following, we neglect the mass of the electrons compared to that of
the ions.) The total pressure P of the mixture is the sum of the partial pressures

P D Pe C
X
i

Pi D
 
ne C

X
i

ni

!
kT : (4.24)

Here Pe is the pressure of the free electrons, while Pi is the partial pressure due to
the nuclei of type i . The contribution of one completely ionized atom of element i



4.2 The Perfect Gas and the Mean Molecular Weight 29

to the total number of particles (nucleus plus Zi free electrons) is 1 + Zi ; therefore

n D ne C
X
i

ni D
X
i

.1CZi/ni : (4.25)

With this and (4.23), (4.24) becomes

P D nkT D <
X
i

Xi .1CZi/

�i
%T ; (4.26)

which can be written simply in the form (4.22) with the mean molecular weight

� D
 X

i

Xi .1CZi/

�i

!�1
: (4.27)

By introducing the mean molecular weight, we are able to treat a mixture of perfect
gases as a uniform perfect gas. We just have to replace the molecular weight in
(4.22) by the mean molecular weight. In the case of pure (fully ionized) hydrogen
with XH = 1, �H = 1, ZH = 1, we have � D 1=2, while for a fully ionized helium
gas (XHe = 1, �He = 4, ZHe = 2), we find � D 4=3.

Equation (4.27) can be easily modified for the partial gas consisting of the ions
only, or equivalently, for the case of a neutral gas where all the electrons are still in
the atom. In (4.25) we just have to replace 1 + Zi by 1 and we find

�0 D
 X

i

Xi

�i

!�1
: (4.28)

Here we have dealt with the cases of full ionization and of no ionization at all. In
Chap. 14 we will deal with the case of partial ionization.

At this point we also define the mean molecular weight per free electron �e; a
quantity which we shall need later. For a fully ionized gas each nucleus i contributes
Zi free electrons and we have

�e D
 X

i

XiZi =�i

!�1
: (4.29)

Since for all (not too rare) elements heavier than helium �i=Zi � 2 is a good
approximation, we find

�e D
�
X C 1

2
Y C 1

2
.1 � X � Y /

��1
D 2

1CX
; (4.30)
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where we have followed the custom of using X WD XH; Y WD XHe for the weight
fractions of hydrogen and helium. Then 1 � X � Y is the mass fraction of the
elements heavier than helium.

4.3 Thermodynamic Quantities for the Perfect,
Monatomic Gas

If the gas is monatomic, the internal energy per gram is the kinetic energy of the
translational motion of the particles only

u D 3

2
kT

n

%
: (4.31)

From (4.2) and (4.3) we find

˛ D ı D 1; (4.32)

and from (4.15)

cP � cv D P

%T
D <
�

(4.33)

and therefore with (4.5)

cv D
�
@u

@T

�
%

D 3

2
k
n

%
D 3

2

<
�

(4.34)

and with (4.33)

cP D 5

2

<
�
: (4.35)

Equation (4.21) therefore yields

rad D <
�cP

D cP � cv

cP
D 2

5
: (4.36)

Sometimes also the quantity

�ad WD
�
@ lnP

@ ln %

�
s

(4.37)

for adiabatic changes is needed. If we differentiate the equation of state (4.22), we
find

dP

P
D d%

%
C dT

T
(4.38)
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Fig. 4.1 Energy flux through
a mass shell

which holds for all variations of the variables in the perfect gas equation, including
the adiabatic variation. For these we obtain from (4.36)

dT

T
D rad

dP

P
D
�
1 � cv

cP

�
dP

P
: (4.39)

Eliminating dT=T from (4.38) and (4.39) gives

�
d%

%

�
ad

D cv

cP

�
dP

P

�
ad

(4.40)

or

�ad D
�
d lnP

d ln%

�
s

D cP

cv
: (4.41)

4.4 Energy Conservation in Stars

By l.r/ we define1 the net energy per second passing outward through a sphere
of radius r . The function l is zero at r D 0, since there can be no infinite energy
source at the centre, while l reaches the total luminosity L of the star at the surface.
In between, l can be a complicated function, depending on the distribution of the
sources and sinks of energy.

The function l comprises the energies transported by radiation, conduction, and
convection, transport mechanisms with which we shall deal in Chaps. 5 and 7. Not
included is a possible energy flux by neutrinos, which normally have negligible
interaction with the stellar matter (see below). Included in l are only those fluxes
which require a temperature gradient.

Consider a spherical mass shell of radius r; thickness dr; and mass dm, as
indicated in Fig. 4.1. The energy per second entering the shell at the inner surface
is l , while l C dl is the energy per second leaving it through the outer surface.
The surplus power dl can be provided by nuclear reactions, by cooling, or by
compression or expansion of the mass shell.

1In many textbooks our function l is denoted by Lr :
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We first consider a stationary case in which dl is due to the release of energy
from nuclear reactions only. Let " be the nuclear energy released per unit mass per
second; then

dl D 4�r2 %" dr D " dm ; or (4.42)

@l

@m
D ": (4.43)

In general " depends on temperature and density and on the abundance of the
different nuclear species that react, described in detail in Chap. 18.

If we relax the condition of time independence, then dl can become non-zero
even if there are no nuclear reactions. A non-stationary shell can change its internal
energy, and it can exchange mechanical work .P dV / with the neighbouring shells.
Instead of (4.43) we write

dq D
�
" � @l

@m

�
dt; (4.44)

where dq is the heat per unit mass added to the shell in the time interval dt. Replacing
dq by the first law of thermodynamics (4.1) we obtain

@l

@m
D " � @u

@t
� P

@v

@t

D " � @u

@t
C P

%2
@%

@t
(4.45)

This can be rewritten in terms of P and T , with the help of (4.18), as

@l

@m
D " � cP

@T

@t
C ı

%

@P

@t
; (4.46)

where ı is defined in (4.3). This is the third of the basic equations of stellar structure.
One often combines the terms containing the time derivatives in a source function

"g WD �T @s
@t

D �cP @T
@t

C ı

%

@P

@t

D �cP T
�
1

T

@T

@t
� rad

P

@P

@t

�
; (4.47)

where use is made of the fact that ds D dq=T and of (4.21).
Let us now turn to the problem of neutrino losses. These can be formed in

appreciable amounts in a star either as a by-product of nuclear energy generation or
by other reactions. Stellar material is normally transparent to neutrinos and therefore
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they can easily “tunnel” the energy they have to the surface. This is the reason we
have excluded the energy flux due to neutrinos from l . The only mass elements
affected by the neutrinos are at the place of their creation, where they act as an
energy sink; hence "� is used to represent the energy taken per unit mass per second
from the stellar material in the form of neutrinos. In general, the energy lost by
neutrinos in nuclear reactions is already taken into account in the net energy Q
released in each reaction (see Sect. 18.3). By definition, "� > 0. Obviously the
complete energy equation is then

@l

@m
D " � "� C "g : (4.48)

As mentioned at the beginning of Sect. 4.4, the boundary values of l are l D 0 at the
centre and l D L at the surface. In between, l is not necessarily monotonic, since
the right-hand side of (4.48) may be positive or negative; l can even become larger
than L, or negative. For instance, the surface luminosity L of an expanding star can
be smaller than the energy produced in the central core by nuclear reactions ." > 0),
since part of it is used to expand the star ."g < 0); and strong neutrino losses can
make l < 0 in certain parts of the stellar interior (see Sect. 33.5).

The energy per second carried away from the star by neutrinos is often called the
neutrino luminosity:

L� WD
Z M

0

"� dm: (4.49)

4.5 Global and Local Energy Conservation

In Chap. 3 we considered gravitational energy .Eg/ and internal energy .Ei), but
ignored nuclear and neutrino energies, as well as the kinetic energy Ekin of radial
motion. We now define the total energy of the star as W D Ekin C Eg C Ei C En,
where En is the nuclear energy content of the whole star. Obviously the energy
equation is

d

dt
.Ekin C Eg C Ei C En/C LC L� D 0 ; (4.50)

and, of course, this must also be obtained from the local energy equation (4.48) by
integration overm: Clearly, the integration of @l=@m givesL; the integration of �"�
gives �L�; while the integral over " gives �dEn=dt. Integration over "g, however,
needs some consideration.

Let us write "g as in (4.45):

"g D �@u

@t
C P

%2
@%

@t
: (4.51)
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Then integration over �@u=@t gives �dEi=dt. In order to deal with the last term in
(4.51) we use (3.2, 3.3) and find that

Eg D �3
Z M

0

P

%
dm ; (4.52)

which we differentiate with respect to time (indicated by dots):

PEg D �3
Z M

0

PP
%

dm C 3

Z M

0

P

%2
P% dm : (4.53)

We first treat hydrostatic equilibrium .dEkin=dt D 0). Then differentiation of (2.5)
gives

@ PP
@m

D 4
Gm

4�r4
Pr
r
: (4.54)

We multiply this by 4�r3 and integrate overm:

Z M

0

4�r3
@ PP
@m

dm D 4

Z M

0

Gm

r

Pr
r

dm D 4 PEg : (4.55)

Partial integration of the left-hand side gives

Œ4�r3 PP �M0 � 3
Z M

0

4�r2
@r

@m
PP dm ; (4.56)

where the term in brackets vanishes at both ends of the interval, since either r D 0

or P D 0 independent of time. If we replace @r=@m by 1=4�r2% we find from
(4.55) that

�3
Z M

0

PP
%

dm D 4 PEg : (4.57)

Introducing this into the right-hand side of (4.53) gives

PEg D �
Z M

0

P

%2
P% dm ; (4.58)

and therefore the integration of the last term of (4.51) gives PEg so that the equation
(4.50) without PEkin is now recovered.

If, instead of hydrostatic equilibrium, we had used the full equation of motion
(2.16), after multiplication with 4�r2 Pr and integration over m; we would have
obtained the full equation (4.50) with the term PEkin.
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4.6 Timescales

Consider a star balancing its energy loss L essentially by release of nuclear energy.
If L remains constant this can go on for a nuclear timescale �n defined by

�n WD En

L
: (4.59)

Note that En means the nuclear energy reservoir from which energy can be released
under the given circumstances, i.e. the corresponding reactions must be possible.
The most important reaction is the fusion of 1H into 4He. This “hydrogen burning”
releases Q D 6:3 � 1018 erg g�1, and, if the Sun consisted completely of hydrogen,
En would be QMˇ D 1:25 � 1052 erg. With Lˇ D 4 � 1033 erg/s, (4.59) gives
�n D 3 � 1018 s, or 1011 years. A comparison with the earlier estimates of �hydr

(Sect. 2.4) and �KH (Sect. 3.3) shows that

�n � �KH � �hydr ; (4.60)

which is not only true for the Sun, but for all stars that survive by hydrogen
and helium burning. We emphasize this point, since under these circumstances
the equation of energy conservation (4.46) can be simplified. As an illustration,
we assume that the star changes its properties considerably within the timescale
� (which may be either small or large compared to �KH). This change may, for
instance, be due to exhaustion of nuclear fuel or artificial “squeezing” of the
star from the exterior. We now give rough estimates for the four terms in (4.46),
assuming a perfect gas:

ˇ̌
ˇ̌ @l
@m

ˇ̌
ˇ̌ � L

M
� Ei

�KHM
; (4.61)

" � L

M
D En

M�n
� Ei

�KHM
; (4.62)

ˇ̌̌
ˇcP @T@t

ˇ̌̌
ˇ � cP T

�
� Ei

�M
; (4.63)
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�
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�
� Ei

�M
: (4.64)

In the case � � �KH, the terms in (4.63) and (4.64) are small compared to those
in (4.61) and (4.62); therefore the time derivatives in the energy equation (4.46) can
be neglected (j"gj � "), and the energy equation is @l=@m D ", as in (4.43). This
occurs if, for instance, the consumption of hydrogen and helium steers the evolution,
i.e. � D �n (� �KH), and represents a considerable simplification for calculating
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models which are said to be in complete equilibrium (i.e. mechanical and thermal
equilibrium).

In the case � � �KH, the right-hand sides of (4.63) and (4.64) are large compared
to those of (4.61) and (4.62). Therefore in (4.46) the last two terms containing the
time derivatives must (at least very nearly) cancel each other, which means that
dq=dt � 0, or the change is nearly adiabatic. Note that a relatively small deviation
from the strict adiabatic change can still be of the order "; and therefore "g cannot be
neglected in the energy equation. An example for this case is a star pulsating with
the timescale � D �hydr � �KH (see Chaps. 40 and 41). The variable luminosity of a
pulsating star, for instance, is not due to changes of " but of "g.

Here we have assumed the simplest case, namely that the star changes more or
less uniformly. The situation can be much more complicated if, for example, only
parts of the star are affected and local timescales have to be considered which may
be quite different.



Chapter 5
Transport of Energy by Radiation
and Conduction

The energy the star radiates away so profusely from its surface is generally
replenished from reservoirs situated in the very hot central region. This requires
an effective transfer of energy through the stellar material, which is possible owing
to the existence of a non-vanishing temperature gradient in the star. Depending on
the local physical situation, the transfer can occur mainly via radiation, conduction,
and convection. In any case, certain “particles” (photons, atoms, electrons, “blobs”
of matter) are exchanged between hotter and cooler parts, and their mean free path
together with the temperature gradient of the surroundings will play a decisive role.
The equation for the energy transport, written as a condition for the temperature
gradient necessary for the required energy flow, will supply our next basic equation
for the stellar structure.

5.1 Radiative Transport of Energy

5.1.1 Basic Estimates

Rough estimates show important features of the radiative transfer in stellar interiors
and justify an enormous simplification of the formalism.

Let us first estimate the mean free path `ph of a photon at an “average” point
inside a star like the Sun:

`ph D 1

�%
; (5.1)

where � is a mean absorption coefficient, i.e. a radiative cross section per unit
mass averaged over frequency. Typical values for stellar material are of order
� � 1 cm2 g�1; for the ionized hydrogen in stellar interiors, a lower limit is certainly
the value for electron scattering, � � 0:4 cm2 g�1 (see Chap. 17). Using this and the
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mean density of matter in the Sun, N%ˇ D 3Mˇ=4�R3ˇ D 1:4 g cm�3, we obtain a
mean free path of only

`ph � 2 cm ; (5.2)

i.e. stellar matter is very opaque.
The typical temperature gradient in the star can be roughly estimated by

averaging between centre (Tc � 107 K) and surface (T0 � 104 K):

�T

�r
� Tc � T0

Rˇ
� 1:4 � 10�4 K cm�1 : (5.3)

The radiation field at a given point is emitted from a small, nearly isothermal sur-
rounding, the differences of temperature being only of order �T D `ph.dT=dr/ �
3�10�4 K. Since the energy density of radiation is u � T 4, the relative anisotropy of
the radiation at a point with T D 107 K is 4�T=T � 10�10. The situation in stellar
interiors must obviously be very close to thermal equilibrium, and the radiation very
close to that of a black body. Nevertheless, the small remaining anisotropy can easily
be the carrier of the stars’ huge luminosity: this fraction of 10�10 of the flux emitted
from 1 cm2 of a black body of T D 107 K is still 103 times larger than the flux at the
solar surface (6 � 1010 erg cm�2 s�1/. Radiative transport of energy occurs via the
non-vanishing net flux, i.e. via the surplus of the outwards-going radiation (emitted
from somewhat hotter material below) over the inwards-going radiation (emitted
from less-hot material above).

5.1.2 Diffusion of Radiative Energy

The above estimates have shown that for radiative transport in stars, the mean
free path `ph of the “transporting particles” (photons) is very small compared
to the characteristic length R (stellar radius) over which the transport extends:
`ph=Rˇ � 3 � 10�11. In this case, the transport can be treated as a diffusion
process, which yields an enormous simplification of the formalism. We derive the
corresponding equation by analogy to those for particle diffusion. A more rigorous
derivation can be found in any textbook about radiation transport, for instance, in
Chaps. 2 and 8 of Weiss et al. (2004).

The diffusive flux j of particles (per unit area and time) between places of
different particle density n is given by

j D �D rn ; (5.4)

whereD is the coefficient of diffusion,

D D 1

3
v `p ; (5.5)
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determined by the average values of mean velocity v and mean free path `p of the
particles.

In order to obtain the corresponding diffusive flux of radiative energy F ; we
replace n by the energy density of radiation U;

U D aT 4 ; (5.6)

v by the velocity of light c; and `p by `ph according to (5.1).
In (5.6), a D 7:57�10�15 erg cm�3 K�4 is the radiation density constant. Owing

to the spherical symmetry of the problem, F has only a radial component Fr D
jF j D F and rU reduces to the derivative in the radial direction

@U

@r
D 4 a T 3

@T

@r
: (5.7)

Then (5.4) and (5.5) give immediately that

F D �4ac
3

T 3

�%

@T

@r
: (5.8)

Note that this can be interpreted formally as an equation for heat conduction by
writing

F D �kradrT ; (5.9)

where

krad D 4ac

3

T 3

�%
(5.10)

represents the coefficient of conduction for this radiative transport.
We solve (5.8) for the gradient of the temperature and replace F by the usual

local luminosity l D 4�r2F ; then

@T

@r
D � 3

16�ac

�%l

r2T 3
: (5.11)

After transformation to the independent variable m (as in Sect. 2.1), the basic
equation for radiative transport of energy is obtained in the form

@T

@m
D � 3

64�2ac

�l

r4T 3
: (5.12)

Of course, this neat and simple equation becomes invalid when one approaches
the surface of the star. Because of the decreasing density, the mean free path
of the photons will there become comparable with (and finally larger than) the
remaining distance to the surface; hence the whole diffusion approximation breaks
down, and one has to solve the far more complicated full set of transport equations
for radiation in the stellar atmosphere (These equations indeed yield our simple



40 5 Transport of Energy by Radiation and Conduction

diffusion approximation as the proper limiting case for large optical depths.).
Fortunately, however, we have then left the stellar-interior regime with which
this book deals, and we happily leave the complicated remainder to those of our
colleagues who feel the call to treat the problem of stellar atmospheres.

5.1.3 The Rosseland Mean for ��

The above equations are independent of the frequency �IF and l are quantities
integrated over all frequencies, so that the quantity � must represent a “proper mean”
over �. We shall now prescribe a method for this averaging.

In general the absorption coefficient depends on the frequency �. Let us denote
this by adding a subscript � to all quantities that thus become frequency dependent:
��; `�;D�; U� , etc.

For the diffusive energy flux F � of radiation in the interval Œ�; � C d��, we write
now, as in Sect. 5.1.2,

F � D �D� rU�; with (5.13)

D� D 1

3
c `� D c

3��%
; (5.14)

while the energy density in the same interval is given by

U� D 4�

c
B.�; T / D 8�h

c3
�3

eh�=kT � 1 : (5.15)

B.�; T / denotes here the Planck function for the intensity of black-body radiation
(differing from the usual formula for the energy density simply by the factor 4�=c/.
For simplicity, we will not always write the arguments � and T explicitly in the
following formulae. From (5.15) we have

rU� D 4�

c

@B

@T
rT ; (5.16)

which together with (5.14) is inserted into (5.13), the latter then being integrated
over all frequencies to obtain the total flux F :

F D �
�
4�

3%

Z 1

0

1

��

@B

@T
d�

�
rT : (5.17)

We have thus regained (5.9), but with

krad D 4�

3%

Z 1

0

1

��

@B

@T
d� : (5.18)



5.1 Radiative Transport of Energy 41

Equating this expression for krad with that in the averaged form of (5.10), we have
immediately the proper formula for averaging the absorption coefficient:

1

�
D �

acT 3

Z 1

0

1

��

@B

@T
d� : (5.19)

This is the so-called Rosseland mean (after Sven Rosseland).
Since

Z 1

0

@B

@T
d� D acT 3

�
; (5.20)

the Rosseland mean is formally the harmonic mean of �� with the weighting
function @B=@T , and it can simply be calculated, once the function �� is known
from atomic physics.

In order to see the physical interpretation of the Rosseland mean, we rewrite
(5.13) with the help of (5.14)–(5.16):

F � D �
�
1

��

@B.�; T /

@T

�
4�

3%
rT : (5.21)

This shows that, for a given point in the star (% and rT given), the integrand in
(5.19) is at all frequencies proportional to the net flux F � of energy. The Rosseland
mean therefore favours the frequency ranges of maximum energy flux. One could
say that an average transparency is evaluated rather than an opacity–which is
plausible, since it is to be used in an equation describing the transfer of energy
rather than its blocking.

One can also easily evaluate the frequency where the weighting function @B=@T
has its maximum. From (5.15) one finds that, for given a temperature, @B=@T �
x4ex.ex � 1/�2 with the usual definition x D h�=kT . Differentiation with respect
to x shows that the maximum of @B=@T is close to x D 4.

The way we have defined the Rosseland mean �, which is a kind of weighted
harmonic mean value, has the uncomfortable consequence that the opacity � of a
mixture of two gases having the opacities �1; �2 is not the sum of the opacities:
� ¤ �1 C �2.

Therefore, in order to find � for a mixture containing the weight fractions X of
hydrogen and Y of helium, the mean opacities of the two single gases are of no use.
Rather one has to add the frequency-dependent opacities �� D X��HCY��He before
calculating the Rosseland mean. For any new abundance ratio X=Y the averaging
over the frequency has to be carried out separately.

In the above we have characterized the energy flux due to the diffusion of photons
by F . Since in the following we shall encounter other mechanisms for energy
transport, from now, on we shall specify this radiative flux by the vector F rad.
Correspondingly we shall use �rad instead of �, etc.
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5.2 Conductive Transport of Energy

In heat conduction, energy transfer occurs via collisions during the random thermal
motion of the particles (electrons and nuclei in completely ionized matter, otherwise
atoms or molecules). A basic estimate similar to that in Sect. 5.1.1 shows that in
“ordinary” stellar matter (i.e. in a non-degenerate gas), conduction has no chance of
taking over an appreciable part of the total energy transport. Although the collisional
cross sections of these charged particles are rather small at the high temperatures in
stellar interiors (10�18 � � � 10�20 cm2 per particle), the large density . N% D 1:4 g cm�3
in the Sun) results in mean free paths several orders of magnitude less than those for
photons; and the velocity of the particles is only a few per cent of c: Therefore the
coefficient of diffusion (5.5) is much smaller than that for photons.

The situation becomes quite different, however, for the cores of evolved stars
(see Chap. 33), where the electron gas is highly degenerate. The density can be as
large as 106 g cm�3. But degeneracy makes the electrons much faster, since they are
pushed up close to the Fermi energy; and degeneracy increases the mean free path
considerably, since the quantum cells of phase space are filled up such that collisions
in which the momentum is changed become rather improbable. Then the coefficient
of diffusion (which is proportional to the product of mean free path and particle
velocity) is large, and heat conduction can become so efficient that it short-circuits
the radiative transfer (see Sect. 17.6).

The energy flux Fcd due to heat conduction may be written as

Fcd D �kcdrT : (5.22)

The sum of the conductive flux Fcd and the radiative flux Frad as defined in (5.9) is

F D Frad C Fcd D �.krad C kcd/rT ; (5.23)

which shows immediately the benefit of writing the radiative flux in (5.9) formally
as an equation of heat conduction. On the other hand, we can just as well write the
conductive coefficient kcd formally in analogy to (5.10) as

kcd D 4ac

3

T 3

�cd%
; (5.24)

hence defining the “conductive opacity” �cd. Then (5.23) becomes

F D �4ac
3

T 3

%

�
1

�rad
C 1

�cd

�
rT ; (5.25)

which shows that we arrive formally at the same type of equation (5.11) as in the
pure radiative case, if we replace 1=� there by 1=�rad C 1=�cd. Again the result
is plausible, since the mechanism of transport that provides the largest flux will
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dominate the sum, i.e. the mechanism for which the stellar matter has the highest
“transparency”.

Equation (5.12), which, if we define � properly, holds for radiative and conduc-
tive energy transport, can be rewritten in a form which will be convenient for the
following sections.

Assuming hydrostatic equilibrium, we divide (5.12) by (2.5) and obtain

.@T=@m/

.@P=@m/
D 3

16�acG

�l

mT3
: (5.26)

We call the ratio of the derivatives on the left .dT=dP /rad; and we mean by this
the variation of T in the star with depth, where the depth is expressed by the
pressure, which increases monotonically inwards. In this sense, in a star which is
in hydrostatic equilibrium and transports the energy by radiation (and conduction),
.dT=dP /rad is a gradient describing the temperature variation with depth. If we use
the customary abbreviation

rrad WD
�
d lnT

d lnP

�
rad
; (5.27)

(5.26) can be written in the form

rrad D 3

16�acG

�lP

mT 4
; (5.28)

in which conduction effects are now included. Note the difference in definition
and meaning of rrad and of rad introduced in (4.21), which concerns not only
their (in general different) numerical values. As just explained, rrad means a
spatial derivative (connecting P and T in two neighbouring mass shells), while
rad describes the thermal variation of one and the same mass element during its
adiabatic compression. Only in special cases .d lnT=d lnP/ and rad will have the
same value, and we then speak of an “adiabatic stratification”.

We will use rrad also in connection with more general cases (other modes
of energy transport like convection as in Chap. 7, deviation from hydrostatic
equilibrium). It then means the gradient to which a radiative, hydrostatic layer
would adjust at a corresponding point (same values of P; T; l;m), or simply an
abbreviation for the expression on the right-hand side of (5.28), which is valid only
for hydrostatic equilibrium and as long as an effective � as in (5.25) can be defined.

5.3 The Thermal Adjustment Time of a Star

We can write (5.12), which holds for radiative and conductive energy transport, in
the form

l D ��� @T
@m

; �� D 64�6acT 3r4

3�
: (5.29)
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Now, combining this with (4.45) and replacing the internal energy u by its value cvT
for the perfect gas, it follows that

@

@m

�
�� @T
@m

�
� cv

@T

@t
D �

�
"C P

%2
@%

@t

�
: (5.30)

If we put the right-hand side equal to zero, then (5.30) has the form of the equation of
heat transfer with variable conductivity ��: Indeed variation of the temperature with
time along a rod of conductivity � and specific heat c is governed by the equation

@

@x

�
�
@T

@x

�
D c

@T

@t
; (5.31)

where x is the spatial coordinate along the rod (see Landau and Lifshitz, vol. 6,
1987) . There exists a vast amount of mathematical theory associated with this
equation, especially for the case where � is constant. For example, one can define
an initial-value problem with given T D T .x/ at t D 0. How, then, does this initial
temperature profile evolve in time? There are classical methods for determining
T D T .x; t/ for t > 0. One of the basic results is that one can start with an
exciting temperature profile T .x/; for instance, one which resembles the skyline
of Manhattan or the panorama of the Alps, and after some time, the temperature
profile always looks like the landscape of Nebraska: T .x; t/ approaches the limit
solution T D constant after sufficient time.

One can easily estimate the timescale over which (5.31) demands considerable
changes of an initially given temperature profile, the timescale of thermal adjust-
ment, by replacing in (5.31) @T by 4T , @x by a characteristic length d , and @t
by �adj:

�adj D c

�
d2 ; (5.32)

where d is a characteristic length over which the (initially given) temperature
variation changes. Obviously, only temperature profiles with variations over small
distances can change rapidly in time.

The inhomogeneous term on the right of (5.30) is a source term. It takes
into account that energy can be added everywhere by nuclear reactions or by
compression. In the case of the rod it would correspond to extra heat sources adding
heat at different values of x: Similarly to (5.32) we can derive a characteristic time
for a star:

�adj D cvM
2

�� ; (5.33)

where we have replaced the operator @=@m by 1=M and introduced a mean value
��, which we can estimate from (5.29). We find for the luminosity L of the star
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L � ��T =M , where T is a mean temperature of the star. Therefore, for a rough
estimate, we have from (5.33) that

�adj � cvTM

L
D Ei

L
D �KH : (5.34)

This means that the Kelvin–Helmholtz timescale as defined in (3.17) can be
considered a characteristic time of thermal adjustment of a star or – in other words –
the time it takes a thermal fluctuation to travel from centre to surface.

In spite of the indicated equivalence of �adj and �KH, it is often advisable
to consider �adj separately, in particular if it is to be applied to parts of a star
only. For example, we will encounter evolved stars with isothermal cores of very
high conductivity (Chap. 33). The luminosity there is zero so that formally the
corresponding �KH becomes infinite. The decisive timescale that in fact enforces
the isothermal situation is the very small �adj. The difference can be characterized
as follows: how much energy may be transported after a temperature perturbation
is often much more important than how much energy is flowing in the unperturbed
configuration.

5.4 Thermal Properties of the Piston Model

We now investigate the thermal properties of the piston model discussed in Sects. 2.7
and 3.2 by first assuming that the gas of mass m� in the container is thermally
isolated from the surroundings. If the piston is moved, the gas changes adiabatically,
i.e.

dQ D m�du C PdV D 0 ; (5.35)

dQ being the heat added to the total mass of the gas. For a perfect gas the energy
per unit mass is u D cvT; and for adiabatic conditions, with V D Ah, this leads to

dQ D cvm
�dT C PA dh D 0 : (5.36)

We now relax the adiabatic condition in three ways. First, we allow a small leak
through which heat (but no gas) can escape from the interior (gas at temperature T )
to the surroundings (at temperature Ts/ see Fig. 2.2. The corresponding heat flow
will be 	.T�Ts/, where	 is a measure of the heat conduction at the leak indicated in
Fig. 2.2. Second, in order to make the gas more similar to stellar matter, we assume
the release of nuclear energy with a rate ": Third, we assume that a radiative energy
flux F penetrates the gas and that the energy �Fm� is absorbed per second. The
energy balance of the gas in the stationary case then can be expressed by

"m� C �Fm� D 	.T � Ts/ : (5.37)
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In general the heat dQ added to the gas within the time interval dt is

dQ D Œ"m� C �Fm� � 	.T � Ts/�dt ; (5.38)

and, if we compare (5.36) and (5.38), we find that

cvm
� dT

dt
C PA

dh

dt
D "m� C �m�F � 	.T � Ts/ : (5.39)

This is the equation of energy conservation of the gas.
If we assume " D � D 0, then (5.39) has only one time-independent solution:

T D Ts. What is the timescale of this adjustment of T ?
The two time derivatives on the left-hand side of (5.39) give the same estimate

for � ; indeed a change of h occurs only as a consequence of, and together with, the
change of T . For our rough estimate we can therefore replace the left-hand side of
(5.39) by cv�Tm�=T where�T D jT � Tsj:

cvm
��T=� � 	jT � Tsj : (5.40)

For the timescale by which �T decays we obtain

�adj � cvm
�=	 ; (5.41)

which is the time it takes the gas to adjust its temperature to that of the surroundings.
This timescale for our piston model plays a role similar to the Kelvin–Helmholtz
timescale in stars. For sufficiently small 	 (sufficiently large �adj), we have �hydr �
�adj, similar to the situation in stars, where �hydr � �KH.



Chapter 6
Stability Against Local, Non-spherical
Perturbations

We have based our treatment on the assumption of strict spherical symmetry,
meaning that all functions and variables (including velocities) are constant on
concentric spheres. In reality there will arise small fluctuations on such a sphere,
for example, simply from the thermal motion of the gas particles. Such local
perturbations of the average state may be ignored if they do not grow. But in a star
sometimes small perturbations may grow and give rise to macroscopic local (non-
spherical) motions that are also statistically distributed over the sphere. In the basic
equations the assumption of spherical symmetry can still be kept if we interpret the
variables as proper average values over a concentric sphere.

However, these motions have to be considered carefully because they can have a
strong influence on the stellar structure. They not only mix the stellar material but
also transport energy: hot gas bubbles rise, while cooler material sinks down, i.e.
energy transport is by convection, something which is known to play an important
role in the earth’s atmosphere.

Whether convection occurs in a certain region of a star obviously depends on the
question whether the small perturbations always present will grow or stay small: a
question of stability. We shall derive criteria which tell us whether stellar material
at a certain depth is stable or not. Depending on the physical conditions one can
make different simplifying assumptions which lead to different stability problems.
The following dynamical problem covers most of the “normal” cases in stars.

6.1 Dynamical Instability

The kind of stability we are discussing here is based on the assumption that the
moving mass elements have no time to exchange appreciable amounts of heat
with the surroundings and therefore move adiabatically. This type of stability (or
instability) is called dynamical. We will soon learn that there are other types of
instability.

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics
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First, we consider the possibility that the physical quantities (temperature,
density, etc.) may not be exactly constant on the surface of a concentric sphere
but rather may show certain fluctuations. In the global problem of stellar structure,
one then has only to interpret the previously used functions as proper averages. For
the local description, we shall simply represent a fluctuation by a mass “element”
(subscript e) in which the functions have constant, but somewhat different, values
than in the average “surroundings” (subscript s). For any quantity A we define the
difference DA between element and surroundings1 as

DA WD Ae � As : (6.1)

One can easily imagine an initial fluctuation of temperature, for example, a slightly
hotter element with DT > 0. Normally one could then also expect an excess of
pressure DP. However, the element will expand immediately until pressure balance
with the surroundings is restored, and since this expansion occurs with the velocity
of sound, it is usually much more rapid than any other motion of the element.
Therefore we can assume here (and in the following) that the element always
remains in pressure balance with its surroundings:

DP D 0 : (6.2)

Consequently the assumed DT > 0 requires that, for a perfect gas with % �
P=T;D% < 0, i.e. the element is lighter than the surrounding material, and
the buoyancy forces will lift it upwards: temperature fluctuations are obviously
accompanied by local motions of elements in a radial direction.

So, we can also take a radial shift �r > 0 of the element as the initial
perturbation for testing the stability of a layer. Consider an element that was in
complete equilibrium with the surroundings at its original position r but has now
been lifted to r C�r (cf. Fig. 6.1). In general its density will differ from that of its
new surroundings by

D% D
��
d%

dr

�
e

�
�
d%

dr

�
s

�
�r ; (6.3)

.d%=dr/e determining the change of the element’s density while it rises by dr; the
other derivative is the spatial gradient in the surroundings.

A finite D% gives the radial component Kr D �gD% of a buoyancy force K
(per unit of volume), where g again is the absolute value of the acceleration of
gravity. If D% < 0, the element is lighter and Kr > 0, i.e. K is directed upwards.
This situation is obviously unstable, since the element is lifted further, the original
perturbation being increased.

1Note that we use the subscript s, which is different from s used for the specific entropy in other
parts of this book.
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Fig. 6.1 In order to test the
stability of a “surrounding”
layer (s), a test “element”
(e) is lifted from level r to
r C�r

If on the other hand D% > 0, then Kr < 0, i.e. K is directed downwards. The
element, which is heavier than its new surroundings, is drawn back to its original
position, the perturbation is removed, and the layer is stable. As the condition for
stability we obtain with D% > 0 from (6.3) the result

�
d%

dr

�
e

�
�
d%

dr

�
s
> 0 : (6.4)

Unfortunately this criterion is highly impractical, since it requires knowledge of
density gradients that do not appear in the basic equations. It is therefore preferable
to turn to temperature gradients as used in the equations of radiative and conductive
transport. In order to evaluate .d%=dr/e correctly, we would have to take into
account the possible energy exchange between the element and its surroundings.
For simplicity let us here assume that no such exchange of energy occurs, i.e. that
the element rises adiabatically. This is very close to reality for the deep interior of
a star (see Chap. 7).

In order to transform the gradients of % into those of T , we write the equation of
state % D % .P; T; �/ in the following differential form:

d%

%
D ˛

dP

P
� ı

dT

T
C '

d�

�
; (6.5)

where ˛ and ı have already been defined in (4.2) and (4.3). But here, we have
made allowance also for a possible variation of the chemical composition, which is
characterized by the molecular weight �: We therefore have

˛ WD
�
@ ln %

@ lnP

�
; ı WD �

�
@ ln %

@ ln T

�
; ' WD

�
@ ln%

@ ln�

�
; (6.6)

where the three partial derivatives correspond to constant values of T;�IP;�; and
P; T; respectively, and for a perfect gas with % � P�=T , one has ˛ D ı D
' D 1. In this description d� shall represent only the change of � due to the
change of chemical composition, i.e. the variation of the concentrations of different
nuclei in the deep interior. Of course, � can also change in the outer regions for
constant composition if the degree of ionization changes. This effect, however, has

spowocki
Rectangle
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a well-known dependence on P and T and is supposed to be incorporated in ˛
and ı: Thus, d� D 0 for the moving element that carries its composition along.
But d� ¤ 0 for the surroundings if the element passes through layers of different
chemical composition.

We can immediately rewrite (6.4) with the help of (6.5) in the form

�
˛

P

dP

dr

�
e

�
�
ı

T

dT

dr

�
e

�
�
˛

P

dP

dr

�
s
C
�
ı

T

dT

dr

�
s
�
�
'

�

d�

dr

�
s
> 0 : (6.7)

The two terms containing the pressure gradient cancel each other owing to (6.2),
and the other terms are usually multiplied by the so-called scale height of pressure
HP :

HP WD � dr

d lnP
D �P dr

dP
: (6.8)

With (2.3), the condition for hydrostatic equilibrium, we find HP D P=%g, i.e.
HP > 0, since P decreases with increasing r . HP has the dimension of length,
being the length characteristic of the radial variation of P: In the solar photo-sphere
.g D 2:7 � 104 cm s�2, P D 1:0 � 105 dyn cm�2, % D 2:6 � 10�7 g cm�3/, one
finds HP D 1:4 � 107 cm, while at r D Rˇ=2 .g D 9:8 � 104 cm s�2, P D
7:3 � 1014 dyn cm�2, % D 1:4 g cm�3/, HP is much bigger, at 5:5 � 109 cm. If one
approaches the stellar centre–where g D 0, while P remains finite–thenHP ! 1.

Multiplication of (6.7) by HP yields as a condition for stability

�
d ln T

d lnP

�
s
<

�
d ln T

d lnP

�
e

C '

ı

�
d ln�

d lnP

�
s
: (6.9)

Similar to the previously defined quantities rrad and rad, we define three new
derivatives:

r WD
�
d ln T

d lnP

�
s
; re WD

�
d lnT

d lnP

�
e
; r� WD

�
d ln�

d lnP

�
s
: (6.10)

Here the subscripts s indicate that the derivatives are to be taken in the surrounding
material. In both cases they are spatial derivatives in which the variations of T and�
with depth are considered and P is taken as a measure of depth. The quantity re

describes the variation of T in the element during its motion, where the position
of the element is measured by P: In this sense re and rad are similar, since
both describe the temperature variation of a gas undergoing pressure variations;
on the other hand, rrad and r� describe the spatial variation of T and � in the
surroundings.

With the definitions (6.10) the condition (6.9) for stability becomes

r < re C '

ı
r� : (6.11)
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In (5.27) and (5.28) we defined rrad, which describes the temperature gradient for
the case that the energy is transported by radiation (or conduction) only. Therefore in
a layer that indeed transports all energy by radiation the actual gradient r is equal
to rrad. Let us test such a layer for its stability and assume the elements change
adiabatically: re D rad; the radiation layer is stable if

rrad < rad C '

ı
r� ; (6.12)

a form known as the Ledoux criterion (named after Paul Ledoux) for dynamical
stability. In a region with homogeneous chemical composition, r� D 0, and one
has then simply the famous Schwarzschild criterion for dynamical stability (named
after Karl Schwarzschild):

rrad < rad : (6.13)

If in the criteria (6.12) and (6.13) the left-hand side is larger than the right, the
layer is dynamically unstable. If they are equal, one speaks of marginal stability.
The difference between the two criteria obviously plays a role only in regions
where the chemical composition varies radially. We will see that such regions occur
in the interior of evolving stars, where heavier elements are usually produced below
the lighter ones, such that the molecular weight � increases inwards (as the pressure
does) and r� > 0. Then the last term in inequality (6.12) obviously has a stabilizing
effect (' and ı are both positive). This is plausible since the element carries its
heavier material upwards into lighter surroundings and gravity will tend to draw it
back to its original place.

If these criteria favour stability, then no convective motions will occur, and the
whole flux will indeed be carried by radiation, i.e. the actual gradient at such a
place is equal to the radiative one: r D rrad. If they favour instability, then small
perturbations will increase to finite amplitude until the whole region boils with
convective motions that carry part of the flux–and the actual gradient has to be
determined in a manner described in Chap. 7. This instability can be caused either
by the fact that rrad has become too high (large flux or very opaque matter), or else
by a depression of rad; both cases occur in stars. And, finally, in a twilight zone,
where one of the two criteria (6.12) and (6.13) says stability and the other one says
instability, strange things may happen (see, for instance, Sects. 6.3 and 30.4.2).

Note that (6.12) and (6.13) are strictly local criteria, which means good and bad
news. They are very practical since they can be evaluated easily for any given place
by using the local values of P; T; % only, without bothering about other parts of
the star. And in most cases this will give satisfactory answers. In critical cases,
however, this may not be sufficient. Strictly speaking, convective motions are not
only dependent on the local forces (which are solely regarded by the criteria),
but must be coupled (by momentum transfer, inertia, the equation of continuity)
to their neighbouring layers. And in extreme cases the reaction of the whole star
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against a local perturbation should be taken into account. An obvious example is the
precise determination of the border of a convective zone, where elements that were
accelerated elsewhere “shoot over” until their motion is braked. We will come back
later to such problems when they arise (see Sect. 30.4.1).

We can immediately derive a qualitative relation between the different gradients.
They are best visualized in a diagram such as Fig. 6.2, where lnT is plotted
against lnP (decreasing outwards) for an unstable layer violating the Schwarzschild
criterion. In such a diagram, an adiabatic change follows a line with slope rad, the
changes in a rising element are given by a line with slope re, while the stratifications
in the surroundings and in a radiative layer are shown by lines with slopes r and
rrad, respectively.

Suppose we have convection in a chemically homogeneous layer (r� D 0). The
criterion (6.11) must be violated, i.e. r > re. If some part of the flux is carried
by convection, then the actual gradient r < rrad, since only a part of the total
flux is left for radiative transfer. Consider a rising element that has started from a
point with P0; T0. In Fig. 6.2 this element moves downwards to the left along the
line with slope re. Since r > re, the element (although cooling) will obviously
have an increasing temperature excess over its new surroundings (the temperature
of which changes with r). Therefore it will radiate energy into its surroundings,
which means that the element cools more than adiabatically: re > rad. Combining
these inequalities, we arrive at the relation illustrated in Fig. 6.2:

rrad > r > re > rad : (6.14)

The fact that re must always be between rad and r of the surroundings shows that
the criteria (6.12) and (6.13) are also to be used in near-surface regions, where the
rising elements lose much of their energy by radiation.

6.2 Oscillation of a Displaced Element

In a dynamically stable layer a displaced mass element is pushed back by buoyancy.
When coming back to its original position, it has gained momentum and will
overshoot and therefore start to oscillate. In the following we shall discuss this
oscillation.

Consider a mass element lifted from its normal (equilibrium) position in the
radial direction by an amount�r (see Fig. 6.1). There it has an excess of densityD%
over its new surroundings given by (6.3), which for balance of pressure .DP D 0)
and with (6.5) and the definitions (6.6), (6.8), (6.10) can easily be written as

D% D %ı

HP

h
re � r C '

ı
r�

i
�r : (6.15)
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Fig. 6.2 Temperature-pressure diagram with a schematic sketch of the different gradients r.�
@ lnT=@ lnP ) in a convective layer. Starting at a common point with P0 and T0, the different types
of changes (adiabatic, in a rising element, in the surroundings, for radiative stratification) lead to
different temperatures at a slightly higher point with P0C�P (< P0, since P decreases outwards)

In the presence of gravity g; the resulting buoyancy force per unit volume is Kr D
�gD%, producing an acceleration of the element of

@2.�r/

@t2
D � gı

HP

h
re � r C '

ı
r�

i
�r : (6.16)

Suppose now that the element, after an original displacement �r0, moves adiabat-
ically (re D rad) through a dynamically stable layer .D%=�r > 0/. The element
is accelerated back towards its equilibrium position around which it then oscillates
according to the solution of (6.16):

�r D �r0 ei!t : (6.17)

The frequency ! D !ad of this adiabatic oscillation is the so-called Brunt-Väisälä
frequency given by

!2ad D gı

HP

�
rad � r C '

ı
r�

�
: (6.18)

(It plays, e.g. a role in the discussion of non-radial oscillations of a star, see
Chap. 42.) The corresponding period is �ad D 2�=!ad.
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We see immediately what happens in an unstable layer. If the Ledoux criterion
(6.12) [or the Schwarzschild criterion (6.13) for r� D 0] is violated, then (6.18)
gives !2ad < 0, such that !ad is imaginary and the time dependence of �r is given
by the factor exp(�t) with a real � > 0. Instead of oscillating, the displaced element
moves away exponentially.

6.3 Vibrational Stability

In a dynamically stable layer an oscillating mass element has, in general, DT ¤ 0.
If DT > 0, it will lose heat to its surrounding by radiation; if DT < 0, it will
gain heat. This means it will not move adiabatically. We consider the deviation
from adiabaticity to be small, which means that the thermal adjustment time of
the element is large compared to the period of the oscillation; then the temperature
excess of the element can be written as

DT D
��
dT

dr

�
e

�
�
dT

dr

�
s

�
�r

D � T

HP

.re � r/�r : (6.19)

Dynamical stability means that D%=�r > 0 and therefore (6.11) is fulfilled. If the
layer is chemically homogeneous, then r� D 0, and (6.11) becomes re � r > 0,
such that (6.19) gives DT < 0 for �r > 0. Above its equilibrium position the
element is cooler than the surroundings and receives energy by radiation. This
reduces re �r;D%, and the restoring force, such that the element is less accelerated
back towards the equilibrium position. The result will be an oscillation with slowly
decreasing amplitude. Formally this radiative damping shows up as a small positive
imaginary part of ! in (6.17) after the exchange of heat with the surroundings is
included in (6.16). The oscillatory part (real part of !/ is still very close to the
adiabatic value (6.18).

If the stable layer is inhomogeneous with r� > 0, it can be that with (6.11)
re � r > 0 also (both criteria for stability are fulfilled), i.e. we find again that
DT < 0 for �r > 0 and radiative damping as before. However, we can also
imagine a situation with re � r < 0 in spite of (6.11) for large enough r�. Then
DT > 0 for �r > 0 according to (6.19), and the lifted element, being hotter
than its surroundings, will now lose energy by radiation. This increases re � r,
D%, and the restoring force, and the element will oscillate with slowly increasing
amplitude. This is an over-stability, or vibrational instability. The difficulties in this
strange situation are obvious [it being the above mentioned twilight zone between
the two criteria (6.12) and (6.13)]. The growing oscillation may lead to a chemical
mixing of elements and surroundings and thus decrease, or eventually even destroy,
the stabilizing gradient r�. But then again, it is not clear whether in such critical
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situations a local analysis suffices at all. The reaction of other layers of the star
might provide enough damping to suppress the over-stability.

With these considerations it follows that we have to distinguish between dynami-
cal stability and vibrational stability. The first applies to purely adiabatic behaviour
of the moving mass, while the second takes heat exchange into account. A layer
with a temperature gradient r such that the Ledoux criterion is fulfilled but the
Schwarzschild criterion is not, i.e.

rad < r < rad C '

ı
r� ; (6.20)

is dynamically stable but vibrationally unstable.
A dynamical instability grows on a timescale given by .HP =g/

1=2; while in the
case of a vibrational instability, the growth of amplitude is governed by the time it
takes a mass element to adjust thermally to its surrounding, i.e. by the fraction of the
total energy of the moving element lost by radiation per unit time. In the following
we shall estimate this timescale �adj.

6.4 The Thermal Adjustment Time

Let us consider a mass element with DT > 0, i.e. one that will radiate into the
surroundings. Superposed onto the radial energy flux F ; carrying energy from the
stellar interior to the surface, there will be a local, non-radial flux f , carrying
the surplus energy of the element to its surroundings. According to (5.9) and
(5.10), the absolute value f of the radiative flux from the element due to its excess
temperature will be

f D 4acT 3

3�%

ˇ̌
ˇ̌@T
@n

ˇ̌
ˇ̌ ; (6.21)

where @=@n indicates the differentiation perpendicular to the surface of the element.
Suppose our element to be a roughly spherical “blob” with diameter d: We will
approximate the temperature gradient in the normal direction by @T=@n � 2DT=d .
The radiative loss � per unit time from the whole surface V of the blob is then

� D Sf D 8acT 3

3�%
DT

S

d
: (6.22)

The quantity � is a sort of “luminosity” of the blob, and it determines the rate by
which the thermal energy of the blob of volume V changes:

%V cP
@T

@t
D �� : (6.23)
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Here we can replace @T=@t by @.DT /=@t , since the temperature of the (large)
surroundings scarcely changes, owing to radiative losses of the blob. Furthermore,
let V=S � d=6 (as for a sphere); then one obtains from (6.22) and (6.23) that

@.DT /

@t
D �DT

�adj
; (6.24)

with the timescale for thermal adjustment

�adj D �%2cP d
2

16acT 3
D %VcPDT

�
: (6.25)

The second equation follows from a comparison of (6.22)–(6.24). We see that �adj is
roughly the excess thermal energy divided by the luminosity, i.e. an equivalent to the
Kelvin–Helmholtz timescale for a star (3.17). For sufficiently large elements that are
far enough from a region of marginal stability, one has �adj � 1=!ad, which means
that the radiative losses give only a small deviation from adiabatic oscillations, as
discussed in Sect. 6.2.

6.5 Secular Instability

Even a small exchange of heat between a displaced mass element and its surround-
ings can lead to another kind of instability, which is called thermal or secular
instability. We first discuss this qualitatively with an experiment which can easily
be carried out with water and kitchen equipment.

In a glass jar containing cold fresh water we carefully pour over a layer of
warm salty water. The salt increases the specific weight of the upper layer, but the
warmth shall be enough to reduce (despite the salt content) its specific weight to
below that of the underlying fresh water. If, owing to a perturbation, a blob of salty
water is pushed downwards, buoyancy will push it back, i.e. the two layers are then
dynamically stable.

But the buoyancy acts as a restoring force only as long as the element stays warm
during its excursion into the cold layers. On the timescale by which it loses its excess
temperature, the buoyancy diminishes and the element moves downwards because
of its salt content. Indeed if one watches the two layers for some time, one can see
(especially if the salty water is coloured) that small blobs of salty water slowly sink,
a phenomenon called salt-fingers. It is an instability controlled by the heat leakage
of the element. This is secular instability. It can not only occur in glass jars, but also
in stars!

Consider a blob of stellar matter situated in surroundings of somewhat different,
but homogeneous, composition, i.e. D� ¤ 0, but r� D 0 (Such a situation can
occur, for example, if two homogeneous layers of different compositions are above
each other and a blob from one layer is displaced into the other.). The blob is
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supposed to be in mechanical equilibrium with its surroundings, i.e.DP D D% D 0.
This requires, however, a temperature difference according to (6.5):

ı
DT

T
D '

D�

�
: (6.26)

For D� > 0, for example, the blob is hotter and therefore radiates towards the
surroundings; the loss of energy under pressure balance .DP D 0) leads to an
increased density and the blob sinks until again D% D 0. Equation (6.26) is still
valid and, since D�, is unchanged, DT > 0 as before, and so on. Obviously the
blob will slowly sink (or rise for D� < 0) with a velocity v� such that DT always
remains constant according to (6.26).

Owing to radiation, the temperature of the blob changes at the rate–DT=�adj [see
(6.24)]. While sinking or rising it changes also because of the adiabatic compression
(or expansion) that occurs as a result of the change of pressure, even in the absence
of energy exchange. The rate of change of DT can then immediately be written as

1

T

@

@t
.DT / D

�
rad

@ lnP

@t
� DT

T �adj

�
� r @ lnP

@t
: (6.27)

The rate of change of pressure is simply linked to the velocity v� by

@ lnP

@t
D � v�

HP

: (6.28)

Using this and (6.26), together with the condition @.DT /=@t D 0 [which follows
from (6.26), since D� does not vary if the element moves in a chemically
homogeneous region], we can solve (6.26)–(6.28) for the velocity and obtain

v� D � HP

.rad � r/�adj

'

ı

D�

�
: (6.29)

In this case of thermal instability, therefore, the blob sinks (v� < 0 for D� > 0)
through a dynamically stable surrounding (rad > 0) with the adjustment timescale
for radiative losses.

The idea of blobs finding themselves in strange surroundings .D� > 0) is not
far-fetched. Secular instabilities of the kind discussed here can occur in stars, for
example, of about one solar mass. After hydrogen has been transformed to helium
in their cores, their central region is cooled by neutrinos, which take away energy
without interacting with the stellar matter. The temperature in these stars, therefore,
is highest somewhere off-centre and decreases towards the stellar surface as well as
towards the centre. If, then, helium “burning” is ignited in the region of maximum
temperature, the newly formed carbon is in a shell surrounding the central core
(Sects. 33.4 and 33.5). This carbon-enriched shell has a higher molecular weight
than the regions below: carbon “fingers” will grow and sink inwards. In later
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evolutionary phases, other nuclear reactions, such as neon burning, may ignite off-
centre, and heavier fingers of material may sink.

6.6 The Stability of the Piston Model

Our piston model (Sects. 2.7 and 5.4) shows a stability behaviour in many respects
similar to that of the blobs.

We start with the two equations that together with the equation of state describe
the time dependence of the piston model. These are (2.34) and (5.39), where we
assume for the sake of simplicity that " D � D 0. The equilibrium state is given by
T D Ts and G� D PA.

In order to investigate the stability we denote the equilibrium values by the
subscript “0” and make small perturbations of the form

h.t/ D h0.1C xei!t /

P.t/ D P0.1C pei!t /

T .t/ D T0.1C #ei!t / (6.30)

with jxj; jpj; j#j � 1. We therefore neglect quadratic and higher-order expressions
in these quantities.

From mass conservation %h = constant and from the perfect gas equation
P � %T , we obtain

p D # � x : (6.31)

We now introduce (6.30) into (2.34) and obtain after linearization and using
G� D PA

M �h0!2x C P0Ap D 0 ; (6.32)

which with g D P0A=M
� and with (6.31) can be replaced by

�
!2h0

g
� 1

�
x C # D 0 ; (6.33)

while the corresponding perturbation and linearization of (5.39) gives

i!P0Ah0x C .i!cvm�T0 C 	T0/# D 0 : (6.34)

The two linear homogeneous equations (6.33) and (6.34) for x and # can be solved
if the determinant vanishes. This condition gives an algebraic equation of third order
for the eigenvalue !:
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The problem becomes simple if we assume that the trapped gas changes
adiabatically, i.e. if 	 D 0. Then (6.34), with m�=.Ah0/ D %0 and with the perfect
gas equation, yields

<
�cv

x C # D 0 ; (6.35)

and with <=� D cP � cv (4.33) and cP =cv D 
ad (4.37) it follows that

.
ad � 1/x C # D 0 : (6.36)

Setting the determinant of the equations (6.33) and (6.36) to zero gives the
eigenvalue for the adiabatic motion:

! D ˙!ad; !ad D .
adg=h0/
1=2 : (6.37)

Since ! is real, the adiabatic motion is an oscillation with frequency ! and constant
amplitude. Therefore in the language of Sect. 6.1 our perfect gas piston model is
dynamically stable. Note that 1=!ad is of the order of the hydrostatic timescale �hydr

defined in Sect. 2.7.
How do non-adiabatic effects change the picture? With the 	 term in (6.34) we

have, instead of (6.36),

.
ad � 1/x C
�
1C a

i!

�
# D 0 ; (6.38)

with a D 	=.cvm
�). Setting the determinant of (6.33) and (6.38) equal to zero now

gives a cubic equation in !: In general ! will be complex.
We assume 	 to be small, so that the oscillation frequency must be close to

the adiabatic value and we can put ! D !ad C �, with j�j � j!adj: If we
neglect higher terms in � and 	, we find from the vanishing determinant of the
system of homogeneous linear equations (6.33) and (6.38) and after some algebraic
manipulation that

i� D �
ad � 1
2
ad

	

cvm� D �
ad � 1

2
ad

1

�adj
< 0 ; (6.39)

where we have used (5.41). The (almost adiabatic) oscillation is therefore damped
since the exponents of (6.30), i! D i!adCi�, have a negative real part that decreases
the amplitude on a timescale �adj: The piston model with a leak is vibrationally
stable.

The cubic equation for ! must have a third root, which we find easily by
assuming that it describes an evolution so slow that the inertia term in (2.34) can
be neglected (This has to be checked later.). Then (6.33) has to be replaced by

# � x D 0 ; (6.40)
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which according to (6.31) is equivalent to p D 0. Indeed if the evolution is so slow
that there is always hydrostatic equilibrium, the pressure is given by the (constant)
weight of the piston. We then have from (6.34) and (6.40)

i! D � 	T

P0Ah0 C cvm�T0
D � 	

cPm� D � 1


ad�adj
: (6.41)

For the latter equation we have used the relation P0Ah0 D <m�T0=� and (5.41).
The third root gives an exponential decay in time of the initial perturbation, the
timescale being comparable with �adj. If 	 is sufficiently small and the evolution
slow, the assumption that the inertia term is negligible is justified.

Our result (6.41) means that any deviation from thermal equilibrium
.T � Ts ¤ 0/ vanishes within the thermal adjustment time, i.e. the thermally
adjusted piston model for " D � D 0 is secularly stable. We see that it shows the
same limiting cases for the stability problem (dynamical, vibrational, and secular
stability) as the blobs. In Sect. 41.1 we will consider the influence on the stability of
the piston model of the (here neglected) terms in (5.39) due to " and �.

To summarize: if the trapped gas is changing adiabatically, the piston model
is dynamically stable. If there is a leak, the oscillations are damped and the gas
vibrationally stable. If the thermal evolution is so slow that hydrostatic equilibrium
is always achieved, it is secularly stable, if � and � are zero.



Chapter 7
Transport of Energy by Convection

Convective transport of energy means an exchange of energy between hotter and
cooler layers in a dynamically unstable region through the exchange of macroscopic
mass elements (“blobs”, “bubbles”, “convective elements”), the hotter of which
move upwards while the cooler ones descend. The moving mass elements will
finally dissolve in their new surroundings and thereby deliver their excess (or
deficiency) of heat. Owing to the high density in stellar interiors, convective
transport can be very efficient. However, this energy transfer can operate only if
it finds a sufficient driving mechanism in the form of the buoyancy forces.

A thorough theoretical treatment of convective motions and transport of energy is
extremely difficult. It is the prototype of the many astrophysical problems in which
the bottleneck preventing decisive progress is the difficulty involved in solving the
well-known hydrodynamic equations. For simplifying assumptions, solutions are
available that may even give reasonable approximations for certain convective flows
in the laboratory (or in the kitchen). Unfortunately, convection in stars proceeds
under rather malicious conditions: turbulent motion transports enormous fluxes
of energy in a very compressible gas, which is stratified in density, pressure,
temperature, and gravity over many powers of ten. Nevertheless, large efforts have
been made over many years to solve this notorious problem, and they have partly
arrived at promising results. Canuto (2008) summarizes the state of the art of models
for the underlying Navier-Stokes equations, which in the field of oceanography
and atmospheric sciences have had great success, and which aim at modelling
the fluctuations around an average state. None of these so-called Reynolds stress
models, however, has reached a stage where it could provide a procedure easy
enough to be handled in everyday stellar-structure calculations, and at the same time
would describe the full properties of convection accurately enough. On the other
hand, full two- and three-dimensional hydrodynamical simulations have also made
large progress, thanks to the impressive advances in supercomputer technology and
efficient numerical algorithms (see the review by Kupka 2008). They give valuable
hints to the true nature of convection and often serve as numerical experiments
to test the dynamical methods. Nevertheless, these numerical simulations are still
limited in their size and thus can follow convection in most cases only for a limit
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time and only for thin convection zones. But even if these restrictions can be
foreseen to get relaxed with time, such full hydrodynamical simulations will never
be used in full stellar evolution models, as they would unnecessarily follow the star’s
evolution on a dynamical timescale, which is so much shorter than the dominant
nuclear one. Therefore, we limit ourselves exclusively to the description of the old
so-called “mixing-length” theory. The reason for this is not that we believe it to
be sufficient, but it does provide at least a simple method for treating convection
locally, at any given point of a star. Moreover, empirical tests of the resulting stellar
models show a surprisingly good agreement with observations. And, finally, even
this poor approximation shows without any doubt that in the very deep interior of a
star, a detailed theory is normally not necessary.

Note that in the following we are dealing only with convection in stars that
are in hydrostatic equilibrium. We furthermore assume that the convection is time
independent, which means that it is fully adjusted to the present state of the
star. Otherwise, a convection theory for rapidly changing regions (time-dependent
convection) has to be developed.

Equation (5.28) gives the gradient rrad that would be maintained in a star if the
whole luminosity l had to be transported outwards by radiation only. If convection
contributes to the energy transport, the actual gradient r will be different (namely
smaller). It is the purpose of this section to estimate r in the case of convection.

7.1 The Basic Picture

The mixing-length theory goes back to Ludwig Prandtl, who in 1925 modelled
a simple picture of convection in complete analogy to molecular heat transfer:
the transporting “particles” are macroscopic mass elements (“blobs”) instead of
molecules; their mean free path is the “mixing length” after which the blobs dissolve
in their new surroundings. Prandtl’s theory was adapted for stars by L. Biermann.
There exist different variations and formulations of the mixing-length theory in the
literature. Two widely used versions are those by Böhm-Vitense (1958) and Cox
(see Weiss et al. 2004). We follow here the former one.

The total energy flux l=4�r2 at a given point in the star consists of the radiative
flux Frad (in which the conductive flux may already be incorporated) plus the
convective flux Fcon. Their sum defines according to (5.28) the gradient rrad that
would be necessary to transport the whole flux by radiation:

Frad C Fcon D 4acG

3

T 4m

�P r2
rrad: (7.1)

However, part of the flux is transported by convection. If the actual gradient of the
stratification is r, then the radiative flux is obviously only

Frad D 4acG

3

T 4m

�P r2
r: (7.2)
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Note that r is not yet known; in fact, we hope to obtain it as the result of this
consideration. The first step is to derive an expression for Fcon.

Consider a convective element (a blob) with an excess temperature DT over its
surroundings. It moves radially with velocity v and remains in complete balance
of pressure, that is, DP D 0 [see (6.2) and Fig. 6.1]. This gives a local flux of
convective energy

Fcon D %vcPDT; (7.3)

which we can take immediately as the correct equation for the average convective
flux, if we consider vDT replaced by the proper mean over the whole concentric
sphere. One should be aware that this “proper mean” comprises most of the
difficulties for a strict treatment. We adopt the following simple model.

All elements may have started their motion as very small perturbations only, that
is, with initial values that can be approximated by DT0 D 0 and v0 D 0. Because
of differences in temperature gradients and buoyancy forces, DT and v increase
as the element rises (or sinks) until, after moving over a distance `m; the element
mixes with the surroundings and loses its identity. `m is called the mixing length.
The elements passing at a given moment through a sphere of constant r will have
different values of v and DT since they have started their motion at quite different
distances, from zero to `m. We assume, therefore, that the “average” element has
moved `m=2 when passing through the sphere. Then,

DT

T
D 1

T

@.DT /

@r

`m

2

D .r � re/
`m

2

1

HP

: (7.4)

The density difference [forDP D D� D 0, see (6.3) and (6.5)] is simply D%=% D
�ıDT=T and the (radial) buoyancy force (per unit mass), kr D �g � D%=%. On
average, half of this value may have acted on the element over the whole of its
preceding motion .`m=2/; such that the work done is

1

2
kr
`m

2
D gı.r � re/

`2m
8HP

: (7.5)

Let us suppose that half of this work goes into the kinetic energy of the element
.v2=2 per unit mass), while the other half is transferred to the surroundings, which
have to be “pushed aside”. Then, we have for the average velocity v of the elements
passing our sphere

v2 D gı.r � re/
`2m
8HP

: (7.6)

Inserting this and (7.4) into (7.3), we obtain for the average convective flux
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Fcon D %cP T
p
gı

`2m

4
p
2
H

�3=2
P .r � re/

3=2 : (7.7)

Finally, we shall consider the change of temperature Te inside the element
(diameter d; surface S; volume V / when it moves with velocity v. This change
has two causes, one being the adiabatic expansion (or compression), and the other
being the radiative exchange of energy with the surroundings. The total energy loss
� per unit time is given by (6.22); the corresponding temperature decrease per unit
length over which the element rises is �=%VcP v, and the total change per unit length
is then �

dT

dr

�
e

D
�
dT

dr

�
ad

� �

%VcP v
: (7.8)

Multiplying this by HP=T , we have

re � rad D �HP

%VcP vT
: (7.9)

Here, �may be replaced by (6.22), with the average DT given by (7.4). The resulting
equation then contains a “form factor” `mS=Vd , which would be 6=`m for a sphere
of diameter `m: In the literature, one often finds

`mS

Vd
� 9=2

`m
; (7.10)

which we will use in the following.
Equation (7.9), with the help of (6.22) and (7.10), then becomes

re � rad

r � re
D 6acT 3

�%2cP `mv
: (7.11)

Let us now summarize what we have achieved and describe what is still lacking.
To start with the latter, we have obviously not yet used any physics that could
determine the mixing length `m. Since we do not know a reasonable approach
for this, we shall simply treat `m as a free parameter and make (more or less)
plausible assumptions for its value (This is typical for all versions of the mixing-
length approach and in fact also for many others that seem to be less arbitrary at a
first glance.). In any case, the heat transfer mainly operates via the largest possible
elements, and they can scarcely move over much more than their own diameter
before differential forces destroy their identity.

Now, however, the prospect looks quite favourable: we have obtained the five
equations (7.1), (7.2), (7.6), (7.7) and (7.11), which we can solve for the five quanti-
ties Frad; Fcon; v;re, and r, if the usual local quantities .P; T; %; l;m; cP ;rad;rrad,
and g) are given.
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7.2 Dimensionless Equations

For a simpler treatment of the five equations obtained from the mixing-length theory,
we define two dimensionless quantities:

U WD 3acT 3

cP %2�`2m

s
8HP

gı
; (7.12)

W WD rrad � rad : (7.13)

The meaning of U will become clear later; that ofW is obvious. Note that both can
be calculated immediately for any point in the star when the usual variables and the
mixing length `m are given.

If v is eliminated with the help of (7.6), then (7.11) becomes

re � rad D 2U
p

r � re: (7.14)

Eliminating Frad; Fcon from (7.1), (7.2) and (7.7) and using (2.4) and (6.8),
we arrive at

.r � re/
3=2 D 8

9
U.rrad � r/ : (7.15)

We have thus replaced the set of five equations by the two equations (7.14) and
(7.15) for r and re, and we will now even reduce them to one final equation.

Rewriting the left-hand side of (7.14) as (r � rad/ � .r � re/, one sees
immediately that this is a quadratic equation for (r � re/

1=2 with the solution

p
r � re D �U C � ; (7.16)

where � is a new variable given by the positive root of

�2 D r � rad C U 2 : (7.17)

In (7.15), we insert (7.16) on the left-hand side, eliminate r on the right-hand side
with (7.17), and obtain

.� � U /3 C 8U

9
.�2 � U 2 �W / D 0 : (7.18)

So we have arrived at a cubic equation for � that can be solved for any given
set of parameters U and W: It turns out that (7.18) has only one real solution.
The resulting �, together with (7.17), then gives the decisive quantity r, that is,
the average temperature gradient to which the layer settles in the presence of
convection.
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Other characteristic quantities of the convection are then also easily calculable,
for example, the velocity v from (7.6) and (7.14).

We note for completeness that the cubic equation (7.18) should be solved
numerically and not by the analytical formulae for the solution of third order
equations, because the individual terms appearing therein can be many magnitudes
larger than the root of the formula.

7.3 Limiting Cases, Solutions, Discussion

For a given difference W D rrad � rad, the convection depends decisively on the
value of U: Let us write (7.2) as Frad D �radr, and (7.7) as Fcon D �con.r � re/

3=2.
Then, U , defined in (7.12), is essentially the ratio of the “conductivities”: �rad=�con.

The dimensionless quantity U can also be written in terms of the time �ff it takes
a mass element to fall freely over the distance HP . With �ff D .2HP =g/

1=2 and
(6.25), we have

U � �ff

�adj

d2

`2m
; (7.19)

where we have ignored a factor 3=.8ı1=2/, which is of order 1. One normally
assumes that `m � d , and therefore, U � �ff=�adj.

The quantity U is also related to another dimensionless quantity 	 defined by

	 WD .r � re/
1=2

2U
D r � re

re � rad
; (7.20)

where we have made use of (7.14). Numerator and denominator have simple
meanings as can easily be shown. For a roughly spherical convective element of
radius `m=2; cross-section A; volume V; lifetime �l D `m=v, and thermal energy
eth D %VcP T , one finds from (7.3) and (7.4) that

r � re D .FconA/�l

eth

4HP

3`m
(7.21)

and from (7.9) that

re � rad D ��l

eth

HP

`m
; (7.22)

and therefore,

	 D 4

3

FconA

�
� energy transported

energy lost
: (7.23)
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For an average element, 	 gives the convective energy flowing throughA relative to
the radiative energy loss per second. It is a measure for the efficiency of convection.
Large values of 	 (small U / are typical for very dense matter, where radiation
losses are relatively unimportant compared to the convective flux. In regions of
small density, however, the radiative losses can be so large that even very violent
movements are ineffective for energy transport; the elements then lose nearly all of
their excess heat through radiation to the surroundings, and cool down to DT � 0.
In this case, 	 is very small (i.e. U is very large). The meaning of 	 can also be
represented in terms of two typical timescales for the elements, namely, lifetime and
adjustment time: in the second equation (6.25), replace DT by (7.4) and solve for
r � re. This expression is then divided by (7.22) giving

	 D r � re

re � rad
D 2

�adj

�l
: (7.24)

Let us consider the limiting cases for very large and very small U (or 	 /: One
should keep in mind that all gradients are finite; except for rrad, they are all smaller
than unity. And for the discussion in terms of 	 , one can easily rewrite (7.14) and
(7.15) with the help of (7.20).

U ! 0 (or 	 ! 1): Equation (7.14) gives re ! rad, and thus, (7.15) yields
r ! rad. A negligible excess of r over the adiabatic value is sufficient to transport
the whole luminosity. This is the case in the very dense central part of a star. Here,
we do not need to solve the mixing-length equations (r D rad is known), and the
uncertainties of this theory do not arise.

U ! 1 (or 	 ! 0): In (7.15), the gradients on the left-hand side must be finite,
and therefore on the right-hand side, r ! rrad. Convection is ineffective and cannot
transport a substantial fraction of the luminosity. Therefore, F ! Frad, and the
gradient r is again known without further calculations. This is the case near the
photosphere of a star.

The situation is difficult where the two limiting cases do not apply, for example,
in the upper part of an outer convective envelope. There the equations of the mixing-
length theory have to be solved, and they will yield a value for r somewhere
between rad and rrad, the convection being said to be superadiabatic.

The following gives a more detailed discussion of the solutions of (7.18), which
depend strongly on the (given) parametersU andW:We illustrate them in a diagram,
where lg W is plotted over lg U (Fig. 7.1).

Instead of using the variable �, the solutions may be discussed in terms of the
over-adiabaticity

x WD r � rad D �2 � U 2 ; (7.25)

which describes the gradient r of the stratification relative to the (known) adiabatic
gradient. With this definition, the cubic equation (7.18) is transformed to

�p
x C U 2 � U �3 C 8

9
U.x �W / D 0 : (7.26)
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Fig. 7.1 The plane of the parameters U;W (on logarithmic scales) that determine the convection.
The lines x D r � rad = constant are solid; the line where U2 D x is dot-dashed. Some lines
	 D constant are dashed

1. 	 D 1: Let us first derive the line which separates the regimes of effective
convection (at small U / and ineffective convection (at large U /: Equation (7.20)
for 	 D 1 is introduced into (7.16), which gives � D 3U such that from (7.25),
we have x D 8U 2: Inserting this into (7.26), we find the condition for 	 D 1

to be
W D 17 U 2: (7.27)

The corresponding straight line lg W D 2 lg U C 1:23 is shown by dashes in
Fig. 7.1 (Lines for other values of 	 are obtained by a parallel shift.). We will
now derive the lines on which x is constant. This is easily done by considering
the following two limiting cases.

2. U 2 � x: In (7.26), the term in square brackets on the left, divided by U , goes to
zero, and one has

x D W : (7.28)

Therefore, x = constant on straight lines parallel to the abscissa (right part of
Fig. 7.1).

3. U 2 � x: In (7.26), the term in square brackets goes to x3=2 � Ux, such that

x3=2 D 8

9
UW (7.29)

and x D constant on the lines lg W D � lg U C lg(9/8) C (3/2) lg x (left part
of Fig. 7.1).



7.3 Limiting Cases, Solutions, Discussion 69

Finally, we derive the equation for the border between the regimes U 2 � x

and U 2 � x.
4. U 2 D x: With this condition, (7.26) gives

W D U 2

�
9

8
.
p
2 � 1/3 C 1

�
: (7.30)

The corresponding straight line lg W D 2 lg U C 0:033 (dot-dashed line in
Fig. 7.1) is below and parallel to that for 	 D 1.

The meaning of the different regions in Fig. 7.1 is now quite clear. Below and left
of a line of sufficiently small x (say, x D 10�2/, we have nearly r D rad; above
that line, the convection is superadiabatic. Not too far to the right of the line 	 D 1,
the efficiency is so small that r � rrad.

For an estimate for the interior of a star, let us assume a perfect monatomic gas
with ı D � D 1; cP =< D 5=2 and a mixing-length `m D HP . For an average
point in a star like the Sun, we may take r D Rˇ=2;m D Mˇ=2; T D 107 K,
� D 1 cm2 g�1 and % D 1 g cm�3. Then, we obtain U � 10�8, which is so far to
the left in Fig. 7.1 that, for reasonable values of W D rrad � rad (say between 1
and 102/, r � rad � 10�5 : : : 10�4. For the central region of the Sun, % and � are
larger by factors of 102 and 10, respectively. Then, U � 10�13, and (for the same
values of W / the difference r � rad is even smaller by a factor 103 or more, that
is, < 10�7. The stratification of such convective zones is indeed very close to an
adiabatic one, and we can simply set r D rad, independent of the uncertainties of
the theory (The situation is difficult only near the interface between convective and
radiative zones, where one should have a smooth transition between the two modes
of transport.).

Convective elements in such dense layers are so effective (	 � 106 : : : 109/ that
they can transport the whole luminosity with surprisingly little effort. Compared
with the surroundings, they only need very small excesses of the T gradi-
ent, D.dT=dr/ � 10�12 : : : 10�10 K cm�1, and an average temperature excess
DT � 10�2 : : : 1K; their velocities are typically v � 1 : : : 100m s�1 (which is
10�6 : : : 10�4 times the velocity of sound), and their lifetime is between 1 and
102 days.

The Reynolds number decides whether the flow of an incompressible viscous
fluid is turbulent or laminar (Landau, Lifshitz, vol. 6, 1987). It is defined as

Re D v%`m



: (7.31)

Here, 
 is the viscosity of the fluid and `m and v are the typical distance elements
travel and their velocity. For high Reynolds numbers, the flow is turbulent. In spite
of the small velocities of convective elements, the Reynolds number is � 1, since
the flow extends over such a large distance `m: The situation is quite different for
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convection near the surface of the star, where the density is low. This gives small
effectivity and positive lg U: Here, the cubic equation for � (or x/ has to be solved
for each point to find the proper r for that place, and the results are affected by the
uncertainties of the theory.

In any case, we use the resulting value of r in the transport equation written in
the form

dT

dm
D �T

P

Gm

4�r4
r : (7.32)

(Here, we have replaced dP/dm by the right-hand side of the hydrostatic equation
since the theory is suitable only for hydrostatic equilibrium.) For convection in the
very deep interior, r D rad, where rad is given by (4.21), while for envelope
convection, we take r as given by the solution of the mixing-length theory. And we
can even take the same equation (7.32) for transport by radiation, if we set r D rrad

(compare Sect. 5.2).
Aside from the more or less effective (and more or less well-determined)

transport of energy, turbulent convection, if it occurs, has a side effect that is
important for the life of the star: it mixes the stellar matter very thoroughly and
rapidly compared to other relevant timescales, and thus, it contributes directly to the
long-lasting chemical record of the star’s history.

7.4 Extensions of the Mixing-Length Theory

The mixing-length theory, as described above, has many open and hidden
assumptions. Most prominent is the mixing length itself, usually expressed as the
“mixing length parameter” ˛MLT, which is the mixing-length in units of the pressure
scale heightHP . It is generally assumed that ˛MLT is both constant within a star and
does vary neither with stellar mass, composition, nor with evolutionary stage. Its
value is not known better than that from general physical arguments, it should be of
order 1. To determine a reasonable numerical value, a comparison of the effective
temperature or radius of stellar models with observed stars is done, preferentially
in the case of the Sun. This yields values for ˛MLT between 1.5 and 2.0. Ludwig
et al. (1999) have done a comparison with numerical simulations of convection and
found only a weak dependence of the order of 20 % on stellar parameters for stars
of solar metallicity.

But there are even more hidden parameters and assumptions. The theory
contains, for example, several mean values entering the equations from (7.4) on.
For (7.10), we assumed a certain geometrical form of the blobs to obtain the ratio
of surface to volume. Different formulations of the mixing-length theory may make
different assumptions for all this. Therefore, the mixing-length parameter may not
be directly comparable between such different formulations.

The most basic limitation in all these variants of the theory is the assumption of
one single size (and form) for the convective elements. The theory of turbulence,
numerical simulations, laboratory experiments and astrophysical observations all
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show that this is certainly not the case. Instead, numerical simulations and helioseis-
mology showed that convection often operates by extended funnel-like downdrafts
and turbulent updrafts. Convective energy is thus realistically not transported in
laminar flows of blobs of identical size and energy content, but by turbulent elements
(“eddies”) of all sizes. Fcon can therefore not be calculated as in (7.3) but rather
results from an integration over the full spectrum of convective eddies.

Canuto and Mazzitelli (1991) developed and presented an extension of the
mixing-length theory, in which the full turbulent kinetic energy spectrum is taken
into account. This “full spectrum turbulence” theory (FST) can be formulated in
much the same way as the mixing-length theory, which is the limiting case for a
ı-function like energy spectrum. It also results in a cubic equation to be solved.
Canuto and Mazzitelli use the formulation of Cox and Giuli (Weiss et al. 2004,
Chap. 14, and eq. 14.82); in this formulation, the cubic equation reads

9

4
	 03 C 	 02 C 	 0 � 1

U 2
.rrad � rad/ D 0; (7.33)

where we have replaced already some terms by quantities of our own formulation.
	 0 is defined as

2	 0 C 1 D
�
1C r � rad

U 2

�1=2
(7.34)

and corresponds to the convective efficiency.
After modelling the convective flux in the FST model, (7.33) is modified by

multiplying the 	 03-term with a function ˝.	 0/, which is the new turbulent
convective flux relative to that of the mixing-length theory. ˝ rises monotonically
from 0 to 1 for 	 0 going from 	 0 � 0 to 	 0 ! 1 and can be approximated by an
analytical fitting function.

As a rule of thumb convective fluxes in this theory are larger than predicted by the
mixing-length theory in case of efficient convection, and superadiabatic regions are
narrower but more superadiabatic. The temperature gradient in the solar convection
zone predicted by the FST model agrees much better with that obtained in numerical
simulations than it does in the mixing-length case. The numerical value for the
mixing length parameter in this case is around 0.7.



Chapter 8
The Chemical Composition

8.1 Relative Mass Abundances

The chemical composition of stellar matter is obviously very important, since it
directly influences such basic properties as absorption of radiation or generation of
energy by nuclear reactions. These reactions in turn alter the chemical composition,
which represents a long-lasting record of the nuclear history of the star.

The composition of stellar matter is extremely simple compared to that of
terrestrial bodies. Because of the high temperatures and pressures, there are no
chemical compounds in the stellar interior, and the atoms are for the most part
completely ionized. It suffices then to count and keep track of the different types
of nuclei.

We denote by Xi that fraction of a unit mass which consists of nuclei of type i:
This requires that X

i

Xi D 1 : (8.1)

The chemical composition of a star at time t is then described, if for the rel-
evant nuclei the functions Xi D Xi.m; t/ are given in the interval [0, M�

of m:
The commonly used particle number per volume, ni , of nuclei with mass mi , is

related to the mass abundances by

Xi D mini

%
: (8.2)

Usually, one does not need to specify very many Xi because most elements are
either too rare or play no relevant role, or their abundances remain constant in time.
In fact, for many purposes, it is even sufficient to specify only the mass fractions of
hydrogen, helium, and “the rest” with the notation

X � XH; Y � XHe; Z � 1 � X � Y : (8.3)
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74 8 The Chemical Composition

This requires additional conventions about the relative distribution of the elements
in Z, collectively called “metals”, in particular the amount of C, N, and O, which
are important for hydrogen burning.

Young stars throughout, and most stars in their envelopes, contain an over-
whelming amount of hydrogen and helium: X D 0:65 : : : 0:75, Y D 0:30 : : : 0:25,
Z D 0:05 : : : 0:0001.

Of course, nuclear reactions will eventually change this simple picture drasti-
cally. For example, if many competing reactions occur simultaneously, or if one is
interested in such aspects as isotopic ratios, one may have to specify a large number
of differentXi . Only if inverse ˇ decay, the big equalizer in late stages of evolution,
has destroyed all elements does the composition then return to utmost simplicity–
just neutrons (Chap. 38).

The advantages of the use of m instead of r as independent variable become
particularly evident when we have to describe the chemical composition. If we
took Xi.r; t/ instead, any expansion would immediately lead to a change of all the
functions Xi; this holds, of course, for all functions depending on the chemical
composition.

8.2 Variation of Composition with Time

8.2.1 Radiative Regions

In radiative regions, there is no exchange of matter between different mass shells, if
we can neglect diffusion. Then, the Xi can change only if nuclear reactions create
or destroy nuclei of type i in the mass element under consideration.

The frequency of a certain reaction is described by the reaction rate rlm, that is,
the number of reactions per unit volume and time that transform nuclei from type l
into type m (see Chap. 18). The reaction itself will in most cases involve more than
just one mother and one daughter nucleus, but for simplicity, we characterize it by
one index only. In general, an element i can be affected simultaneously by many
reactions, some of which create it (rj i) and some of which destroy it (rik). These
reaction rates give directly the change per second of ni . Then, with (8.2), we have

@Xi

@t
D mi

%

2
4X

j

rj i �
X
k

rik

3
5 ; i D 1 : : : I (8.4)

for any of the elements 1 � � �I which are involved in reactions (If more than one
nucleus of type i is created or destroyed per reaction, the corresponding terms in the
sums have simply to be normalized by the number of nuclei of type i involved.).
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The reaction p ! q in which one nucleus of type p is transformed may be
connected with a release of energy epq: In the equation of energy conservation,
we have used the energy generation rate " per unit mass, which normally contains
contributions from several different reactions. The " are simply proportional to the
reaction rates:

" D
X
p;q

"pq D 1

%

X
p;q

rpq epq : (8.5)

Let us introduce the energy generated when one mass unit of type p nuclei is
transformed into type q:

qpq D epq

mp

: (8.6)

For simple cases, it is convenient to rewrite (8.4) in terms of the "; which already
occur in the equation of energy conservation. If all reactions give a positive
contribution to ", then instead of (8.4), we can write

@Xi

@t
D
X
j

"j i

qj i
�
X
k

"ik

qik
: (8.7)

If I different nuclei are simultaneously subject to nuclear transformations, equa-
tions (8.4) or (8.7) form a set of I differential equations, technically called a
“nuclear reactions network”. One of them could be replaced by the normalization
(8.1), such that we need only I � 1 of them to complete the basic equations of our
problem. Technically, however, this is not advisable, as (8.1) can then serve as an
independent consistency check: if the set of differential equations is solved correctly,
mass must be conserved.

Note that for simple cases, it may even suffice to consider just one of these
equations. For example, if hydrogen burning is to be taken into account only by
way of an overall generation rate "H (giving the sum over all single reactions), then
the only equation needed is

@X

@t
D � "H

qH
(8.8)

with @Y=@t D �@X=@t , where qH is the energy release per unit mass when
hydrogen is converted into helium.

In Sect. 4.6, we defined the nuclear timescale for a certain burning, �n D En=L.
One can actually define a nuclear timescale for each type of nuclear burning since
each nuclear energy reservoir is proportional to an integral of Xi � dm over the
whole star, where Xi refers to the element consumed by the reactions; therefore, �n

is equivalent to �Xi , the timescale for the exhaustion of the element i:
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8.2.2 Diffusion

Certain microscopic effects can also change the chemical composition in a star.
If gradients occur in the abundances of chemical elements, then concentration
diffusion tends to smooth out the differences. Even in chemically homogeneous
stellar layers, heavier atoms can migrate towards the regions of higher temperature,
owing to the effect of temperature diffusion. Also, the pressure gradient in a
stratified layer causes the heavier particles to diffuse towards the region of higher
pressure, that is, pressure diffusion. The detailed statistical theory of diffusion is
derived in Burgers (1969), Chapman and Cowling (1970), and Choudhuri (1998).

We start with the simplest case: concentration diffusion. Let c be the concen-
tration of particles of a certain species, that is, the number density of particles of
that type divided by the number density of all particles, and j D be the “flux of
concentration”; then, Fick’s first law states that

j D D �Drc ; (8.9)

where D is the diffusion coefficient (We will derive (8.9) later.). With j D D cvD,
where vD is the diffusion velocity, one has

vD D �D
c

rc : (8.10)

With the continuity equation
@c

@t
D �r � j D; (8.11)

we find that
@c

@t
D r � .Drc/ ; (8.12)

and in the case of constantD that

@c

@t
D Dr 2c ; (8.13)

a rough estimate for the characteristic timescale is given by

�D � S2

D
; (8.14)

where S is a characteristic length for the variation of c:
By generalizing (8.10) one can formally include the two other types of diffu-

sion, i.e.

vD D �1
c
D.rc C kTr lnT C kPr lnP/ ; (8.15)
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if the coefficients kT and kP are properly specified. In order to do that we first
consider the combined effects of concentration and temperature diffusion.

We assume rT to be perpendicular to the x–y plane in a Cartesian coordinate
system; then the flux of particles of a certain type in the Cz direction due to the
statistical motion of the particles is determined by the density n and the mean
velocity v; both taken at z D �`, where ` is the mean free path of the particles
of this type:

jC D 1

6
c.�`/v.�`/ ; (8.16)

where the numerical factor originates in averaging over cos2. This takes into account
that the particles penetrating the x–y plane had their last encounter at z D �`.

If one expands n and v at z D 0 in (8.16) and in a corresponding expression for
j�, the fluxes in the Cz and �z directions are

j˙ D 1

6

�
c.0/� @c

@z
`

��
v.0/� @v

@z
`

�
; (8.17)

and therefore there is a net flux

j D jC � j� D �1
3

�
@c

@z
`v C @v

@z
`c

�
; (8.18)

which in general does not vanish, i.e. we have obtained Fick’s law.
We now consider the relative diffusion velocity vD1 � vD2 resulting from the

motion of two different types of particles (1, 2), with fluxes j1; j2 and concentrations
c1; c2:

vD1 � vD2 D j1

c1
� j2

c2
: (8.19)

With (8.18) we can replace the ji by `i ; vi , and the gradients of ci , while the velocity
gradient–with the help of vi D .3<T=�i/1=2–can be replaced by the temperature
gradient. Using the continuity equation (and after some algebra) an expression of
the form

vD1 � vD2 D � D

c1c2

�
@c1

@z
C kT

@ ln T

@z

�
(8.20)

follows. The two terms in the brackets are responsible for concentration diffusion
and temperature diffusion. In a mixture of two species .i D 1; 2/ D and kT have
the form

D D 1

3
.c2`1v1 C c1`2v2/ D

�<T
3

�1=2 �
c2`1�

�1=2
1 C c1`2�

�1=2
2

�
; (8.21)

kT D 1

2

`1
p
�2 � `2p�1

`1c2
p
�2 C `2c1

p
�1
c1c2.c2 � c1/ ; (8.22)
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where `1 and `2 are the mean free paths of the two species (Landau and Lifshitz
1987, vol. 6). The absolute value kT is of order 1 or less, and its sign is not
immediately clear, though more detailed considerations indicate that kT > 0 for
a typical ionized hydrogen–helium mixture in stars.

From (8.21) it is obvious that D is of order

D �
�<T
3

�1=2
` � 1

3
v�` ; (8.23)

where v� and ` are some kind of averages of the statistical velocities and the mean
free paths of both components. This expression for D can be used to estimate
the timescale �D according to (8.14). As long as jkT j � 1 this also gives the
characteristic timescale for temperature diffusion.

Since D > 0, in the case of kT > 0 for pure temperature diffusion, one
has sign(vD) = �sign(@ lnT=@x). Let us now consider the case of a mixture of
hydrogen and helium. Here vD D vH � vHe is the z component of the diffusion
velocity and vD > 0 means that hydrogen diffuses in the direction of lower
temperature, i.e. “upwards” in the star. For the central region of the Sun (T � 107 K,
% � 100 g cm�3/ one finds that ` � 10�8 cm and D � 6 cm2 s�1, and with a
characteristic length-scale S � Rˇ � 1011 cm, the characteristic timescale �D

(according to (8.14)) there becomes �D � 1013 years. Although �D is much larger
than the age of the universe and therefore the effects of concentration and tempera-
ture diffusion seem to be astrophysically irrelevant for the Sun, diffusion does have
enough influence on stellar evolution such that high-precision observations require
models that include its effect. This will become evident in the case of the standard
solar model (see Chap. 29). We will therefore briefly discuss the situation. If a layer
is homogeneous, then there is no concentration diffusion, but the hydrogen particles
diffuse towards the regions of lower temperature. This causes an outward increase
of nH which in turn triggers concentration diffusion acting against the temperature
diffusion (sign(@cH=@z) = �sign(@T=@z)) until both types of diffusion compensate
each other.

We now turn to pressure diffusion, which is the cause of what is often called
“sedimentation” or “gravitational settling”. A statistical consideration similar to
that used to make temperature diffusion plausible also shows that there is diffusion
in isothermal layers with a non-vanishing pressure gradient. The reader is again
referred to Chapman and Cowling (1970), or any of the other standard textbooks. In
a way similar to that for kT an expression for kP in (8.15) can also be obtained.

We here confine ourselves to the discussion of the final outcome of this process
of pressure diffusion, i.e. the state of final equilibrium for an isothermal layer in
hydrostatic equilibrium in a gravitational field pointing towards the �z direction.
Let us assume that the material consists of two components .i D 1; 2) of perfect
gases of different molecular weights �i and partial pressures Pi . Then there exist
two pressure-scale heights HPi D �d z=d lnPi with which (6.8) can be written in
the form

HPi D Pi

g%i
D <T
g�i

; (8.24)
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where dPi=d z D �g%i and Pi D <%iT=�i are used. The particle densities are
proportional to the Pi , which are here approximately proportional to exp .�z=HPi /.
Therefore the component with the higher�i falls off more sharply in the z direction
than that with smaller �i , so that in a very simplified way, one can say that the
heavier component has “moved below” the lighter one. This is the final state,
which would be brought about by pressure diffusion alone even if the species were
originally in a completely mixed state. Of course, in reality, the two other types of
diffusion would also act and therefore influence the final state.

Estimates show that not only jkT j but also jkP j is of order one. Therefore it
normally takes rather a long time before an appreciable separation occurs in stars.
Although in general we will ignore the effect of diffusion in this book, it can be very
relevant in certain special cases. Equation (8.12), using (8.15), can be formulated in
terms of relative mass fractions Xi instead of particle concentrations and for the
case of spherical symmetry as

@Xi

@t
D � 1

�r2
@

@r

2
4r2XiT 5=2

0
@AP .i/@lnp

@r
C AT .i/

@ln T

@r
C (8.25)

X
k¤e;He4

Ak.i/
@lnCi
@r

1
A
3
5 :

This formulation follows the one by Thoul et al. (1994), and the T 5=2 factor results
from a convenient definition of the diffusion constants called AP , AT , and Ak here.
In this description the concentration Ci is defined as ci=ce , i.e. as the usual particle
concentration in units of the electron concentration. Note that the concentration
diffusion is taken as a sum over all species, since the concentration of species i
may also change due to the diffusion of all other elements. The sum actually has not
to be taken over all species as mass and charge conservation reduce the number of
independentAk by two. Here we have taken out helium and electrons.

When diffusion is to be taken into account, proper evaluation of the diffusive
constants D (or A in (8.25)) for the various types of diffusion is necessary. This
involves correct treatment of the interaction forces between the particles and will be
quite sophisticated. Two widely used sources for calculating the diffusion constants
are Paquette et al. (1986) and Thoul et al. (1994), both using a method described
in the book by Burgers (1969). This method is also sketched in Weiss et al. (2004).
An improvement by applying quantum corrections was introduced by Schlattl and
Salaris (2003). In general these diffusive speeds or constants are considered to be
accurate to 20 %. There is an additional effect not discussed here: Coupling of the
radiation field to partially ionized atoms results in a net upward force, counteracting
the downward sedimentation. This sort of diffusion is called radiative levitation and
can lead to strong variations in surface element abundances, in particular for those
elements with rich energy level systems. A derivation of the relevant coefficients
was given by Richer et al. (1998).
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Fig. 8.1 The abundances Xi
are smeared out owing to
rapid mixing inside a
convection zone extending
from m1 tom2. At these
borders, Xi can be
discontinuous

8.2.3 Convective Regions

Here we deal with the much more important effect of mixing due to turbulent
convective motion, a process that normally is very rapid compared to the extremely
slow change of the chemical composition produced by nuclear reactions. Therefore
we can assume that the composition in a convective region in most cases remains
homogeneous,

@Xi

@m
D 0 : (8.26)

This requires a dispersion not only of the newly created nuclei, but of all elements
inside a convective zone.

Suppose a convective zone extends between the mass values m1 and m2

(Fig. 8.1). Inside that interval all Xi D Xi are constant. At the boundaries one can
generally have a discontinuity, such that the “outer” valuesXi1 andXi2 are different
from the “inner” values–which are simply Xi . But m1 and m2 can change in time,
and hence one can easily see that the abundances in the convective zone vary with
the rate

@Xi

@t
D 1

m2 �m1

�
�Z m2

m1

@Xi

@t
dmC @m2

@t
.Xi2 �Xi/� @m1

@t
.Xi1 � Xi/

�
: (8.27)

The Xi1; Xi2 should here be taken as the value on the side that the corresponding
boundary moves towards. The integral in the bracket describes the change due
to nuclear reactions and can be replaced by an integral over the rates �"i=qi ,
as in (8.8), where qi is the energy released if a mass unit of the nucleus i is
transformed. Without any nuclear reaction .@Xi=@t D 0/ in the convective zone, its
composition can still change if the boundaries move into a region of inhomogeneous
composition, and this can have important consequences. For example, “ashes” of
earlier nuclear burnings may be brought to the surface, fresh fuel may be carried
into a zone of nuclear burning, or discontinuities can be produced that drastically
influence the later evolution.
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In cases of very fast nuclear reactions (or short nuclear timescales) the assump-
tions of instantaneous mixing is no longer correct. In such situations one normally
treats convective mixing as a diffusive process with the diffusive velocity vc
estimated from the solution of the mixing length theory and using (7.6) and (7.16).
In this case (8.25) can simply be extended by adding the additional term

Dc

@Xi

@r
D
�
1

3
vc˛MLTHP%r

2

�
@Xi

@r
; (8.28)

where we used the estimate for Dc by Langer et al. (1985). Since usually Dc is by
orders of magnitude larger than any of the diffusion constants in (8.25), the types of
diffusion discussed in Sect. 8.2.2 can in fact be neglected in convective regions.



Chapter 9
Mass Loss

So far we have always assumed that stars have constant total mass. This is, however,
not at all the case. The Sun is losing mass via the solar wind at a rate of about
10�14 Mˇ=year. While this mass loss is so slow that it can savely be ignored, other
stars may have mass loss rates of up to 10�8 Mˇ=year or even beyond. The highest
mass loss rates for single stars are known for very massive stars (M & 50Mˇ) and
for stars of intermediate mass (around 5Mˇ) in a very late stage of their evolution.
In addition, stars in binary systems can lose (and gain) mass at any rate due to the
gravitational interaction between the two components. Mass loss can therefore range
from being totally irrelevant for the evolution of a star up to reducing the mass by
up to 50 % or more.

For completeness, we add that the nuclear processes, which provide the
overwhelming part of the radiation lost from the stellar surface, imply a conversion
of matter to energy and therefore lead to a reduction of the stellar mass, too. For the
Sun, this is of the same order as the solar wind, and can therefore be safely ignored.
This is also true for all other stars either because this effect is very small, anyhow,
or because stellar wind mass loss is much larger.

Evidence for mass loss and estimates of its size come from the direct detection
of circumstellar matter and from spectral signatures, such as Doppler shifts and
spectral line shapes. Wind velocities can range from a few to a few thousand km/s.

Physically, stellar winds result in many cases from the interaction of the
photons emitted from the photosphere with atoms, molecules, or dust grains in
the atmosphere. It is therefore a complicated radiation-hydrodynamics problem,
which, in addition, may depend on chemical processes, too. An example for the
latter are winds from very cool stars, which depend on the coupling of radiation to
dust grains. Their formation is a complicated chemical process depending strongly
on temperature and density in the stellar atmosphere, which may be subject to
regular variations due to stellar pulsations. High mass loss rates are often associated
with pulsations in extended stellar envelopes. In some cases, solid physical models
exist, which describe the mechanisms for stellar winds. This is particularly true for
winds from hot stars (so-called radiation-driven winds) and for dust-driven winds
of cool stars with carbon-rich chemistry. For the observational evidence and for
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84 9 Mass Loss

introductions to stellar wind theories, we refer the reader to the reviews “Winds
from hot stars” by Kudritzki and Puls (2000), “Mass loss from cool stars” by Willson
(2000), and “Dust driven winds” by Sedlmayer and Dominik (1994).

Since a full theoretical model for any stellar wind is not available, and would
not be reasonable to be used in modelling stellar evolution, and since most
information about stellar mass loss still results from observations, empirical mass
loss formulations are used in the models. They have all been obtained from
observations of some class of stars, and therefore differ from each other. Therefore,
different mass loss formulae have to be used for different type of stars. None of
them is very accurate, but in most cases, it suffices to have the correct order of
magnitude of mass loss and its dependence on the global properties of the star.
We now introduce a few such empirical mass loss formulations, which are widely
used in stellar evolution calculations.

The most famous mass loss formula of all is that of Reimers (1975), obtained
from red giants with heavy element abundances similar to those in the Sun. Reimers
showed that the dependence of the mass loss rate on basic stellar parameters can be
expressed by the simple fitting formula

PMR D �4 � 10�13�
L

gR
� gˇRˇ
Lˇ

: (9.1)

The unit of PM is Mˇ/year. This formula reflects the intuitive expection that mass
loss increases with luminosityL, and decreases with a deeper gravitational potential
well gR D GM=R. The parameter � was introduced later to use Reimers’ formula
for other types of stars, too. It usually varies between 0.2 and 1.0 and is lower for
metal-poor stars, indicating a weaker coupling of the photons to the gas if fewer
heavy elements are present.

Reimers’ formula has no strong theoretical justification, but seems to be a useful
estimate for the order of magnitude of mass loss from cool stars. It has been
modified from time to time to take into account a more detailed dependence on
stellar parameters. One of the latest of such modifications, which is fitting better to
recent mass loss determinations, is that of Schröder and Cuntz (2005), which is

PMSC D �8 � 10�14LR
M

Mˇ
LˇRˇ

�
Teff

4; 000K

�3:5 �
1C g

4; 300gˇ

�
: (9.2)

For very cool and luminous stars on the asymptotic giant branch, which
experience an almost catastrophic mass loss event with mass loss rates up to
10�4Mˇ=year, a simple and useful formula has been derived by Blöcker (1995),
based on observations and dust-driven wind theories. There are more sophisticated
theoretical or empirical mass loss functions (see Sect. 34.6), but Blöcker’s is in most
cases sufficient for an estimate:

PMB D �4:83 � 10�9 PMR.M?=Mˇ/�2:1.L=Lˇ/2:7 (9.3)
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There are two variants of this formula, in which for M? either the initial or the
present mass of the star is used. Since (9.3) is only a rough estimate of the actual
mass loss, this is acceptable.

Finally, we add a formula fitting empirical mass loss rates for hot stars of spectral
type O and B, obtained by Lamers (1981):

PML D �1:48 � 10�5
�

L

1; 000Lˇ

�1:42 �
R

30Rˇ

�0:61 �
30Mˇ
M

�0:99
(9.4)

A more physical discussion of mass loss from hot stars can be found in the
mentioned review by Kudritzki and Puls (2000).

Obviously, all these formulae contain, in some form or other, the basic depen-
dence on M , R, and L by Reimers. Sometimes a dependence on chemical
composition is added. It is generally assumed that PM � X

1=2
res , where Xres denotes

the mass fraction of all elements other than hydrogen and helium.
Equations (9.1)–(9.4) already indicate that the main effect of mass loss is simply

to reduce the total mass of a star. This has to be taken into account in stellar
modelling and will be discussed in Sect. 12.5.



Part II
The Overall Problem



Chapter 10
The Differential Equations of Stellar Evolution

10.1 The Full Set of Equations

Collecting the basic differential equations for a spherically symmetric star in
hydrostatic equilibrium derived in Chap. 1, we are then led by (1.6), (2.16),
(4.47), (4.48), (7.32), and (8.4) to

@r

@m
D 1

4�r2%
; (10.1)
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D � Gm

4�r4
; (10.2)
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@t
C ı

%

@P

@t
; (10.3)
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4�r4P
r ; (10.4)
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1
A ; i D 1; : : : ; I : (10.5)

Equation (10.2) has an additional term �@2r=@t2.4�r2/�1 in case the assumption of
hydrostatic equilibrium is not fulfilled. In (10.5) we have a set of I equations (one
of which may be replaced by the normalization

P
i Xi D 1/ for the change of the

mass fractionsXi of the relevant nuclei i D 1; : : : ; I having masses mi . Additional
formulae regulate the mixing of the composition in convective regions, (8.27) or
(8.28), or in case of diffusive processes (8.25). In (10.3), ı � �.@ ln %=@ lnT /P ,
and in (10.4), r � d ln T=d lnP . If the energy transport is due to radiation (and
conduction), then r has to be replaced by rrad, which is given by (5.28):
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r D rrad D 3

16�acG

�lP

mT 4
: (10.6)

If the energy is carried by convection, then r in (10.4) has to be replaced by a
value obtained from a proper theory of convection; this may be rad in the deep
interior or obtained from a solution of the cubic equation (7.26) for superadiabatic
convection in the outer layers. Note that the expression on the right-hand side
of (10.4) assumes hydrostatic equilibrium. This does not matter in the case of
radiative transport, since the local adjustment time of the radiation field is very
short, and the convection theory of Chap. 7 is valid only for stars in hydrostatic
equilibrium. Otherwise another convection theory valid in rapidly changing regions
would have to be used. Additional criteria such as (6.12) and (6.13) distinguish
between radiative and convective transport.

In the system (10.1)–(10.5) one can distinguish certain subsystems, i.e. (10.1)
and (10.2) give the mechanical part, being coupled to the thermo-energetic part
only through the density %–which usually also depends on T . If for some reason
or other this dependence of % on T is not present (or can be eliminated), then (10.1)
and (10.2) can be solved regardless of the other equations to give the mechanical
structure r.m/; P.m/. Equations (10.5) may be regarded as the chemical part.
Under normal conditions (�n much larger than the other timescales; see Sect. 10.2)
they can be decoupled from the spatial parts (10.1)–(10.4), which describe the
structure of the star for a given time and given composition Xi.m/. This would
be questionable, of course, if the chemical composition changed as rapidly as the
other variables, and for changes of Xi.m/ more rapid than those of P; T , one
would rather assume to have an “equilibrium composition” Xi.P; T / at any time
(see Chap. 36).

Equations (10.1)–(10.5) contain functions which describe properties of the stellar
material such as %; "n; "�; �; cP ;rad; ı and the reaction rates rij . We shall deal with
these functions in Part III. Meanwhile we assume them to be known functions
of P; T and the chemical composition described by the functions Xi.m; t/. We
therefore have an equation of state

% D %.P; T;Xi / (10.7)

and equations for the other thermodynamic properties of the stellar matter

cP D cP .P; T;Xi/ ; (10.8)

ı D ı.P; T;Xi/ ; (10.9)

rad D rad.P; T;Xi/ ; (10.10)

as well as the Rosseland mean of the opacity (including conduction)

� D �.P; T;Xi/ ; (10.11)
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and the nuclear reaction rates and the energy production and energy loss via
neutrinos:

rjk D rjk.P; T;Xi / ; (10.12)

"n D "n.P; T;Xi / ; (10.13)

"� D "�.P; T;Xi/ : (10.14)

In these equations, the argumentsXi stand for all types of nuclei .i D 1; : : : ; I /:

It is now time to count the equations and the unknown variables. We consider the
material functions on the right-hand sides of (10.1)–(10.5) to be replaced with the
help of the corresponding equations (10.7)–(10.14), i.e. by functions of P; T;Xi .
For I different types of nuclei being affected by reactions, (10.1)–(10.5) form a set
of 4 C I differential equations for the 4 C I variables r; P; T; l; X1; : : : ; XI . We
therefore have the same number of equations and unknown variables.

The independent variables are m and t: If we assume that the total mass of the
star does not change in time (i.e. no gain nor loss of mass) and if we define the time
at which evolution starts as t D t0, then we are looking for solutions in the intervals

0 � m � M; t � t0 : (10.15)

In the full problem we are confronted with a set of non-linear, partial differential
equations. As usual, physically relevant solutions require the specification of
boundary conditions (here at m D 0;m D M ) and of initial values [e.g. Xi.m; t0)].
The boundary conditions will be dealt with in Chap. 11. In order to see more
clearly which initial values have to be specified we replace the two terms with time
derivatives of P and T in (10.3) by one term containing the change of the entropy
s;�T @s=@t , according to (4.47). Obviously the full problem requires specification
of the functions r.m; t0/; Pr.m; t0/; s.m; t0/, and Xi.m; t0/.

After proper initial values and boundary conditions are specified, together with
the stellar mass M , the problem is to find solutions of the basic equations, i.e. the
unknown variables as functions of m and t: A solution r.m/; P.m/; : : : ; Xi.m/ for
a given time t in the interval [0,M ] is called a stellar model. But before we discuss
in more detail how solutions of our set of differential equations can be obtained, we
first discuss simplifications of the full problem.

10.2 Timescales and Simplifications

There are three types of time derivatives in our set of equations. To each of them
belongs a certain characteristic timescale. In Sect. 2.4 the term .@2r=@t2/=4�r2 in
(2.16)–the dynamical version of (10.2)–was used to derive �hydr. From the time
derivatives in (10.3) we have derived �KH in Sect. 3.3. The time derivatives in (10.5)
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define chemical timescales �Xi which were shown to be equivalent to �n [see (4.59)]
at the end of Sect. 8.2.1.

In Sect. 2.4 we showed that the inertia term in (10.2) can be neglected if the
evolution is slow compared to �hydr. Therefore, if the evolution of a star is governed
by thermal adjustment or by nuclear reactions (�KH � �hydr and �n � �hydr), the
equation of hydrostatic equilibrium (10.2) is appropriate. The star then evolves
along a sequence of states of hydrostatic equilibrium. As initial conditions, the
functions s.m; t0/ and Xi.m; t0) have to be specified in this approximation.

If the star evolves on the timescale �n � �KH, then according to the discussion in
Sect. 4.4, the time derivatives in the energy equation can also be neglected and (10.3)
is reduced to

@l

@m
D "n � "�: (10.16)

The star now evolves along a sequence of states in which it is not only in hydrostatic
equilibrium but also thermally adjusted. We call this complete (mechanical and
thermal) equilibrium. The only initial values to be given in this case are the
Xi.m; t0/:

In complete equilibrium the basic equations split into two parts: the “structure
equations” (10.1), (10.2), (10.16) and (10.4) contain only spatial derivatives while
the “chemical equations” (10.5) contain only time derivatives. Therefore, if at a
certain time t D t0 the Xi.m; t0) are given, the structure equations can be taken as a
set of four ordinary differential equations describing the structure of the star at t0.

Complete equilibrium is a good approximation for stars in many important
evolutionary phases, for example, the stars on the main sequence. But even without
complete equilibrium the full set of equations is usually split into two parts: the
spatial part solved as a boundary value problem for a given chemical composition
Xi.m; t0/, and the time-dependent initial-value problem of the chemical changes.
These two parts are solved in two different, alternating steps with different
numerical schemes. This introduces a basic problem of inconsistency: consider the
spatial problem to be solved at time t0, with some chemical stratification given.
Once the solutions for r.m/, T .m/, P.m/, and l.m/ have been found, some layers
may be convective. Therefore, the chemical stratification for which the solution was
determined may be altered by convective (or, more general, by any kind of) mixing,
and the solution will not be consistent with the real chemical composition. The
mixing is done only in the second step, after the spatial problem is solved, over
a time step 4t , and after this step, the physical variables are again not a solution
of the new Xi.m; t0 C 4t/, etc. Of course one can control the severeness of this
inconsistency by keeping 4t small, but one should be aware of its fundamental
nature. Another problem arises if the structure variables are kept constant over the
time step 4t . In nuclear burning regions, for example, temperature and density are
usually rising with time. Therefore, they would be underestimated in the nuclear
reactions if kept constant over 4t , and so would be the chemical changes due to
nuclear burning. This effect leads to an overestimate of main-sequence lifetimes.
Again, it can be minimized by using very small values for 4t , or by a clever
prediction how T and � (and other quantities) may change during a time step.



Chapter 11
Boundary Conditions

As usual in mathematical physics, the boundary conditions constitute an important
part of the whole problem, and their influence on the solutions is not easy to foresee.
This is connected with the fact that the boundary conditions for the problem of
stellar structure cannot be imposed at one end of the interval [0, M ] only but rather
are split into some that are given at the centre and some near the surface of the
star. The central conditions are simple, whereas the surface conditions implicate
observable quantities and a completely different, much more complicated transport
equation. It is therefore advisable to get some feeling about their influence on the
stellar structure. We discuss these problems for the case of complete equilibrium.

11.1 Central Conditions

Two boundary conditions can be immediately written down for the centre, defined
by m D 0. Since the density % must go to a reasonable, finite, and non-vanishing
value (there can be no singularity and no cavity in the centre), we must have r D 0.
And since the energy sources also remain finite (positive or negative), l must vanish
at the centre as well:

m D 0 W r D 0; l D 0: (11.1)

This was the simple part. Unfortunately nothing is a priori known about the central
values of pressure Pc and temperature Tc, so the conditions (11.1) still allow a two-
parameter set of solutions, obtained by outward integrations starting with arbitrary
Pc; Tc; and r D l D 0.

It is useful to know the behaviour of the four functions r; l; P; T in the vicinity
of the centre,m ! 0, for a given time t D t0. The equation of continuity (10.1) may
be written as

d.r3/ D 3

4�%
dm; (11.2)
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which can be integrated for constant % D %c; i.e. for small enough values ofm and r ,
giving

r D
�

3

4�%c

�1=3
m1=3: (11.3)

This can be considered the first term in a series expansion of r around m D 0. A
corresponding integration of the energy equation (10.3) yields

l D ."n � "� C "g/c m: (11.4)

In both cases we have used the proper boundary conditions (11.1) by taking the
integration constants to be zero.

Eliminating r for small values of m by (11.3), we obtain from the hydrostatic
equation (10.2)

dP

dm
D � G

4�

�
4�%c

3

�4=3
m�1=3; (11.5)

which can be integrated to yield

P � Pc D �3G
8�

�
4�

3
%c

�4=3
m2=3: (11.6)

The pressure gradient must, of course, vanish at the centre, which can be seen by
writing the hydrostatic equation (2.4) in the form

dP

dr
� m

r2
� r3

r2
! 0 (11.7)

for r ! 0.
The variation of temperature will first be considered in the radiative case, for

which (5.12) requires that

dT

dm
D � 3

64�2ac

�l

r4T 3
: (11.8)

With P ! Pc; T ! Tc, � tends to some well-defined value �c. Replacing l.� m)
by (11.4) and r.� m1=3/ by (11.3) now, we can integrate (11.8) for small values of
m and obtain the first equation (11.9). In the case of (adiabatic) convection we start
from (7.32) with r D rad and replace r by (11.3). An integration for small values
of m then gives the second equation (11.9):

T 4 � T 4c D � 1

2ac

�
3

4�

�2=3
�c."n � "� C "g/c%

4=3
c m2=3 .radiative/;

ln T � lnTc D �
��
6

�1=3
G

rad;c%
4=3
c

Pc
m2=3 .convective/: (11.9)
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11.2 Surface Conditions

The strict surface conditions are rather complicated and unwieldy. For rough
estimates one might therefore prefer to use a crude approximation, provided that
it is simple.

An extreme step in this direction would be to take the naRıve “zero conditions”

m ! M W P ! 0; T ! 0: (11.10)

These at least reflect correctly the fact that, in the outermost region of the star, P
and T go to very small values compared to those in the interior. But, of course, in
reality, there is a gradual and rather extended transition to the finite values of P; T
of the diffuse interstellar medium.

The next step is to find a sphere that we can reasonably call the “surface” of the
star and that defines the total stellar radius r D R: The theory of stellar atmospheres
suggests the use of the photosphere, from where the bulk of the radiation is emitted
into space, and which is found where the optical depth � of the overlying layers,

� WD
Z 1

R

�% dr D N�
Z 1

R

% dr; (11.11)

is equal to 2/3. Here we have defined a mean opacity N�, averaged over the stellar
atmosphere. In hydrostatic equilibrium the pressure at this level is given by the
weight of the matter above. We can well approximate the gravitational acceleration
by the constant value g0 D GM=R2; since the bulk of the matter in these layers is
anyway very close to the photosphere. Then

PrDR D
Z 1

R

g%dr D g0

Z 1

R

% dr; (11.12)

and if we eliminate here the integral over % by that in the second equation (11.11),
we find with � D 2=3 that

PrDR D GM

R2
2

3

1

N� : (11.13)

The temperature at the photosphere is equal to the effective temperature TrDR D Teff

of the star defined by
L D 4�R2� T 4eff: (11.14)

Here � D ac=4 is the Stefan-Boltzmann constant of radiation. Teff is thus the
temperature of that black body which yields the same surface flux of energy as
the star.

In (11.11) we have replaced � by an average value. As we usually have detailed
knowledge about the opacity, an obvious improvement is to take into account the
pressure (or density) and temperature dependency of �. This requires knowledge
about the temperature stratification in the atmosphere. One common approach is to



96 11 Boundary Conditions

use the Eddington approximation, which is

T 4.�/ D 3

4

�
L=4�R2�

� �
� C 2

3

�
; (11.15)

which obviously results in T D Teff for � D 2=3.
Equation (11.11) can be transformed into a differential equation for the radius,

dr=d� D �1=.�%/, and with dP=dr D �g% we obtain

dP

d�
D Gm

r2�
(11.16)

which is to be integrated from � D 0 to � D 2=3 with the boundary condition
P.� D 0/ D 0. The Eddington approximation (11.15) is used to determine �.P; T /.
For the gravitational acceleration on the right-hand side of (11.16) we can savely use
GM=R2. We thus obtain an improved value for PrDR. This approach is called the
Eddington grey atmosphere because of the use of the Eddington approximation and
the Rosseland mean for the opacity, and it is indeed used in stellar evolution codes,
which solve the stellar structure equations (10.1)–(10.5) fromm D 0 to m D M .

The photospheric conditions (11.13) and (11.14) or (11.16) and (11.14) represent
two relations between the surface values (m ! M ) of the functions P; T; r; l . They
are certainly a better approximation for the surface conditions than (11.10). Their
severest defect is that they refer to a level where the assumption made for deriving
the transport equation (5.12) (small mean free path of the photons) breaks down.
At this level, one should use the more complicated transport equation for stellar
atmospheres. Indeed such attempts have been made, and full stellar atmosphere
models are connected to those of the stellar interior at a suitable optical depth.
Examples are the work by Schlattl et al. (1997) for the solar case and VandenBerg
et al. (2008) for low-mass stars.

Quite generally, the correct surface conditions can be formulated as follows: the
interior solution should fit smoothly to a solution of the stellar-atmosphere problem.
Let us put this into a more mathematical form.

The transition between interior and outer (atmospheric) solutions is made at a
certain mass value mF, the “fitting mass”, which should be far enough in to ensure
that the interior equations are still valid there. On the other hand,mF should still be
close enough to M that, for simplicity, we can always use thermally adjusted outer
solutions with constant l D L. The smaller M �mF, the less energy can be stored
or released in these outer layers.

For the stellar-interior problem, we consider the mass M and the chemical
composition to be given. The theory of stellar atmospheres tells us that for given
M and Xi.M/, there is a two-parameter set of possible atmospheric solutions,
the parameters being, for example, R and Teff, or R and L [which are connected
by (11.14)]. Any one of these possible atmospheric solutions can be extended
by integration downwards to mF and may yield there the four “exterior” values
r D rex

F ; P D P ex
F ; T D T ex

F ; l D lex
F D L.
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The outer boundary conditions now require for m D mF that one quartet
rex

F ; : : : ; l
ex
F obtained from an outer solution has to match the corresponding values

r in
F ; : : : ; l

in
F of the interior solution, which extends from the centre to mF:

rex
F D r in

F ; P ex
F D P in

F ; T ex
F D T in

F ; lex
F D l in

F : (11.17)

These four simultaneous fits are in principle possible, since the solutions have
enough degrees of freedom: the interior solution has two (we can vary the
central values Pc and Tc/, and the outer solution also has two (variation of R
and L/: The fact that both solutions have two degrees of freedom is reflected
in the following alternative representation, which is often used in numerical
computations. Imagine that many outer integrations are carried out for many
pairs of parameters R and L: At m D mF, they yield the four functions
rex

F .R;L/; P
ex
F .R;L/; T

ex
F .R;L/; l

ex
F .R;L/. The last one is very simple, namely

lex
F D L: The first one is certainly well behaved, and we can invert it without

complications, obtaining R D R.rex
F ; L). This is now used to replace the argument

R in the functions P ex
F and T ex

F , which can then be considered known functions �
and � of rex

F and lex
F D L:

P ex
F

�
R.rex

F ; L
�
; L
� WD �

�
rex

F ; L
�
;

T ex
F

�
R
�
rex

F ; L
�
; L
� WD �

�
rex

F ; L
�
: (11.18)

For any given pair rex
F ; L; the � and � give the corresponding values of pressure and

temperature for one outer solution. We now replace the variables P ex
F ; : : : ; l

ex
F D L

in (11.18) by P in
F ; : : : ; l

in
F , using the fit conditions (11.17):

P in
F D �

�
r in

F ; L
�
; T in

F D �
�
r in

F ; L
�
: (11.19)

These are the outer boundary conditions for the interior solution. Obviously, if these
are fulfilled, there is always an outer solution that continuously matches the interior
solution. We can now drop the distinction between the variables of the exterior and
interior solutions at m D mF expressed in the superscripts “ex” and “in”.

The fulfilment of the boundary conditions is illustrated in Fig. 11.1, where the
functions � and � (obtained from outer solutions) are sketched over the rF-L
plane. We have also indicated the surfaces Q�.rF; L/ and Q�.rF; L/, which give the
corresponding functions of the interior solutions obtained by varying Pc and Tc.
The intersection of the surfaces .� D Q� and � D Q�/ gives the matches of PF

or of TF, respectively. We project the intersections into the rF-L plane (dot-dashed
lines), and where these projections intersect, we have the desired match of all four
variables.
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Fig. 11.1 The function values PF (or TF) at the fitting mass m D MF are plotted over rF and L:
The surface � (or �/ contains the values obtained by all possible integrations downwards from the
photosphere. The surface Q� (or Q�/ contains the corresponding values obtained from all possible
integrations outwards from the centre. The heavy line shows the intersection of � and Q� (or �
and Q� ), the dot-dashed line the projection of this intersection into the rF-L plane (All surfaces are
freely invented sketches)

11.3 Influence of the Surface Conditions and Properties
of Envelope Solutions

We confine ourselves here to “normal” stars in complete (mechanical and thermal)
equilibrium. For the outer envelope of such a star, it is characteristic that l and m
vary very little over wide ranges of r (This is because " is negligible and % is very
small; for example, only about 10 % of the solar mass lies outside r D Rˇ=2.). This
allows the derivation of approximate solutions that demonstrate the influence of the
outer layers on the interior solution.

11.3.1 Radiative Envelopes

Since m varies so little in the envelope, it seems advisable to take another
independent variable, for which we may choose the pressure P , since it varies
monotonically with m. The equation of radiative transport is derived from (5.12)
and (2.5) as

@T

@P
D 3

64��G

�l

T 3m
(11.20)

.� D ac=4/. Let us approximate the dependence of � on P and T by a power law
of the form
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� D �0P
aT b; (11.21)

with �0 = constant and exponents typically a > 0; b < 0. By proper choice of �0; a;
and b we can represent reasonably (though, of course, not correctly) the run of �
over wide ranges of the envelope. Introducing (11.21) into (11.20) results in

T 3�b

P a

@T

@P
D 3�0

64��G

l

m
; (11.22)

and now we take l � L and m � M (this, together with the approximation of �;
determines how far inwards we are allowed to extend our solution). Then the right-
hand side is constant and (11.22) can be integrated by separation of the variables:

T 4�b D B.P 1Ca C C/; (11.23)

where C is a constant of integration, while the positive constant B is given by

B D 4 � b
1C a

3�0

64��G

L

M
: (11.24)

For an illustrative example we now fix the exponents: a D 1; b D �4:5, which
corresponds to the famous Kramers opacity for bound–free and free–free absorption
in stellar material (see Chap. 17), and which is a good approximation for envelopes
of moderate temperatures. Then (11.23) becomes

T 8:5 D B.P 2 C C/; (11.25)

a solution for the envelope that will now be discussed. It is illustrated in Fig. 11.2,
which gives lgT against lgP; so that the slope of a solution is equal to the value of
r � d lnT=d lnP . Differentiation of (11.25) gives the slope

r D 0:235
BP 2

T 8:5
: (11.26)

The multitude of possible solutions differ by their value of the integration
constant C:
C D 0: The solution (11.25) now gives

T 8:5

BP 2
D 1; (11.27)

for which (11.26) yields the slope r D 2=8:5 � 0:235. This is smaller than the
usual value of rad D 2=5 (see Chap. 14), and therefore the solution is consistent
with (the assumed) radiative transport, shown in Fig. 11.2 as the straight solid line
lgT D (2 lgP + lgB)/8.5. Obviously T ! 0 for P ! 0, and this solution
would reach the zero boundary condition if we were to extend it outwards over
the photosphere.
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Fig. 11.2 A lgT –lgP diagram for illustrating typical properties of envelope solutions as discussed
in the text (see there for details)

C > 0: Since B > 0, (11.25) yields

T 8:5

BP 2
> 1: (11.28)

Comparing this with (11.26) and (11.27), we see that in Fig. 11.2, the solutions
with C > 0 lie above that with C D 0 and that they have a smaller slope, r <

2=8:5. The layers are therefore all the more radiative. For P2 � C equation (11.25)
becomes T 8:5 � BC = constant. This shows that towards the surface these solutions
tend to a constant (and rather high) T: Three of them (for 3 different values C1 <
C2 < C3 of C/ are illustrated by solid lines on the left of Fig. 11.2. On each line,
one point corresponds to the photosphere with T D Teff. Obviously we will find
such radiative-envelope solutions below the photospheres with Teff larger than some
critical value (close to 104 K). Towards the interior, P will finally increase so far
that P2 � C in (11.25) and the solution approximates closely that for C = 0. Since
all solutions with C > 0 asymptotically approach the solution C D 0, the precise
starting values at the surface do not greatly influence the solution in the deep interior.
C < 0: Equation (11.25) now gives

T 8:5

BP 2
< 1; (11.29)
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which with (11.26) and (11.27) shows that these solutions lie below the curve for
C D 0 and that their slope is larger, r > 2=8:5. A discussion quite analogous to
that for C > 0 shows immediately that these solutions have the structure indicated
in Fig. 11.2 by the dotted line. They bend downwards from the line C D 0, become
gradually steeper, and tend vertically to a finite P for T ! 0 (With a proper scaling
of the coordinates the curvesC > 0 andC < 0 are simply symmetric with respect to
the line C = 0.). However, the assumption of radiative transport breaks down when
convection sets in, which is the case for r D rad (see Sect. 6.1). This is close to 0.4
in the interior of not too massive stars, while ionization effects near the surface can
make it considerably smaller (see Chap. 14). This limit is derived by equating the
right-hand side of (11.26) with rad:

T 8:5 D 0:235

rad
BP2: (11.30)

For constant rad this corresponds to a straight line given by lgT = (2 lgP C lgB
C lg(0.235/rad))/8.5. For rad D 0:4 this lower border for radiative solutions is
plotted in Fig. 11.2 (dashed line). Near the surface, ionization effects decrease rad

considerably below 0.4, and therefore the border line should be curved upwards in
its lowest part.

11.3.2 Convective Envelopes

The radiative solutions with C < 0 extending from the interior have to be terminated
at the broken line in Fig. 11.2 given by (11.30), where convection sets in, and have
to be replaced in the outer regions by solutions valid for convective transport. Three
such convective solutions are shown as solid lines in the lower part of Fig. 11.2. In
order to construct them we have to consider their slope d lgT/d lgP (= r). As long
as the solutions stay in regions of high enough density, convection is very effective
(cf. Sect. 7.3) and the slope is equal to the adiabatic gradient rad.

We can start the convective solutions near the border of convection with a slope
given by r D rad = 0.4. With decreasing temperature the curves come into regions
where the most abundant elements (hydrogen and helium) are no longer completely
ionized (see Chap. 14). For hydrogen this occurs around T D 104 K, depending
somewhat on P (cf. the dependence of the Saha equation on the electron density).
Partial ionization depresses rad appreciably below 0.4 such that the curves with a
slope r D rad are less steep and closely approach one another.

Finally the curves come into regions of such low density that convection is
ineffective and the stratification is over-adiabatic, r > rad (Chap. 7). Correspond-
ingly the curves in Fig. 11.2 become rather steep until they reach the photospheric
point. Unfortunately the precise slope r in the over-adiabatic part can only be
calculated from a convection theory, with all its uncertainties. Anyway, convective
envelopes start at cool photospheres, and with decreasing Teff, the convection
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gradually reaches deeper into the interior. Small variations (due to numerical or
physical uncertainties) of Teff or of the over-adiabatic part lead to curves that are
widely separated in the interior.

11.3.3 Summary

Making a few simplifying assumptions, we have been able to derive conve-
nient solutions for the temperature-pressure stratification of stellar envelopes,
i.e. for the layers below the photosphere. In the case of radiative envelopes,
the assumptions concerned �;m; and l . An opacity law like (11.21) is cer-
tainly a poor approximation if one takes the same values of a; b; �0 for too
wide a range, or for very different envelopes. The discussions can, however,
be easily repeated for different values of a; b; �0 [e.g. a D 0; b D 0; �0 D
0:2.1 C XH), as in the case of electron scattering, Sect. 17.1] giving essentially
similar results. The assumption l D constant certainly holds for T < 106 K, where
nuclear burning is negligible, though the assumption m D constant D M breaks
down much earlier. But, even if we stress these assumptions somewhat by extending
the solutions too far inwards, we will still obtain the correct qualitative behaviour.

Radiative envelopes are found below all hot photospheres (T > 9; 000K).
Towards the deep interior these solutions converge rapidly to the solution with
C D 0. The interior is therefore relatively insensitive to details of the outer boundary
conditions, in particular to the photospheric details.

Below cool atmospheres there are convective envelopes, which extend farther
downwards the smaller Teff is. This suggests that a minimum value of Teff might
exist where the whole star has become convective (cf. the Hayashi line, Chap. 24).
The inward extension of the convective part depends rather sensitively on the precise
position of the photosphere and the details of the over-adiabatic layer. Small changes
in even the outer solution, which are otherwise rather unimportant, can exert a
remarkable influence on the interior, and the same is true for the uncertainties in
the treatment of superadiabatic convection.

11.3.4 The T �r Stratification

Sometimes it is useful to know how T D T .r/ increases below the photosphere.
From the definition of r � d lnT=d lnP we have dT D TrdP=P , where we
replace dP by using the hydrostatic equation in the form

dP D �Gm
r2
% dr D Gm%d

�
1

r

�
(11.31)
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and eliminate T%=P D �=< by means of the equation of state for a perfect gas. We
then have

dT D rG�< m d

�
1

r

�
: (11.32)

For the outer envelope with low density we may approximatem by the surface value
M , so that if r is constant between points 1 and 2, we can integrate (11.32) to obtain

T1 � T2 D rGM�<
�
1

r1
� 1

r2

�
: (11.33)

Let the subscript 2 indicate the photosphere, i.e. T2 D Teff and r2 D R: Now at any
point r D r1 in the envelope we have

T � Teff D f

�
R

r
� 1

�
; f D r g�<

M

R
: (11.34)

As a simple example we take M D Mˇ; R D Rˇ and a solution with C = 0
(see Sect. 11.3.1), for which we found that r D 0:235. With � D 1 we find that
f D 5:4 � 106 K. This large value of f provides for a very rapid increase of T
below the photosphere. Within only 2 % of the radius, T has reached 105 K. And
at r � 0:8R (where m � 0:99M still) the temperature exceeds 106 K, which also
shows that the “average” T for all mass elements of the star is well above 106 K.



Chapter 12
Numerical Procedure

For realistic material functions no analytic solutions are possible, so that one
depends all the more on numerical solutions of the basic differential equations.
Consequently the activity and the number of results in this field has increased with
the numerical capabilities. The growth of computing facilities by leaps and bounds
since the 1960s may be illustrated by a remark of Schwarzschild (1958): “A person
can perform more than twenty integration steps per day”, so that “for a typical
single integration consisting of, say, forty steps, less than two days are needed”.
The situation has changed drastically since those days when the scientist’s need for
meals and sleep was an essential factor in the total computing time for one model.
Nowadays one asks rather for the number of solutions produced per second. And
these modern solutions are enormously more refined (numerically and physically)
than those produced 40 years ago. This progress has been possible because of
the introduction of large and fast electronic computers and the simultaneous
development of an adequate numerical procedure connected with the name of
L.G. Henyey. His method for calculating models in hydrostatic equilibrium is now
generally used and will be described later. For more details and for further references
see Kippenhahn et al. (1967). If inertia terms with Rr ¤ 0 become important, one
needs a so-called “hydrodynamic” procedure (see Sect. 12.3).

12.1 The Shooting Method

It is not difficult to see that the appropriate choice of a numerical procedure is
anything but a trivial matter. Consider the simplest case, the calculation of a model
in complete equilibrium at a given time, for given mass M and given chemical
composition Xi.m/. The “spatial problem” can then be separated and is described
by the structure equations (10.1), (10.2), (10.4) and (10.16). The naRıve attempt
simply to integrate them from one boundary to the other would encounter the
difficulty that the boundary conditions are split, one pair being given at the centre,
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the other at the surface. Moreover, a test calculation starting with trial values
Pc; Tc at the centre has little chance of meeting the correct surface conditions.
Outward integrations differing only a little near the centre have the tendency to
diverge strongly when approaching the surface (see Sect. 11.3). The reason is
that for radiative transport (10.4) with (10.6) contains the factor T �4. For inward
integrations starting with trial values R;L at the surface another divergence occurs
near the centre owing to the singularity produced by the factor r�4 in (10.2).

A compromise between these two possibilities is a fitting procedure often used
in earlier, non-automized computations. Outward and inward integrations were both
carried to an intermediate fitting point, where they were fitted smoothly to each
other by a gradual variation of the trial values Pc, Tc and R;L: The simultaneous
fit of four variables (r; P; T; l) is, in principle, possible, since one can vary four
free parameters .Pc; Tc; R;L/ in the partial solutions. The fitting point is preferably
chosen to be at the interface between physically different regions. For example,
one takes the border between a convective central core and a radiative envelope, or
between regions of different composition.

Fitting methods turned out to be unsuitable for calculating large series of
complicated models. For these purposes they were generally replaced by the Henyey
method. There are, however, certain applications where a fitting method is still
unsurpassed, for example, if one wishes to find all possible solutions for given
core and envelope parameters. Another application is the generation of the very
first model for an evolutionary sequence, since the relaxation methods, which will
be introduced in the next section, always need a trial model for finding a solution.
For chemically homogeneous stars the shooting methods are well suited to construct
such initial models.

12.2 The Henyey Method

This method is very practical, especially for solving boundary-value problems
where the conditions are given at both ends of the interval. A trial solution for
the whole interval is gradually improved upon in consecutive iterations until the
required degree of accuracy is reached. In each iteration, corrections to all variables
at all points are evaluated in such a way that the effect of each of them on the whole
solution (including the boundaries) is taken into account. In a generalized Newton–
Raphson method, corrections are obtained from linearized algebraic equations.

For spherical stars in hydrostatic equilibrium we have the partial differential
equations (10.1)–(10.5) together with boundary conditions at the centre and at
the surface. In addition the proper initial values have to be specified as well as
the stellar mass M: The general structure of the system of equations suggests
that one should treat two subsystems separately and alternately. First, the system
(10.1)–(10.4) is solved for given Xi.m/, then (10.5) is applied to a small time step
�t; after which (10.1)–(10.4) is solved for the new values of Xi.m/, and so on.
In modern language such an approach is called operator splitting. In this way one
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can construct a whole evolutionary sequence of models (But one should be aware
of the fundamental inconsistency inherent to this approach, which was discussed in
Chap. 10.). We now describe in detail the first of these two steps, the solution of the
“spatial system”.

If there is complete equilibrium ( Rr D PP D PT D 0), the initial values to be given
are theXi.m/, so that we can treat them as known parameters for any point. Accord-
ing to (10.7)–(10.14) the material functions "; �; %; : : : on the right-hand sides of
(10.1), (10.2), (10.4) and (10.16) can be replaced by their dependencies upon P
and T: Then we have to solve the four ordinary differential equations (10.1), (10.2),
(10.4) and (10.16) for the four unknown variables r; P; T; l in the interval [0, M ]
(whereM is also thought to be given).

The case of hydrostatic equilibrium (Rr D 0) but thermal non-equilibrium
. PP ¤ 0, PT ¤ 0) is almost equivalent, the only difference being the additional term
"g in (10.3), which contains the partial derivatives PP and PT : This requires as initial
values for the earlier time t0 � �t not only the Xi.m/ but also T .m/ and P.m/
(See the remarks on possible initial values in Chap. 10.). Assume that we take them
from a “foregoing” solution, calling these given functions P �.m/; T �.m/. At any
point m D mj , we denote the variables by Pj ; Tj and replace the time derivatives
PPj ; PTj by

PPj D 1

�t
.Pj � P �

j /;
PTj D 1

�t
.Tj � T �

j / : (12.1)

The given values of �t; P �
j ; T

�
j can now be considered known parameters. Then

PPj ; PTj are functions of Pj ; Tj only, as is the case with all material functions, and
therefore we can also consider "g to be replaced by the function "g.P; T ), and the
situation is as before with the complete equilibrium models: we again have the
four ordinary differential equations (10.1)–(10.4) for the four unknown variables
r; P; T; l , but with a somewhat different right-hand side of (10.3).

Let us write these four differential equations briefly as

dyi

dm
D fi .y1; : : : ; y4/; i D 1; : : : ; 4 ; (12.2)

where we have used the abbreviations y1 D r; y2 D P; y3 D T; y4 D l . The
next step is discretization, i.e. we proceed from the differential equations (12.2)
to corresponding difference equations for a finite mass interval [mj ;mjC1�: Let us
denote the variables at both ends of this interval by upper indices, for example,
y
j
1 ; y

jC1
1 ; : : : ; y

j
4 ; y

jC1
4 . The functions fi on the right-hand sides of (12.2) have to

be taken for some average arguments we call yjC1=2
i ; they are a combination of yji

and yjC1
i , for example, the arithmetic or the geometric mean. If we define the four

functions

A
j
i WD y

j
i � y

jC1
i

mj �mjC1 � fi
�
y
jC1=2
1 ; : : : ; y

jC1=2
4

�
; i D 1; : : : ; 4 ; (12.3)
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then the difference equations replacing (12.2) for the mass interval betweenmj and
mjC1 are

A
j
i D 0; i D 1; : : : ; 4 : (12.4)

The difference equations (12.4) and (12.1) represent a linearization of the differ-
ential equations and are therefore an approximation, the accuracy of which has to
be controlled. Obviously, the smaller �t and �mj D mj � mj�1, the better the
approximation. In practical circumstances the spatial discretization is not constant
throughout the stellar model, but depends on the changes of the physical variables.
A good approach is to choose�mj for each j such, that all variables change by less
than a predefined upper limit between points j and j � 1. That maximum change
will differ between variables and has to be determined by numerical experiments
reducing it to a limit from where on the numerical solution no longer depends on the
�mj significantly. Apart from this basic control algorithm there are more advanced
methods, which, for example, take into account not only the slope but the curvature
of the functions T .m/, P.m/ (Wagenhuber and Weiss 1994). The advantage of this
method is that it is sensitive to deviations from linear behaviour. It places many grid
points where the variables are a strongly non-linear function ofm, while it uses very
few in the opposite case. Wagenhuber called this the curvature method, as opposed
to the simpler gradient method.

It is possible to exclude the outermost envelope of the star from the iteration
procedure, since time-consuming computations may be necessary for this part (e.g.
partial ionization and superadiabatic convection). With sufficient computing power
this is no longer a necessity, however. Another situation where this would be
advisable is when fully realistic atmospheres are to be connected to the interior
of the star, since the diffusion approximation (10.6) is not valid at m D M but at
some deeper layer where the optical depth � � 1. The lower boundary of such an
atmosphere then provides the upper boundary of the interior model. As described
in Sect. 11.2 the outer boundary conditions are imposed at a fitting mass mF, which
may have the special value m D M and may have the upper index j D 1, and they
are formulated by the two equations (11.18) that relate the variables y11 ; : : : ; y

1
4 at

m1 D mF. These equations are specific choices and may differ. With the definitions

B1 WD y12 � ��y11 ; y14�; B2 WD y13 � �
�
y11 ; y

1
4

�
; (12.5)

equations (11.19) become
Bi D 0 ; i D 1; 2 : (12.6)

As described in Sect. 11.2 the functions �; � have to be derived by “downward”
integrations starting with different trial values of R;L: In practice this may be
greatly simplified if we content ourselves with a linear approximation for � and �
(i.e. taking the tangential planes instead of the complicated surfaces in Fig. 11.1).
Then only three trial integrations suffice to determine all coefficients in B1 and B2.

In the innermost interval of m, between the central point mK.D 0/ and mK�1;
we apply series expansions for all four variables as given by (11.3), (11.4), (11.6)
and (11.9). These four equations are written as
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Fig. 12.1 Sketch of the mesh points in the interior solution, from the fitting mass m D mF (in this
example mF < M ) to the centre (m D 0). It is also indicated which of the equations (12.4), (12.6)
and (12.7) have to be fulfilled at mF or between two adjacent mesh points

Ci
�
yK�1
1 ; : : : ; yK�1

4 ; yK2 ; y
K
3

� D 0; i D 1; : : : 4 ; (12.7)

which already incorporates the central boundary conditions yK1 D yK4 D 0

(i.e. r D l D 0 at the centre).
Consider now the whole interval of m; between mK D 0 and the fitting mass

m1 D mF, to be divided into K � 1 intervals (usually not equidistant) by K mesh
points as sketched in Fig. 12.1. At these K mesh points we have .4K � 2) unknown
variables (since yK1 D yK4 D 0), and in order to have a solution, these unknowns
have to fulfil the following equations: (12.6) for the outer boundary, (12.4) for each
interval except the last one .j D 1; : : : ; K�2), and (12.7) for the central boundary;
thus there are 2C 4.K � 2/C 4 D 4K � 2 equations, which may be written:

Bi D 0; i D 1; 2 ;

A
j
i D 0; i D 1; : : : ; 4; j D 1; : : : ; K � 2 ; (12.8)

Ci D 0; i D 1; : : : ; 4 :

Suppose that we are looking for a solution for given values of M;Xi.m/;
P �.m/; T �.m/ (which all enter into these equations as parameters). And suppose,
furthermore, that we have a first approximation to this solution, say, .yji /1 with
i D 1; : : : ; 4; j D 1; : : : ; K (This may be a rough first guess, e.g. obtained by an
extrapolation of a foregoing solution or a solution for similar parameters. It may also
be obtained from a shooting method.). Since the .yji /1 are only an approximation,
they will not fulfil (12.8), i.e. when we use them as arguments in the functions
A
j
i ; Bi , and Ci , we find that

Bi.1/ ¤ 0; A
j
i .1/ ¤ 0; Ci .1/ ¤ 0 ; (12.9)

where we indicate by (1) that the first approximation is used as arguments. Let us
now look for corrections ıyji for all variables at all mesh points such that the second
approximation

�
y
j
i

�
2

D �
y
j
i

�
1

C ıy
j
i (12.10)



110 12 Numerical Procedure

of the arguments makes the Bi ; A
j
i , and Ci vanish. The changes ıyji of the argu-

ments produce the changes ıBi ; ıA
j
i , and ıCi of the functions, and we obviously

have to require that

Bi.1/C ıBi D 0; A
j
i .1/C ıA

j
i D 0; Ci .1/C ıCi D 0 : (12.11)

For small enough corrections, we may expand the ıBi ; : : : in terms of increasing
powers of the corrections ıyji , and keep only the linear terms in this expansion; for
example,

ıB1 � @B1

@y11
ıy11 C @B1

@y12
ıy12 C @B1

@y13
ıy13 C @B1

@y14
ıy14 : (12.12)

For (12.5) the third term would vanish because in this special caseB1 is independent
of y3. With this linearization (12.11) can be written as

@Bi

@y11
ıy11 C � � � C @Bi

@y14
ıy14 D �Bi ;

i D 1; 2 ;

@A
j
i

@y
j
1

ıy
j
1 C � � � C @A

j
i

@y
j
4

ıy
j
4 C @A

j
i

@y
jC1
1

ıy
jC1
1 C � � � C @A

j
i

@y
jC1
4

ıy
jC1
4 D �Aji ;

i D 1; : : : ; 4; j D 1; : : : ; K � 2 ; (12.13)

@Ci

@yK�1
1

ıyK�1
1 C � � � C @Ci

@yK�1
4

ıyK�1
4 C @Ci

@yK2
ıyK2 C @Ci

@yK3
ıyK3 D �Ci ;

i D 1; : : : ; 4 :

(The Bi ; A
j
i ; Ci , and all derivatives have here to be evaluated using the first

approximation as arguments.) This is a system of 2C4.K�2/C4 D 4K�2 linear,
inhomogeneous equations for the 4K � 2 unknown corrections ıyji .i D 1; : : : ; 4

and j D 1; : : : ; K; but ıyK1 D ıyK4 D 0 because of the central boundary
conditions). Equation (12.13) may be written concisely in matrix form as

H

0
BBBBB@

ıy11
:

:

:

ıyK3

1
CCCCCA

D �

0
BBBBB@

B1
:

:

:

C4

1
CCCCCA
; (12.14)

where the matrix H of the coefficients is called the Henyey matrix; its elements are
the derivatives on the left-hand sides of (12.13).

Usually H has a non-vanishing determinant, det H ¤ 0, and we can solve
these linear equations, obtaining the wanted corrections ıyji . These are applied as
shown in (12.10) to obtain a second, better approximation .yji /2. When using these
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Fig. 12.2 Mesh points in the
“three-layer model”

second approximations as arguments, we will generally still find Bi ¤ 0;A
j
i ¤ 0,

and Ci ¤ 0, i.e. equations (12.8) are not yet fulfilled. This is because the corrections
were calculated from the linearized equations (12.13), while equations (12.8) are
non-linear (Even if we had linear equations instead of (12.8), the solution might
require several iterations, since the numerical solution of (12.13) has only limited
accuracy.). Therefore in a second iteration step we calculate new corrections by the
same procedure to obtain a third approximation

�
y
j
i

�
3

D �
y
j
i

�
2

C ıy
j
i ; (12.15)

and so on. In consecutive iterations of this type, the approximate solution can be
improved until either the absolute values of all corrections ıyji , or the absolute
values of all right-hand sides in (12.13), drop below a chosen limit. Then we have
approached the solution with the required accuracy.

If a time sequence of models is to be produced, one can now change the
parameters appropriately for a new small time step �t [by evaluating from (10.5)
the change of the Xi.m/, and by redefining the just-calculated P.m/; T .m/ as the
new P �.m/; T �.m/]. The new model for t C �t is then calculated by the Henyey
method in the same manner as for the model for t:

Of course, there is no guarantee that the iteration procedure for improving the
approximations really does converge. In fact often enough one finds divergence if
the chosen approximation is too far from the solution; then the required corrections
are so large that one cannot neglect the second-order terms when evaluating
ıBi ; ıA

j
i , and ıCi in (12.11), and the linearized equations (12.14) therefore yield

wrong corrections.
What happens, on the other hand, if we take a given precise solution as the “first

approximation”? It fulfils (12.8) such that the right-hand sides of (12.14) vanish.
Equation (12.14) is then a system of homogeneous linear equations, which for det
H ¤ 0 has only the trivial solution ıyji D 0: in this (normal) case, there is no other
solution (“local uniqueness” as mentioned in Sect. 12.6). If, however, det H D 0,
then we obtain solutions ıyji ¤ 0, i.e. other solutions for the same parameters.
In this somewhat pathological situation the “local uniqueness” of the solution is
violated.

The Henyey matrix and its determinant are obviously important quantities.
This concerns also their connection with the stability properties (see Sect. 12.6).
It is worthwhile noting the general structure of H; which turns out to be very
simple. This is most easily demonstrated by considering the simple “three-layer
model”, which has only four mesh points from centre to fitting mass (Fig. 12.2).
One interval is adjacent to mF, one to the centre, while the intermediate interval
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Fig. 12.3 Structure of the Henyey matrix H for the three-layer star sketched in Fig. 12.2. A dot
in, for example, the column yji and the row Alk represents the matrix element @Alk=@y

j
i . All matrix

elements outside the dotted area are zero

borders on neither of these two boundaries, so that the full generality of possible
cases is exhibited. Any further mesh point will only duplicate the situation of the
intermediate interval. The Henyey matrix H for this three-layer star is indicated in
Fig. 12.3, where a dot in a column under yji and in a row denoted at the left-hand
side by Alk represents a matrix element @Alk=@y

j
i . Some of these derivatives will be

zero, since some basic equations do not depend on all variables [e.g. (10.16) does not
contain y1 D r]. Outside the dotted area there are only zero elements, because the
first-order scheme (12.13) connects only neighbouring points. The Henyey matrix
therefore has non-vanishing elements only in overlapping blocks along the main
diagonal, so that this can be easily used for devising simple and well-behaved
algorithms for computing det H and inverting the matrix through elimination
processes. The most widely used method for solving such block matrices in stellar
evolution codes is that by Henyey et al. (1964), which was described in all details
by Kippenhahn et al. (1967). The basic idea is to express the corrections of the
block matrix connecting points .j; j C 1/ in terms of the quantities of the next
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block .j C 1; j C 2/, and so on. At the end there is a final block (usually the
innermost one), for which the corrections are determined by matrix inversion, and
from which on then all the other corrections can be calculated by going backwards
again. The Henyey method has K inversions of matrices of size 4 � 8 instead of
straightforwardly inverting the Henyey matrix of size K � K . It therefore grows
only linearly–instead of quadratically–with increasing number of grid points.

12.3 Treatment of the First- and Second-Order
Time Derivatives

When devising a numerical scheme for solving our partial differential equations
one can choose many details more or less arbitrarily without greatly affecting the
results. This concerns questions such as the prescription for averaging between
spatial mesh points, and the definition of the variables; these can be, for example, the
physical quantities themselves, their logarithms, or any other functions describing
them properly.

Concerning the manner in which the time derivatives are approximated, one
distinguishes between explicit and implicit schemes that are known to behave
differently, in particular when one is dealing with second-order time derivatives.
Forward integration in time, starting from given initial values, can require time steps
of various length, and the results can be unstable with respect to small numerical
errors. In Sect. 12.2 we encountered examples of both types of scheme:

An explicit scheme was indicated in the case of the chemical equations (10.5).
Consider the time interval between tn (at which all variables qn are supposed
to be known) and tnC1 (for which the variables qnCl are to be calculated). We
may use (10.5) simply in order to calculate time derivatives PXn

i of the chemical
composition from the known reaction rates rnik and densities %n: The composition
for tnCl is then evaluated asXnC1

i D Xn
i C�t PXn

i before the other variables for this
time are derived. In fact theXnC1

i are used as fixed parameters when calculating the
solution at tnC1 by iteration. Such a procedure is relatively simple, and in general,
the results can be sufficiently accurate if the time steps are kept small enough.
However, there is no guarantee to prevent unphysical solutions in explicit methods.
For example, if PXn

i is sufficiently negative even a small time step might lead to a
negative XnC1

i . To prevent this, an implicit treatment is indicated. If PXi depends
on the chemical abundances itself, as is the case for the nuclear reactions (10.5),
the abundance at tnC1 is used on the right-hand side, too. This constitutes a set of
implicit equations, which need to be solved by inversion methods, but which are
numerically stable. An easy way is by writing XnC1

i D Xn
i C�t PXn

i D Xn
i C�Xn

i

and linearizing the equations in the �Xn
i , neglecting all higher terms. The resulting

system of equations is linear in �Xn
i and can be solved by one matrix inversion.

However, the quality of the linearization again depends on the size of �t . Such
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implicit schemes are generally used to solve networks of nuclear reactions, where
the terms PXn

i may vary by many order of magnitudes.
In the set of structure equations (10.1)–(10.4) to be solved at time tnC1

i for given
XnC1
i the energy equation (10.3) contains the time derivatives of PP and T . With

respect to these an implicit scheme was used in Sect. 12.2. According to (12.1) the
PP and PT are replaced by (PnC1�Pn/=�t and (T nC1�T n/=�t , respectively. These

time derivatives are therefore considered to depend also on the variables at time tnC1
and are evaluated together with them in the iteration procedure. In principle one
could also have used an explicit method. For example, replace PP and PT in (10.3) by
the time derivative of the entropy s and use this equation only in order to evaluate
Psn at time tn: Then, as in the case of the chemical composition, the solution for tnC1
is calculated for a given, fixed entropy snC1 D sn C�t Psn from the other equations.

It is well known that, for differential equations that involve first-order derivatives
in time and first- (or higher-) order spatial derivatives, implicit methods allow larger
time steps for a given spacing in mass; for explicit difference schemes the time step
has to be kept small to avoid numerical instability (For details see, for instance,
Richtmyer and Morton 1967.).

Let us now turn to the so-calledhydrodynamical problem, which arises when the
inertial term in the equation of motion cannot be neglected. Then in addition to the
first-order time derivatives in (10.3) there is a second-order time derivative in (10.2),
as in (2.16). One usually introduces the radial velocity

v D @r

@t
(12.16)

of the mass elements as a new variable, with which (10.2) becomes

@P

@m
D � Gm

4�r4
� 1

4�r2
@v

@t
: (12.17)

When using (12.16) and (12.17) instead of (2.16) one has again to deal with first-
order time derivatives only. These can be replaced by ratios of differences, and one
can use an explicit or an implicit scheme as before, the explicit being simpler but
demanding smaller time steps. However, this is not the only choice to be made. For
example, within the framework of an explicit method, the different variables can be
defined at different times (say, the radius values at tn; tnC1; : : :, and the velocities at
the intermediate times tn�1=2; tnC1=2; : : :). Furthermore, one may devise a scheme
which treats the mechanical equations explicitly but is implicit with respect to the
time derivatives in the energy equation (10.3).

The presence of the second-order time derivatives changes the properties of the
equations and the behaviour of the numerical procedure considerably. Whenever an
explicit scheme is used, the time steps have to be kept small in order to fulfil the
Courant condition, according to which the time step �t must not exceed �r=vs,
where �r is the thickness of the smallest mass shell and vs is the local velocity of
sound.
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12.4 Treatment of the Diffusion Equation

The diffusion equation (8.25) contains first-order derivatives in time and second-
order derivatives in space for the N chemical species. It may be supplemented by
the nuclear reactions of (10.5), and by the additional term for diffusive convective
mixing (8.28) to achieve a consistent treatment of “burning and mixing”, but these
terms do not change the nature of the equations further.

The left-hand side of (8.25) can again be written as .Xi.t C �t/ � Xi.t//=�t ,
andXi.tC�t/ is the quantity to be determined. As with the nuclear reactions (10.5)
discussed in 12.3, an implicit scheme is to be preferred for sake of numerical
stability, implying that on the right-hand side Xi.t C �t/ is used, too. This
constitutes at each grid point a set of N implicit equations, which can be solved
either through linearization or iteration. However, in contrast to the situation we
found for the nuclear network, these sets of equations are now coupled between grid
points due to the spatial derivatives of the diffusion equation.

These second-order spatial derivatives of, for example, lnT , are calculated in two
steps. First, the first-order derivative for grid point j is approximated in the standard
way by

� lnT j

�rj
D lnT j � ln T j�1

rj � rj�1 (12.18)

and similarly for j C 1. Then the second-order derivative at grid point j can be
calculated from

@2 lnT

@r2

ˇ̌
ˇ̌
j

�
�
� lnT jC1

�rjC1 � � lnT j

�rj

�
=
�NrjC1 � Nrj � ; (12.19)

where Nrj is a suitable mean value for r in the interval .j; j C 1/. In the simplest
case it is the arithmetic mean and thus the denominator in (12.19) reduces to
.rjC1 � rj�1/=2. All other quantities in (8.25) appearing in front of the first-order
derivatives, such as AT .i/, also have to be taken as mean quantities for the second
derivative in analogy to (12.19). We note that the spatial derivatives are defined here
at each grid point, contrary to the system of equations (12.3), where the derivatives
were defined for the shell between j and j C 1. One may imagine that the shells
now are centred at a grid point, extending halfway to the neighbouring ones. The
advantage of this definition is that the diffusion equations are defined at the same
location as the nuclear network equations.

In this way, the discretized equations for the N elements at the M � 2 grid
points from j D 2; : : : ;M � 1 contain values of the Xi at three grid points
j � 1; j; j C 1. As for the structure equations, they are solved by iterating for
Xi.t C �t/, starting with the initial trial values Xi.t/, which are already known.
The iteration method can again be the standard Newton–Raphson method, which
requires first-order derivatives of all quantities appearing in (8.25). The complete
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system of equations is similar to (12.13) with the exception that three instead of
two neighbouring grid points are connected. It is therefore obvious that the Henyey
method will be applicable again, the only difference being that the block matrices
are now of dimensionN � 3N .

The missing two equations to complete the system for the N elements result
from the boundary conditions at j D 1 and j D M , which follow from mass
conservation. We follow here the formulation by Schlattl (1999), where also more
technical details concerning the solution of (8.25) can be found.

Mass conservation leads to

MX
jD1

�
X
j
i .t C�t/ �Xj

i .t/
�

4mj D 0; 1 � i � N (12.20)

where j again denotes the grid point (1 � j � M ) and i the element. Since (8.25)
is formulated in Eulerian space, the mass intervals 4mj have to be defined appro-
priately, for example, by

4mj D
8<
:

1
2

�
m1 �m2

�
j D 1

Nmj � NmjC1 2 � j � M � 1
1
2
mM�1 j D M:

(12.21)

Note that mean values formj are used in the second line. This wayM mass intervals
are created.

As an example we formulate the expression for the lnT term in (8.25),
abbreviating r2Xi .t C �t/T 5=2AT by KT . With 4rj D 4mj=.4�%j .rj /2/ the
boundary conditions translate into expressions like
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and

1

%r2
@

@r

�
KT

@ lnT

@r

�
rD0

� 24

%jDM.rjDM�1/2
NKjDM
T .� lnT=�r/jDM

rjDM�1 (12.23)

To simplify reading we have written suffixes indicating grid numbers j explicitly.
In (12.23), the linear expansion (11.3) of m at the centre was used to compute
4rjDM from 4mjDM , which involvesmM�1.

We finally add that Schlattl (1999) justifies the Eulerian formulation for the
diffusion equations, as opposed to our otherwise preferred Lagrangian one, with
the necessity for very dense spatial resolution in situations of shallow convective
layers.
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12.5 Treatment of Mass Loss

The mass loss formulae (9.1)–(9.4) describe only how the stellar mass reduces with
time due to stellar winds. Therefore, the treatment in stellar evolution calculations is
very simple. Over a time step �t , during which the chemical composition changes
as described in Sect. 12.3, the stellar mass will change according to

M.t C�t/ D M.t/ ��M.t/ D M.t/ � PM.t/�t ; (12.24)

where PM.t/ is the mass loss rate evaluated according to (9.1) or any other similar
prescription, using the stellar parameters at time t .

In terms of the mass grid established in Sect. 12.2 a simple removal of all grid
points i with mi � M.t/ � �M.t/ can be done. Such a procedure, of course,
ignores all effects of accelerating matter and moving it out of the star’s gravitational
potential. To treat this correctly, however, a hydrodynamical method with an open
outer boundary would be needed, which in most cases is not necessary. Consider the
energy spent to remove mass from the stellar surface to infinity. This is, according
to (1.13), GM=R per mass unit of the stellar wind. Multiplying with the mass loss
rate we obtain the result that . PMGM/=R erg/s are needed. For the Sun this amounts
to 1:2 � 1027 erg/s, which is only 10�7 of the solar luminosity, and can therefore be
safely ignored. For a very evolved red giant with very strong mass loss the energy
spent for expelling mass can reach values up to 0.001 or even 1 % of the stellar
luminosity.

While the simple removal of grid points is correct in terms of mass distribution
and chemical composition, it is not taking into account thermal effects. Imaging
a mass layer that was deep inside the stellar envelope now suddenly being the
outermost one, since all overlying layers were expelled. It will be hotter than the
surface layers have been before and temperature and pressure will not be that of a
photosphere. Thermal relaxation will therefore set in. While the Sun is losing mass
continuously, its surface temperature is constant. This is because the timescale for
mass loss, �ML � M= PM is of the order of 1014 years and therefore much longer
than even the nuclear timescale. As long as �ML � �KH the outermost layers will
quickly expand and restore the previous photospheric conditions. The adjustment,
of course, vanishes with increasing depth. Numerical schemes are therefore trying
to take this into account: while grid points are removed due to mass loss, the
thermal structure of the star remains almost unperturbed. In the opposite case, when
�ML . �KH, the layers uncovered by mass loss indeed have no time to change
their temperature (pressure can be adjusted, since �hydro is still much shorter). This,
however, may happen only in binary systems during extreme mass transfer episodes.
In such cases, a hydrodynamical treatment of the complete system is indicated,
anyhow.
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12.6 Existence and Uniqueness

As every numerical scheme, the Henyey method sometimes does not converge easily
to a solution, and there are cases when it seems to oscillate between two solutions.
While in most cases this is a purely numerical issue, resulting for example from
insufficiently accurate derivatives, one wonders whether there could also be deeper
mathematical reasons. This relates to questions about the existence and uniqueness
of the solution. It is closely connected to the determinant of the Henyey matrix,
as det H D 0 obviously does not allow an inversion for determining the ıyi and
det H � 0 will lead to numerical problems during the inversion.

An old problem is whether, for stars in complete equilibrium and of given
“parameters” (stellar mass M and chemical composition Xi ), there exists one,
and only one, solution of the basic equations of stellar structure. From simple
considerations concerning uncomplicated cases, answers to this question were given
in the 1920s by Heinrich Vogt und Henry Norris Russell; however, there is no
mathematical basis for this so-called Vogt–Russell theorem, and when by numerical
experiments multiple solutions for the same parameters were found to exist it had
to be abandoned. The conditions under which uniqueness is violated, and why, have
therefore been investigated. A linearized treatment (concerning “local” uniqueness)
is easier to understand, whereas non-linear results refer to the “global” behaviour
of the solutions and require a more involved mathematical apparatus. Relevant
work concerning these issues was done by Kähler (1972, 1975, 1978). For another
representation, particularly of the linear problem, see Paczyński (1972).

The mathematical discussion is usually restricted to models in complete or
at least hydrostatic equilibrium and analyses the behaviour of solutions under
(infinitesimally) small changes of the parameters. Mathematical conditions can be
formulated when a solution is locally unique, which can be translated into the
statement that the evolution–considered as being a change of parameters (chemical
composition and/or entropy) with time–follows a unique sequence of solutions.
However, there is no general statement about when such conditions are fulfilled. The
condition for having a locally unique solution is equivalent to det H ¤ 0. But even
if this condition is fulfilled, there still might be multiple, well-separated solutions.
If one of them is unstable, the star switches to the stable one when perturbed. This
is related to the general stability of stars.

Behind the mathematical question there is thus also interest concerning the
predicted evolution of stars. For example, after learning that often more than one
solution exists, that solutions can disappear, or that new solutions appear in pairs,
one might begin to wonder whether the star really “knows” how to evolve. But we
should keep in mind that normally the star will be brought into one particular state
(corresponding to a certain solution) according to its history. And if the equations
indicate that the evolution approaches a “critical point”, then this means in general
only that the approximation used breaks down. For example, if an evolutionary
sequence calculated for complete equilibrium comes to a critical point beyond
which continuation is not possible, then the difficulties are normally removed by
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allowing for thermal non-equilibrium. Correspondingly if hydrostatic models that
are not in thermal equilibrium evolve to a critical point, the difficulties are usually
removed after the introduction of inertia terms. An example would be the reaction
of a star when reaching the Schönberg–Chandrasekhar limit (Sect. 30.5), where two
existing solutions of complete equilibrium merge. The star easily switches from one
to the other by leaving thermal equilibrium.

Broadly speaking, it was found that indeed several solutions for the same set of
parameters (stellar mass M and chemical composition Xi ) exist but that they are
widely separated and a star’s evolution proceeds along a well-defined sequence of
locally unique solutions.



Part III
Properties of Stellar Matter

In addition to the basic variables .m; r; P; T; l) in terms of which we have
formulated the problem, the differential equations of stellar structure (Sect. 10.1)
also contain quantities such as density, nuclear energy generation, or opacity. These
describe properties of stellar matter for given values of P and T and for a given
chemical composition as indicated in (10.7)–(10.14) and are quantities that certainly
do not depend on m; r; or l at the given point in the star. They could just as well
describe the properties of matter in a laboratory for the same values of P; T; and
chemical composition. We can therefore deal with them without specifying the star
or the position in it for which we want to use them. In this chapter we shall discuss
these “material functions”, and we start by specifying the dependence of the density
% on P; T; and the chemical composition. This is described by an equation of state,
which is especially simple if we have a perfect gas. We already discussed this case
in Sect. 4.2. But radiation and ionization also influence the pressure and the internal
energy. We therefore have to include them.



Chapter 13
The Perfect Gas with Radiation

13.1 Radiation Pressure

The pressure in a star is not only given by that of the gas because the photons in
the stellar interior can contribute considerably to the pressure, and therefore our
discussion of the perfect gas of Sect. 4.2 has to be extended. Since the radiation is
practically that of a black body (see Sect. 5.1.1), its pressure Prad is given by

Prad D 1

3
U D a

3
T 4 ; (13.1)

whereU is the energy density and a is the radiation density constant a D 7:56464�
10�15 erg cm�3 K�4. Then the total pressure P consists of the gas pressure Pgas and
radiation pressure Prad:

P D Pgas C Prad D <
�
%T C a

3
T 4 ; (13.2)

where on the right we have assumed that the gas is perfect. We now define a measure
for the importance of the radiation pressure by

ˇ WD Pgas

P
; 1 � ˇ D Prad

P
: (13.3)

For ˇ D 1 the radiation pressure is zero, while ˇ D 0 means that the gas pressure
is zero. The definition (13.3) can also be used if the gas is not perfect.

Two other relations which can be derived by differentiation of (13.3) are
sometimes useful:
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�
@̌

@T

�
P

D �
�
@.1 � ˇ/
@T

�
P

D � 4

T
.1 � ˇ/ ; (13.4)

�
@̌

@P

�
T

D �
�
@.1 � ˇ/
@P

�
T

D 1

P
.1� ˇ/ : (13.5)

13.2 Thermodynamic Quantities

From (13.2) we obtain

% D �

<
1

T

�
P � a

3
T 4

�
; (13.6)

and with the definitions (6.6) with (13.4), and (13.5) we find that

˛ D 1

ˇ
; ı D 4 � 3ˇ

ˇ
; ' D 1 : (13.7)

Indeed, if the radiation pressure can be neglected (ˇ D 1), we find ˛ D ı D 1, as
should be expected for a perfect monatomic gas.

If the gas components are monatomic, then the internal energy per unit mass is

u D 3

2
kT
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%
C aT 4

%
D 3
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ˇ

�
; (13.8)

so that according to the definition (4.4) of cP we have
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Using (13.8), after some algebraic manipulations involving (13.4), we obtain
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ˇ2

�
: (13.10)

From the definition of ı with (13.7)–(13.9) we write

cP D <
�

�
3

2
C 3.4C ˇ/.1 � ˇ/

ˇ2
C 4 � 3ˇ

ˇ2

�
; (13.11)

and then the relation (4.21) may be applied in order to determine the adiabatic
gradient rad for the perfect gas plus radiation:

rad D <ı
ˇ�cP

D
�
1C .1 � ˇ/.4C ˇ/

ˇ2

�
=

�
5

2
C 4.1� ˇ/.4C ˇ/

ˇ2

�
: (13.12)
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For ˇ ! 1, (13.11) and (13.12) give the well-known values for the perfect
monatomic gas: cP D 5<=.2�/ and rad D 2=5; while for ˇ ! 0, one has
rad ! 1=4 and cP becomes infinite.

Sometimes the derivative

1

�ad
WD

�
d ln %

d lnP

�
ad

(13.13)

is required (4.37, 4.41). If in the definition

d%

%
D ˛

dP

P
� ı dT

T
(13.14)

of ˛ and ı the adiabatic condition PdT/(TdP) = rad is introduced, one finds

�ad D 1

˛ � ırad
: (13.15)

In the case of a perfect gas with radiation pressure we have to introduce the
expressions (13.7), while for the limit ˇ D 1, we find

�ad D 1

1 � rad
: (13.16)

For a monatomic gas without radiation pressure (ˇ D 1) one has rad D 0:4 and
therefore �ad D 5=3, whereas in the limit ˇ ! 0–after ˛; ı, and rad are inserted
from (13.7) and (13.12)–we find for a gas dominated by radiation pressure that

�ad ! 4

3
; rad ! 1

4
: (13.17)

Instead of �ad, rad, one often uses the “adiabatic exponents” introduced by
Chandrasekhar, which are defined by

�1 WD
�
d lnP

d ln %

�
ad

D �ad ; (13.18)
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D 1
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; (13.19)
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and obey the relation
�1
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: (13.21)
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Chapter 14
Ionization

In Sect. 4.2 and Chap. 13 we assumed complete ionization of all atoms. This is
a good approximation in the very deep interior, where T and P are sufficiently
large, but the degree of ionization certainly becomes smaller if one approaches the
stellar surface, where T and P are small. In the atmosphere of the Sun, for instance,
hydrogen and helium atoms are neutral. When a gas is partially ionized the mean
molecular weight and thermodynamic properties such as cP depend on the degree
of ionization. It is the aim of this section to show how this can be calculated and
how it influences the properties of the stellar gas.

14.1 The Boltzmann and Saha Formulae

We consider the atoms of a chemical element in a certain state of ionization,
contained in a unit volume of gas in thermodynamic equilibrium. They are
distributed over many states of excitation, which we denote by subscript s, and these
different states can be degenerate such that the state of number s consists in reality
of gs substates. The number gs is the statistical weight. Consider in particular the
atoms of a certain element in state s and in the ground state s D 0, separated by
the energy difference  s , and the transition between both, say, by emission and
absorption of photons. In equilibrium, the rate of such upward transitions is equal to
that of downward transitions. This gives as the ratio between the numbers of atoms
in the two states:

ns

n0
D gs

g0
e� s=kT : (14.1)

Equation (14.1) is the well-known Boltzmann formula, which governs the distribu-
tion of particles over states of different energy.

Instead of referring to the atoms in the ground state, we want to compare the
atoms of state s with the number n of all atoms of that element:
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n D
X
s

ns : (14.2)

From (14.1), multiplication by g0 and summation over all states leads to

g0
n

n0
D g0

1X
sD0

ns

n0
D g0 C g1 e� 1=kT C g2 e� 2=kT C : : : WD up ; (14.3)

where up D up.T / is the so-called partition function. From (14.1) and (14.3) we
obtain the Boltzmann formula in the form

ns

n
D gs

up
e� s=kT : (14.4)

We can also use the Boltzmann formula to determine the degree of ionization,
but there are differences between excitation and ionization that require attention.
Excitation concerns ions and bound electrons distributed over discrete states only.
In the case of ionization the upper state consists of two separate particles, the
ion and the electron; and the free electron has a continuous manifold of states.
After ionization, say by absorption, the electron “thrown out” can have an arbitrary
amount of kinetic energy, and recombination can occur with electrons of arbitrary
kinetic energy.

We say an atom is in the r th state of ionization if it has already lost r electrons.
The energy necessary to take away the next electron from the ground state is �r .
After ionization this electron is in general not at rest, but has a momentum relative
to the atom of absolute value pe. Then p2e=.2me/ is its kinetic energy; therefore
relative to its original bound state the free electron has the energy �r C p2e=.2me/,
while the state of ionization of the atom is now r C 1.

Let us consider as the lower state an r-times ionized ion in the ground state. The
upper state may be that of the (r C 1) times ionized ion plus the free electron with
momentum in the interval Œpe; pe C dpe�. The number densities of ions in these two
states are nr and dnrC1. The statistical weight of the upper state is the product of
grC1 of the ion and of dg.pe/, the statistical weight of the free electron. Transitions
upwards and downwards occur between the two states with equal rates. In the case
of thermodynamic equilibrium the Boltzmann formula (14.1) applies and gives

dnrC1
nr

D grC1dg.pe/

gr
exp

�
��r C p2e=.2me/

kT

�
: (14.5)

What is the statistical weight dg.pe/ of the electron in the momentum interval
Œpe; pe Cdpe�? The Pauli principle of quantum mechanics tells us that in phase space
a cell of volume dq1 dq2 dq3 dp1 dp2 dp3 D dV d3p can contain up to 2dV d3p=h3

electrons, namely up to two electrons per quantum cell of volume h3. Here the q’s
and the p’s are the space and momentum variables of the (six-dimensional) phase
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space, while dV and d3p are the (three-dimensional) “volumes” and h is the Planck
constant (h D 6:62620� 10�27 erg s). Then

dg.pe/ D 2 dV d3pe

h3
: (14.6)

If the electron density in (three-dimensional) space is ne then per electron the
volume dV D 1=ne is available, while the volume in (three-dimensional) momen-
tum space containing all points belonging to the interval Œpe; pe C dpe� is d3pe D
4�p2e dpe, since all these points are on a spherical shell of radius pe and thickness
dpe. We then have

dg.pe/ D 8�p2e dpe

neh3
(14.7)

and (14.5) yields

dnrC1
nr

D grC1
gr

8�p2e dpe

neh3
exp

�
��r C p2e=.2me/

kT

�
: (14.8)

All upper states (ions of degree r C 1 in the ground state and free electrons of all
momenta) are then obtained by integration over pe:

nrC1
nr

D grC1
gr

8�

neh3
e��r =kT

Z 1

0

p2e exp

�
� p2e
2mekT

�
dpe : (14.9)

Since for a > 0 Z 1

0

x2e�a2x2dx D
p
�

4a3
; (14.10)

we obtain

nrC1
nr

ne D grC1
gr

fr .T / ; with fr.T / D 2
.2�mekT /

3=2

h3
e��r =kT : (14.11)

This is the Saha equation (named after the physicist Meghnad Saha) though it is still
not yet in its final form, since we have considered only the ground states. Therefore,
in order to be more precise, we now use the quantities nrC1;0; nr;0; grC1;0; gr;0;
where the second subscript indicates the ground state for which these quantities
are defined. By nrC1; nr ; grC1; gr we from now on mean number densities of ions
and statistical weights for all states of excitation. A particular state of excitation
is indicated by a second subscript such that ni;k is the number density of atoms in
the stage i of ionization and in state k of excitation and gi;k is the corresponding
statistical weight. The Saha equation (14.11) is then written more precisely as

nrC1;0
nr;0

ne D grC1;0
gr;0

fr .T / : (14.12)
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The number density of ions in the ionization state r (in all states of excitation) is

nr D
X
s

nr;s ; (14.13)

which corresponds to (14.2), and we now write the Boltzmann formula (14.1) for
ions of state r as

nr;s

nr;0
D gr;s

gr;0
e� r;s=kT ; (14.14)

where  r;s is the excitation energy of state s; then (14.13) can be written in the form

gr;0

nr;0
nr D gr;0

X
s

nr;s

nr;0

D gr;0 C gr;1e� r;1=kT C gr;2e� r;2=kT C : : : WD ur ; (14.15)

where ur D ur .T / is the partition function for the ion in state r . With the help of
nr gr;0 D nr;0 ur , which follows from (14.15), the Saha equation can be written for
all stages of excitation as

nrC1
nr

ne D urC1
ur

fr .T / ; (14.16)

where fr.T / is given in (14.11). With Pe D nekT one has

nrC1
nr

Pe D urC1
ur

2
.2�me/

3=2

h3
.kT /5=2 e��r =kT : (14.17)

14.2 Ionization of Hydrogen

In order to see the consequences of the Saha equation we shall apply it to a pure
hydrogen gas. We define the degree of ionization x by

x D n1

n0 C n1
; (14.18)

i.e. n1=n0 D x=.1� x/. If the gas is neutral, then x D 0; if it is completely ionized,
x D 1. Also the left-hand side of (14.17) can be replaced by xPe=.1 � x/, and if
n D n0 C n1 is the total number of hydrogen atoms, then we can relate the partial
pressure of the electrons to the total gas pressure:

Pe D nekT D .nC ne/kT
ne

nC ne
D Pgas

ne

nC ne
: (14.19)
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For each ionized atom there is just one electron (ne D n1); therefore

Pe D x

1C x
Pgas (14.20)

and (14.17) can be written in the form

x2

1 � x2
D KH ; with KH D u1

u0

2

Pgas

.2�me/
3=2

h3
.kT /5=2 e��H=kT : (14.21)

Here �H D 13:6 eV is the ionization energy of hydrogen. Now with (14.21) we have
come up with a quadratic equation for the degree of ionization that can be solved if
T and Pgas are given. If radiation pressure is important, it is sufficient to give T and
the total pressure P , and then Pgas can be obtained from (13.2).

In order to compute the degree of ionization, the partition function has to be
known. For this we need the statistical weights of the different states of excitation,
which are given by quantum mechanics. Since the higher states contribute little to
the partition function, we may approximate it by the weight of the ground state,
u0 � g0;0 D 2, while for ionized hydrogen, u1 D 1 (see, for instance, Cox, 2000,
pp. 2–34).

We now give some numerical examples. In the solar photosphere we have in cgs
units Pgas D 1:01 � 105; T D 5; 779K, and we obtain x D 5 � 10�5, while in
a deeper layer with Pgas D 3:35 � 1012; T D 7:17 � 105 K, hydrogen is almost
completely ionized: x D 0:985.

Since in (14.21)KH increases with T and decreases with Pgas, and since the left-
hand side increases with x, one can see that the degree of ionization increases with
temperature and decreases with the gas pressure. This can be easily understood:
with increasing temperature, the collisions become more violent, the photons more
energetic, and the processes of “kicking off” the electrons from the atoms more
frequent. If, on the other hand, the temperature is kept constant but the pressure
increases, then the probability grows that the ion meets an electron and recombines.

In Chap. 4 we have defined the mean molecular weight � for a mixture of gases
and have seen that it is different for ionized and non-ionized gases. Therefore mean
molecular weights depend on the degree of ionization.

In order to determine � for the hydrogen gas having the degree of ionization x,
we define the number E of free electrons per atom (neutral or ionized), which is
here simply

E D ne

n
D x : (14.22)

Remember that �mu; �0mu, and �emu are defined as the average particle masses
per free particle, per nucleus, and per free electron, respectively. This means that the
density can be written as

% D .nC ne/�mu D n�0mu D ne�emu : (14.23)



132 14 Ionization

Using (14.22) and n D n0 C n1, we solve (14.23) for the mean molecular weight
and find

� D %

mun

1

1C E
D �0

1C E
D �e

E

1C E
; (14.24)

where we have neither replaced �0 by its value 1 for hydrogen nor E by x, since
(14.24) also holds for a mixture of gases.

14.3 Thermodynamical Quantities for a Pure Hydrogen Gas

Many thermodynamic properties depend on the degree of ionization. We here
indicate roughly how the formulae can be derived for the relatively simple case
of the pure hydrogen gas. This is not because of its importance, but rather because
the treatment is quite analogous to that in the much more involved case of mixtures.
The gas is supposed to be perfect, since partial ionization usually occurs only in the
stellar envelope, where effects of degeneracy can be neglected.

In Sect. 4.1 we defined the quantity ı D �.@ ln%=@ lnT /P . In the case of pure
hydrogen obeying the perfect-gas equation we have ı D 1 for x D 0 and x D 1,
since � is constant in both cases (Remember that we wished to incorporate in ˛ and
ı the changes of � due to partial ionization, while ' should be reserved for changes
of� due to changing chemical composition.). For partial ionization, x varies with T ,
and therefore ı is given by a complicated expression. From the perfect-gas equation
% � �P=T and (14.24) with �0 = constant we find

ı D 1C 1

1C E

�
@E

@ lnT

�
P

; (14.25)

which also holds for a mixture of gases. For pure hydrogen E D x and we need
the derivative of x, which can be obtained by differentiation of the Saha equation
(14.21). This gives

ı D 1C 1

2
x.1 � x/

�
5

2
C �H

kT

�
: (14.26)

While the mean molecular weight as given by (14.24) depends only on the degree
of ionization, ı depends also on T , and if in addition radiation pressure is taken
into account, one has to add terms proportional to (1 � ˇ)/ˇ to the right-hand sides
of (14.25) and (14.26).

The definition (4.4) of cP together with P D <%T=� gives

cP D
�
@u

@T

�
P

C <
�
ı : (14.27)



14.4 Hydrogen–Helium Mixtures 133

So we need the internal energy per mass unit

u D 3

2

<
�0
.1CE/T C uion ; (14.28)

where the first term gives the kinetic energy of ions and electrons, and the second
term uion means the energy that has been used for ionization and that again becomes
available if the ions recombine. Again (14.27) and (14.28) also hold for mixtures.
For pure hydrogen,E D x and uion D x�H=.�0mu/ D x�H=mu, and after lengthy
manipulations, one gets

cP
�0

< D 5

2
.1C x/C ˚2

H

G.x/
; (14.29)

with the abbreviations

˚H WD 5

2
C �H

kT
and G.x/ WD 1

x.1 � x/ C 1

x.1C x/
D 2

x.1 � x2/
: (14.30)

If radiation plays a role, it appears not only in the equation for the pressure, but also
in the internal energy. The result for cP is that in (14.29) the factor 5/2 has to be
replaced by 5=2C 4.1� ˇ/.4C ˇ/=ˇ2.

We can now easily derive an expression for rad:

rad D Pı

T%cP
D 2C x.1 � x/˚H

5C x.1 � x/˚2
H

: (14.31)

14.4 Hydrogen–Helium Mixtures

As a next step in the general problem we consider a gas of hydrogen and helium
with weight fractions X; Y respectively. This is important for stellar envelopes and
shows the difficulties which arise if mixtures are treated. We now have six types of
particles: neutral and ionized hydrogen; neutral, ionized, and double ionized helium;
and electrons. There are three types of ionization energy: �0H for hydrogen and
�0He; �

1
He for neutral and single ionized helium (�0H D 13:598 eV, �0He D 24:587 eV,

�1He D 54:418 eV). Each ionized hydrogen atom contributes the energy �0H to the
internal energy, each helium atom in the first stage of ionization the energy �0He and
each helium atom completely stripped of its two electrons the energy �0He C �1He.
By x0H; x

1
H; x

0
He; x

1
He; x

2
He we define degrees of ionization, i.e. xri gives the number of

atoms of type i in ionization state r (D r electrons lost) divided by the total number
of atoms of type i (irrespective of their state of ionization):
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x0H D n0H
nH

; x1H D n1H
nH

; x0He D n0He

nHe
;

x1He D n1He

nHe
; x2He D n2He

nHe
; (14.32)

with nH D n0H Cn1H and nHe D n0He Cn1He Cn2He, where the nri are number densities
of ions of type i in ionization state r . Note that the degrees of ionization x0H and x1H
correspond to 1 � x and x in Sect. 14.2.

The contribution of the ionization energy to the internal energy per unit mass
[cf. (14.28)] is

uion D 1

mu

�
Xx1H�

0
H C 1

4
Y
�
x1He�

0
He C x2He

�
�0He C �1He

��	
; (14.33)

since X=mu; Y=.4mu/ are the numbers of hydrogen and helium atoms (neutral and
ionized) per unit mass. Correspondingly we have for the number E of electrons per
atom (irrespective of ionization state and chemical type)

E D


Xx1H C 1

4
Y
�
x1He C 2x2He

��
�0 : (14.34)

We now have three Saha equations:

x1H

x0H

E

E C 1
D K0

H ;
x1He

x0He

E

E C 1
D K0

He ;
x2He

x1He

E

E C 1
D K1

He ; (14.35)

with

Kr
i D urC1

ur

2

Pgas

.2�me/
3=2.kT /5=2

h3
e��ri =kT (14.36)

for i = H, He, and by definition

x0H C x1H D 1 ; x0He C x1He C x2He D 1 : (14.37)

We now consider X; Y; Pgas, and T to be given. Then (14.34), (14.35) and (14.37)
are six equations for the six unknown quantities x0H; x

1
H; x

0
He; x

1
He; x

2
He; E. The

equations (14.35) are coupled to each other via E , which, for instance, means that
the degree of ionization of hydrogen also depends on the degree of ionization of
helium. But this is to be expected, since a hydrogen ion can also recombine with free
electrons that originally came from helium, since it has no prejudices concerning the
origin of a captured electron.

The coupling of the three Saha equations (14.35) makes an analytical treatment
impossible: the degrees of ionization have to be obtained numerically. In general,
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Fig. 14.1 Ionization in the
outer layers of the Sun. (a)
Degrees of ionization of
hydrogen and helium. (b) The
influence of ionization on rad

this is done by an iteration procedure, starting with a trial value of E , which is then
gradually improved.

In Fig. 14.1 we give the degrees of ionization and rad for the outer layers
of the Sun. One can see that the regions of partial ionization of H and He are
almost separated. This is because the ionization energies �0H; �

1
He; �

2
He differ from

each other appreciably. The second helium ionization does not start until the
hydrogen is almost completely ionized. Therefore one may, for an approximative
treatment, solve at most two of equations (14.35) simultaneously, which simplifies
the situation. Each of the three ionization layers produces a lowering of rad where
influences of hydrogen and first helium ionization overlap.

14.5 The General Case

If Xi is the weight fraction of the chemical element i with charge number Zi and
molecular weight �i , and if xri are the degrees of ionization (the numbers of atoms
of type i in ionization state r in units of the total number of atoms of type i ), then

E D
X
i

�i

ZiX
rD0

xri D
X
i

�0

�i
Xi

ZiX
rD0

xri r ; (14.38)
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where �i D ni =n D Xi�0=�i is the relative number of particles of type i . Equation
(14.34) is a special case of (14.38). Then the degrees of ionization are obtained from
the set of Saha equations

xrC1i

xri

E

E C 1
D Kr

i ; i D 1; 2; : : : ; r D 0; 1; : : : Zi ; (14.39)

where the Kr
i are given by (14.36). In addition we have the relations

ZiX
rD0

xri D 1 ; i D 1; 2; : : : : (14.40)

For a given type i of atoms, equations (14.39) in which E is replaced by (14.38)
represent Zi equations for the Zi C 1 degrees r of ionization, and together
with (14.40) one therefore has the same number of equations as of variables. The
equations can be solved iteratively; thus the degrees of ionization can be used to
determine the mean molecular weight according to � D �0=.1 C E/. The kinetic
part of the internal energy [cf. (14.28)] is

ukin D 3

2

<
�
T D 3

2

<
�0
.1C E/T ; (14.41)

while the ionization energy per mass unit is

uion D
X
i

Xi

�imu

ZiX
rD0

xri

r�1X
sD0

�si ; (14.42)

which is the general form of (14.33).
For the determination of ı and cP according to (14.25) and (14.27) we need

derivatives of the degrees of ionization: (@xri =@ lnT /P . They can be computed
numerically by evaluating the xri for neighbouring arguments, though one has to
be careful if the radiation pressure is not negligible. The derivatives of the xri
are needed for constant total pressure P , whereas the argument for evaluating
the degrees of ionization is the gas pressure. One therefore has to choose the
neighbouring arguments Pgas and T such that P D Pgas C Prad = constant. The
general theory of ionization and, in particular, the influence on the thermody-
namic functions for arbitrary mixtures are given in Baker and Kippenhahn (1962,
Appendix A).

In modern stellar evolution calculations the equation of state is no longer
computed online, but rather pre-calculated tables are used. These tables result from
sophisticated models of the properties of stellar matter, which are too complicated to
be integrated into the stellar evolution programs. Ionization is only one of the many
physical effects treated in such models for many chemical elements, their number
amounting to up to 20.
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14.6 Limitation of the Saha Formula

In the derivation of the Saha formula we have assumed thermodynamic equilibrium.
This is certainly fulfilled in the interior of stars, and the Saha formula is even a
sufficient approximation for many atmospheres as long as one can assume so-called
LTE (local thermodynamic equilibrium), which is the case when collisions dominate
over radiative processes. One cannot apply it for non-LTE, as, for example, in the
solar corona.

But even in the deep interior of a star, where local thermodynamic equilib-
rium is certainly a very good approximation, the naRıve application of the Saha
formula gives wrong results. For instance let us apply it to the centre of the Sun
(Pc � Pgas D 2:32 � 1017 dyn/cm2, Tc D 1:57 � 107 K) and assume for simplicity
pure hydrogen (X D 1); then (14.21) gives for the degree of ionization xH D
0:80. This would mean that 20 % of the hydrogen atoms are neutral. Indeed, for
sufficiently high temperatures, the exponential in the Saha formula can be replaced
by 1, and x1H decreases inwards with KH if r � d lnT=d lnPgas < 2=5, as can be
seen from (14.21).

The solution of this paradox has to do with the decrease of the ionization energy
with increasing density. Let us consider ions at a distance d from each other:
their electrostatic potentials have to be superimposed in order to obtain their total
potential (Fig. 14.2). Obviously the higher quantum states of the ions are strongly
disturbed, and the ionization energy is reduced for high density. This should be
taken into account in the Saha formula, which would then give a higher degree of
ionization. Furthermore, the neighbouring ions allow only a finite number of bound
states. This has the consequence that in the partition function as given by (14.15)
one has to sum over a finite number of excited states only.

In order to estimate roughly at which density these effects become important, we
consider a pure hydrogen gas. If the mean distance between two atoms is d , then
there will be no bound states if the orbital radius a of the electron is comparable
with, or larger than, d=2. With

a D a0�
2 ; d �

�
3

4�nH

�1=3
; (14.43)

where a0 D 5:3 � 10�9 cm is the Bohr radius, � the quantum, number and nH the
number density of the atoms, we obtain from the condition a < d=2 (which must
be fulfilled for a bound state) that

�2 <

�
3

4�nH

�1=3
1

2a0
: (14.44)

This allows a rough estimate of the principal quantum number of the highest bound
state. In the centre of the Sun, with %c � 150 g/cm3, we have nH � %c=mu �
1026 cm�3, and therefore �2 < 0:13, which means that even the ground state of
hydrogen does not exist. Therefore all hydrogen atoms will be ionized.
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Fig. 14.2 Sketch of the
electrostatic potential of an
isolated ion (above) and the
superposition of the potentials
of neighbouring ions (below)

For this so-called pressure ionization, no perfect theory is at hand. The picture
we have used above is a static one, since it does not take into account that the ions
move relative to each other. It also ignores that at high densities electrons can tunnel
from a bound state of one ion into a bound state of another ion in the neighbourhood.
In the specialized computations of the equation of state for an astrophysical plasma,
more elaborate models are used to solve this problem. An example is the hydrogen–
helium equation of state by Saumon et al. (1995).

For simplified stellar-model calculations one may use the Saha formula for the
outer layers of the stars and then switch to complete ionization when the Saha
formula gives degrees of ionization which decrease again towards deeper layers.
This switching normally does not produce a noticeable discontinuity in the run of
ionization, since the maximum often occurs close to complete ionization.

If we assume that pressure ionization can be neglected as long as d > 10a0, then
the Saha formula would be valid only for densities:

% D �0munion <
3�0mu

4�.10a0/
3

D 2:66 � 10�3�0 g cm�3 : (14.45)



Chapter 15
The Degenerate Electron Gas

15.1 Consequences of the Pauli Principle

We consider a gas of sufficiently high density in the volume dV so that it is
practically fully pressure ionized (Sect. 14.6). Here we shall deal with the free
electrons, of number density ne. If the velocity distribution of the electrons is given
by Boltzmann statistics, then their mean kinetic energy is 3kT=2. In momentum
space px; py; pz each electron of a given volume dV in local space is represented by
a point, and these points form a “cloud” which is spherically symmetric around the
origin. If p is the absolute value of the momentum .p2 D p2x C p2y C p2z ), then the
number of electrons in the spherical shell Œp; pCdp� is, according to the Boltzmann
distribution function,

f .p/dpdV D ne
4�p2

.2�mekT/3=2
exp

�
� p2

2mekT

�
dp dV: (15.1)

Consider a reduction of T with ne D constant. Then the maximum of the distribution
function, which is at pmax D .2mekT/1=2; tends to smaller values of p, and the
maximum of f .p/ becomes higher, since ne is given by

R1
0
f .p/dp. This is

indicated in Fig. 15.1 by the thin curves. But with this classical picture we can come
into contradiction with quantum mechanics, since electrons are fermions, for which
Pauli’s exclusion principle holds: each quantum cell of the six-dimensional phase
space (x; y; z; px; py; pz) cannot contain more than two electrons (here x; y; z are
the space coordinates of the electrons with dV D dxdydz). The volume of such a
quantum cell is dpxdpydpzdV D h3, where h is Planck’s constant. Therefore in the
shell [p; pCdp] of momentum space there are 4�p2dpdV=h3 quantum cells, which
can contain not more than 8�p2dpdV=h3 electrons. Quantum mechanics therefore
demands that

f .p/dpdV � 8�p2dpdV=h3 ; (15.2)
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Fig. 15.1 For an electron gas
with ne = 1028 cm�3

(corresponding to a density of
% D 1:66� 104 g cm�3 for
�e D 1), the Boltzmann
distribution function f .p/ is
shown by thin lines over the
absolute value of the
momentum p (both in cgs
units) for three different
temperatures (in K). The
heavy line shows the parabola
that gives an upper bound to
the distribution function
owing to the Pauli principle
(Note that the coordinates are
not logarithmic but linear as
in Figs. 15.2 and 15.5)

as indicated by the heavy parabola in Fig. 15.1, giving an upper bound for f .p/.
One can immediately see that the Boltzmann distribution for ne = constant is
in contradiction with quantum mechanics for sufficiently low temperatures. The
same holds for T D constant and sufficiently high density, since the Boltzmann
distribution is proportional to ne. We therefore have to include quantum-mechanical
effects if the temperature of the gas is too low or if the electron density is too high,
in order to avoid the distribution function exceeding its upper bound. One then says
that the electrons become degenerate.

We first consider an electron gas of temperature zero, i.e. all the electrons have
the lowest energy possible.

15.2 The Completely Degenerate Electron Gas

The state in which all electrons have the lowest energy without violating Pauli’s
principle is that in which all phase cells up to a certain momentum pF are occupied
by two electrons, all other phase cells above pF being empty:

f .p/ D 8�p2

h3
for p � pF ;

f .p/ D 0 for p > pF : (15.3)

This distribution function is shown in Fig. 15.2, and the total number of electrons in
the volume dV is given by
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Fig. 15.2 The distribution
function f .p/ against the
momentum p (both in cgs
units) in the case of a
completely degenerate
electron gas with T D 0K
and ne D 1028 cm�3

(cf. Fig. 15.1)

nedV D dV
Z pF

0

8�p2dp

h3
D 8�

3h3
p3FdV : (15.4)

If therefore the electron density is given, (15.4) gives the Fermi momentum pF �
n
1=3
e . Further, if the electrons are non-relativistic, then EF D p2F=2me � n

2=3
e is

the Fermi energy, and, although the temperature of our electron gas is zero, the
electrons have finite energies up to EF. But there are no electrons of higher energy.
If the electron density is sufficiently large, then according to (15.4) pF can become
so high that the velocities of the fastest electrons may become comparable with c;
the velocity of light. We therefore write the relations between velocity v; energy
Etot, and momentum p of the electrons in the form given by special relativity (see,
for instance, Landau and Lifshitz, vol. 2, 1976):

p D mevp
1 � v2=c2 ; (15.5)

Etot D mec
2p

1 � v2=c2 D mec
2

s
1C p2

m2
ec
2
; (15.6)

whereme is the rest mass of the electron. From (15.5) and (15.6) it follows that

1

c

@Etot

@p
D p=.mec/

Œ1C p2=.m2
ec
2/�1=2

D v

c
: (15.7)

In the following we have to distinguish between the total energy Etot as given
by (15.6) and the kinetic energy E:

E D Etot �mec
2: (15.8)
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Fig. 15.3 A surface element
d� with the normal vector n

and an arbitrary unit vector s

which is the axis of the solid
angle d˝s

For the equation of state we need the pressure, which by definition is the flux
of momentum through a unit surface per second. We consider a surface element
d� having a normal vector n, as indicated in Fig. 15.3. An arbitrary unit vector s,
together with n, defines an angle # .

Let us determine the number of electrons per second that go through d�

into a small solid angle d˝s around the direction s. We restrict ourselves to
electrons for which the absolute value of their momentum lies between p and
p C dp. At the location of the surface element there are f .p/dpd˝s=.4�/

electrons per unit volume that have the right momentum (i.e. the right value
of p and the right direction). Therefore f .p/dpd˝sv.p/ cos#d�=.4�/ electrons
per second move through the surface element d� into the solid-angle element
d˝s . Here v.p/ is the velocity that according to (15.5) belongs to the momentump.
The factor cos# arises, since the electrons moving into the solid-angle element see
only a projection of d� . Each electron carries a momentum of absolute value p and
of direction s. The component in direction n is thereforep cos# . We obtain the total
flux of momentum in direction n by integration over all directions s of a hemisphere
and over all absolute values p; hence the pressure Pe of the electrons is

Pe D
Z
2�

Z 1

0

f .p/v.p/p cos2 #dpd˝s=.4�/ D 8�

3h3

Z pF

0

p3v.p/dp; (15.9)

where we have replaced f .p/ by (15.3) and taken the value 4�=3 for the integration
of cos2 # over a hemisphere. It is obvious that the orientation of d� does not enter
into the expression for Pe: the electron pressure is isotropic because f is spherically
symmetric in momentum space.

With (15.5) we obtain from (15.9) that

Pe D 8�c

3h3

Z pF

0

p3
p=.mec/

Œ1C p2=.m2
ec
2/�1=2

dp

D 8�c5m4
e

3h3

Z x

0

�4d�

.1C �2/1=2
; (15.10)
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Fig. 15.4 The equation of
state for the fully degenerate
electron gas. On logarithmic
scales the pressure Pe (in
dyn cm�2/ is plotted against
the number density ne (in
cm�3/. The relativity
parameter x D pF=mec

increases along the curve
from the lower left to the
upper right; values of x are
indicated above the curve

where we have introduced new variables:

� D p=.mec/ ; x D pF=.mec/ : (15.11)

The integral is

Z x

0

�4d�

.1C �2/1=2
D 1

8
Œx.2x2 � 3/.1C x2/1=2 C 3arcsinh.x/� (15.12)

(where arcsinh is the inverse function of sinh); therefore

Pe D �m4
ec
5

3h3
f .x/ ; (15.13)

with

f .x/ D x.2x2 � 3/.x2 C 1/1=2 C 3arcsinh.x/ � x.2x2 � 3/.x2 C 1/1=2

C 3 ln Œx C .1C x2/1=2� : (15.14)

We now write (15.4) in the form

ne D %

�emu
D 8�m3

ec
3

3h3
x3 : (15.15)

Equations (15.13)–(15.15) define the function Pe.ne/, which is plotted in Fig. 15.4
for the fully degenerate electron gas. Before discussing this and deriving an equation
of state Pe D Pe.%/, we give an expression for the internal energyUe of the electron
gas per volume:

Ue D
Z pF

0

f .p/E.p/dp D 8�

h3

Z pF

0

E.p/p2dp ; (15.16)
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where E.p/ has to be taken from (15.6) and (15.8). One obtains

Ue D �m4
ec
5

3h3
g.x/ ; (15.17)

with
g.x/ D 8x3Œ.x2 C 1/1=2 � 1�� f .x/ : (15.18)

(For numerical values of the functions f .x/ and g.x/ see Chandrasekhar 1939,
Table 23.)

15.3 Limiting Cases

The parameter x as defined in (15.11) is a measure of the importance of relativistic
effects for electrons with the highest momentum. With (15.5) we can write x in the
form

x D pF

mec
D vF=c

.1 � v2F=c2/1=2
or

v2F
c2

D x2

1C x2
; (15.19)

where vF is the velocity of the electrons with p D pF. If x � 1, then vF=c � 1

and all electrons move much slower than the velocity of light (non-relativistic case).
On the other hand if x � 1, then vF=c is very close to one: the bigger x, the more
electrons with velocities near vF become relativistic, and for very high values of x
almost all electrons are relativistic.

The functions f .x/ and g.x/ as defined in (15.14) and (15.18) have the following
asymptotic behaviour:

x ! 0 W f .x/ ! 8

5
x5 ; g.x/ ! 12

5
x5: (15.20)

x ! 1 W f .x/ ! 2x4 ; g.x/ ! 6x4: (15.21)

We first consider the case x � 1, where relativistic effects can be ignored, for
which (15.13) yields

Pe D 8�m4
ec
5

15h3
x5 ; (15.22)

and together with (15.15) we obtain the equation of state for a completely degenerate
non-relativistic electron gas:

Pe D 1

20

�
3

�

�2=3
h2

me
n5=3e D 1

20

�
3

�

�2=3
h2

mem
5=3
u

�
%

�e

�5=3

D 1:0036� 1013
�
%

�e

�5=3
.cgs/ (15.23)
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where we have used % D ne�emu. The internal energy Ue of the electrons per unit
volume and the electron pressure are related by

Pe D 2

3
Ue ; (15.24)

which can be obtained from (15.17), (15.20) and (15.22).
For the extreme relativistic case .x � 1/ of a completely degenerate electron

gas, one has according to (15.13) and (15.21)

Pe D 2�m4
ec
5

3h3
x4 ; (15.25)

and therefore

Pe D
�
3

�

�1=3
hc

8
n4=3e D

�
3

�

�1=3
hc

8m
4=3
u

�
%

�e

�4=3

D 1:2435� 1015
�
%

�e

�4=3
.cgs/ ; (15.26)

while (15.17), (15.21) and (15.25) give

Pe D 1

3
Ue : (15.27)

15.4 Partial Degeneracy of the Electron Gas

For a finite temperature, not all electrons will be densely packed in momentum space
in the cells of lowest possible momentum. Indeed, if the temperature is sufficiently
high, we expect them to have a Boltzmann distribution. Further, there must be a
smooth transition from the completely degenerate state (as discussed in Sects. 15.2
and 15.3) to the non-degenerate case.

The most probable occupation of the phase cells of the shell Œp; p C dp�
in momentum space is determined by Fermi–Dirac statistics (see Landau,
Lifshitz, vol. 5, 1980):

f .p/dpdV D 8�p2dpdV

h3
1

1C eE=kT� (15.28)

(where the so-called degeneracy parameter  will be discussed later). The first
factor gives again the maximally allowed occupations for this shell; see (15.2).
However, for p � pF, there are fewer electrons in the shell than in the case
of complete degeneracy: the second factor is smaller than one; it is a “filling
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factor”, telling us what fraction of the cells is occupied. This factor depends on
the temperature and the kinetic energyE of a particle with momentum p as defined
in Sect. 15.2.

With (15.28) ne; Pe, and Ue become

ne D 8�

h3

Z 1

0

p2dp

1C eE=kT� ; (15.29)

Pe D 8�

3h3

Z 1

0

p3v.p/
dp

1C eE=kT� ; (15.30)

Ue D 8�

h3

Z 1

0

Ep2dp

1C eE=kT� : (15.31)

We first deal only with the non-relativistic case for which E D p2=.2me/, and
the electron density ne is given by

ne D 8�

h3

Z 1

0

p2dp

1C ep2=2mekT� D 8�

h3
.2mekT/3=2a. / ; (15.32)

with

a. / D
Z 1

0

�2

1C e.�2� /
d� ; (15.33)

where we have used the variable � D p=.2mekT/1=2.
We conclude from (15.32) that the degeneracy parameter  is a function of

ne=T
3=2 only:

 D  
� ne

T 3=2

�
: (15.34)

We now discuss limiting cases for  , beginning with large negative values
for  (again non-relativistic). In this case a. / in (15.33) can be made arbi-
trarily small, and from (15.32) we infer that for a given electron density this
is the case for high temperatures. We know that then f .p/ must become the
Boltzmann distribution. Comparing (15.1) with (15.28) [where in the denominator
the 1 can be neglected against exp.E=kT �  /], we see that

e D h3ne

2.2�mekT/3=2
: (15.35)

Here we have replaced E=.kT/ by its non-relativistic value p2=.2mekT/. Indeed in
this limit  is a function of ne=T

3=2, as concluded for the general case.
We now want to consider the case  ! 1 (again non-relativistic) and introduce

an energyE0 by  D E0=.kT/. We then have for large enough  

1

1C eE=kT� D 1

1C e .E=E0�1/
	
�
1 for E < E0
0 for E > E0

: (15.36)
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The transition of the numerical value of expression (15.36) from one to zero nearE0
becomes all the more steep, the larger the value of . In the limiting case  ! 1 it
becomes a discontinuity, and comparison of (15.36) with (15.3) shows thatE0 is the
Fermi energy EF D p2F=.2me/. One immediately sees that  ! 1 corresponds to
the case of complete degeneracy, where the distribution function is given by (15.3).

We now deal with the (non-relativistic) case where the numerical value of  
is moderate. In (15.32) we replace the variable p by E . With medE D pdp and
p D .2meE/

1=2, we have

ne D 4�

h3
.2me/

3=2

Z 1

0

E1=2dE

1C eE=kT� ; (15.37)

and defining the so-called Fermi–Dirac integrals F�. / by

F�. / WD
Z 1

0

u�

e.u� / C 1
du ; (15.38)

we find that

ne D %

�emu
D 4�

h3
.2mekT/3=2F1=2. / ; (15.39)

which again manifests the relation (15.34) and which, by inversion of (15.38),
allows to determine  for given ne and T .

The distribution function for partial (non-relativistic) degeneracy as given
by (15.28) is shown in Fig. 15.5 for T D 1:9�107 K and D 10 ŒF1=2.10/ D 21:34,
see Table 15.1]. One can see that for small values of p the function f .p/ is close to
the Pauli parabola, but in contrast to the case T D 0 it is smooth near pF. The higher
the temperature the smoother the transition around pF, until finally f .p/ resembles
a Boltzmann distribution. The electron pressure Pe is given in (15.30). Now (in the
non-relativistic case), we have p3v.p/dp Dm4

ev
4dvDm3

ev
3dE Dm

3=2
e 23=2E3=2dE

and

Pe D 8�

3h3
.2me/

3=2

Z 1

0

E3=2dE

1C eE=kT� : (15.40)

With y D E=.kT/ the integral becomes one of the type defined in (15.38):

Pe D 8�

3h3
.2mekT/3=2kT F3=2. /: (15.41)

For the internal energy Ue per unit volume we have from (15.34) with the non-
relativistic relation p2 D 2meE:

Ue D 4�

h3
.2mekT/3=2kT F3=2. / D 3

2
Pe; (15.42)

in agreement with (15.24).
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Fig. 15.5 The solid line gives the distribution function (f .p/ and p in cgs) for a partially
degenerate electron gas with ne D 1028 cm�3 and T D 1:9 � 107 K, which corresponds to a
degeneracy parameter  D 10 (cf. the case of complete degeneracy of Fig. 15.2). The dot-dashed
line shows the further increase of the parabola that defines an upper bound for the distribution
function

Again, (15.39) and (15.41) define an equation of state for the electron gas. If T
and ne are given, then (15.39) gives (since F1=2. / has a unique inverse function)
and Pe can be determined. Numerical values for some of the functions F� are given
in Table 15.1 to allow a quick estimate of the equation of state.

Without proof we give an expansion of the integrals F� for large positive values
of  , i.e. for strong degeneracy:

F�. / D  �C1

� C 1
f1C 2Œc2.� C 1/� �2

C c4.� C 1/�.� � 1/.� � 2/ �4 C : : :�g ; (15.43)

with c2 D �2=12; c4 D 7�4=720. We therefore have for  � 1 that F1=2. / 	
2 3=2=3; F3=2. / 	 2 5=2=5. If we introduce these expressions into (15.39) and
(15.41) and eliminate  , we come to the relation (15.23) for non-relativistic strong
degeneracy.

On the other hand for  ! �1 (the electrons behave almost like a perfect gas)
we can make the approximation

F�. / D
Z 1

0

y�dy

1C e.y� / 	 e 
Z 1

0

y�e�ydy: (15.44)

For � D 1=2 and � D 3=2 integration gives F1=2. / 	 p
� e =2; F3=2. / 	

3
p
�e =4. If we introduce these approximations into (15.39) and (15.41) and

eliminate  , we recover Pe D nekT, which is the equation of state for the perfect
(non-degenerate) electron gas.



15.4 Partial Degeneracy of the Electron Gas 149

Table 15.1 Numerical values for Fermi–Dirac functions F1=2; F3=2, F2; andF3 (after Gong et al.
2001, using the computer program for numerical integration provided there)

	 F3=2.	/ F1=2.	/ F2.	/ F3.	/

�4.00 0:024269 0:016128 0:036548 0:109768

�3.50 0:039931 0:026481 0:060169 0:180844

�3.00 0:065612 0:043366 0:098963 0:297802

�2.50 0:107581 0:070724 0:162525 0:490023

�2.00 0:175801 0:114588 0:266265 0:805319

�1.50 0:285772 0:183802 0:434567 1:320880

�1.00 0:460849 0:290501 0:705130 2:159840

�0.50 0:734659 0:449793 1:134368 3:515199

0.00 1:152804 0:678094 1:803085 5:682197

0.50 1:772794 0:990209 2:820969 9:098521

1.00 2:661683 1:396375 4:328331 14:389356

1.50 3:891976 1:900833 6:494369 22:412444

2.00 5:537254 2:502458 9:512668 34:298283

2.50 7:668804 3:196599 13:595529 51:482510

3.00 10:353715 3:976985 18:968568 75:729812

3.50 13:654202 4:837066 25:866374 109:150502

4.00 17:627703 5:770727 34:529354 154:211461

4.50 22:327332 6:772574 45:201594 213:743156

5.00 27:802446 7:837976 58:129472 290:944038

5.50 34:099195 8:962995 73:560777 389:383271

6.00 41:261003 10:144285 91:744165 513:002403

6.50 49:328972 11:378986 112:928816 666:116392

7.00 58:342217 12:664638 137:364234 853:414231

7.50 68:338129 13:999097 165:300117 1;079:959324

8.00 79:352594 15:380486 196:986283 1;351:189722

8.50 91:420172 16:807137 232:672619 1;672:918257

9.00 104:574241 18:277560 272:609060 2; 051:332632

9.50 118:847118 19:790412 317:045564 2; 492:995468

10.00 134:270160 21:344471 366:232105 3; 004:844342

10.50 150:873848 22:938625 420:418670 3; 594:191796

11.00 168:687863 24:571846 479:855250 4; 268:725360

11.50 187:741147 26:243190 544:791837 5; 036:507549

12.00 208:061959 27:951777 615:478430 5; 905:975874

12.50 229:677920 29:696791 692:165026 6; 885:942840

13.00 252:616059 31:477465 775:101624 7; 985:595952

13.50 276:902852 33:293083 864:538223 9; 214:497712

14.00 302:564251 35:142971 960:724822 10; 582:585620

14.50 329:625717 37:026492 1; 063:911422 12; 100:172179

15.00 358:112248 38:943047 1; 174:348023 13; 777:944887

15.50 388:048402 40:892064 1; 292:284623 15; 626:966247

16.00 419:458325 42:873005 1; 417:971224 17; 658:673757

16.50 452:365762 44:885355 1; 551:657824 19; 884:879918

17.00 486:794087 46:928625 1; 693:594425 22; 317:772230

17.50 522:766312 49:002348 1; 844:031026 24; 969:913193

18.00 560:305110 51:106078 2; 003:217626 27; 854:240307

18.50 599:432825 53:239389 2; 171:404227 30; 984:066072

19.00 640:171486 55:401871 2; 348:840828 34; 373:077988

19.50 682:542825 57:593132 2; 535:777429 38; 035:338556

20.00 726:568284 59:812795 2; 732:464029 41; 985:285274
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For the non-relativistic case we have derived the tools to deal with partial
degeneracy. For the extreme relativistic case similar approximations are possible,
since in the integrals (15.29) and (15.30) p can be replaced by E=c; and v by c:
Then the same procedure which led to (15.39) and (15.41) now yields

ne D 8�

�
kT

hc

�3
F2. / ; (15.45)

Pe D 8�

3h3c3
.kT/4F3. / ; (15.46)

where F2 and F3 are defined by (15.38). For strong degeneracy ( ! 1) the first
term of the expansion (15.43) is introduced into (15.45) and (15.46), and elimination
of gives the already derived equation of state (15.26) for a completely degenerate,
relativistic electron gas.

No analytical approach is known for the case of partial degeneracy if the electron
gas is only moderately relativistic, because the relation between E and p cannot be
approximated by a simpler expression and in the integrals (15.29) and (15.30) the
full relation (15.6) has to be taken; hence the problem has to be treated numerically.
However, to do this efficiently, no general integration scheme should be used for
the many integrations needed to calculate the equation of state at the many mesh
points of a stellar model, but instead optimized methods adapted to the special form
of the integrals should be used. The integrals can, for instance, be determined by
using Laguerre polynomials as an approximation of the integrand (Kippenhahn and
Thomas 1964). This method was extended to higher accuracy by Pichon (1989),
who also discusses alternative schemes of numerical integration. A very efficient
and convenient method was developed by Gong et al. (2001), who also provide
a ready-to-use computer code, available from the publisher of that paper, which
conveniently also computes the derivatives of the Fermi integrals, needed for the
Henyey method of Chap. 12. This code was also used to compute the values of
Table 15.1. Alternatively, Blinnikov et al. (1996) have extended the approach of
expansions to more general cases of degeneracy and relativism than discussed here.
These authors also provide a computer code on request.



Chapter 16
The Equation of State of Stellar Matter

In Chap. 15 we dealt with degeneracy of arbitrary degree for the electron gas. We
now discuss the combined effect of all components of stellar matter, starting with
the ion gas.

16.1 The Ion Gas

In the non-degenerate case, electron pressure Pe D nekT and ion pressure Pion D
nionkT are of the same order of magnitude; they are even equal in the case of
ionized hydrogen with ne D nion. For sufficiently low temperature or sufficiently
high density the ions can become degenerate, too. If they are Fermi particles such
as protons, they will behave in phase space like the electrons, so that, for Pion and
nion, relations such as (15.29)–(15.31) hold if the mass of the ions mion is used
instead of me, and  is now the degeneracy parameter for the ions. Again the
transition between perfect-gas behaviour and degeneracy is roughly at  D 0. We
write (15.39) in the form

nj

T 3=2
D constant .mj /

3=2F1=2. /; (16.1)

where nj and mj refer to either electrons or ions. Suppose that the electron gas has
a certain value of  D  � for ne D n�

e . An ion gas of the same temperature has
the same degeneracy parameter  D  � for nion D .mion=me/

3=2n�
e � 8 � 104n�

e .
Therefore the ions require much higher densities to become degenerate. For the
interior of normal stars one can assume that even if the electrons are degenerate
the ions still obey Boltzmann statistics; thus, because of the Pauli principle, the
degenerate electrons have much higher momentum than the non-degenerate ions,
and the electron pressure is much larger than the pressure of the ions: P D Pion C
Pe � Pe.
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Even when the ion gas does not contribute noticeably to the pressure, it provides
the main contribution to the mass density %. This has already been taken into account
by relating ne to % D ne�emu, for example in (15.39). Furthermore, the ions can
influence the thermodynamic properties of the plasma considerably.

One should be aware that, for certain types of stars, the treatment of the ions
is not as simple as described here, since they can be subject to rather complicated
interactions, for example, those indicated in Sects. 16.4 and 16.5.

16.2 The Equation of State

For normal stellar matter, the equation of state is then given by

P D Pion CPe CPrad D <
�0
%T C 8�

3h3

Z 1

0

p3v.p/
dp

eE=kT� C 1
C a

3
T 4 ; (16.2)

% D 4�

h3
.2me/

3=2mu�e

Z 1

0

E1=2dE

eE=kT� C 1
; (16.3)

where v.p/ D @E=@p according to (15.7) and where E is given by (15.8). If the
electron gas is highly degenerate, then also Prad � Pe and P � Pe.

For given % and T and chemical composition (�0), (16.3) can be used to
determine  . Then %; , and T determine P via (16.2). The equation of state
P D P.%; T / for all degrees of degeneracy, including relativistic effects, is there-
fore given here in implicit form.

An expression similar to (16.2) can be obtained for the internal energy u per unit
mass:

u D Uion C Ue C Urad

%
D 3

2

<
�0
T C 8�

h3%

Z 1

0

p2E.p/dp

eE=kT� C 1
C aT 4

%
; (16.4)

where the U are the energies per unit volume, and the first term on the right
corresponds to the (perfect monatomic) ion gas.

Figure 16.1 shows the lg %–lgT plane for the ranges relevant for the interiors
of most stars. In different regions, different effects dominate the total pressure, for
example, in some places the electron degeneracy and in others the radiation pressure.
We will derive rough borders between these different regimes.

Let us first consider the lines  D constant for given �e in this diagram. In
the non-relativistic regime, (15.39) shows that  is constant for T � %2=3, i.e. on
straight lines of slope 2/3 in the lg%–lgT plane. In the relativistic regime  D
constant for T � %1=3 according to (15.45), i.e. on straight lines with slope 1/3.

We have already seen that the perfect-gas approximation Pgas D <%T=�
becomes valid for large negative values of  . For large positive values of  
complete degeneracy is a good approximation for the electron gas, and P � Pe for
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Fig. 16.1 Rough sketch of regions in the lg%–lgT plane (% in g cm�3, T in K), in which the
equation of state is dominated by radiation pressure (above the dotted line given here by Prad D
Pgas for � D 0:5/, and by the degenerate electron gas (below the solid line given here by (16.6)
and (16.8) for �e = 2), which can be relativistic (right of the vertical broken line given by (16.7)
for �e D 2/ or non-relativistic (left of the vertical broken line). The dot-dashed line indicates the
melting temperature as given by (16.26) for �0 D 4. By comparing with (14.45) one can see that
the Saha formula is valid almost nowhere in the plotted domain. The heavy dashed curve on the
left corresponds to a model of the present Sun

the non-relativistic case is given by (15.23). We can define the border between the
two regimes by the condition that both approximations yield the same value for the
pressure:

<
�
%T D 1

20

�
3

�

�2=3
h2

me

�
%

�emu

�5=3
: (16.5)

Equation (16.5) is equivalent to

T

%2=3
D 1

20

�
3

�

�2=3
h2

me<m5=3
u

�

�
5=3
e

D 1:207 � 105 �

�
5=3
e

; (16.6)

where the numerical constant is in cgs units. Equation (16.6) gives a straight line
with slope 2/3 in Fig. 16.1 (lower left part of the solid line), which is obviously a
line of  D constant for given �;�e. To the left of it the electrons behave almost
like a perfect gas; to the right they are degenerate and dominate the pressure.

We now ask where relativistic effects become important. The transition between
the non-relativistic and relativistic cases occurs around x � 1, where the relativity
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parameter x is given by (15.11). Then (15.4) together with % D �emune gives

% D 8�mum
3
ec
3

3h3
�e D 9:74 � 105�e .cgs/ : (16.7)

In the plane of Fig. 16.1, (16.7) defines a vertical border line between relativistic
(at larger %) and non-relativistic degeneracy (at smaller %). The same procedure
which yielded (16.6) can be used with (15.26) in order to define the border between
relativistic degeneracy and non-degeneracy:

T

%1=3
D
�
3

�

�1=3
hc

8<
1

m
4=3
u

�

�
4=3
e

D 1:496 � 107 �

�
4=3
e

; (16.8)

where the numerical constant is in cgs. The corresponding straight line of slope
1/3 is the upper-right part of the solid line in Fig. 16.1, again being a line of  D
constant for given �;�e.

In a similar way we can determine a border between the regime of perfect gas
pressure and that of dominating radiation pressure . From

<
�
%T D a

3
T 4 (16.9)

we find
T

%1=3
D
�
3<
a�

�1=3
D 3:2 � 107

�1=3
; (16.10)

where the constant is in cgs. This line of slope 1/3 is dotted in Fig. 16.1.
In Fig. 16.1 it is indicated how T grows with increasing density in the Sun. As

one can see, the interior regions of the Sun avoid the area in the diagram where
radiation pressure is important, as well as that of degeneracy. However, we will
have to deal with other cases in which the equation of state is more complicated.
This concerns highly evolved stars, but also unevolved stars of very low mass (For
a review see Van Horn 1986.).

16.3 Thermodynamic Quantities

With the implicit form (16.2) and (16.3) and with the expression (16.4) for the
internal energy we are in principle able to determine ı; cP ; and rad. Since in
general no analytic methods are known one can try to determine the thermodynamic
quantities numerically. Here we just give them for some limiting cases for which
analytic expressions can be derived. For the sake of simplicity we neglect the effects
of radiation and we suppose the ions to be a perfect gas.
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In the cases of complete degeneracy of a non-relativistic or an extremely
relativistic electron gas, it is obvious from equations (15.23) and (15.26) that the
quantities ˛; ı as defined in (4.2) and (4.3) are ˛ D 3=5; ı D 0, or ˛ D 3=4; ı D 0

respectively.
We define the ratio � of ion pressure to total pressure

� WD Pion

Pion C Pe
: (16.11)

For strong non-relativistic degeneracy (15.39), (15.41), and (15.43) for  � 1,
imply that

Pe � 4

15
B1. kT /

5=2 ; B1 D 4�

h3
.2me/

3=2 ;

% � 2

3
�emuB1. kT /

3=2 ; (16.12)

which together with Pion D <%T=�0 D k%T=.mu�0/ and (16.11) result in

� � 5

2

�e

�0

1

 
: (16.13)

The larger  (the stronger the degeneracy), the smaller �, and therefore the smaller
the contribution of the ion gas to the total pressure.

The value of ı can be obtained from the relation
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; (16.14)

which follows from the total differentials of the functions % D %. ; T /; P D
P. ; T /. For P D Pe the partial derivatives can be taken from (16.12), and (16.14)
gives ı D 0. For a small but non-vanishing contribution Pion we write according
to (16.11) the total pressure P D Pe=.1 � �/ � .1 C �/Pe. If we then use the
expressions (16.12) and (16.13), we obtain for the non-relativistic case

ı � 3

5
� � 3

2

�e

�0

1

 
: (16.15)

For the extremely relativistic electron gas we find from (15.45) and (15.46), with
the lowest terms of the expansion (15.43), that

Pe D B2

4
. kT /4 ; B2 D 8�

3c3h3
;

% D �emuB2. kT /
3; (16.16)
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and in the same way we obtained (16.13) and (16.15) we now get

� � 4
�e

�0

1

 
; ı D 3

4
� D 3�e

�0

1

 
: (16.17)

In order to derive cP we need the internal energy u. Let us again neglect the
radiation field here; then u contains a component ue of the (degenerate) electron gas
and a component uion of the (perfect) ion gas: u D ue C uion. In the non-relativistic
case, (15.42) gave Ue D 3Pe=2 for the internal energy Ue per unit volume of the
electron gas, independent of  . A corresponding relation Uion D 3Pion=2 holds for
the non-degenerate ions, and therefore

u D U
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D 3

2

Pion C Pe

%
D 3

2
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%
: (16.18)

This gives the derivative
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which is used in the definition (4.4) of cP :
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Then (4.21) gives rad D 2=5, the same value we obtained for the perfect gas with
ˇ = 1 [see (13.12)]. Since we have derived it without making use of the degree of
degeneracy, the numerical value 2/5 for rad is independent of  , but holds only for
non-relativistic degeneracy.

In the extreme relativistic case, (15.27) shows that Ue = 3Pe, while again Uion D
3Pion=2 for the non-degenerate ions. The total energy density is then

u D ue C uion D 3
Pe

%
C 3

2

Pion

%
D 3

P

%
� 3

2

Pion

%
D 3

P

%
� 3

2

<
�0
T I (16.21)

the specific heat is

cP D �4P
%2

�
@%

@T

�
P

� 3

2

<
�0

D 4P

%T
ı � 3

2

<
�0

; (16.22)

so that we can now determine rad:

rad D Pı

%TcP
D 1

4 � 3
2

<
�0

%T

Pı

: (16.23)
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From (16.16) and (16.17) we find that

P � Pe D B2

4
. kT /4 ; % D B2�emu. kT /

3 ; ı D 3
�e

�0

1

 
; (16.24)

and therefore 3<%T=�0 D 4Pı, which with (16.23) gives rad D 1=2. This is the
value for the fully degenerate, extreme relativistic case.

16.4 Crystallization

Up to now we have treated the ions as a perfect gas, which means we have neglected
their interaction. However, this no longer suffices for high densities and particularly
low temperatures, in which case the Coulomb interaction of the ions must be
considered: instead of moving freely, the ions tend to form a rigid lattice, which
minimizes their total energy. This occurs when the thermal energy 3kT=2 becomes
comparable with the Coulomb energy per ion of charge �Ze. If we define a volume
Vion per ion by nionVion D 1 (where nion is the number density of ions) and a mean
separation rion between the ions, we have Vion D 4�r3ion=3. Then the ratio

�C WD .Ze/2

rionkT
D 2:7 � 10�3 Z2n

1=3
ion

T
(16.25)

is a measure for the importance of this effect, the numerical constant having units
of cgs. �C � 1 would mean that the electrostatic energy plays a minor role and the
ions have a Boltzmann distribution, while �C � 1 indicates that the kinetic energy
of the ions is negligible and that they try to form a conglomerate that has a lower
energy, i.e. they form a crystal.

More detailed considerations (see, for instance, Shapiro and Teukolsky 1983)
indicate that �C � 170 is a critical value for the transition between the two types of
behaviour of the ion gas. With this value for �C and using the relation % D �0munion

we obtain the critical temperature Tm (melting temperature):

Tm � Z2e2

�ck

�
4�%

3�0mu

�1=3
D 1:3 � 103Z2�

�1=3
0 %1=3 ; (16.26)

where the numerical constant is in cgs units. The corresponding straight line is
plotted (dot-dashed) in Fig. 16.1.

In the interior of evolved stars we have high densities, but the temperature is
well above the melting temperature. The situation is different in cooling white
dwarfs, where the temperature becomes smaller with time, while the density remains
virtually unchanged. We will come back to this in Chap. 37, which deals with white
dwarfs.
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16.5 Neutronization

If in a plasma the electrons have sufficient energy, they can combine with the protons
to form neutrons. If mn and mp are the masses of neutron and proton, then the
electron must have the total energy Etot > E� D c2.mn � mp/. At low densities
the neutron will decay within 11 min back into a proton–electron pair, where the
electron has the total energy E� and a kinetic energy E�

kin D E� �mcc
2; however,

the situation can be different if the gas is completely degenerate and the phase space
is filled up to the (kinetic) Fermi energy EF. If the Fermi energy EF exceeds E�

kin,
the electrons released do not have enough energy to find an empty cell in phase
space, and the neutrons cannot decay, i.e. the Fermi sea of electrons has stabilized
the neutrons.

In order to estimate under which conditions this occurs we write the rela-
tion (15.6) between E and p in the form

p D 1

c
.E2 �m2

ec
4/1=2 : (16.27)

If we put E D Ekin C mec
2 D EF C mec

2 D c2.mn � mp/ D 1:294 � 106 eV,
we can determine the corresponding Fermi momentum pF from (16.27) and obtain
x D pF=.mec/ � 2:2. Then, according to (15.15) and taking % D �emune with
�e D 2, we find % � 2:4 � 107 g cm�3. Therefore, if a proton–electron gas is
compressed to a density above this value, then the gas undergoes a transition into a
neutron gas (“neutronization”).

For stellar matter the situation is more complicated, since at sufficiently high
densities the plasma contains heavier nuclei, and not just protons. The nuclei
capture electrons (inverse ˇ decay) and become neutron-rich isotopes. This requires
much higher electron energies than those just estimated, since the neutrons in the
nucleus are degenerate and the new ones have to be raised above the Fermi energy.
Correspondingly higher plasma densities are required to provide the electrons with
the necessary energy. If the nuclei become too neutron rich they start to break up,
releasing free neutrons. The density at which this “neutron drip” starts is of the order
of several 1011g cm�3, but the exact value depends on the nuclear model one is using
in detailed calculations. Hillebrandt (1991) gives %drip � 3 � 1011 g cm�3, Pethick
and Ravenhall (1991) estimate %drip � 3:5 � 1011 g cm�3.

Let us briefly consider the effect on the equation of state. Up to %drip the total
pressure P � Pe is provided by relativistic electrons. With further increases of %,
the number density ne increases by less than an amount proportional to %, owing
to the capture of some electrons. Therefore the pressure rises by less than %4=3.
Consequently �ad � .d lnP=d ln%/ad is reduced below 4/3, which can be seen in
Fig. 16.2, where the slope of the curve P D P.%/ is suddenly reduced for log % &
11.7. At still higher % the increasing number of free neutrons contribute gradually
more to P .
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Fig. 16.2 The equation of
state for very high densities.
On logarithmic scales the
pressure Pe (in dyn cm�2/ is
plotted against the density %
(in g cm�3/. The grey
symbols refer to experimental
or theoretical data points
from various sources. See
Haensel et al. (2007), p. 15,
for more details. Figure
adapted from their Fig. 1.3

With increasing % the neutrons become increasingly degenerate–as a perfect
Fermi gas they would give the slope 5/3. But then interaction between neutrons
becomes important, and the details of the equation of state are very uncertain, for
example, depending on rather badly known properties of the particles. For more
details see Sects. 37.2 and 38.1 and Shapiro and Teukolsky (1983).

16.6 Real Gas Effects

Although the stellar plasma can to a great extent be treated as a perfect gas, the
assumptions for a perfect gas are not truly fulfilled: there are interaction forces,
such as the Coulomb force, acting between the constituents, and atoms and ions
cannot always be considered to be pointlike. Therefore an accurate equation of state
has to include such effects.

We already encountered pressure ionization in Sect. 14.6, which is a consequence
of the spatially overlapping energy levels, which leads to interacting ionic potentials.
We noted that there is no good theory to treat this in a simple way, but that one has to
modify the Saha equation somehow to avoid its wrong behaviour at high pressure.
A good theory for pressure ionization has to work with quantum-mechanical
atomic models. The effect of pressure ionization is increasingly important for cool,
dense stars of low mass (M < 1Mˇ) and gas planets. Saumon et al. (1995) have
developed an equation for state for dense gases, which, due to the complexity of the
problem, is limited to hydrogen-helium mixtures. This and other modern equations
of state are provided in tabular form, for example, as tables of P.�; T / and u.�; T /
for various chemical mixtures. The thermodynamic quantities, which are or use
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derivatives of P and u, are either computed from the tables, or are provided as
tables, too.

Another interaction becoming important at low temperatures, when molecules
are able to form, are the classical van der Waals forces, which are attractive forces of
electrically neutral, but polarized particles. Their consideration leads in the simplest
approximation to the equation of state for a real gas

.P C n2a/.1 � nb/ D nkT: (16.28)

The meaning of the additional terms n2a and nb is easy to understand: nb is
the effect of volume reduction due to the finite size of the particles, which leads
therefore at given temperature to a pressure increase. The second term, n2a, is the
effect of the attractive forces, which result in a reduction of the gas pressure P .
a and b are parameters depending on the microscopic properties of the gas particles.
An equation of state of this type results in phase transitions, which indeed were
found in the equation of state of Saumon et al. (1995) (For a derivation of (16.28)
see Weiss et al. 2004.).

In Sect. 16.4, we discussed crystallization, which is due to the electrostatic
interaction between ions at high densities, in the limit of �C � 1. At the other
extreme, when �C � 1, the gas is close to being a perfect one, but not quite so.
Consider an ionized gas, which consists of positively charged ions and unbound
electrons. As long as these are not degenerate, they can move freely and will feel
the Coulomb forces in the plasma. In particular, ions will attract electrons and it is
plausible that clouds of electrons gather around ions such that from a sufficiently
large distance the ion electron cloud will appear as being electrically neutral. This
picture of electron shielding (in the weak limit) requires low particle densities,
because the inter-ion distances must be larger than the typical electron cloud size.
The physical effect is usually treated within the Debye–Hückel theory (Landau and
Lifshitz 1980, Chap. 78; Weiss et al. 2004, Chap. 17.15), which we will encounter
in detail in Sect. 18.4. Here it suffices to state that based on a shielded Coulomb
potential around the ions,

˚.r/ D Ze

r
	 e�r=rD ; (16.29)

where rD is the Debye-radius (18.50), the resulting attractive electrostatic forces
lead to a reduction of the gas pressure according to

P D nkT

�
1 � 3:2 � 107 %

1=2

T 3=2
��3=2

	
; (16.30)

where

� D
X
i

Zi .Zi C 1/

Ai
Xi (16.31)

is, as in (18.47), the mass weighted average of free electrons times ionic charge Zi
of all ion species i .
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For the centre of the Sun, � � 0:8, � � 1:7, T � 15 � 106 K, and % �
140 g=cm�3, and the correction to P is 1.6 %. Although this effect appears to be
small, it has turned out that equations of state with an accuracy of this order are
needed for modern solar and stellar models.

These are the most important non-ideal effects that modify the equation of state.
In addition there are even more interaction forces of quantum nature (such as spin–
spin interaction), which may in some situations become important. Some of these
effects are considered in equation of states published by specialized groups. The
most important ones are the OPAL and MHD equations of state (Rogers et al. 1996
and Mihalas et al. 1988, and later improvements), both available in tabular form and
for a variety of chemical mixtures. They are widely used in current stellar evolution
calculations, and have helped to improve the solar model considerably. More on this
issue can be found in Weiss et al. (2004), Chap. 15-A.



Chapter 17
Opacity

In this chapter we deal with the material function �.%; T /. While for the equation
of state it was possible to use certain approximations (for instance, that of a perfect
gas) without introducing too much error, this is almost impossible for the opacity.
Although there are similar approximations (such as those for electron scattering
or free–free transitions) they never hold for the whole star and are used only in
simplifying approaches. Therefore, nowadays, when solving the stellar-structure
equations, one uses numerical opacity tables for different chemical mixtures, which
give �.%; T / in the full range of % and T .

In the following we describe the basic processes that contribute to the opacity and
give approximate analytic formulae without deriving them from quantum mechan-
ics. The reader who wants to learn more of the methods by which opacities are
computed is referred to Weiss et al. (2004) and to the original papers quoted there.

17.1 Electron Scattering

If an electromagnetic wave passes an electron, the electric field makes the electron
oscillate. The oscillating electron represents a classical dipole that radiates in other
directions, i.e. the electron scatters part of the energy of the incoming waves.
The weakening of the original radiation due to scattering is equivalent to that by
absorption, and we can describe it by way of a cross section at frequency � per unit
mass (which we called �� in Sect. 5.1). This can be calculated classically giving the
result

�� D 8�

3

r2e
�emu

D 0:20 .1CX/; (17.1)

where re is the classical electron radius, X the mass fraction of hydrogen, and the
constant is in cm2 g�1. The term �emu arises because �� is taken per unit mass; and
�e is replaced by (4.30). Since �� does not depend on the frequency, we immediately
obtain the Rosseland mean for electron scattering:
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�sc D 0:20 .1CX/ cm2 g�1 : (17.2)

The “Thomson scattering” just described neglects the exchange of momentum
between electron and radiation. If this becomes important, then �� will be reduced
compared to the value given in (17.1), though this effect plays a role only at temper-
atures sufficiently high for the scattered photons to be very energetic. In fact during
the scattering process the electron must obtain such a large momentum that its
velocity is comparable to c, say v & 0:1c for (17.2) to become a bad approximation.
The momentum of the photon is h�=c, which after scattering is partly transferred to
the electron,mev � h�=c. Therefore relativistic corrections (“Compton scattering”)
become important if the average energy of the photons is h� & 0:1mec

2. For h� we
take the frequency at which the Planck function has a maximum; then according to
Wien’s law this is at h�D 4:965 kT , and the full Compton scattering cross section
has to be taken into account if T >0:1mec

2/(4.965k), or roughly T >108 K. In fact
even at T D 108 K Compton scattering reduces the opacity by only 20 % of that
given by (17.2).

17.2 Absorption Due to Free–Free Transitions

If during its thermal motion a free electron passes an ion, the two charged particles
form a system which can absorb and emit radiation. This mechanism is only
effective as long as electron and ion are sufficiently close. Now, the mean thermal
velocity of the electrons is v � T 1=2, and the time during which they form a system
able to absorb or emit is proportional to 1=v � T �1=2; therefore, if in a mass element
the numbers of electrons and ions are fixed, the number of systems temporarily able
to absorb is proportional to T �1=2.

The absorption properties of such a system have been derived classically by
Kramers, who calculated that the absorption coefficient per system is proportional to
Z2��3, whereZ is the charge number of the ion. We therefore expect the absorption
coefficient �� of a given mixture of (fully ionized) matter to be

�� � Z2%T �1=2��3 : (17.3)

Here the factor % appears because for a given mass element the probability that two
particles are accidentally close together is proportional to the density.

For the determination of the Rosseland mean � of this absorption coefficient
we make use of a simple theorem which can be easily proved by carrying out the
integration (5.19): a factor �˛ contained in �� gives a factor T ˛ in �. With this and
with (17.3) we find

�ff � %T �7=2 : (17.4)

All opacities of the form (17.4) are called Kramers opacities and give only a
classical approximation. One normally multiplies the Kramers formula (17.4) by
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a correction factor g, the so-called Gaunt factor, in order to take care of the
quantum-mechanical correction (see, for instance, Weiss et al. 2004). In (17.4)
we have still omitted the factor Z2 which appears in (17.3). In general, one has
a mixture of different ions, and therefore one has to add the contributions of the
different chemical species. The (weighted) sum over the values of Z2 is taken
into the constant of proportionality in (17.4), which then depends on the chemical
composition. For a fully ionized mixture a good approximation is given by

�ff D 3:8 � 1022.1CX/Œ.X C Y /CB�%T �7=2 ; (17.5)

with the numerical constant in cgs. The mass fractions of H and He are X and
Y , respectively. Here the factor 1 C X arises, since �ff must be proportional to
the electron density–which is proportional to .1 C X/%. The term .X C Y / in the
brackets can be understood in the following way: there areX=mu hydrogen ions and
Y=.4mu/ helium ions. The former have the charge number 1, the latter the charge
number 2. But since �� � Z2 [see (17.3)], when adding the contributions of H and
He to the total absorption coefficient, we obtain the factor X=mu C 4Y=.4mu/ D
.X C Y /mu. Correspondingly the term B gives the contribution of the heavier
elements:

B D
X
i

XiZ
2
i

Ai
; (17.6)

where the summation extends over all elements higher than helium and Ai is the
atomic mass number.

17.3 Bound–Free Transitions

We first consider a (neutral) hydrogen atom in its ground state, with an ionization
energy of �0, i.e. a photon of energy h� >�0 can ionize the atom. Energy
conservation then demands that

h� D �0 C 1

2
mev

2 ; (17.7)

where v is the velocity of the electron released (relative to the ion, which is assumed
to be at rest before and after ionization).

If we define an absorption coefficient a� per ion .a� D ��%=nion/, we expect
a� D 0 for � < �0=h and a� > 0 for � � �0=h. Classical considerations similar
to those which lead to the Kramers dependence (17.3) of �� for free–free transitions
give a� � ��3 for � � �0=h. Quantum-mechanical corrections can again be taken
into account by a Gaunt factor (see, for instance, Weiss et al. 2004). The absorption
coefficient of the hydrogen atom in its ground state has a frequency dependence
as given in Fig. 17.1a. But if we have neutral hydrogen atoms in different stages
of excitation, the situation is different: an atom in the first excited stage has an
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Fig. 17.1 (a) The absorption coefficient a� of a hydrogen atom in the ground state as a function
of the frequency �; �0 D �0=h (b) The absorption coefficient of a mixture of hydrogen atoms in
different stages of excitation

absorption coefficient a� D 0 for h� < �1, where �1 is the energy necessary to
ionize a hydrogen atom from the first excited state, while a� � ��3 for h� � �1.
The absorption coefficient �� for a mixture of hydrogen atoms in different states of
excitation is a superposition of the a� for different stages of excitation. The resulting
�� is a sawtooth function, as indicated in Fig. 17.1b. In order to obtain �� for a certain
value of the temperature T , one has to determine the relative numbers of atoms in
the different stages of excitation by the Boltzmann formula; then their absorption
coefficients a� , weighted with their relative abundances, are to be summed. To
obtain the Rosseland mean one has to carry out the integration (5.19).

If there are ions of different chemical species with different degrees of ionization,
one has to sum the functions a� for all species in all stages of excitation and all
degrees of ionization before carrying out the Rosseland integration. An important
source of opacity are bound–free transitions of neutral hydrogen atoms, in which
case the opacity must be proportional to the number of neutral hydrogen atoms and
� can be written in the form

�bf D X.1� x/ Q�.T / : (17.8)

Here Q�.T / is obtained by Rosseland integration over (weighted) sums of functions
a� for the different stages of excitation, while x is the degree of ionization as defined
in Sect. 14.2. The function Q�.T / is plotted in Fig. 17.2.

17.4 Bound–Bound Transitions

For absorption by an electron bound to an ion, more than just the bound–free
transitions discussed in Sect. 17.3 contribute to the opacity. If, after absorption of
a photon from a directed beam, the electron does not leave the atom but jumps to a
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Fig. 17.2 The function Q�.T / of (17.8), where Q� is in cm2 g�1 and T in K

Fig. 17.3 Bound–bound transitions contributing to the opacity ��

higher bound state, the energy will later on be re-emitted in an arbitrary direction, so
that the intensity of the directed beam is weakened. This mechanism is effective only
at certain frequencies, and one would expect that absorption in a few lines gives only
a small contribution to the overall opacity; however, the absorption lines in stars are
strongly broadened by collisions, and as one can see in Fig. 17.3, they can occupy
considerable regions of the spectrum. Bound–bound absorption can become a major
contribution to the (Rosseland mean) opacity if T <106 K. It can then increase
the total opacity by a factor 2, while for higher temperatures (say T � 107 K)
the contribution of bound–bound transitions to the total opacity is much smaller
(10 %). Calculation of the absorption coefficients due to bound-bound transitions
obviously requires detailed knowledge about the energy levels of all atoms and ions,
all mechanisms that lead to line broadening, and of all the transition probabilities.
In addition, occupation levels and ionization levels have to be known, which links
the calculation of opacities closely to that of the equation of state. Such calculations
have again to be done in separate calculations by specialists in atomic physics.
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17.5 The Negative Hydrogen Ion

Hydrogen can become a source of opacity in another way, by forming negative
ions: a neutral hydrogen atom is polarized by a nearby charge and can then attract
and bind another electron. This is possible since there exists a bound state for a
second electron in the field of a proton, though this second electron is only loosely
bound–the absorption of photons with h� > 0:75 eV is sufficient for its release.
This energy is very small compared to the 13.6 eV ionization energy for neutral
hydrogen and allows photons with � < 1655 nm (infrared) to be absorbed, giving
rise to a bound–free transition. The photon energy goes into the ionization energy
and kinetic energy of the free electron in the same way as indicated in (17.7). The
number of negative hydrogen ions in thermodynamic equilibrium is given by the
Saha formula (14.17), where the ionization potential �r is the binding energy of
the second electron. Replacing the partition functions by the statistical weights, we
have u�1 D 1 for the negative ion and u0 D 2 for neutral hydrogen; hence the Saha
equation gives

n0

n�1
Pe D 4

.2�me/
3=2.kT /5=2

h3
e��=kT ; (17.9)

with � D 0:75 eV. If we use n0 D .1�x/%X=mu, where x is the degree of ionization
of hydrogen as defined in (14.18) and X the weight fraction of hydrogen, we find

n�1 D 1

4

h3

.2�me/3=2.kT /5=2mu
Pe.1 � x/X%e�=kT : (17.10)

Now, for an absorption coefficient a� per H� ion, it follows that �� D a�n�1=%,
which implies that the Rosseland mean is described by

�H� D 1

4

h3

.2�me/3=2.kT /5=2mu
Pe.1 � x/X a.T /e�=kT ; (17.11)

where a D a.T / is obtained from a� by Rosseland integration (5.19). The opacity
�H� is proportional to n�1, which in turn is proportional to n0ne (or n0Pe), since
the H� ions are formed from neutral hydrogen atoms and free electrons.

For a completely neutral, pure hydrogen gas there would be no free electrons
and therefore no H� ions. If now the temperature is increased and the hydrogen
becomes slightly ionized, giving ne � X , the free electrons can combine with
neutral hydrogen atoms. One therefore would expect an increase of � as long as
1 � x is not too small.

The situation is different in the case of a more realistic mixture of stellar material.
Heavier elements have lower ionization potentials (a few eV) and provide electrons
even at relatively low temperatures; hence, although there is only a small mass
fraction of heavier elements, they determine the electron density at low temperatures
where hydrogen is neutral. When the elements heavier than helium are singly
ionized (say from 3,000 K to 5,000 K) one has
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ne D % ŒxX C .1 �X � Y /=A�=mu ; (17.12)

where %.1 � X � Y /=.Amu/ is the number density of atoms of higher elements
(“metals”) of mean mass number A. Even if the metals constitute only a small
percentage in weight (and number), they still determine the opacity as long as
1 � X � Y > xXA (which becomes very small for low temperatures where x is
small). The metal content can therefore be of great influence on � for the surface
layers and thus the outer boundary conditions of stars.

17.6 Conduction

Electrons, like all particles, can transport heat by conduction. Their contribution to
the total energy transport can normally be neglected compared to that of photons,
since the conductivity is proportional to the mean free path `, and in normal (non-
degenerate) stellar material `photon � `particle.

However, conduction by electrons becomes important in the dense degenerate
regions in the very interior of evolved stars, as well as in white dwarfs. The reason
is that in the case of degeneracy, all quantum cells in phase space below pF are
filled up, and electrons, when approaching ions and other electrons, have difficulty
exchanging their momentum. This is equivalent to saying that “encounters” are rare
or that the mean free path is large. In Sect. 5.2 we saw that the contribution to
conduction can be formally taken into account in the equation of radiative transport
by defining a “conductive opacity” �cd, as in (5.24). If �rad is the Rosseland mean of
the (radiative) opacity, then conduction reduces the “total” opacity �, as can be seen
from (5.25):

1

�
D 1

�rad
C 1

�cd
: (17.13)

The thermal conductivity of the electron component of a gas is mainly determined
by collisions between electrons and ions, but electron–electron collisions can also
be important. Analytic formulae can be found in Weiss et al. (2004), while tables of
the thermal conductivity due to electrons in stellar material have been computed first
by Hubbard and Lampe (1969). They list the conductivities of a pure hydrogen gas,
a mixture of pure helium and pure carbon, a solar composition, and a mixture typical
for the core of an evolved star. More recent work is published by Itoh and co-workers
(Itoh et al. 1983) and Potekhin et al. (1999) for variable chemical mixtures.

The later source, which provides conductive opacities for any ion charge, was
used to plot Fig. 17.4, which shows the dependence of the conductive opacity on
density for a given temperature. For extremely strong degeneracy, �cd is proportional
to %�2T 2.
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Fig. 17.4 The “conductive
opacity” �cd (in cm2 g�1/ of a
hydrogen gas at T D 107 K
against the density % (in
g cm�3/ (Data from Potekhin
et al. 1999)

17.7 Molecular Opacities

For temperatures below � 10; 000K the formation of molecules in the envelopes of
cool stars becomes increasingly important. Due to their rich system of energy levels,
corresponding to the various states of rotational and vibrational excitation, they are
important absorbers. They contribute significantly to the opacity below � 5; 000K
and begin to dominate it for T . 3; 000K. The importance of any absorber for the
Rosseland mean opacity depends primarily on its absorption properties and not so
much on its abundance. This is even more true for molecules and is the reason why
Ti, which is three orders of magnitudes less abundant than oxygen, dominates–along
with the water molecule–the opacity in the form of TiO as long as there is enough
oxygen available for its formation. This is normally the case, unless there is more
carbon than oxygen, in which case the oxygen is bound in CO molecules. In that
case, other carbon molecules, such as C2, CN, or C2H2, dominate.

Obviously, molecular opacities depend on atomic abundances, on the formation
and stability of the various molecules, and finally on their energy level spectrum.
This problem is sufficiently complicated that it can again be treated only in
separate calculations including atomic and molecular physics, thermodynamics,
and chemical processes. The results are again made available in tabular form
for the stellar modelling. The largest sets of such tables has been provided by
Alexander and Ferguson (Alexander and Ferguson 1994; Ferguson et al. 2005).
The calculations consider more than 30 elements, over 50 molecules, and some 800
million atomic and molecular lines. In addition, absorption by dust grains is also
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Fig. 17.5 The Rosseland mean of the opacity � (in cm2 g�1) as a function of R D %=T 36 (in
g cm�3, since T6 D T=106 K) and T (in K) for a mixture of X D 0:70, Y D 0:29, Z D 0:01,
using data for atomic, molecular, and dust opacity from Ferguson et al. (2005)

included. They dominate below 1500 K, temperatures which are usually found in
stellar atmospheres only.

Figure 17.5 shows the total Rosseland opacity for a mixture with 70 % hydrogen
and 1 % of metals. The varying density of the grid lines reflects the density of the
.R; T / points computed for the table [In this and the following, similar figures,
the quantity R D %=T 36 (with T6 D T=106 K) has been used as this has become
customary in the opacity community. This quantity is roughly constant in large parts
of main-sequence stars. This R must not be confused with the stellar radius and is
used with this meaning in this chapter only.]. In regions of many different opacity
sources the opacities were calculated at many temperatures and densities. At higher
temperatures, atomic absorption dominates; the steep rise to the right is mainly
caused by the H� ion. The “shoulder” around lgT D 3:4 and lowR is caused by the
first formation of molecules, such as CO, NO, and H2. The first sharp rise at lower
temperatures after we passed the minimum around lgT D 3:3 is due to formation
of TiO and H2O, which is followed by a slight decrease in � once temperatures are
too low to allow many excited states in the molecules. The various maxima at even
lower temperatures are caused by different grains appearing and disappearing. For
example, the one around lg T D 3:1 is due to Al2O3 and CaTiO3. Solid silicates and
iron grains form at even lower temperatures. Each of these features is also present
at higher densities, but then already occurring at higher temperatures.

Such low temperatures, where molecular or even dust absorption dominates, are
usually found in stars only in convective envelopes. However, the outermost parts
of these envelopes are highly superadiabatic (Chap. 7), such that r . rrad, and
therefore the opacities determine the temperature stratification even in this case.
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Fig. 17.6 The Rosseland mean of the opacity � (in cm2 g�1) as a function of R D %=T 36
(in g cm�3, since T6 D T=106 K) and T (in K) for a mixture with a hydrogen and helium
content X D 0:70, Y D 0:29. These are opacities calculated by the OPAL project at
Lawrence Livermore National Laboratory (Rogers and Iglesias 1992; Iglesias and Rogers 1996).
The dominant absorption mechanisms at different parts of the model are discussed in the text. The
continuation towards higher temperatures is shown in Fig. 17.7

17.8 Opacity Tables

In view of the complexity of modern opacity calculations, the basic considera-
tions of Sects. 17.1–17.6 are not sufficient for calculating accurate stellar models.
Instead, specialized groups have published extensive tables of opacities for different
chemical mixtures over a wide range of temperatures and densities. Each group,
however, may specialize on one specific aspect. The Opacity Project (Mendoza et al.
2007) and the Livermore OPAL group concentrate on atomic absorption important
for higher temperatures (Fig. 17.6); the Wichita group (Alexander and Ferguson)
on molecular and dust absorption for temperatures below 104 K, and finally Itoh,
Pothekin, and others on electron conduction. These various sources then have to be
combined to opacity tables covering the whole stellar structure. Indeed, the low-and
high-temperature opacities, which are shown in Figs. 17.5 and 17.6, agree very well
in the overlapping temperature range. The conductive opacities can finally be added
by use of (17.13).

In Fig. 17.7 we give a graphical representation of such a combined opacity
table for a mixture with a metal fraction of 0.01 and a hydrogen content of 0.70.
Figures 17.6 and 17.5 show the corresponding individual parts for the same mixture.

Indeed one sees that, over the whole range of arguments, �.R; T / is a rather
complicated function. In order to give a feeling for the parts of the plotted surface
that are relevant to stars, we discuss a model of the present Sun, which is plotted
in Fig. 17.7 (thick solid line). We are using only the T � % structure; the chemical
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Fig. 17.7 Combination of the opacity � shown in Figs. 17.6 and 17.5, and of electron conduction
opacities as in Fig. 17.4. The latter is a steeply declining function of % (orR) and can be seen “from
below” in the back of the figure. Electron scattering provides the flat region in the right foreground.
The thick solid line represents the T � % structure of a solar model (for details see text)

composition of the Sun is in fact quite different from that of the table. For example,
in the solar centre, X � 0:34, and at the surface, the composition is X D 0:737,
Y D 0:245, and Z D 0:018. Nevertheless, the main features are still visible. Note
also, that R indeed is rather constant throughout the solar interior, although % varies
by eight orders of magnitude.

The model starts with the photospheric values lg T D 3:76, lg % D �6:58 (in
cgs), or lgR D 0:14. The corresponding point lies on the left end of the thick solid
line in Fig. 17.7 and on the rising slope on the right of Fig. 17.5, where molecular
opacities are still contributing. On moving deeper into the Sun the opacity sharply
increases owing to the onset of hydrogen ionization, which provides the electrons
for H� formation as described in Sect. 17.5, and the opacity rises by several powers
of 10 until it reaches a maximum value. This occurs when an appreciable amount of
hydrogen becomes ionized and is not available for H� formation, because the factor
1 � x in (17.11) reduces the opacity. In the regions below, bound–free transitions
become the leading opacity source and still further inwards free–free transitions
take over. There a simple power law seems to be a good approximation, as indicated
in (17.4). Note that in the logarithmic representation the opacity surface for a power
law is just a plane. Equation (17.4) therefore corresponds to a tangential plane which
osculates the opacity surface. The line for the interior remains in the domain of free–
free transitions. The region of dominant electron scattering is the horizontal plateau
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in the foreground on the right of Fig. 17.7 at the foot of the “kappa mountain”. In
this figure the region where electron conduction reduces the (total) opacity is hidden
behind the mountain ridge and can be seen only “from below” as the plane dropping
below the electron scatter region at high densities. At the highest temperatures, � is
reduced below the electron-scattering value due to Compton scattering as mentioned
in Sect. 17.1.

In order to find the value of �.%; T;Xi/ for a given point with %0; T0; Xi0 in a star,
one has to interpolate in different opacity tables (for different compositions Xi ) for
the arguments %0; T0 and then between these tables forXi0. Tables are calculated not
only for different .X; Y; Z/ combinations, but also for different relative metal ratios
within the Z-group. When combining opacities from different sources, as is almost
always necessary, tables for identical metal mixtures are preferable, and great care
in the interpolation has to be taken.

Note finally, that the temperature and density range even of the combined opacity
table is limited. In particular the high density limit is critical as low-mass stars have
structures that reach high densities at rather low temperatures. The reason for the
lack of available opacity data lies in the equation of state: this is the region where
complicated non-ideal gas effects (Sect. 16.6) prevent an accurate calculation of the
thermodynamic state of the gas, and therefore the calculation of opacities becomes
impossible. In practical stellar evolution calculations, such a situation asks for the
creativity of the modeller to somehow supplement the missing data.



Chapter 18
Nuclear Energy Production

We shall limit ourselves here to a very rough summary of the most important
features of nuclear reactions in stars. This will suffice completely for the consid-
eration of the main band of stellar structures, while the study of particular aspects
of nuclear astrophysics anyway requires the consultation of specialized literature
(see Clayton 1968, or Iliadis 2007). For example, we will only deal with energy
production of equilibrium nuclear burning, i.e. we will neglect the effects occurring
when the timescale of a rapidly changing star becomes comparable to that of an
important nuclear reaction. On the other hand, we will also briefly touch on such
topics as electron screening or neutrino production, about which a certain minimum
of information seems to be indispensible for general discussions.

We begin with a few historical comments. That thermonuclear reactions can
provide the energy source for the stars was first shown by R. Atkinson and
F. Houtermans in 1929, after G. Gamow discovered the tunnel effect. Later, two
important discoveries were published almost simultaneously in 1938: H. Bethe
and Ch. Critchfield described the pp chain, and C.F. von Weizsäcker and Bethe
independently found the CNO cycle. The reactions of helium burning were then
described in 1952 by E.E. Salpeter. Finally, a classic paper summarized the state of
the art in 1957, “Synthesis of the Elements in Stars” (Burbidge et al. 1957).

18.1 Basic Considerations

Most observed stars (including the Sun) live on so-called thermonuclear fusion. In
such nuclear reactions, induced by the thermal motion, several lighter nuclei fuse
to form a heavier one. Before this process, the involved nuclei j have a total mass
(
P
Mj ) different from that of the product nucleus .My/. The difference is called

the mass defect:

�M D
X
j

Mj �My : (18.1)
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It is converted into energy according to Einstein’s formula

E D �Mc2 (18.2)

and is available (at least partly) for the star’s energy balance. An example is the
series of reactions called “hydrogen burning”, where four hydrogen nuclei 1H with
a total mass 4 � 1:0079mu (atomic mass units, physical scale) are transformed into
one 4He nucleus of 4.0026mu. Atomic masses are given for the neutral atoms, i.e. for
the nucleus plus all electrons. However, since the electron mass is only 1=1823mu,
we will assume that masses of nuclei are the same as the atomic masses. Obviously
2:9�10�2mu per produced 4He nucleus have “disappeared” during the fusion of the
four protons, which is roughly 0.7 % of the original masses and which corresponds
to an energy of about 27.0 MeV according to (18.2). As usual in nuclear physics, as
the unit of energy, we take the electron volt eV (1 eV D 1:6018 � 10�12 erg) with
the following equivalences:

1 keV bD 1:1606 � 107 K ;

931:49MeV bD 1mu : (18.3)

The Sun’s luminosity corresponds to a mass loss rate ofLˇ=c2 D 4:26�1012 g s�1,
which appears to be a lot, especially if it is read as “more than four million metric
tons per second”. If a total of 1 Mˇ of hydrogen were converted into 4He, then
the disappearing 0.7 % of this mass would be 1:4 � 1031 g, which could balance the
Sun’s present mass loss by radiation for about 3 � 1018 s � 1011 years.

The deficiency of mass is just another aspect of the fact that the involved nuclei
have different binding energies EB. This is the energy required to separate the
nucleons (protons and neutrons in the nucleus) against their mutual attraction by
the strong, but short-range nuclear forces. Or else, EB is the energy gained if they
are brought together from infinity (which starts here at any distance large compared
with, say, 10�12 cm, the scale of a nuclear size).

Consider a nucleus of massMnuc and atomic mass numberA (the integer “atomic
weight”): it may contain Z protons of mass mp and .A �Z/ neutrons of mass mn.
Its binding energy is then related to these masses by (18.2):

EB D Œ.A �Z/mn CZmp �Mnuc�c
2 : (18.4)

When comparing different nuclei, it is more instructive to consider the average
binding energy per nucleon,

f D EB

A
; (18.5)

which is also called the binding fraction. With the exception of hydrogen, typical
values are around 8 MeV, with relatively small differences for nuclei of very
different A. This shows that the short-range nuclear forces due to a nucleon mainly
affect the nucleons in its immediate neighbourhood only, such that with increasing
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Fig. 18.1 A smoothed run of
the fractional binding energy
per nucleon, f D EB=A, for
stable nuclei, over the atomic
mass number A. The curve is
smoothed over the wiggles
which are due to the nuclear
shell structure and pair effects

A, a saturation occurs rather than an increase of f proportional to A. An idealized
plot of f against A is shown in Fig. 18.1 (The real curve zigzags around this
smoothed curve as a consequence of the shell structure of the nucleus and pair
effects.).

With increasing A; f .A/ rises steeply from hydrogen, then flattens out and
reaches a maximum of 8.5 MeV at AD 56 .56Fe), after which it drops slowly
with increasing A. The increase for A<56 is a surface effect: particles at the
surface of the nucleus experience less attraction by nuclear forces than those in
the interior, which are completely surrounded by other particles. And in a densely
packed nucleus, the surface area increases with radius slower than the volume (i.e.
the number A) such that the fraction of surface particles drops. With increasing A,
the number Z of protons also increases (The addition of neutrons only would
require higher energy states, because the Pauli principle excludes more than two
identical neutrons, and the nuclei would be unstable.). The positively charged
protons experience a repulsive force which is far-reaching and therefore does not
show the saturation of the nuclear forces. This increasing repulsion by the Coulomb
forces brings the curve in Fig. 18.1 down again for A > 56.

Around the maximum, at 56Fe, we have the most tightly bound nuclei. In other
words, the nucleus of 56Fe has the smallest mass per nucleon, so that any nuclear
reaction bringing the nucleus closer to this maximum will be exothermic, i.e. will
release energy. There are two ways of doing this:

1. By fission of heavy nuclei, which happens, for example, in radioactivity.
2. By fusion of light nuclei, which is the prime energy source of stars (and

possibly ours too in the future).

Clearly, both reach an end when one tries to extend them over the maximum of f ,
which is therefore a natural finishing point for the stellar nuclear engine. So if a star
initially consisted of pure hydrogen, it could gain a maximum of about 8.5 MeV per
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Fig. 18.2 Sketch of the
potential over the distance r
from the nuclear centre.
Nuclear attraction dominates
for r < r0 and Coulomb
repulsion for r > r0. A
particle starting at infinity
with kinetic energy E1 of the
relative motion will approach
classically only to r1

nucleon by fusion to 56Fe, but 6.7 MeV of these are already used up when 4He is
built up in the first step.

In order to obtain a fusion of charged particles, they have to be brought so close to
each other that the strong, but very short-ranged, nuclear forces dominate over the
weaker, but far-reaching, Coulomb forces. The counteraction of these two forces
leads to a sharp potential jump at the interaction radius (Fig. 18.2):

r0 � A1=31:44 � 10�13cm (18.6)

(the “nuclear radius” of the order of femtometer, 1fm D 10�13cm). For distances
less than r0, the nuclear attraction dominates and provides a potential drop of
roughly 30 MeV, while “outside” r0, the repulsive Coulomb forces for particles with
chargesZ1 and Z2 yield

ECoul D Z1Z2e
2

r
: (18.7)

The height of the Coulomb barrier ECoul .r0/ is typically of the order

ECoul.r0/ � Z1Z2 MeV : (18.8)

If, in the stationary reference frame of the nucleus, a particle at “infinity” has kinetic
energy E1, it can come classically only to a distance r1 given by E1 D ECoul.r1/

from (18.7), as indicated in Fig. 18.2. Now, the kinetic energy available to particles
in stellar interiors is that of their thermal motion, and hence the reactions triggered
by this motion are called thermonuclear. Since in normal stars we observe a slow
energy release rather than a nuclear explosion, we must certainly expect the average
kinetic energy of the thermal motion,Eth, to be considerably smaller thanECoul.r0/.
For the value T � 107 K estimated for the solar centre in Sect. 2.3, according to
(18.3), kT is only 103 eV, i.e. Eth is smaller than the Coulomb barrier (18.8) by
a factor of roughly 103. This is in fact so low that, with classical effects only, we
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can scarcely expect any reaction at all. In the high-energy tail of the Maxwell–
Boltzmann distribution, the exponential factor drops here to exp .�1000/ � 10�434,
which leaves no chance for the “mere” 1057 nucleons in the whole Sun (and even
for the � 1080 nucleons in the whole visible universe)!

The only possibility for thermonuclear reactions in stars comes from a quantum-
mechanical effect found by G. Gamow: there is a small but finite probability of
penetrating (“tunnelling”) through the Coulomb barrier, even for particles withE <

ECoul.r0/. This tunnelling probability varies as

P0 D p0E
�1=2e�2�� I � D

�m
2

�1=2 Z1Z2e2
„E1=2

: (18.9)

Here „ is h=2� and m the reduced mass. The factor p0 depends only on the
properties of the two colliding nuclei. The exponent 2�� is here obtained as the
only E-dependent term in an approximate evaluation of the integral over „�1Œ2m
.ECoul � E/�1=2, which is extended from r0 to the distance rc of closest approach
(where E D ECoul). For Z1Z2 D 1 and T D 107 K, P0 is of the order of 10�20 for
particles with average kinetic energyE and steeply increases with E and decreases
with Z1Z2. Therefore, for temperatures as “low” as 107 K, only the lightest nuclei
(with smallest Z1Z2) have a chance to react. For reactions of heavier particles,
with larger Z1Z2, the energy, i.e. the temperature, has to be correspondingly larger
to provide a comparable penetration probability. This will result in well-separated
phases of different nuclear “burning” during the star’s evolution.

18.2 Nuclear Cross Sections

Consider a reaction of the nucleusX with the particle a by which the nucleus Y and
the particle b are formed:

a CX ! Y C b ; (18.10)

represented by the notation X(a, b)Y. The reaction probability depends on nuclear
details, some of which can be illustrated with the following simplified description.
After penetration of the Coulomb barrier, an excited compound nucleus C � may
form containing both original particles (The level of excitation is dependent on the
kinetic energy and binding energy brought along by the newly added particle.). C �
may decay after a short time, which will still be long enough for the added nucleons
to “forget”–owing to interactions within the compound nucleus–their history, a
process for which only � 10�21 s is necessary. The decay then depends only on
the energy. C � can generally decay via one of several “channels” of different
probability: C � ! X C a;! Y1 C b1;! Y2 C b2; : : : ;! C C � . The first of
these would be the reproduction of the original particles, while the last indicates a
decay with � -ray emission; the others are particle decays where the b1; b2; : : : may
be, for example, neutrons, protons, and ˛ particles. Compared to these, a decay
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Fig. 18.3 Schematic sketch of energy levels in a compound nucleus C� formed by particles X
and a. The zero of E is here taken as corresponding to zero velocity of X and a at infinity. For
initial particle energy E1, the reaction would be non-resonant, while for E2, the particles X and
a find a resonance in the compound nucleus. Emin is the minimum excitation energy above the
ground level for particle emission

with electron emission has negligible probability (ˇ decay times being of order
1 s or larger). Outgoing particles will obtain a certain amount of kinetic energy,
which (just as the energy of emitted � rays) will be shared with the surroundings,
though an exception here are the neutrinos, which leave the star without interaction
(Sect. 18.7). The possibility that a given energy level of C � can decay via a certain
channel requires fulfilment of the conservation laws (energy, momentum, angular
momentum, nuclear symmetries).

It is very important to know the energy levels of the compound nucleus C �,
which can be of different types. LetEmin be the minimum energy required to remove
a nucleon from the ground state to infinity with zero velocity (to the level E D 0

in Fig. 18.3). This corresponds to the atom ionization energy discussed in Chap. 14.
Levels below Emin can obviously only decay by electromagnetic transitions with
the emission of � rays, which are relatively improbable, and hence their lifetime �
is large; these are “stationary” levels of small energy width � , since

� D „
�
; (18.11)

as follows from the Heisenberg uncertainty relation. These levels correspond to the
discrete, bound atomic states.

The compound nucleus will not, however, immediately expel a particle if its
energy is somewhat above Emin, since the sharp potential rise holds it back, at
least for some time. Eventually it can leave the potential well by the tunnelling
effect (which was, in fact, predicted by Gamow for explaining such outward escapes
of particles from radioactive nuclei). So there can be “quasi-stationary” levels
above Emin that have an appreciably shorter lifetime � (and are correspondingly
wider) than those below Emin, since they can also decay via the much more
probable particle emission. This probability will clearly increase strongly with
increasing energy, which results in corresponding decreases of � and increases
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Fig. 18.4 Sketch of the
reaction cross section 	 over
the energy E of the relative
motion of the reacting
particles, with resonances at
E1 and E2

of � , see (18.11). Above a certain energy Emax the width � will become larger
than the distance between neighbouring levels, and their complete overlap yields a
continuum of energy states, instead of separated, discrete levels.

The possible existence of quasi-stationary levels above Emin requires particular
attention. Consider an attempt to produce the compound nucleus C � by particles
XCa with gradually increasing energyE of their relative motion at large distances.
The reaction probability will simply increase with the penetration probability (18.9),
if E is in a region either without quasi-stationary levels or between two of them. If,
however, E coincides with such a level, the colliding particles find a “resonance”
and can form the compound nucleus much more easily. At such resonance energies
Eres, the probability for a reaction (and hence the cross section 	) is abnormally
enhanced, as sketched in Fig. 18.4, with resonant peaks rising to several powers of
ten above “normal”. The energy dependence of the cross section therefore has a
factor which has the typical resonance form:


.E/ D constant
1

.E � Eres/2 C .� =2/2
: (18.12)

At a resonance, the cross section 	 for the reaction of particles X and a can nearly
reach its maximum value (geometrical cross section), given by quantum mechanics
as ��-2, where �- is the de Broglie wavelength associated with a particle of relative
momentum p:

�- D „
p

D „
.2mE/1=2

: (18.13)

Here the non-relativistic relation between p and E is used, and m is the reduced
mass of the two particles. The meaning of ��-2 is clear because according to quantum
mechanics, the particles moving with momentum p “see” each other not as a precise
point but smeared out over a length �-. The dependence of 	 on E can now be seen
from the relation

	.E/ � ��-2P0.E/
.E/ ; (18.14)

where �- is given by (18.13). For E values well below the Coulomb barrier,
P0 can be taken from (18.9) with a pre-factor p0 DE

1=2
Coul.r0/ expŒ32mZ1Z2e2r0=

„2/1=2�. In the range of a single resonance, 
.E/ is given by (18.12), while far
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away from any resonances, 
 ! 1. In any case, with or without resonances, 	
is proportional to �-2P0, which depends on E as shown by (18.9) and (18.13).
Therefore one usually writes

	.E/ D SE�1e�2�� ; (18.15)

where all remaining effects are contained within the here-defined “astrophysical
factor” S. This factor contains all intrinsic nuclear properties of the reaction under
consideration and can, in principle, be calculated, although one rather relies on
measurements.

The difficulty with laboratory measurements of S.E/–if they are possible at all–
is that, because of the small cross sections, they are usually feasible only at rather
high energies, say above 0.1 MeV, but this is still roughly a factor 10 larger than
those energies which are relevant for astrophysical applications. Therefore one has
to extrapolate the measured S.E/ downwards over a rather long range of E . This
can be done quite reliably for non-resonant reactions, in which case S is nearly
constant or a very slowly varying function of E [an advantage of extrapolating
S.E/ rather than 	.E/�. The real problems arise from (suspected or unsuspected)
resonances in the range over which the extrapolation is to be extended. Then
the results can be quite uncertain. Only in underground laboratories, where the
experiments are shielded from cosmic rays by hundreds of meters of solid rock,
it is sometimes possible to measure the nuclear cross sections of at least a few
nuclear reactions at energies as low as 10–30 keV, i.e. at energies relevant for nuclear
processes in stellar interiors. The first such measurement was done by Junker et al.
(1998) in the Gran Sasso Laboratory and concerned the 3He.3He; 2p/4He reaction
(18.62) of the hydrogen burning chains (Sect. 18.5.1). Such experiments sometimes
lead to the discovery of resonances, but more importantly reduce the uncertainties
of the cross sections considerably, and confirm the near constancy of S.E/ at the
relevant energies.

18.3 Thermonuclear Reaction Rates

Let us denote the types of reacting particles, X and a, by indices j and k

respectively. Suppose there is one particle of type j moving with a velocity v relative
to all particles of type k. Its cross section 	 for reactions with the k sweeps over a
volume 	v per second. The number of reactions per second will then be nk	v if
there are nk particles of type k per unit volume. For nj particles per unit volume the
total number of reactions per units of volume and time is

Qrjk D nj nk	v : (18.16)

This product may also be interpreted by saying that nj nk is the number of pairs
of possible reaction partners, and 	v gives the reaction probability per pair and
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second. This indicates what we have to do in the case of reactions between identical
particles .j D k/. Then the number of pairs that are possible reaction partners is
nj .nj � 1/=2 � n2j =2 for large particle numbers. This has to replace the product
nj nk in (18.16) so that we can generally write

Qrjk D 1

1C ıjk
nj nk	v ; ıjk D

�
0; j ¤ k

1; j D k
: (18.17)

Now we have to allow for the fact that particles j and k do not move relatively
to each other with uniform velocities, which is important since 	 depends strongly
on v. Excluding extreme densities (as, e.g. in neutron stars) we can assume that
both types have a Maxwell–Boltzmann distribution of their velocities. It is then
well known that also their relative velocity v is Maxwellian. If the corresponding
energy is

E D 1

2
mv2 (18.18)

with the reduced mass m D mjmk=.mj C mk/, the fraction of all pairs contained
in the interval [E;E C dE] is given by

f .E/dE D 2p
�

E1=2

.kT /3=2
e�E=kT dE : (18.19)

This fraction of all pairs has a uniform velocity and contributes the amount drjk D
Qrjkf .E/dE to the total rate. The total reaction rate per units of volume and time is
then given by the integral

R
drjk over all energies, which formally can be written as

rjk D 1

1C ıjk
nj nkh	vi ; (18.20)

where the averaged probability is

h	vi D
1Z
0

	.E/vf .E/dE : (18.21)

Let us replace the particle numbers per unit volume ni by the mass fraction Xi with

Xi% D nimi ; (18.22)

cf. (8.2). If the energy Q is released per reaction, then (18.20) gives the energy
generation rate per units of mass (instead of unit volume; obtained by dividing by %)
and time:

"jk D 1

1C ıjk

Q

mjmk

%XjXkh	vi : (18.23)
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Fig. 18.5 The Gamow peak
(solid curve) as the product of
Maxwell distribution
(dashed) and penetration
factor (dot-dashed). The
hatched area under the
Gamow peak determines the
reaction rate. All three curves
are on different scales

Using (18.9), (18.15), (18.18) and (18.19) in (18.21), the average cross section h	vi
can be written as

h	vi D 23=2

.m�/1=2
1

.kT /3=2

1Z
0

S.E/e�E=kT�N�=E1=2dE ; (18.24)

where

N� D 2��E1=2 D �.2m/1=2
ZjZke

2

„ : (18.25)

A further evaluation of h	vi requires a specification of S.E/. We shall limit
ourselves to the simplest but for astrophysical applications very important case of
non-resonant reactions. Then we can set S.E/ � S0 D constant, and take it out
of the integral (18.24), since only a small interval of E will turn out to contribute
appreciably. The remaining integral may be written as

J D
1Z
0

ef .E/dE ; with f .E/ D � E

kT
� N�
E1=2

: (18.26)

The integrand is the product of two exponential functions, one of which drops
steeply with increasing E , while the other rises. The integrand will therefore
have appreciable values only around a well-defined maximum (see Fig. 18.5), the
so-called Gamow peak. This maximum occurs at E0, where the exponent has a
minimum. From the condition f 0 D 0, where f 0 is the derivative with respect to E ,
one finds

E0 D
�
1

2
N�kT

�2=3
D
��m
2

�1=2
�
ZiZke

2kT

„
�2=3

: (18.27)
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It is usual to introduce now a quantity � defined by

� D 3
E0

kT
D 3

�
�
� m

2kT

�1=2 ZjZke2
„

�2=3
(18.28)

and to represent f .E/ near the maximum by the series expansion

f .E/ D f0 C f 0
0 � .E �E0/C 1

2
f 00
0 � .E � E0/

2 C � � �

D �� � 1

4
�

�
E

E0
� 1

�2
C � � � ; (18.29)

from which we retain only these two terms (the linear term vanishes since f 0
0 D 0 at

the maximum). Their substitution in (18.26) means to approximate the Gamow peak
of the integrand by a Gaussian, as will become particularly clear when we transform
J to the new variable of integration 
 D .E=E0 � 1/p�=2:

J D
1Z
0

exp

"
�� � �

4

�
E

E0
� 1

�2#
dE D 2

3
kT �1=2e��

1Z

�p
�=2

e�
2d
 : (18.30)

The main contribution to J comes from a range close to E D E0, i.e. 
 D 0, so that
no large errors are introduced when extending the range of integration to �1, the
integral over the Gaussian becoming

p
� .

We then have

J � kT
2

3
�1=2�1=2e�� ; (18.31)

and for non-resonant reactions (18.24) becomes

h	vi D 4

3

�
2

m

�1=2
1

.kT /1=2
S0�

1=2e�� : (18.32)

From (18.28) one has .kT /�1=2 � �3=2; hence the kT can be substituted in (18.32),
which then gives h	vi � �2e�� .

The properties of the Gamow peak are so important that we should inspect some
of them a bit further. In order to have convenient numerical values, we count the
temperature in units of 107 K (which is typical for many stellar centres) and denote
this dimensionless temperature by T7 D T=107 K or generally

Tn WD T

10n K
: (18.33)
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We then have the following relations (some of which will be derived below):

W D Z2
jZ

2
kA D Z2

jZ
2
k

AjAk

Aj C Ak
;

� D 19:721W 1=3T
�1=3
7 ;

E0 D 5:665 keV �W 1=3T
2=3
7 ;

E0

kT
D �

3
D 6:574W 1=3T

�1=3
7 ;

�E D 4:249 keV �W 1=6T
5=6
7 ;

�E

E0
D 4.ln 2/1=2��1=2 D 0:750W �1=6T 1=67 ;

� D @ lnh	vi=@ lnT D .� � 2/=3 D 6:574W 1=3T
�1=3
7 � 2=3 : (18.34)

The value of W is determined by the reaction partners and is at least of order
unity. Large W discriminates against the reactions of heavy nuclei so much that
only the lighter nuclei can react with appreciable rate. The Gamow peak occurs as
a compromise in the counteraction between Maxwell distribution and penetration
probability with a maximum at E D E0, which is roughly 5–100 times the average
thermal energy kT. This “effective stellar energy range” is, on the other hand, far
below the &100 keV available to most laboratory experiments. With increasing T;
E0 increases moderately, while the maximum height of the peakH0 D e�� increases
very steeply owing to the decreasing � .

The width of the effective energy range is described by �E , which is the full
width of the Gamow peak at half maximum (see Fig. 18.5), i.e. between the points
with height 0.5 e�� . Equating this to the integrand in the first form of (18.30), we
obtain

�E

E0
D 4

.ln 2/1=2

�1=2
: (18.35)

According to (18.34), this is always below unity, and therefore one has a well-
defined energy range in which the reactions occur effectively. With �E increasing
with T only slightly more than E0, the relative form of the peak remains nearly
constant.

The most striking feature of thermonuclear reactions is their strong sensitivity to
the temperature. In order to demonstrate this, one represents the T dependence of
h	vi (and thus of rjk and "jk) around some value T D T0 by a power law such as

h	vi D h	vi0
�
T

T0

��
; � D @ lnh	vi

@ ln T
: (18.36)
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From (18.28) we have � �T �1=3, and then from (18.32) h	vi �T �2=3e�� .
Therefore

lnh	vi D constant � 2

3
ln T � � ; (18.37)

and

@ lnh	vi
@ lnT

D �2
3

� @�

@ lnT
D �2

3
� � @ ln �

@ lnT
: (18.38)

Since � � T �1=3, we have @ ln �=@ lnT D �1=3, so that finally

� � @ lnh	vi
@ lnT

D �

3
� 2

3
; (18.39)

where for most reactions �=3 is much larger than 2/3 and � � �=3. Then � decreases
with T as � � T �1=3. From (18.34) we see that even for reactions between the
lightest nuclei, � � 5, and it can easily attain values around (and even above)
� � 20. With such values for the exponent (!) of T , the thermonuclear reaction rate
is about the most strongly varying function treated in physics, and this temperature
sensitivity has a clear influence on stellar models. Also, since small fluctuations
of T (which will certainly be present) must result in drastic changes in the energy
production, we have to assume that there exists an effective stabilizing mechanism
(a thermostat) in stars (Sect. 25.3.5).

We may easily see how the large � values are related to the change of the Gamow
peak with T : the value h	vi is proportional to the integral J in (18.30), and this is
given by the area under the Gamow peak, which is roughly J � �E �H0.H0 D e��
is the height of the peak). According to (18.34), �E � T 5=6, while H0 increases
strongly with T . In fact it is this height H0 which provides the exponential e�� in
the expressions for h	vi and is therefore responsible for the large values of �.

We should briefly mention a few corrections to the derived formulae for the
reaction rates. The first concerns inaccuracies made by evaluating the integral
in (18.24) with constant S and with an integrand approximated by a Gaussian. This
is usually corrected for by multiplying h	vi with a factor

gjk D 1C 5

12�
C S 0

S
E0

�
1C 105

36�

�
C 1

2

S 00

S
E2
0

�
1C 267

36�

�
; (18.40)

where S and its derivatives with respect to E have to be taken at ED 0 (Eq.
(17.206b) in Weiss et al. 2004, p. 601).

Another correction factor, fjk , allows for a partial shielding of the Coulomb
potential of the nuclei, owing to the negative field of neighbouring electrons. This
plays a role only at very high densities; it will be treated separately in Sect. 18.4.

Concerning resonant reactions we shall only remark that the situation depends
very much on the location of the resonance. For example, the integral in (18.24)
can be dominated by a strong peak at the resonance energy. However, once S.E/ is
given, (18.24) can in principle always be evaluated.
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18.4 Electron Shielding

We have seen that the repulsive Coulomb forces of the nucleus play a decisive role
in controlling the rate of thermonuclear reactions. Therefore any modification of
its potential by influences from the outside can have an appreciable effect on these
rates. An obvious effect to be considered comes from the surrounding free electrons.
It is clear that beyond a certain distance an approaching particle will “feel” a neutral
conglomerate of the target nucleus plus a surrounding electron cloud rather than the
isolated charge of the target nucleus.

The first step is to consider the polarization that the nucleus of charge CZe
produces in its surrounding. The electrons of charge �e are attracted and have a
slightly larger density ne in the neighbourhood of the nucleus; the other ions are
repelled and have a slightly decreased density ni in comparison with their average
values Nne and Nni (without electric fields present). For non-degenerate gases the
density of particles with charge q is modified in the presence of an electrostatic
potential  according to

n D Nne�q=kT : (18.41)

In most normal cases one will find jqj �kT and can then approximate the
exponential by 1 � q=kT . For ions and electrons, (18.41) now yields

ni D Nni
�
1 � Zie

kT

�
; ne D Nne

�
1C e

kT

�
; (18.42)

which shows directly the decrease (ions) and increase (electrons) of the two
densities.

Considering the ni for all types of ions present in the gas mixture, one can
immediately write down the total charge density 	 . For  D 0 one must have a
neutral gas, with N	 D 0, i.e.

N	 D
X
i

.Zi e/ Nni � e Nne D 0 ; (18.43)

whereas for non-vanishing  we have

	 D
X
i

.Zie/ni � ene

D
X
i

� .Zie/
2

kT
Nni � e2

kT
Nne : (18.44)

Here we have already inserted (18.42) and made use of (18.43) to eliminate the
-independent terms. The second expression (18.44) suggests that we combine the
two terms and write
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	 D ��e
2

kT
n ; (18.45)

where we have introduced the total particle density n D ne CP
i ni and the average

value �:

� WD 1

n

 X
i

Z2
i Nni C Nne

!
: (18.46)

If one wishes to use the mass fractionXi D Ai Nni=n� .� D mean molecular weight
per free particle, see Sect. 4.2, (4.27)) instead of the particle numbers, the expression
follows simply as

� D �� D �
X
i

Zi .Zi C 1/

Ai
Xi : (18.47)

The charge density 	 and the electrostatic potential  are also connected by the
Poisson equation

r2 D �4�	 : (18.48)

If we assume spherical symmetry for the charge distribution surrounding the nucleus
under consideration, the Laplace operator r2 then reduces to its well-known radial
part. Introducing 	 from (18.45) on the right-hand side of (18.48), the Poisson
equation becomes

r2D
r

d2.r/

dr2
D  ; (18.49)

where we have scaled the distance r by the so-called Debye–Hückel length

rD D
�

kT

4��e2n

�1=2
: (18.50)

One readily verifies that (18.49) is solved by

 D Ze

r
e�r=rD ; (18.51)

and this shows that  tends to the normal (unshielded) potential Ze=r of a point
charge Ze for small distances, r ! 0, while we have an essential reduction of this
“normal” potential at distances r & rD. In a certain sense we can call rD the “radius”
of the electron cloud that envelopes the nucleus and shields part of its potential for
an outside viewer.

The values of � in (18.47) are of order unity. For T D 107 K and % between
1 and 102 g cm�3, rD has typical values of 10�8 � � � 10�9 cm. In order to judge the
influence of the shielding on nuclear reactions between nuclei of types 1 and 2, we
should compare rD with the closest distance rc0 to which the particles can classically
approach each other if their energy is that of the Gamow peakE0 [given by (18.27)].
These particles will be the most effective ones for the energy production. According
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to (18.7) one has rc0 D Z1Z2e
2=E0, and convenient numerical expressions for E0

are given in (18.34). We then find

rD

rc0
� 200

E0

Z1Z2

�
T7

�%

�1=2
; (18.52)

whereE0 is in keV and % in g cm�3. With rough values for the solar centre, T7 � 1,
% � 102 g cm�3, � � 1, and for the most important hydrogen reactions, we have
Z1Z2 D 1 : : : 7 and E0 � 5 : : : 20 keV; hence (18.52) gives rD=rc0 � 50 : : : 100.
For all such “normal” stars, rD 	 rc0, which means that the incoming particle even
classically (without the tunnelling effect) penetrates nearly the entire electron cloud
and the shielding will have little effect at these critical distances.

The decrease of the Coulomb interaction energy ECoul increases the probability
P0 for tunnelling through the Coulomb wall. The decisive exponent � in P0 [(18.9)
and the following] is determined by the function ECoul � E . The energy ECoul is
now reduced according to (18.51) by the factor exp.�r=rD/, which is to a first
approximation 1 � r=rD for r=rD � 1.

This gives

ECoul � E � Z1Z2e
2

r
e�r=rD � E � Z1Z2e

2

r
� Z1Z2e

2

rD
� E ; (18.53)

which shows that we will obtain the same result as without shielding, but with an
enlarged energy:

QE D E C Z1Z2e
2

rD
D E C ED : (18.54)

In order to see the influence on simple non-resonant reaction rates, consider the
integrand in (18.21) and replace 	.E/ by 	. QE/. With (18.15) and (18.19) and Q� D �

.E= QE/1=2, we have the proportionality

	. QE/vf .E/ � . QE�1e�2� Q�/E1=2.E1=2e�E=kT /

�
�
1 � ED

QE
�

eED=kT� QE=kT�2� Q� : (18.55)

We assume here thatED=kT � 1, which is usually called the case of “weak screen-
ing”. Considering the fact that only a small range of E at values much larger than
kT contributes essentially to h	vi, we may as well neglect the factor (1 � ED= QE)
in (18.55) and integrate over QE instead ofE . The main change is then the additional
constant exponentED=kT such that h	vi is multiplied by a “screening factor”

f D eED=kT ; (18.56)
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which increases h	vi, sinceED is positive. For weak screening we have numerically

ED

kT
D Z1Z2e

2

rDkT
D 5:92 � 10�3Z1Z2

�
�%

T 37

�1=2
; (18.57)

with % in g cm�3. For � � 1; % D 1 g cm�3, and T7 D 1, reactions with Z1Z2 . 16

require correction factors f , which increase the rate by less than 10 %.
Where very large densities are involved, however, one will leave the regime of

weak screening. For ED=kT & 1, the treatment is much more complicated, and the
limiting case of “strong screening” is described approximately by

ED

kT
� 0:0205Œ.Z1 CZ2/

5=3 �Z5=3
1 �Z

5=3
2 �

.%=�e/
1=3

T7
; (18.58)

with the molecular weight per free electron �e D .
P
XiZi=Ai/

�1, see (4.29), and
% in g cm�3.

Equations (18.57) and (18.58) show that the screening factor f increases
appreciably for increasing % and decreasing T: While f was a minor correction
factor to the rate for “normal” stars with weak screening, the situation changes
completely in the high-density, low-temperature regime, where screening becomes
the dominating factor in the reaction rate.

Consider the shielded reaction rate as represented by

f h	vi D f0h	vi0
�
%

%0

�� �
T

T0

��
(18.59)

in the neighbourhood of %0; T0. In a similar manner to the derivation of � for the
unshielded case in (18.36)–(18.39), we find now that

� D �

2
� 2

3
� ED

kT
I � D 1C 1

3

ED

kT
: (18.60)

For very high densities and moderate to low temperatures (say %> 106 g cm�3;
T >107 K), the temperature sensitivity � decreases, while the density sensitivity �
becomes larger. This can be seen from Fig. 18.6, where the line of constant 12C–12C
burning turns steeply down for large %. Finally, the reaction rates now depend
mainly on the density (instead of the temperature) and one speaks of “pycnonuclear
reactions”. For 12C burning in a pure 12C plasma, (18.60) gives the transition � D �

at T7 D 10 for % D 1:60 � 109 g cm�3.
Pycnonuclear reactions can play a role in very late phases of stellar evolution,

where a burning may be triggered by a compression without temperature increase,
and they can provide a certain amount of energy release even in cool stars, if only the
density is high enough. Of course, other effects, such as the decrease of the mobility
of the nuclei because of crystallization, must then also be considered.



192 18 Nuclear Energy Production

Fig. 18.6 A line of constant
energy generation rate
".D104 erg g�1 s�1/ for the
12CC12C burning in a
diagram showing the
temperature T (in K) over the
density % (in g cm�3/. The
temperature sensitivity � and
the density sensitivity � are
equal where the slope is �1

18.5 The Major Nuclear Burning Stages

Although no chemical reactions are involved, one usually calls the thermonuclear
fusion of a certain element the “burning” of this element. Owing to the properties of
thermonuclear reaction rates, different burnings are well separated by appreciable
temperature differences. A review of the cross sections for all possible reactions
in the major burning stages shows that only very few reactions occur with non-
negligible rates during a certain phase. The most important ones will be listed below.
Their important properties, such as the astrophysical factors S0, correction factors
to (18.32), or energy release Q, can be found in the literature (e.g. Caughlan and
Fowler 1988; Harris and Fowler 1983; Adelberger et al. 2011; Angulo et al. 1999).

TheQ values usually contain all of the energy made available to the stellar matter
by one such reaction. This includes the energies of the � rays that are either directly
emitted or created by pair annihilation after eC emission. Excluded, however, is the
energy carried away by neutrinos, since they normally do not interact with the stellar
material.

A whole “network” of all simultaneously occurring reactions (8.7) has to be
calculated if one is interested in details such as the isotopic abundances produced
by the reactions or if the star changes on a timescale comparable with that of one of
the reactions. The total " is then obtained as a sum of (18.23) over all reactions, and
one has to ensure the correct bookkeeping of the changing abundances of all nuclei
involved. We have encountered nuclear reaction networks also in Sect. 12.3.

If one is interested only in the energy production, often, a much simpler
procedure suffices in which only the rate for the slowest of a chain of subsequent
reactions is calculated, since it determines essentially the rate of the whole fusion
process. An example of such a “bottleneck” is the 14N reaction in the CNO cycle
(see below). Then (18.23) has to be used for this reaction, but with Q equal to the
sum of all energies released in the single reactions.

In this section, all formulae for "will be given in units of erg g�1s�1, % in g cm�3,
and T in the dimensionless form Tn D T=10n K. As usual we denote byXj the mass
fraction of nuclei with mass number A D j .



18.5 The Major Nuclear Burning Stages 193

18.5.1 Hydrogen Burning

The net result of hydrogen burning is the fusion of four 1H nuclei into one 4He
nucleus. The difference in binding energy is almost exactly 27.0 MeV, correspond-
ing to a mass defect of about 0.7 per cent. This is roughly 10 times the energy
liberated in any other fusion process, though not all of this energy is available to
stellar matter. The fusion requires the transformation of two protons into neutrons,
i.e. two ˇC decays, which must be accompanied by two neutrino emissions
(conservation of lepton number). The neutrinos carry away 2 : : : 30 per cent of the
whole energy liberated, the amount depending strongly on the reaction in which
they are emitted.

There are different chains of reactions by which a fusion process can be
completed and which in general will occur simultaneously in a star. The two main
series of reactions are known as the proton–proton chain and the CNO cycle.

The proton–proton chain (pp chain) is named after its first reaction, between two
protons forming a deuterium nucleus 2H, which then reacts with another proton to
form 3He:

1H C 1H ! 2H C eC C � ;

2H C 1H ! 3He C � : (18.61)

The first of these reactions is unusual in comparison with most other fusion
processes. In order to form 2H, the protons have to experience a ˇC decay at the
time of their closest approach. This is a process governed by the weak interaction
and is very unlikely. Therefore the first reaction has a very small cross section.

The completion of a 4He nucleus can proceed via one of three alternative
branches (pp1, pp2, pp3) all of which start with 3He. The first alternative requires
two 3He nuclei, i.e. the reactions in (18.61) have first to be completed twice. The
other alternatives require that 4He already exists (either it is present because of its
primordial abundance, or because it was already produced earlier by this burning
process). The branching between pp2 and pp3 exists, since 7Be can react either with
e� or with 1H. All possibilities can be seen from the following scheme:

(18.62)
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Owing to the different energies carried away by the neutrinos, the energies
released to the stellar matter differ for the three chains. They are QD 26:50.pp1),
25.97(pp2), and 19.59(pp3), in MeV per produced 4He nucleus. For each quantity
Q released, the first two reactions of (18.61) have to be performed only once in the
pp2 and pp3 branches.

Three reactions in (18.62) release neutrinos, which are given names according to
the element being processed in these reactions: pp-, 7Be-, and 8B-neutrinos. If they
are the only lepton emitted, then their energy is well defined. The 7Be-neutrinos
carry away 0.863 MeV in 90 % of the reactions, and 0.386 MeV in the remaining
10 %, depending on the energy state of 7Li produced. If the neutrinos are emitted
along with a positron (eC), the two leptons share the energy, and a spectrum of
neutrino energies results. The upper limits are 0.423 MeV for the pp-neutrinos and
15 MeV for those of the 8B reaction. The average values are 0.267 and 6.735 MeV
respectively.

The relative frequency of the different branches depends on the chemical com-
position, the temperature, and the density. The 3He–4He reaction has a 14 % larger
reduced mass, a 4.6 % larger � , and thus a slightly larger temperature sensitivity
� than the 3He–3He reaction, cf. (18.34) and (18.39). With increasing T, pp2 and
pp3 will therefore dominate more and more over pp1 (say above T7 � 1) if 4He is
present in appreciable amounts. And with increasing T , the relative importance will
gradually shift from the electron capture (pp2) to the proton capture (pp3) of 7Be.

The energy generation in the pp chain should be calculated at small T (say below
T6 � 8) by calculating all single reactions and their influence on the nuclei involved.
For larger T , there will be an equilibrium abundance established for these nuclei
(equal rates of consumption and production) and one can simply take the whole "pp

as proportional to that of the pp1 branch, which in turn may be calculated from the
rate of the first reaction 1H + 1H:

"pp D 2:57 � 104 f11g11%X2
1T

�2=3
9 e�3:381=T 1=39 ;

g11 D .1C 3:82T9 C 1:51T 29 C 0:144T 39 � 0:0114T 49 / ; (18.63)

where "pp and % are in cgs and f11 is the shielding factor for this reaction. The factor
 corrects for the additional energy generation in the branches pp2 and pp3 if there
is appreciable 4He present (see Fig. 18.7). For gradually increasing T; starts with
the value 1 and can then increase to values close to 2 (at T7 � 2), at which point
pp2 takes over, since then each 1H–1H reaction gives one 4He (compared to every
second such reaction in the branch pp1). After this maximum,  decreases again to
about 1.5 where pp3 has taken over owing to its Q being much smaller than those
of the other branches.

The formulation of the energy generation " as given in (18.63) is an analytical
fit to measured and tabulated values, based on T -dependences of non-resonant
reactions and resonances. They may vary from group to group; the one used here is
taken from Angulo et al. (1999).
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Fig. 18.7 The correction  
for "pp as a function of T7, for
three different helium
abundances (After Parker
et al. 1964)

The temperature sensitivity of the pp chain is the smallest of all fusions. At
T6 D 5, we have � � 6, which decreases to 3.5 at T6 � 20.

The CNO cycle is the other main series of reactions in hydrogen burning. It
requires the presence of some isotopes of C, N, or O, which are reproduced in a
manner similar to catalysts in chemical reactions. The sequence of reactions can be
represented as follows:

(18.64)

The main cycle (CNO-I; upper 6 lines of this scheme) is completed after the
initially consumed 12C is reproduced by 15N C 1H. This reaction shows a branching
via 16O into a secondary cycle (CNO-II; connected with the main cycle by dashed
arrows), which is, however, roughly 103 times less probable. Its main effect is that
the 16O nuclei originally present in the stellar matter can also take part in the cycle,
since they are finally transformed into 14N by the last three reactions of (18.64).
The decay times for the ˇC decays are of the order of 102 : : : 103 s. As usual, a
network of all simultaneous reactions has to be calculated for lower temperatures,
rapid changes, or if a detailed knowledge about the abundances of all nuclei involved
is desired.

As in the case of the pp chains, two protons have to be converted in effect to
neutrons in the process, which will release two neutrinos per new helium nucleus.
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Fig. 18.8 Total energy
generation rate "H

(in erg g�1 s�1/ for hydrogen
burning (solid line) over the
temperature T (in K), for
% D 1 g cm�3, X1 D 1, and
XCNO D 0:01. The
contributions of the pp chain
and the CNO cycle are
dashed

The 13N-, 15O-, and 17F-neutrinos of the CNO-cycles have all energy spectra with
an upper limit between 1.1 and 1.7 MeV, and an average energy of 0.706, 0.996, and
0.998 MeV.

Most stars change slowly enough that, for sufficiently high temperature (say
T7 & 1:5), the nuclei involved in the cycle reach their equilibrium abundance (i.e.
the rate of production equals that of consumption). Then it suffices to calculate
explicitly only the slowest reaction, which is 14NC1H and which essentially controls
the time for completing the cycle. "CNO will then be given by the rate of this reaction
and by the energy gain of the whole cycle, which is 24.97 MeV. This slowest
reaction acts like a bottleneck where the nuclei involved are congested in their
“flow” through the cycle. Nearly all of the initially present C, N, and O nuclei will
therefore be found as 14N, waiting to be transformed to 15O. The energy generation
rate can be written as (using again the cross section from Angulo et al. 1999 but
dropping additional terms important for higher temperatures for simplicity)

"CNO D 8:24 � 1025g14;1XCNOX1%T
�2=3
9 e.�15:231T

�1=3
9 �.T9=0:8/2/ ;

g14;1 D .1 � 2:00T9 C 3:41T 29 � 2:43T 39 / ; (18.65)

where "CNO and % are in cgs. XCNO is the sum of XC; XN, and XO . The temperature
sensitivity � is much higher here than in the pp chain. For T6 D 10 : : : 50, we find
�� 23 : : : 13. This has the consequence that the pp chain dominates at low temper-
atures (T6 < 15), while it can be neglected against "CNO for higher temperatures (see
Fig. 18.8). Hydrogen burning normally occurs in the range T6 � 8 : : : 50, since at
larger T , the hydrogen is very rapidly exhausted.
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18.5.2 Helium Burning

The reactions of helium burning consist of the gradual fusion of several 4He into
12C, 16O, : : : . This requires temperatures of T8 & 1, i.e. appreciably higher than
those for hydrogen burning, because of the higher Coulomb barriers.

The first and key reaction is the formation of 12C from three 4He nuclei, which is
called the triple ˛ reaction (or 3˛ reaction). A closer look shows that it is performed
in two steps, since a triple encounter is too improbable:

4He C 4He � 8Be ;

8Be C 4He ! 12C C � : (18.66)

In the first step, two ˛ particles temporarily form a 8Be nucleus. Its ground state is
nearly 100 keV higher in energy and therefore decays back into the two ˛’s after a
few times 10�16 s. This seems to be a very short time at a first glance, but it is roughly
105 times larger than the duration of a normal scattering encounter. The probability
for another reaction occurring during this time is correspondingly enhanced. In
fact the lifetime of 8Be is sufficient to build up an average concentration of these
nuclei of about 10�9 in the stellar matter. The high densities then ensure a sufficient
rate of further ˛ captures that form 12C nuclei [the second step in (18.66)]. Both
these reactions are complicated owing to the involvement of resonances. The energy
release per 12C nucleus formed is 7.274 MeV. This gives an energy release per unit
mass that is 10.4 times smaller than in the case of the CNO cycle (where only four
instead of 12 nucleons are processed): E3˛ D 5:8 � 1017 erg g�1. The resulting
energy generation rate is

"3˛ D 5:09 � 1011f3˛%2X3
4T

�3
8 e�44:027=T8 (18.67)

(" and % in cgs), with the screening factor f3˛ . (18.67) is based on an older,
simplified analytical fit of h	vi by Caughlan and Fowler (1988). A more recent
one, taken from the compilation by Angulo et al. (1999), has more terms, reflecting
the effect of the several resonances involved:

"3˛ D 6:272%2X3
4 � .1C 0:0158T�0:65

9 /

�
h
2:43 � 109T �2=3

9 exp
�
�13:490T�1=3

9 � .T9=0:15/
2
�

� .1C 74:5T9/

C6:09 � 105T �3=2
9 exp.�1:054=T9/

i

�
h
2:76 � 107T �2=3

9 exp
�
�23:570T�1=3

9 � .T9=0:4/
2
�

� .1C 5:47T9 C 326T 29 /C 130:7T
�3=2
9 exp.�3:338=T9/

C2:51 � 104T �3=2
9 exp.�20:307=T9/

i
: (18.68)
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The two terms in square brackets in (18.68) come from the ˛ C ˛ and the
˛C8 Be steps of the 3˛-process; the first line contains also a conversion factor to go
from the mean cross section to the energy production rate according to (18.23). This
reaction has an enormous temperature sensitivity. For T8 D 1 : : : 2, (18.39) gives
� � 40 : : : 19!

Once a sufficient 12C abundance has been built up by the 3˛ reaction, further ˛
captures can occur simultaneously with (18.66) such that the nuclei 16O, 20Ne, : : :
are successively formed:

12C C 4He !16O C � ;

16O C 4He !20Ne C � ;

: : : (18.69)

In a typical stellar-interior environment, reactions going beyond 20Ne are rare.
The energy release per 12C(˛; � )16O reaction is 7.162 MeV, corresponding to

E12;˛ D 4:320 � 1017 erg g�1 of produced 16O (The whole formation of 16O from
the initial four ˛ particles has then yielded 8:71 � 1017 erg g�1.). This is a rather
complicated reaction. For moderate temperatures (up to a few 108 K), one may use
the following simple approximation:

"12;˛ D 1:3 � 1027f12;4X12X4 %T �2
8

 
1C 0:134T

2=3
8

1C 0:017T
2=3
8

!2
e�69:20=T 1=38 ; (18.70)

where " and % are in cgs. This reaction has been notoriously uncertain by factors
of 2 and 3 at stellar temperatures. This has severe consequences for the production
of carbon and even for the evolution of stars. The rate has been changed repeatedly
within this uncertainty range as a result of new measurements. Kunz et al. (2002)
provide the most recent analytical fit.

In each reaction 16O .˛; �/ 20Ne, an energy of 4.73 MeV is released. The rate is
according to Angulo et al. (1999):

"16;˛ � X16X4%f16;4 � 1:91 � 1027T �2=3
9 exp

�
�39:760T�1=3

9 � .T9=1:6/
2
�

C3:64 � 1018T �3=2
9 exp.�10:32=T9/

C4:39 � 1019T �3=2
9 exp.�12:200=T9/

C2:92 � 1016T 2:9669 exp.�11:900=T9/ ; (18.71)

where " and % are in cgs; this rate is also very uncertain.
Summarizing, we can say that during helium-burning reactions, (18.66)

and (18.69) occur simultaneously, and the total energy generation rate is given
by "He D "3˛ C "12;˛ C "16;˛. If the initial 4He is transformed into equal amounts of
12C and 16O, then the energy yield is 7:28 � 1017 erg g�1.
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The general course of helium burning is always according to the following
scheme: initially, when burning sets in at temperatures around 108 K, the triple-
˛ reaction is dominating, both because of a larger cross section and of the
carbon and oxygen abundances, which are low in comparison to that of helium.
With progressing conversion of helium to carbon, the 12C(˛; � )16O becomes more
competitive. The increasing temperature is supporting this. When the helium content
gets low, the fact that the triple-˛ reaction is proportional to the third power of
the helium abundance disfavours it increasingly, such that the burning of carbon
is larger than its creation by triple-˛ reactions, and its abundance decreases again,
while simultaneously that of 16O increases. The final abundances of 12C and 16O will
thus depend on the competition between the reactions (18.69) and the exhaustion
of 4He particles. This depends mainly on the 12C(˛; � )16O rate: if it is higher, the
destruction of 12C will set in earlier and a higher O:C ratio will result. Overall,
the outcome of helium burning is O:C � 1:1–2:1. Neon production is comparably
unimportant.

18.5.3 Carbon Burning and Beyond

For a mixture consisting mainly of 12C and 16O (as would be found in the central
part of a star after helium burning), carbon burning will set in if the temperature
or the density rises sufficiently. The typical range of temperature for this burning is
T8 � 5 : : : 10.

Here (and in the following types of burning) the situation is already so difficult
that one often has to rely on rough approximations and guesses, or on complete
nuclear networks. The first complication is that the original 12CC12C reaction
produces an excited 24Mg nucleus, which can decay via many different channels
(the last column givesQ/1 MeV):

12C C 12C ! 24Mg C � ; 13:931

! 23Mg C n ; �2:605
! 23Na C p ; 2:238

! 20Ne C ˛ ; 4:616

! 16O C 2˛ ; �0:114

(18.72)

The relative frequency of the channels is very different, and depends also on the
temperature. The � decay (leaving 24Mg) is rather improbable, and the same is
true for the two endothermic decays (23Mg C n and 16O C 2˛). The most probable
reactions are those which yield 23NaCp and 20NeC˛. These are believed to occur
at about equal rates for temperatures that are not too high (say T9 < 3).

The next problem is that the produced p and ˛ find themselves at temperatures
extremely high for hydrogen and helium burning and will immediately react with
some of the particles in the mixture (from 12C up to 24Mg). They may even start
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whole reaction chains, such as 12C(p; � )13N(eC�)13C(˛; n)16O, where the neutron
could immediately react further. All these details would have to be evaluated
quantitatively in order to find the average energy gain and the final products. For
a rough guess one may assume that on average, Q � 13MeV are released per
12C–12C reaction (including all follow-up reactions). Then (Caughlan and Fowler
1988),

"CC � 1:86 � 1043fCC%X
2
12T

�3=2
9 T

5=6
9a

� expŒ�84:165=T 1=39a � 2:12 � 10�3T 39 � (18.73)

with " and % in cgs and with T9a D T9=.1C0:0396T9/. The screening factor fCC can
become important (see Fig. 18.6), since this burning can start in very dense matter.
The end products may be mainly 16O, 20Ne, 24Mg, and 28Si.

For oxygen burning, 16OC16O, the Coulomb barrier is already so high that the
necessary temperature is T9 & 1. As in the case of carbon burning, the reaction can
proceed via several channels:

16O C16O ! 32S C � ; 16:541

! 31P C p ; 7:677

! 31S C n ; 1:453

! 28Si C ˛ ; 9:593

! 24Mg C 2˛ ; �0:393

(18.74)

Most frequent is the p decay, followed by the ˛ decays. Again, all released p; n;
and ˛ are captured immediately, giving rise to a multitude of secondary reactions.
Among the end products, one will find a large amount of 28Si. For an average energy
Q � 16MeV released per 16OC16O reaction, the energy generation rate is roughly

"OO � 2:14 � 1053fOO%X
2
16T

�2=3
9

� exp.�135:93=T 1=39 � 0:629T 2=39 � 0:445T 4=39 C 0:0103T 29 / (18.75)

with " and % in cgs, and the screening factor fOO.
For T9 > 1, one also has to consider the possibility of photodisintegration of

nuclei that are not too strongly bound. Here the radiation field contains a significant
number of photons with energies in the MeV range, which can be absorbed by
a nucleus, breaking it up, for example, by ˛ decay. This is a complete analogue
of photoionization of atoms, and, in equilibrium, a formula equivalent to the Saha
formula [see (14.11)] holds for the number densities ni and nj of the final particles
(after disintegration), relative to the numbernij of the original (compound) particles:

ninj

nij
� T 3=2e�Q=kT ; (18.76)
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where Q is the difference in binding energies between the original nucleus and
its fragments. .Q corresponds to the ionization energy �; however, it is about
102 : : : 103 times larger because of the much stronger nuclear forces.) The pro-
portionality factor contains essentially the partition functions of the three types of
particles. Equilibrium is usually not reached, and the details are very complicated
and may differ from case to case, which is also true for the amount of energy
released or lost.

The photodisintegration itself is, of course, endothermic. But the ejected particles
.Xj / will be immediately recaptured. The capture can lead back to the original
nucleus Xij , i.e. the reaction would be Xij � Xi C Xj , or it can lead to quite
different, even heavier, nuclei Xjk that are more strongly bound than the original
one Xj C Xk ! Xjk. The latter case would be exothermic and can outweigh the
endothermic photodisintegration in the total energy balance.

An example is neon disintegration, which in stellar evolution occurs even before
oxygen burning:

20Ne C � !16O C ˛ ; Q D �4:73MeV : (18.77)

It dominates over the inverse reaction (known from helium burning) at T9 > 1:5.
The ejected ˛ particle reacts mainly with other 20Ne nuclei, yielding 24MgC� . The
net result will then be the conversion of Ne into O and Mg:

2 20Ne C � ! 16O C24 Mg C � ; Q D C4:583MeV : (18.78)

Another example is the photodisintegration of 28Si, which may be the dominant
reaction at the end of oxygen burning. Near T9 � 3, 28Si can be decomposed by the
photons and eject n; p; or ˛. There follows a large number of reactions in which the
thereby created nuclei (e.g. Al, Mg, Ne) will also be subject to photodisintegration,
leading to the existence of an appreciable amount of free n; p; and ˛ particles. These
react with the remaining 28Si, thus building up gradually heavier nuclei, until 56Fe is
reached. Since 56Fe is so strongly bound, it may survive this melting pot as the only
(or dominant) species. So, forgetting all intermediate stages, we would ultimately
have the conversion of two 28Si into 56Fe, which can be called silicon burning.

For T9 & 5, photodisintegration breaks up even the 56Fe nuclei into ˛ particles
and thus reverses the effect of all prior burnings. Such processes can occur during
supernova explosions (see Chap. 36).

18.6 Neutron-Capture Nucleosynthesis

In Fig. 18.9 we show the solar abundances of elements. As on earth, we find all
elements from hydrogen to lead and uranium in the Sun. The nuclear burning we
discussed so far is able to produce only elements up to iron, since the creation of
elements heavier than the “iron peak” is endothermic, and the electrostatic repulsion
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Fig. 18.9 The abundances (particle number fractions) of elements in the Sun, normalized to a
value of 106 for 28Si

for charged particle reactions is increasing with nuclear charge. The various peaks
in this figure reflect the stability of isotopes against further addition of neutrons and
protons and are due to the structure of the nuclei, easily explained in the shell model
of nuclear physics. In particular isotopes with even and equal numbers of neutrons
and protons, such as 12C or 40Ca, are very stable and therefore more abundant than
neighbouring ones. If nuclear shells are closed, the stability is even higher, similar
to the noble gases in atomic physics. Such isotopes are called “magic nuclei” with
“magic” numbers of protons or neutrons. 16O is a “double-magic” nucleus.

During hydrostatic burning phases, the elements beyond the iron peak can be
produced only if other reactions with lighter nuclei provide enough energy and,
most easily, if the reactions are processing by the capture of neutrons, since they
are electrically neutral. Adding neutrons leads initially to heavier isotopes of the
same element, which become the more unstable the more neutrons they have. The
decay proceeds by emission of an electron, which is temperature-insensitive and
therefore is acting as a kind of nuclear clock. ˇ-decay times can reach from minutes
to millions of years, and are getting shorter with increasing neutron excess. The
decay leads to the creation of a new element of the same mass but with the charge
being increased by one.

The general sequence of reactions is therefore

.Z;A/C n ! .Z;AC 1/C �

.Z;AC 1/ ! .Z C 1;AC 1/C e� ; (18.79)

where the first reaction can be repeated several times, depending on the number
density of available neutrons n and the neutron-capture cross section. If the
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Fig. 18.10 Typical s-process reaction path in the nuclear chart, in the region of Cs and Ba.
The laboratory half-life time of the Cs isotopes is given. It can be appreciable shorter at stellar
temperatures. 134Cs and 136Cs are so-called branching points, and the relative abundances of
isotopes in the various branches allow conclusions about the temperature at the s-process site (after
Busso et al. 1999)

neutron-capture time is long compared to the ˇ-decay time, the process is called the
slow neutron-capture process or simply the s-process, and the reaction path remains
close to the line of ˇ-stability in the nuclear chart; if it is rapid, such that the first
reaction in (18.79) is repeated several times, it is called the r-process. Subsequent
neutron captures and ˇ-decays will lead to the creation of the heavy elements. The
astrophysical site for the r-process is not clearly identified, but is probably to be
found in supernova explosions or similar energetic events. The s-process is certainly
taking place in stars of intermediate mass (M � 2 � � � 5Mˇ) in an advanced phase of
evolution (Sect. 34.3). In the atmospheres of such stars, short-lived isotopes of heavy
elements (most importantly 99Tc with a half-life time of only 211,000 years) have
been found, which could only have been created in the stars themselves. Although
the s-process may drain energy from the star, it is in fact unimportant for the energy
budget and the structure of stars, mainly due to the extremely low abundances (see
Fig. 18.9) with respect to the elements participating in the burning stages discussed
earlier in this chapter. Figure 18.10 shows part of the s-process path in the Cs-Ba
region of the nuclear chart. 138Ba has a magic neutron number (82) and therefore is
very stable and abundant (Fig. 18.9).

The necessary condition for the s- and r-process is the presence of neutrons.
Since free neutrons are both unstable and are easily captured by other nuclei, a
constant source of neutron production is needed. Considering the burning phases
of Sect. 18.5, we realize that only protons and ˛-particles were involved. The
generation of neutrons is indeed a very rare event in a star’s life. However, in
Sect. 18.5.3, we already mentioned that during carbon burning, the various reaction
channels may lead to whole chains of subsequent reactions, one of them resulted
in 13C.˛; n/16O. Indeed, this is one of the two neutron sources identified, the other
being 22Ne.˛; n/25Mg, the end reaction of the sequence 14N.˛; �/18O.˛; �/22Ne,
which is operating at temperatures of about 4 � 108 K. Such temperatures are
encountered during helium burning in massive stars, where the neon source may
produce s-process elements.
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The alternative carbon source for neutrons apparently requires the simultaneous
presence of protons and ˛-particles as well as temperatures above 2 � 108 K for
the ˛-capture. However, at these temperatures, usually all protons are already burnt
to helium, and the amount of 13C is very low, since the overwhelming carbon
isotope is 12C from helium burning. The solution is to bring fresh hydrogen into
hot layers of freshly produced 12C but to keep the abundance of protons so low that
no further CNO processing to 14N is happening. Such a situation can be achieved
by complicated sequences of mixing processes between the helium-burning regions
of a star of intermediate mass and its hydrogen-rich envelope. We will discuss this
in Sect. 34.3. In full stellar models, the neutron densities achieved range from 106

to 1010 cm�3.
The neutron-capture cross section is inversely dependent on velocity (or temper-

ature):

	 � 1

v
; (18.80)

therefore h	vi in (18.21) is actually close to a constant (	v) times the integral
over f .E/ and only slightly dependent on the stellar plasma temperature, except
for nuclei close to magic neutron numbers, where 	 may be lower by an order
of magnitude or more. It generally lies in the range of 100 to 1000 mb (1 b =
10�24 cm2).

We define

h	i WD h	.v/vi=vT ; (18.81)

where vT D .2kT=�n/
1=2 is the thermal velocity in the system of a nucleus A and

a neutron n, �n being the reduced mass of it. h	i corresponds approximately to the
cross section measured at that relative velocity. The rate equation for a nucleus with
mass A and density nA is then

dnA
dt

D �h	.v/viAnnnA C h	.v/viA�1nnnA�1 : (18.82)

With (18.81) this becomes

dnA
dt

D vT nn.�	AnA C 	A�1nA�1/ : (18.83)

Since the neutron density nn may vary with time, we define

d� D vT nn.t/dt; (18.84)

so we obtain
dnA
d�

D �	AnA C 	A�1nA�1 : (18.85)

This equation is self-regulating: assume that initially nA is very small. Then nA will
grow due to the positive second term in (18.85). This will also increase the first
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term until the right-hand side vanishes and nA has reached a stationary value. The
abundances of A and A � 1 will therefore reflect the ratio of cross sections 	A and
	A�1. The integral over d� ,

� D vT

Z
nn.t/dt; (18.86)

is called the neutron exposure and reflects the integrated flux of neutrons with
thermal velocities. Its dimension is that of an inverse area and typically of order
mb�1. It is the decisive quantity determining the overall abundances of elements
produced by neutron captures, and how far the s- or r-process can proceed. The
relative abundances of isotopes produced then reflect the cross section 	 .

The synthesis of neutron-capture elements has to be computed with huge nuclear
networks consisting of hundreds of isotopes and even more reactions. Simplified
models assuming a distribution of neutron exposures on a single initial seed nucleus,
usually 56Fe, can quite successfully reproduce the solar abundance patterns. This
distribution �.�/ is

�.�/ D f n56

�0
exp.��=�0/ ; (18.87)

with f and �0 being two free parameters. With (18.87) the rate equation (18.85) can
be solved analytically for nucleus A:

	AnA D f n56

�0

AY
iD56

	
1C .	i �0/

�1
�1 (18.88)

More details about neutron-capture nucleosynthesis for the interested reader can
be found in the reviews by Meyer (1994), Arnould and Takahashi (1999), and Busso
et al. (1999).

18.7 Neutrinos

Neutrinos require special consideration because their cross section 	� for interaction
with matter is so extremely small. For scattering of neutrinos with energy E�; one
has roughly 	� � .E�=mec

2/210�44 cm2. Neutrinos in the MeV range then have
	� � 10�44 cm2, which is a factor 10�18 smaller than the cross section for typical
photon–matter interactions. The corresponding mean free path in matter of density
% D n�mu and molecular weight �.� 1/ is about

`� D 1

n	�
D �mu

%	�
� 2 � 1020cm

%
; (18.89)
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with % in cgs. For “normal” stellar matter with %� 1 g cm�3, (18.89) would give a
mean free path of the neutrinos of `� � 100 parsec, and even for % D 106 g cm�3,
one has `� � 3000Rˇ.

Therefore it is safe to say that neutrinos, once created somewhere in the central
region, leave a normal star without interactions carrying away their energy. This
neutrino energy has then to be excluded from all other forms of energies (e.g.
that released by nuclear reactions), which are subject to some diffusive transport
of energy according to the temperature gradient.

The situation can be completely different, however, during a collapse in the final
evolutionary stage. The density can reach nuclear values, and for %D 1014 g cm�3,
(18.89) gives only `� � 20 km. Considering the fact that neutrinos can then be
rather energetic (which increases 	� appreciably) one sees that many of them will be
reabsorbed within the star. Then it is necessary to consider a transport equation for
neutrino energy and to evaluate the amount of momentum the interacting neutrinos
deliver to the overlying layers (see Sect. 36.3.3).

Only electron neutrinos play a role in stellar interiors, and these can be created
in quite different processes inside a star. We first recall those processes involving
nuclear reactions, which have already been mentioned (Sect. 18.5) in connection
with certain nuclear burnings. In this special case one usually allows for the neutrino
energy loss by a corresponding reduction of the released energy [This means that
in (10.3) "n is reduced and no separate "� term is needed.].

We already encountered this situation in the case of hydrogen burning
(Sect. 18.5.1), where two neutrinos per fresh helium nucleus are created. The energy
loss due to the escaping neutrinos depends on the particular chain or cycle by which
the burning proceeds, but on average the energy yield per cycle is 25 MeV or
� 4 � 10�5 erg. The generation of one solar luminosity .Lˇ � 4 � 1033 erg s�1/
by hydrogen burning implies thus a production of about 2 � 1038 neutrinos per
second. Those neutrinos coming directly from the central region of the Sun yield
a flux of roughly 1011 neutrinos per cm2 each second at the distance of earth. For
experiments measuring the solar neutrinos see Sect. 29.5.

There are also neutrino-producing nuclear reactions that are not connected with
nuclear burnings. For example, at extreme densities, degenerate electrons can be
pushed up to energies large enough for electron capture by protons in nuclei of
chargeZ and atomic weight A W e� C .Z;A/ ! .Z � 1;A/C �.

Another interesting example is the so-called Urca process. For a suitable nucleus
.Z;A/; an electron capture occurs which is followed by ˇ decay:

.Z;A/C e� ! .Z � 1;A/C � ;

.Z � 1;A/ ! .Z;A/C e� C N� : (18.90)

The original particles are restored, and two neutrinos are emitted. There are obvious
restrictions on the nuclei .Z;A/ suitable for this process: they must have an isobaric
nucleus .Z�1, A/ of slightly higher energy that is unstable to ˇ decay. A possible
example would be 35 Cl .e�; �/35S (endothermic with Q D �0:17MeV), followed
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Fig. 18.11 Regions in which
different types of neutrino
less dominate. The lines
indicate where neighbouring
processes contribute
approximately in equal
shares. 2%=�e is a suitable
quantity proportional to the
electron density. It is identical
to the mass density if �e D 2,
for example, in helium cores
(After Haft et al. 1994)

by the decay 35S .e� N�/35 Cl, the energy for the first reaction being supplied by the
captured electron. In this way, thermal energy of the stellar matter is converted into
neutrino energy and lost from the star, while the composition remains unchanged
(Urca is the name of a Rio de Janeiro casino, where Gamow and Schönberg found
that, as the only recognizable net effect, similar losses, little by little, occur with
visitors’ money.). Details depend very much on the stellar material. If appropriate
nuclei for this are present, the energy loss will increase with % and T .

The following processes occur without a nuclear reaction. These purely leptonic
processes were predicted as a consequence of the generalized Fermi theory of weak
interaction, which allows a direct electron–neutrino coupling, such that a neutrino
pair can be emitted if an electron changes its momentum. It is clear that such
processes may be reduced by degeneracy if the electrons do not find enough free
cells in phase space.

Several processes of this type can be important for stellar interiors. Figure 18.11
shows the approximate regions of the %� T plane where this is the case. Generally,
the energy loss rates are complicated functions of density and temperature. They
are calculated from theories of weak interaction and the results obtained as tables,
for which approximative analytical fitting formulae are derived, which themselves
are too complicated to be reproduced here. A compilation of results is given by Itoh
et al. (1996); a somewhat simpler fitting formula for plasma neutrinos was derived
by Haft et al. (1994).

Pair Annihilation Neutrinos: e� C eC ! � C N� In very hot environments
(T9 > 1), there are enough energetic photons to create large numbers of .e�eC/
pairs. These will soon be annihilated, usually giving two photons, and a certain
equilibrium abundance of eC will be reached. In this continuous back and forth
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exchange, however, there is a small one-way leakage, since roughly once in 1019

times, the annihilation results in a pair .� N�/ instead of the usual photons. This can
lead to appreciable energy loss only in a very hot, not too dense plasma. "� is a
complicated function, but is always proportional to %�1.

Photoneutrinos: �C e� ! e� C�C N� This is the analogue of normal Compton
scattering, in which a photon is scattered by an electron. In very few cases it may
happen that, after scattering, the photon is replaced by a neutrino–antineutrino pair.
The rates of energy loss for this process are rather different for different limiting
cases (depending on the degrees of degeneracy and the importance of relativistic
effects).

Plasmaneutrinos: �plasm ! �C N� A so-called plasmon decays here to a neutrino–
antineutrino pair. The plasma frequency !0 is given by

!20
me

4�e2ne
D

8̂<
:̂
1 ; non-degenerate�
1C

�
„
mec

�2
.3�2ne/

2=3

��1=2
; degenerate :

(18.91)

This is important for an electromagnetic wave of frequency ! moving through the
plasma, since its dispersion relation is

!2 D K2c2 C !20 ; (18.92)

where K is the wave number. Here the wave is coupled to the collective motions of
the electrons, and a propagating wave can occur only for ! > !0. Multiplication
of (18.92) by „2 gives the square of the energy E of a quantum, which therefore
behaves as if it were a relativistic particle with a rest mass corresponding to the
energy „!0. Such a quantum is called a plasmon. For the energy rate, one has to
add the rates of transversal and longitudinal plasmons: ".plasm/

� D "t� C "l� . The
emission rate has an exponential decrease for large !0, which is proportional to %1=2

at constant T . This comes from the fact that very few plasmons can be excited if kT
drops below „!0.

Bremsstrahlung Neutrinos Inelastic scattering (deceleration) of an electron in
the Coulomb field of a nucleus will usually lead to emission of a “Bremsstrahlung”
photon (free–free emission). This photon can be replaced by a neutrino–antineutrino
pair. The rate of energy loss for very large % is

".brems/
� � 0:76

Z2

A
T 68 ; (18.93)

(in cgs) where Z and A are the charge and mass number of the nuclei. For smaller
densities "� is smaller than this expression, the correction being roughly a factor 10
at % � 104 g cm�3. This process can dominate, in particular, at low temperature and
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very high density. The rate ".brems/
� does not decrease with increasing degeneracy (as

other processes do), since the lack of free cells in phase space is compensated by an
increasing cross section for neutrino emission.

Synchrotron Neutrinos These can only occur in the presence of strong magnetic
fields. The normal synchrotron photon emitted by an electron moving in this field is
again replaced by a neutrino–antineutrino pair.



Part IV
Simple Stellar Models

While accurate stellar models have to be computed with numerical programmes, for
a deeper understanding of stellar properties, general rules and dependencies, and
approximative relations, simple stellar models are very useful. They are often based
on simplifications of the material functions discussed in Part III or by assuming
similarity relations between stars. The polytropes of Chap. 19 were essential for the
earliest models of stellar interior but have now gone out of fashion. Nevertheless, we
present the definition and the basic properties for those interested in simple models.
The homology relations of Chap. 20 are formulated very generally; one usually finds
them in more simplified versions, where they are used to derive simple relations
like the mass-luminosity-relation for main sequence stars. Simple relations also are
useful in clarifying popular misconceptions about stars, such as the assumption that
the solar luminosity depends on the nuclear reaction rates (see Sect. 20.2).

In the later sections of this part it will become evident how useful simplified
models can be to capture basic principles of stellar structure and evolution. Of
course, all these are obtained with high accuracy from numerical solutions, but
understanding them is a different issue.



Chapter 19
Polytropic Gaseous Spheres

19.1 Polytropic Relations

As we have seen in Sect. 10.1 the temperature does not appear explicitly in the two
mechanical equations (10.1) and (10.2). Under certain circumstances this provides
the possibility of separating them from the “thermo-energetic part” of the equations.
For the following it is convenient to introduce once again the gravitational potential
˚ , as it was defined in Sect. 1.3. We here treat stars in hydrostatic equilibrium, which
requires [see (1.11) and (2.3)]

dP

dr
D �d˚

dr
% ; (19.1)

together with Poisson’s equation (1.10)

1

r2
d

dr

�
r2
d˚

dr

�
D 4�G% : (19.2)

We have replaced the partial derivatives by ordinary ones since only time-
independent solutions shall be considered.

In general the temperature appears in the system (19.1) and (19.2) if the density
is replaced by an equation of state of the form % D %.P; T /. However, we have
already encountered examples for simpler cases. If % does not depend on T , i.e.
% D %.P / only, then this relation can be introduced into (19.1) and (19.2), which
become a system of two equations for P and ˚ and can be solved without the other
structure equations. An example is the completely degenerate gas of non-relativistic
electrons for which % � P3=5 [see (15.23)].

We shall deal here with similar cases and assume that there exists a simple
relation between P and % of the form

P D K%� � K%1C
1
n ; (19.3)
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where K; � , and n are constant. A relation of the form (19.3) is called a polytropic
relation.K is the polytropic constant and � the polytropic exponent (which we have
to distinguish from the adiabatic exponent �ad). One often uses, instead of � , the
polytropic index n, which is defined by

n D 1

� � 1
: (19.4)

Obviously for a completely degenerate gas the equation of state in its limiting cases
has the polytropic form (19.3). In the non-relativistic limit (15.23) we have � D 5=3,
n D 3=2, while for the relativistic limit (15.26) holds, so that � = 4/3, n D 3. For
such cases, where the equation of state has a polytropic form, the polytropic constant
K is fixed and can be calculated from natural constants.

But there are also examples for a relation of the form (19.3) where K is a free
parameter which is constant within a particular star but can have different values
from one star to another.

Let us consider an isothermal ideal gas of temperature T D T0 and mean
molecular weight �. Its equation of state % D �P=.<T / can be written in the form
(19.3), with K D <T0=�; � D 1; and n D 1. Here K is not fixed but depends on
T0 and �, and if we then use (19.3) in the stellar-structure equations, we are free to
giveK any (positive) value for a certain star.

In a star that is completely convective the temperature gradient (except for that
in a region near the surface, which we shall ignore) is given, to a very good
approximation, by r D .d lnT=d lnP/ad D rad (see Sect. 7.3). If radiation
pressure can be ignored and the gas is completely ionized, we have rad D 2=5

according to (13.12). This means that throughout the star T � P2=5, and for an
ideal gas with � = constant, T � P=%, and therefore P � %5=3. This again is a
polytropic relation of the form (19.3) with � D 5=3, n D 3=2. But now K is not
fixed by natural constants; it is a free parameter in the sense that it can vary from
star to star.

The homogeneous gaseous sphere can also be considered a special case of the
polytropic relation (19.3). Let us write (19.3) in the form

% D K1P
1=� I (19.5)

then � D 1 (or n D 0) gives % D K1 D constant.
These examples have shown that we can have two reasons for a polytropic

relation in a star. (1) The equation of state is of the simple form P D K%� , with a
fixed value ofK . (2) The equation of state contains T (as for an ideal gas), but there
is an additional relation between T andP (like the adiabatic condition) that together
with the equation of state yields a polytropic relation; then K is a free parameter.

On the other hand, if we assume a polytropic relation for an ideal gas, this is
equivalent to adopting a certain relation T D T .P /. This means that one fixes
the temperature stratification instead of determining it by the thermo-energetic
equations of stellar structure. For example, a polytrope with n D 3 does not
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necessarily have to consist of relativistic degenerate gases but can also consist of
an ideal gas and have r D 1=.nC 1/ D 0:25.

19.2 Polytropic Stellar Models

With the polytropic relation (19.3) (independent of whether K is a free parameter
or a constant with a fixed value), (19.1) can be written as

d˚

dr
D ��K%��2 d%

dr
: (19.6)

If � ¤ 1 (the case � D 1; n D 1, corresponding to the isothermal model, will be
treated in Sect. 19.8), (19.6) can be integrated:

% D
� �˚
.nC 1/K

�n
; (19.7)

where we have made use of (19.4) and chosen the integration constant to give˚ D 0

at the surface (% D 0). Note that in the interior of our model, ˚ < 0, giving there
% > 0. If we introduce (19.7) into the right-hand side of the Poisson equation (19.2),
we obtain an ordinary differential equation for ˚ :

d2˚

dr2
C 2

r

d˚

dr
D 4�G

� �˚
.nC 1/K

�n
: (19.8)

We now define dimensionless variables z;w by

z D Ar ; A2 D 4�G

.nC 1/nKn
.�˚c/

n�1 D 4�G

.nC 1/K
%c

n�1
n ;

w D ˚

˚c
D
�
%

%c

�1=n
; (19.9)

where the subscript c refers to the centre and where the relation between % and ˚
is taken from (19.7). At the centre (r D 0) we have z D 0;˚ D ˚c; % D %c, and
therefore w D 1. Then (19.8) can be written as

d2w

d z2
C 2

z

dw

d z
C wn D 0 ;

1

z2
d

d z

�
z2
dw

d z

�
C wn D 0 : (19.10)
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This is the famous Lane–Emden equation (named after J.H. Lane and R. Emden).
We are only interested in solutions that are finite at the centre, z D 0. Equa-
tion (19.10) shows that we then have to require dw=d z � w0 D 0. Let us assume we
have a solution w.z/ of (19.10) that fulfils the central boundary conditions w.0/ D 1

and w0.0/ D 0; then according to (19.9) the radial distribution of the density is
given by

%.r/ D %cwn ; %c D
� �˚c

.nC 1/K

�n
: (19.11)

For the pressure we obtain from (19.3) and (19.4) that P.r/ D PcwnC1, where
Pc D K%

�
c .

Before trying to construct stellar polytropic models we shall discuss some of the
mathematical properties of the solutions w.z/ of (19.10).

19.3 Properties of the Solutions

The Lane–Emden equation has a regular singularity at z D 0. In order to understand
the behaviour of the solutions there, we expand into a power series:

w.z/ D 1C a1z C a2z
2 C a3z

3 C : : : ; (19.12)

with a1 D w0.0/; 2a2 D w00.0/; : : : . Since the gravitational acceleration jgj D
d˚=dr � dw=d z must vanish in the centre, we have a1 D 0. Inserting (19.12) into
the Emden equation (19.10), by comparing coefficients one finds

w.z/ D 1 � 1

6
z2 C n

120
z4 C : : : ; (19.13)

where again we have excluded the isothermal sphere n D 1. Equation (19.13)
shows that w.z/ has a maximum at z D 0.

Only for three values of n can the solutions be given by analytic expressions. The
first case is

n D 0 W w.z/ D 1 � 1

6
z2 ; (19.14)

and we have already mentioned that this corresponds to the homogeneous gas
sphere. Indeed % D %cwn gives constant density for n D 0. The two other cases are

n D 1 W w.z/ D sin z

z
; (19.15)

n D 5 W w.z/ D 1

.1C z2=3/1=2
: (19.16)
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Fig. 19.1 If n < 5 the
solution of the Lane–Emden
equation (19.10) of index n
starting with w.0/ D 1

becomes zero at a finite value
of z D zn. Here the solutions
for n D 3=2 and n D 3 are
plotted

Table 19.1 Numerical values for polytropic models with index n (after Chandrasekhar 1939)

n zn
�
�z2 dw

d z

�
zDzn

%c= N%
0 2.4494 4.8988 1.0000
1 3.14159 3.14159 3.28987
1.5 3.65375 2.71406 5.99071
2 4.35287 2.41105 11.40254
3 6.89685 2.01824 54.1825
4 14.97155 1.79723 622.408
4.5 31.8365 1.73780 6,189.47
5 1 1.73205 1

The surface of the polytrope of index n is defined by the value z D zn; for which
% D 0 and thus w D 0. While for n D 0 and n D 1 the surface is obviously reached
for a finite value of zn; the case n D 5 yields a model of infinite radius. It can be
shown that for n < 5 the radius of polytropic models is finite; for n � 5 they have
infinite radius. This also holds for the limiting case n D 1 (cf. Sect. 19.8).

Apart from the three cases where analytic solutions are known, the Emden
equation (19.10) has to be solved numerically, beginning with the expansion (19.13)
for the neighbourhood of the centre. Here the solution starts with zero tangent and
w D 1 and decreases outwards. This can be seen from (19.13) and is illustrated in
Fig. 19.1.

For a given value of n < 5 the integration comes to a point z where w.z/ vanishes,
i.e. % D 0. This value of z, which corresponds to the surface of the polytrope, will
be called zn. From (19.14)–(19.16) one finds z0 D p

6; z1 D �; z5 D 1. It is a
general property of the solutions that zn grows monotonically with the polytropic
index n. Table 19.1 gives some values of zn and the values of certain functions at
z D zn which will later turn out to be useful for the construction of models.

So far, we have discussed only solutions that are regular at the centre. But
solutions with a singularity at z D 0 can also be important if one uses them for stellar
regions outside the centre. Let us, for instance, consider a star that is convective in
its outer layer, while in the inner part, the energy may be transported by radiation.
If the convective envelope is adiabatic, with r D rad D 2=5, it is polytropic and
therefore % � w3=2 and P � w5=2. But it is unimportant whether this solution is
finite at the centre, since anyway the equations do not hold in the radiative interior.
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On the other hand, one may have to fit a polytropic central core to an envelope
with different properties. In this case the polytropic solution has to be regular at the
centre, but its behaviour for w D % D 0 is unimportant, since it is used only up to
the core surface where % and P are non-vanishing. In the following we mainly deal
with complete polytropes, which have a polytropic relation of the form (19.3) from
surface to centre.

19.4 Application to Stars

We now construct polytropic models for a given index n < 5 and for given values of
M and R. This will turn out to be possible as long asK is not fixed by the equation
of state. We first derive some more relations for polytropes.

From (10.1) and (19.11) it follows that

m.r/ D
Z r

0

4�%r2dr D 4�%c

Z r

0

wnr2dr D 4�%c
r3

z3

Z z

0

wnz2d z ; (19.17)

where we have made use of relations (19.9) and of the fact that r3=z3 is constant
and can be brought in front of the integral. According to the Lane–Emden equation
(19.10) the integrand wnz2 on the right is a derivative and can immediately be
integrated, so that the integral becomes �z2dw=d z. We obtain

m.r/ D 4�%cr
3

�
�1

z

dw

d z

�
; (19.18)

where the simultaneously appearing z and r are related to each other by r=z D
1=A D R=zn. For the special case of the surface, we have

M D 4�%cR
3

�
�1

z

dw

d z

�
zDzn

: (19.19)

The quantity in brackets can be derived from Table 19.1 for several values of n:
If we introduce the mean density N% WD 3M=.4�R3/, we find

N%
%c

D
�

�3
z

dw

d z

�
zDzn

: (19.20)

The right-hand side of this equation depends only on n: for n D 0 it is 1–as one
can see from (19.11). The higher n; the smaller N%=%c, which means the higher the
density concentration, as can be seen in Table 19.1.

We now have all the means at hand to construct the whole polytropic stellar
model for given values of n, M , and R for the case that K is not fixed by the
equation of state.



19.5 Radiation Pressure and the Polytrope n D 3 219

If n is given, a numerical solution of the Lane–Emden equation (19.10) yields
the functions w.z/;w0.z/ and the values of zn and of �zn=.3dw=d z/n. If we now use
M and R to determine the mean density N%, (19.20) gives %c. On the other hand, we
know the constantA D z=r D zn=R by which we adjust the dimensionless z scale to
the r scale. We therefore know the density distribution in the model %.r/ D %cwn.z/
from (19.11). With %c and the constantAwe can determineK from (19.9) and obtain
the pressure distribution P.r/ D K%.nC1/=n D K%

.nC1/=n
c wnC1. The local mass m

then follows from (19.18) and the (known) relation between the z scale and the r
scale. The whole mechanical structure is now determined. It has to be emphasized
that this method of constructing models for given values of n;M; and R is only
applicable ifK is a free parameter, otherwise the problem would be overdetermined
(The case that K has fixed value will be discussed in Sect. 19.6.).

As an example we try to construct a polytropic model of index 3 for the Sun
(M D 1:989 � 1033g, R D 6:96 � 1010 cm). For n D 3 Table 19.1 gives z3 D
6:897; %c= N% D 54:18. The mean density becomes N% D 1:41 g cm�3; consequently
the central density %c D 76:39 g cm�3 and, further,A D z3=R D 9:91�10�11. From
(19.9) we find K D 3:85 � 1014 and consequently Pc D 1:24 � 1017 dyn/cm2. For
the ideal gas equation with � D 0:62 corresponding to X � 0:7, Y � 0:3 we find
for the temperature Tc D 1:2 � 107 K. A proper numerical solution of the full set
of stellar-structure equations for a chemically homogeneous model of 1Mˇ gives
Tc D 1:5�107 K. We see that a polytropic estimate with n D 3 comes considerably
closer to the honestly computed value than our crude estimate in Sect. 2.3.

19.5 Radiation Pressure and the Polytrope n D 3

We consider here only the case thatK is a free parameter. In the example at the end
of the previous section we approximated the Sun by a polytrope of n D 3. This is
formally equivalent to the assumption of an ideal gas (P � %T ) together with a
constant temperature gradient r D 1=4.T � P1=4/. We will now show that this
polytropic relation with n D 3 can also be obtained by a certain assumption on the
radiation pressure. For an ideal gas with radiation pressure

P D <
�
%T C a

3
T 4 D <

�ˇ
%T; (19.21)

we assume that the ratio ˇ D Pgas=P is constant throughout the star. Now

1 � ˇ D Prad

P
D aT 4

3P
(19.22)

shows that ˇD constant means a relation of the form T 4 � P , which we introduce
into (19.21). This gives
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P D
�
3<4

a�4

�1=3 �
1 � ˇ

ˇ4

�1=3
%4=3 ; (19.23)

which indeed is a polytropic relation with n D 3 for constant ˇ. Here the polytropic
constantK is again a free parameter, since we can choose ˇ in the interval 0, 1.

In Sect. 19.10 we shall apply this to very massive stars. They are fully convective
(r D rad) and dominated by radiation pressure.

Relation (19.23) goes back to A.S. Eddington, who obtained it for his famous
“standard model”. He found that the full set of stellar-structure equations (including
the thermo-energetic equations) could be solved very simply by the assumption
�l=m D constant throughout the star. One then obtains ˇ D constant and therefore
the polytropic relation (19.23).

19.6 Polytropic Stellar Models with Fixed K

As a typical example we have already mentioned the non-relativistic degenerate
electron gas for which the equation of state (15.23) is polytropic with n D 3=2 and
polytropic constant

K D 1

20

�
3

�

�2=3
h2

me

1

.�emu/5=3
: (19.24)

We consider the chemical composition to be given (�e fixed). Then in this
expression there is no room for the choice of a free parameter as in (19.23). Although
n D 3=2 is a particularly interesting case, we shall derive our relation for general
values of the polytropic index with n < 5.

Let us see how to construct a model with index n for a given value of %c. The
functions w.z/ and w0.z/ can be considered known from an integration of the Emden
equation. Then % D %cwn is known as a function of z. According to (19.9) the
relation between r and z is

�
r

z

�2
D 1

4�G
.nC 1/K%

1�n
n

c : (19.25)

This can be used to derive the density also as a function of r , where the radius of the
model is R D zn=A and the value zn is obtained from the integration. The constant
A depends on %c, as shown by (19.25), and

R � %
1�n
2n

c : (19.26)

As long as n > 1, the radius R becomes smaller with increasing central density %c,
becoming zero for infinite %c. On the other hand, the mass M of the model varies
with %c according to (19.19) as M � %cR

3 or
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M D C1%
3�n
2n

c I C1 D 4�

�
�w0

z

�
zn

z3n

�
nC 1

4�G

�3=2
K3=2 : (19.27)

Elimination of %c from (19.26) and (19.27) shows that there is a mass-radius relation
of the form

R � M
1�n
3�n : (19.28)

We see that for given K and n there is a one-dimensional manifold of models only,
the parameter being either M or R (or %c), whereas there was a two-dimensional
manifold (M and R as parameters) when K was a free parameter.

Consider again the case of the non-relativistic degenerateX electron gas, which is
not too bad an approximation for white dwarfs of small mass. With n D 3=2, (19.28)
gives R � M�1=3 and the surprising result that the larger the mass the smaller
the radius (This is made plausible by simple considerations in Sect. 37.1.). The
model will shrink with increasing mass and should finally end as a point mass for
infiniteM . But long before this, our assumed equation of state will not be valid any
more, since from (19.27) we see that %c is proportional to �M2. For ever-increasing
densities the electrons will become relativistic (see Sect. 16.2), and the equation of
state (15.23) has to be replaced by (15.26). This means a transition from a polytrope
n D 3=2 to one with n D 3 (and a different, but also given, polytropic constantK).
In this case we shall encounter a new problem, hinted at by the exponent in (19.28).

19.7 Chandrasekhar’s Limiting Mass

In Sect. 19.6 we have seen that a polytropic model in which the pressure is provided
by a non-relativistic degenerate electron gas reaches higher central and mean
densities with growing total mass M . But with increasing density the electrons
become gradually more relativistic. This starts in the central region where the
density is highest, the outer parts remaining non-relativistic. Although we know
that the transition between equations of state (15.23) and (15.26) does not occur
abruptly, but smoothly via the more general equation of state (15.13), one can
imagine that an idealized stellar model consisting of degenerate matter can be
constructed by fitting two regions smoothly together: a (relativistic) polytropic core
with n D 3 surrounded by a (non-relativistic) polytropic envelope with n D 3=2.
Indeed Chandrasekhar constructed his first white-dwarf model in this way.

Let us consider how this idealized model changes with growing mass M . At
smallM the whole model is still non-relativistic. The relativistic core will occur for
%c & 106 g cm�3 (Fig. 16.1) and gradually encompass larger parts of the model as %c

increases. One would therefore expect the model finally to approach the state where
all its mass (except a small surface region) is relativistic, so that a polytrope of index
n D 3 would describe the whole model properly; however, there is a difficulty. As
one can see from (19.27) the mass does not vary with central density in the case of
a polytrope of index n D 3 if K is fixed. In this case, (19.27) givesM D C1:
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M D 4�

�
�w0

z

�
z3

z33

�
K

�G

�3=2
: (19.29)

This is the only possible mass for relativistic degenerate polytropes and is called the
Chandrasekhar mass, which after insertion of the proper numerical values yields

MCh D 5:836

�2e
Mˇ : (19.30)

We therefore can expect that our series of models constructed by fitting an n D 3=2

envelope to an n D 3 core finds its end at a critical total massM D MCh as given by
(19.30). Or in other words our models of increasing central density tend to a finite
mass and approach zero radius for %c ! 1. Of course, this final state is physically
unrealistic, since the equation of state is changed by different effects at very high
density (see Chaps. 16, 37 and 38).

Although we have discussed the problem only from the standpoint of poly-
tropic models, the result for MCh remains numerically the same if one uses
Chandrasekhar’s more general equation of state (15.13) (compare the treatment in
Sect. 37.1. The reason is that for extremely high density, (15.13) approaches the
polytropic relation (19.3) with � D 4=3 or n D 3.

It is surprising that the limiting mass not only is finite, but that it is so small that
many stars exceed it. But their equation of state is not dominated by degenerate
electrons, and therefore Chandrasekhar’s limiting mass (19.30) has no meaning
for them. White dwarfs seem to be formed of material where all the hydrogen
is transformed into helium, carbon, or oxygen, such that we expect �e D 2 and
therefore MCh D 1:46Mˇ. Indeed no white dwarf has been found which exceeds
this mass.

In the above considerations we have approached the relativistic degenerate
polytrope by way of a sequence with %c ! 1 (and consequentlyR ! 0). However,
this polytrope is a particular case: we have already mentioned that according to
(19.27) M and %c are then no longer coupled. In other words, for M D MCh, the
central density can be arbitrary (and therefore also the radius R), i.e. there is a
whole series of relativistic degenerate polytropes (having %c or R as parameter) that
all have the same massMCh. This is a case of neutral equilibrium (see Sect. 25.3.2).

19.8 Isothermal Spheres of an Ideal Gas

We now deal with the case � D 1 or n D 1, which we omitted in Sect. 19.2. Here
K D <T=� is a free parameter. If � D 1, integration of (19.6) gives

� ˚

K
D ln% � ln %c ; (19.31)
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Fig. 19.2 The solution of the
Lane–Emden
equation (19.35) for the case
of an isothermal ideal gas
(n D 1)

where we have now chosen the constant of integration in such a way that the
gravitational potential is zero at the centre and positive outside it. With

% D %ce�˚=K (19.32)

and with the Poisson equation (19.2) we find

d2˚

dr2
C 2

r

d˚

dr
D 4�G%ce�˚=K : (19.33)

We now introduce dimensionless variables z;w by

z D Ar ; A2 D 4�G%c

K
; ˚ D Kw (19.34)

and obtain the “isothermal” Lane–Emden equation

d2w

d z2
C 2

z

dw

d z
D e�w ; (19.35)

which now has to be integrated with the central conditions

w.0/ D 0 ;

�
dw

d z

�
zD0

D 0 : (19.36)

Again, a power series expansion can be derived and has to be used to describe the
behaviour near the centre. The solution is given in Fig. 19.2.

As already mentioned, the isothermal sphere consisting of an ideal gas has an
infinite radius, like all polytropes of n � 5. It also has an infinite mass. Certainly
there can be no such stars, but polytropes with n D 1 can be used in order to
construct models with non-degenerate isothermal cores. Such models play a role in
connection with the so-called Schönberg–Chandrasekhar limit (see Sect. 30.5).
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19.9 Gravitational and Total Energy for Polytropes

We now give a general expression for the gravitational energy Eg of polytropes.
We first show that quite generally

Eg D 1

2

Z M

0

˚ dm� 1

2

GM2

R
: (19.37)

From the definition (3.3) of Eg, we find

Eg D �G
Z M

0

m

r
dm D �1

2

GM2

R
� 1

2
G

Z R

0

m2

r2
dr ; (19.38)

where the last expression has been obtained by partial integration and where we
have used the fact thatm=r vanishes at the centre. But on the other hand

d˚

dr
D Gm

r2
(19.39)

and therefore

Eg D �1
2

GM2

R
� 1

2

Z R

0

d˚

dr
mdr

D �1
2

GM2

R
C 1

2

Z M

0

˚ dm ; (19.40)

where again we have integrated partially and used the fact that m˚ vanishes at the
centre (m D 0) and at the surface [˚ D 0, according to our choice of the integration
constant in connection with (19.7)], so we have indeed recovered (19.37). For a
polytrope we can use (19.3), (19.7) and write

˚ D � K�

� � 1
%��1 D � �

� � 1

P

%
(19.41)

and therefore, with (19.37),

Eg D �1
2

GM2

R
� 1

2

�

� � 1
Z M

0

P

%
dm : (19.42)

According to (3.2) and (3.3) the last term on the right can be expressed byEg. If we
replace � by n, then

Eg D �1
2

GM2

R
C 1

6
.nC 1/Eg (19.43)
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and therefore

Eg D � 3

5 � n

GM2

R
: (19.44)

We now derive a similar expression for the internal energyEi. In (3.8) we defined a
quantity � by

� WD 3P=.%u/ (19.45)

(u = internal energy per mass unit).
We saw that for an ideal gas

� D 3.�ad � 1/ : (19.46)

This relation also holds for a more general equation of state as long as � is constant.
In order to show this, we take the total differentials from (19.45) and obtain

� du D 3
dP

%
� 3

P

%2
d% : (19.47)

We now assume that the differentials describe adiabatic changes. The first law of
thermodynamics gives

du D P

%2
d% : (19.48)

Then with

�ad D %

P

dP

d%
; (19.49)

(19.47) yields

� D 3
%

P

dP

d%
� 3 D 3.�ad � 1/ : (19.50)

For an ideal gas with �ad D 5=3 one has � D 2, while for an ideal gas with �ad D
4=3; � D 1. In the case of a gas dominated by radiation pressure (P D aT 4=3 and
u D aT 4) one finds � D 1. Assuming � to be constant throughout the star and using
(19.44) we find with (3.9)

Ei D �1
�
Eg D 3

�.5� n/
GM2

R
: (19.51)

The total energy then becomes

W D Ei C Eg D 3

5 � n
�
1

�
� 1

�
GM2

R
: (19.52)

We can conclude from (19.52) that the total energy for a polytrope of finite radius
vanishes when � D 1 and in particular for the above cases of an ideal gas with
�ad D 4=3 and a radiation-dominated gas.
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19.10 Supermassive Stars

Let us consider an ideal gas with radiation pressure and assume that ˇ D Pgas=P D
constant throughout the star. We have seen in (19.23) that this yields a polytrope
with n D 3.

Relation (19.23) defines the polytropic constantK:

K D
�
3<4

a�4

�1=3 �
1 � ˇ

ˇ4

�1=3
: (19.53)

On the other hand, from (19.9) for n D 3 we have

K D �G%2=3c
R2

z23
; (19.54)

where we have used A D z3=R. The numerical value of z3 is 6.897 (Table 19.1).
With (19.20) %c can be expressed by M and R:

%c D 54:18 N% D 54:18
3M

4�R3
D c1

M

R3
; (19.55)

where we have taken the numerical value from Table 19.1. From (19.53) we
eliminate K with (19.54) and then %c with (19.55) and obtain “Eddington’s quartic
equation”:

1 � ˇ

�4ˇ4
D a

3<4

.�G/3c21
z63

M 2 D 3:02 � 10�3
�
M

Mˇ

�2
: (19.56)

In the interval 0 � ˇ � 1 the left-hand side is a monotonically decreasing function
of ˇ, which therefore becomes smaller with growing M ; this means that radiation
pressure becomes the more important the larger the stellar mass.

For a pure hydrogen star of 106Mˇ and � D 0:5, (19.56) gives .1 � ˇ/=ˇ4 D
1:9 � 108, or ˇ � 0:0086.

Supermassive stars are therefore dominated by radiation pressure. One conse-
quence is that rad is appreciably reduced [rad ! 1=4, for ˇ ! 0; see (13.12)]
and the star becomes convective with r D rad. This can also be seen from
an extrapolation of the main-sequence models towards large M (Sect. 22.3). The
adiabatic structure requires constant specific entropy s. For a gas dominated by
radiation pressure (the density being determined by the gas, the pressure by the
photons) the energy u per mass unit and the pressure are given by

u D aT 4

%
; P D a

3
T 4 : (19.57)
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Then with the first law of thermodynamics we have

ds D dq

T
D 1

T

�
du � P

%2
d%

�

D 4aT 2

%
dT � 4aT 3

3%2
d% D d

�
4aT 3

3%

�
(19.58)

and

s D 4aT 3

3%
: (19.59)

Constant specific entropy means % � T 3, which together with the pressure equation
P � T 4 immediately gives P � %4=3. Indeed supermassive stars are polytropic
with n D 3 as we assumed initially.

The supermassive star polytropes have a free K , which means that M can be
chosen arbitrarily (in contrast to the relativistic degenerate polytrope of the same
index, whereK and M were fixed). For each mass, .1 � ˇ/=.�ˇ/4 can be obtained
from (19.56), and then (19.53) gives the corresponding value ofK . But if the mass is
given, there still exists an infinite number of models for differentR. This is possible
in spite of the fact that K is already determined by M : since according to (19.55)
%c � N% � M=R3, (19.54) shows K to be independent of R. This is typical for the
polytropic index n D 3.

Equation (19.59) shows that for an adiabatic change .ds D 0/ of a given mass
element % � T 3, and therefore with (19.57)P � %4=3 or �ad D 4=3. Then � D 1 and
(19.52) gives the total energy of the modelW D 0. The supermassive configuration
is in neutral equilibrium. No energy is needed to compress or expand it. In Chap. 25
we will find that �ad D 4=3 corresponds to the case of marginal dynamical stability.
There a simple interpretation is given for this peculiar behaviour.

19.11 A Collapsing Polytrope

Up to now we have only treated polytropic gaseous spheres in hydrostatic equilib-
rium. One can also find solutions for polytropes of n D 3 for which the inertia term,
neglected in (19.1), is important (Goldreich and Weber 1980). Then (19.1) has to be
replaced by

@vr

@t
C vr

@vr

@r
C 1

%

@P

@r
C @˚

@r
D 0 ; (19.60)

with vr D @r=@t .
Let us consider a relativistic degenerate polytrope with n D 3, or � D �ad D 4=3.

In a manner similar to that of Sect. 19.2 we define a dimensionless length-scale z by

r D a.t/z ; vr D Paz (19.61)
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such that z is time independent, the whole time dependence of r being contained
in a.t/ [Note that a corresponds to 1=A in (19.9)]. The form (19.61) describes a
homologous change (compare with Sect. 20.3). If we introduce a velocity potential
 by vr D @ =@r , we can write

avr D a Paz D a
@ 

@r
D @ 

@z
;  D 1

2
a Paz2 ; (19.62)

where we have fixed the constant of integration in the velocity potential by  D 0

at z D 0. Note that the time derivative of  in the comoving frame is

d 

dt
D @ 

@t
C vr

@ 

@r
D @ 

@t
C . Paz/2 : (19.63)

With the new variables, Poisson’s equation (19.2) can be written as

1

z2
@

@z

�
z2
@ 

@z

�
D 4�G%a2 ; (19.64)

while the continuity equation (1.4) becomes with (19.62)

1

%

d%

dt
C 1

z2a2
@

@z

�
z2
@ 

@z

�
� 1

%

d%

dt
C 3

Pa
a

D 0 : (19.65)

This means that % � a�3 (in the comoving frame), a result that is obvious from
(19.61). As in (19.9) we define w.z/ by % D %cw3.z/. This w.z/ will turn out to
be related to the Emden function of index 3, as we shall see later. Note that %c is a
function of time. In order to stay as close as possible to the formalism of hydrostatic
equilibrium, we fix a D r=z [rather as we did with 1=A in (19.9)] by

1

a2
D �G

K
%2=3c (19.66)

such that

% D %cw3.z/ D
�
K

�G

�3=2
1

a3
w3.z/ : (19.67)

We now come to the equation of motion and define

h WD
Z
dP

%
D 4K%1=3 ; (19.68)

where we have made use of (19.3) for � D 4=3. Inserting and h from (19.62) and
(19.68) into the equation of motion (19.60) gives
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@2 

@r@t
C 1

2

@

@r

�
@ 

@r

�2
C @˚

@r
C @h

@r
D 0 ; (19.69)

which can be integrated with respect to r . If we set the integration constant to zero,
replace @ =@r by Paz, and consider (19.63), we find that

d 

dt
D 1

2
Pa2z2 � ˚ � h (19.70)

and therefore with (19.62)
1

2
a Raz2 D �˚ � h : (19.71)

From (19.67) and (19.68) follows

h D 4K%1=3 D 4
K3=2

.�G/1=2
1

a
w.z/ : (19.72)

We try a similar dependence of ˚ on t and write

˚ D 4
K3=2

.�G/1=2
1

a
g.z/ ; (19.73)

which defines the dimensionless function g.z/. If we insert (19.72) and (19.73) into
(19.71) we find

1

2
a2 Ra D � 4K3=2

.�G/1=2
.g C w/

1

z2
: (19.74)

Since the left-hand side is a function of t only and the right-hand side is a function
of z only, both sides must be constant; therefore

3

4

.�G/1=2

K3=2
a2 Ra D �� ; (19.75)

6
g C w

z2
D � (19.76)

(� = constant). The first of these equations can be integrated twice. After multipli-
cation with Pa=a2, the first integration gives

Pa2 D 8

3
�

�
K3

�G

�1=2
1

a
; (19.77)

where the constant of integration is set equal to zero (assuming a zero velocity when
the sphere is expanded to infinity). Multiplication of (19.77) with a gives
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Fig. 19.3 Solutions of (19.81) for different values of �. In the range 0 < � � �m, they describe
homologously collapsing polytropes of index 3. The solution for � D �m reaches the abscissa with
slope zero. The broken lines indicate the behaviour of the solutions for different values of �

a1=2 Pa � 2

3

d

dt
.a3=2/ D ˙

"
8�

3

�
K3

�G

�1=2#1=2
(19.78)

(the signs representing exploding or collapsing models, respectively). This can
immediately be integrated, yielding for a collapse ( Pa < 0) that starts at a0 for t D 0:

a3=2.t/ D a
3=2
0 � 3

2

"
8�

3

�
K3

�G

�1=2#1=2
t : (19.79)

This expression gives the time dependence of the scaling factor a.t/ and therefore
by way of (19.67), of the density as a function of time.

We now investigate the spatial dependence of our solution. In particular, the
function w.z/ in (19.67) has to be determined. For this purpose we write Poisson’s
equation (19.2) in the dimensionless variable z

1

z2
@

@z

�
z2
@˚

@z

�
D 4�G%a2 : (19.80)

If we here replace ˚ by (19.73), g.z/ by (19.76), and % by (19.67), we find

1

z2
d

d z

�
z2
dw

d z

�
C w3 D � : (19.81)

For � D 0 this is the classical Emden equation. Solutions for � ¤ 0 deviate
from hydrostatic equilibrium, the value of � being a measure for this deviation.
From numerical integrations it follows that physically relevant solutions w.z/ are
obtained only for very small values of �, namely for � < �m D 0:0065. Otherwise
the solution w.z/ and therefore %.r/ do not become zero at a finite radius; they
rather increase again to infinity after a minimum has been reached (see Fig. 19.3).
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This figure shows also that for � < �m the solutions deviate appreciably from the
“classical” one (� D 0) only in the outer layers, where � 	 w3 no longer applies.

The time-dependent solution discussed here has to be understood in the following
way. Let us consider a polytrope with n D 3 in equilibrium; then the equilibrium
is independent of radius. We have already seen that the total energy is W D 0

independent of the radius, see (19.52). Therefore the polytrope n D 3 is indifferent
to radial changes. If we now assume that suddenly the pressure is slightly reduced
say, because the constantK is slightly diminished, then the gaseous sphere begins to
contract. This contraction can be described by the two equations (19.75) and (19.76).
The solution of the first gives the behaviour in time (19.79), while the second is used
to derive the modification of the Lane–Emden equation due to the inertia terms. The
parameter � is a measure of the deviation from hydrostatic equilibrium, caused by
the assumed reduction of K .

The solutions for collapsing polytropes have been discussed by Goldreich and
Weber (1980) with respect to collapsing stellar cores causing supernova outbursts
(Chap. 36).



Chapter 20
Homology Relations

In physical problems it often happens that from one solution others can be obtained
by simple transformations. When comparing different stellar models that are
calculated under similar assumptions (concerning parameters or material functions),
one therefore expects to find similarities in the solutions. It would be very helpful if
we could find simple analytic expressions that transform one solution into another.
It would then only be necessary to produce one numerical solution in order to
find new ones by a transformation. There is indeed often a kind of “similarity”
between different solutions, which is called homology, though the conditions for
this are so severe that real stars will scarcely match them. There are a few cases,
however, for which homology relations offer a rough, but helpful, indication for
interpreting or predicting the numerical solutions. We indicate this in two examples,
the main-sequence models and the homologous contraction. Except for this classical
homology there is another type of homology, which applies to certain red giants (see
Sect. 33.2).

20.1 Definitions and Basic Relations

When comparing different models (say of masses M and M 0, and radii R and R0)
one considers in particular homologous points at which the relative radii are equal:
r=R D r 0=R0. We now speak of homologous stars if their homologous mass shells
.m=M D m0=M 0) are situated at homologous points. To be more precise, let us
consider all radii as functions of the relative mass values �, which are the same for
homologous masses:

� WD m=M D m0=M 0: (20.1)

We can then write the homology condition as

r.�/

r 0.�/
D R

R0 (20.2)
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for all �. In homologous stars the ratio of the radii r=r 0 for homologous mass shells
is constant throughout the stars. Going from one homologous star to another, all
homologous mass shells are compressed (or expanded) by the same factor R=R0
(Note that therefore any two polytropic models of the same index n are homologous
to each other.).

Since both models have to fulfil the stellar-structure equations, the transition
has, of course, consequences for all other variables. We derive these by comparing
two homologous stars of masses M and M 0 and of two different compositions that
are supposed to be homogeneous and represented by the mean molecular weights
� and �0. The ratio of these basic parameters will be called

x D M=M 0I y D �=�0: (20.3)

The variables in the two models are always considered functions of the relative mass
variable � and may be called r; P; T; l (for M;�), and r 0; P 0; T 0; l 0 (for M 0; �0),
respectively. We try the following “ansatz”: for homologous mass values � (which
we omit for clarity in the following equations) the variables are supposed to have
the ratios

r

r 0 D z D R

R0 I P

P 0 D p D Pc

P 0
c

I T

T 0 D t D Tc

T 0
c

I l

l 0
D s D L

L0 ; (20.4)

where z; p; t; s have the same values for all � and where the subscript c indicates
central values.

We start with homologous main-sequence models. Since they evolve within the
long nuclear timescale, one can use (10.2), neglecting the inertia term, as well as the
time derivatives in the energy equation (10.3). Let us assume that in these two stars
in complete equilibrium (hydrostatic and thermal) the energy transport is radiative.
The basic equations to be fulfilled are then (10.1), (10.2), (10.4) and (10.16) together
with (10.6), where we further set " for the total energy production rate. We write
them for the first star in terms of the relative mass variable � as

dr

d�
D c1

M

r2%
; c1 D 1

4�
;

dP

d�
D c2

�M2

r4
; c2 D � G

4�
;

d l

d�
D "M; (20.5)

dT

d�
D c4

�lM

r4T 3
; c4 D � 3

64�2ac
:

Since no time derivatives appear, the differentiations with respect to � are written
as ordinary derivatives. In these equations we transform the variables r; P; T; l into
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r 0; P 0; T 0; l 0 by use of (20.4). Noting that the z, p, t, s are independent of �, and that
� contains the total mass as scaling factor, which has to be transformed by (20.3),
one immediately finds the transformed equations:

dr 0

d�
D c1

M 0

r 02%0

�
x

z3d

�
;

dP 0

d�
D c2

�M 02

r 04

�
x2

z4p

�
;

d l 0

d�
D "0M 0 hex

s

i
; (20.6)

dT 0

d�
D c4

�0l 0M 0

r 04T 03

�
ksx

z4t4

�
:

c1; : : : ; c4 are the same constants as before, and we have introduced the additional
abbreviations

%

%0 D d I "

"0 D e I �

�0 D k (20.7)

for the ratios of the material functions at homologous points.
Since for the variables r 0; P 0; T 0; l 0 we could have written the same basic equa-

tions (20.5) as for r; P; T; l , a comparison of (20.6) with (20.5) shows immediately
that the four factors in brackets in (20.6) must be equal to one:

x

z3d
D 1;

x2

z4p
D 1;

ex

s
D 1;

ksx

z4t4
D 1: (20.8)

Without further specification of the material functions, we can obtain two useful
relations already from the first and second of equations (20.8). They can be rewritten
as

%

%0 D M=M 0

.R=R0/3
;

P

P 0 D .M=M 0/2

.R=R0/4
: (20.9)

Therefore, for all homologous points, the density changes simply as the mean
density for the whole star, while P varies like M2R�4:

In order to find solutions for (20.8), we represent the material functions by power
laws:

% � P˛T �ı�'; " � %�T �; � � PaT b; (20.10)

which from (20.7) with (20.4) give

d D p˛t�ıy'; e D p�˛t���ıy�'; k D patb: (20.11)
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These can be introduced into (20.8), which are then four conditions for the powers
of z; p; t , and s:We will try to represent them in terms of x and y; which, according
to (20.3), describe the change of the basic parametersM and �:

z D xz1yz2 I p D xp1yp2 I t D xt1yt2 I s D xs1ys2 : (20.12)

Introducing these and (20.11) into (20.8), we obtain four conditions which contain
only products of powers of x and y: In each condition, the exponents of x and of y
must sum up to zero, since the right-hand sides of (20.8) are independent of x and y:
This yields eight linear equations for the exponents z1; : : : ; s2, which are written in
matrix form as

0
BB@

�3 �˛ ı 0

�4 �1 0 0

0 �˛ .� � �ı/ �1
�4 a .b � 4/ 1
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1
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0
BB@

�1
�2
�1
�1

1
CCA (20.13)

and 0
BB@

�3 �˛ ı 0

�4 �1 0 0
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�4 a .b � 4/ 1

1
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0
BB@

z2
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1
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0
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'

0

��'
0

1
CCA : (20.14)

The solutions are

z1 D 1

2
.1CA/; p1 D �2A;

t1 D 1

2ı
Œ1C .3 � 4˛/A�; (20.15)

s1 D 1C 4 � b

2ı
C
�
2C 2a C 3 � 4˛

2ı
.4 � b/

�
A;

and

z2 D 'B; p2 D �4'B; t2 D '

ı
Œ1C .3 � 4˛/B�;

(20.16)

s2 D '

ı
.4 � b/C '

�
4C 4aC 3 � 4˛

ı
.4 � b/

�
B;

A D
�
4ı.1C aC �˛/

� C b � 4 � �ı C 4˛ � 3

��1
; B D A

�
1 � �ı

� C b � 4

��1
:

(20.17)
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20.2 Applications to Simple Material Functions

20.2.1 The Case ı D 0

A special situation arises for the case that the density is independent of T; i.e.
ı D 0 in (20.10). The equation of state then is polytropic, the polytropic index
being n D ˛=.1 � ˛/; and we must recover the typical properties of polytropic
stars (see Sect. 19.3). This can, in fact, be easily verified. To start with, the first two
equations of system (20.13) (which represent the mechanical part) can be solved
independently of the rest (the thermo-energetic part). For ı D 0we find from (20.15)
and (20.17) that A D .4˛ � 3/�1 and z1 D .2˛ � 1/=.4˛ � 3/. The first of (20.12)
gives for homologous stars of equal composition (y D 1) the mass-radius relation

R � M z1 : (20.18)

For a non-relativistic degenerate electron gas, one has ˛ D 3=5, which gives the
exponent z1 D �1=3 as already obtained in Sect. 19.6.

20.2.2 The Case ˛ D ı D ' D 1; a D b D 0

Further discussion of the above homology solutions will concentrate on the simplest
case, an ideal gas (˛ D ı D ' D 1) with constant opacity (a D b D 0) [cf. (20.10)].
This extremely rough approximation to reality suffices for outlining some general
properties of main-sequence stars (The assumption of homology introduces a much
severer limitation on the results.).

From (20.15)–(20.17), one finds

z1 D � C � � 2
� C 3�

; z2 D � � 4
� C 3�

;

p1 D 2 � 4z1; p2 D �4z2;

t1 D 1 � z1; t2 D 1 � z2;

s1 D 3; s2 D 4: (20.19)

The first surprising result concerns the exponents of the luminosity, s1 and s2. In
this simple case the square brackets in the equations for s1 and s2 in (20.15) and
(20.16) vanish, and s1 and s2 become simple constant numbers. In particular, they
are independent of � and �, i.e. of the special mode of energy generation. In fact
the energy equation [giving the third of (20.13)] has no influence on the luminosity,
which is determined by hydrostatic equilibrium, the equations of state, and radiative
energy transfer only. The model has to adjust so that the energy sources (") provide
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Fig. 20.1 Sketch of the
Hertzsprung–Russell diagram
with the locus of homologous
main-sequence stars (solid
line) of different masses for a
certain constant value of �.
The dashed lines indicate
lines of R D constant

this luminosity. Introducing the exponents into (20.12), we have from (20.4) that

L

L0 D
�
M

M 0

�3 �
�

�0

�4
: (20.20)

There thus exists a mass-luminosity relation that gives a steeply increasing L with
increasing M . And L varies even more strongly with the molecular weight � (The
precise values of the exponents vary for other values of a and b roughly in a range
from 3 to 6, but the principle result remains.).

All other exponents depend on � and �. z1 and z2 describe the variation of the
radius:

R

R0 D
�
M

M 0

�z1 � �
�0

�z2

: (20.21)

The exponent z1 of the M �R relation is positive for all relevant combinations of
� and � but smaller than one, i.e. R increases slightly with M . Values for typical
parameters of hydrogen burning (� D 1) via the pp chain .� D 4 : : : 5) and the
CNO cycle .� � 15 : : : 18) are given in Table 20.1. Over this very large range of
�, z1 varies relatively little, roughly from 0.4 to 0.8.

The M�R relation together with the M�L relation immediately give the locus
of these stars in the Hertzsprung–Russell (HR) diagram, where lg L is plotted over
�lg Teff (see Fig. 20.1).

From (20.20) and (20.21) we haveR � Lz1=3 for homologous stars of identical�.
Introducing this into the definition of the effective temperature

	T 4eff D L

4�R2
; (20.22)

we obtain the locus as given by

lgL D 12

3 � 2z1
lg Teff C constant: (20.23)

For an average value z1 D 0:6, the slope is 6.67.
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Table 20.1 Exponents in (20.12) for various temperature sensitivities � of the nuclear reactions,
and for ˛ D ı D ' D 1; a D b D 0; � D 1, calculated from (20.19)

�: 4 5 15 18

z1 0.43 0.5 0.78 0.81
z2 0 0.13 0.61 0.67
p1 0.29 0 �1.11 �1.24
p2 0 �0.5 �2.44 �2.67
t1 0.57 0.5 0.22 0.19
t2 1.0 0.88 0.39 0.33
s1 3 3 3 3
s2 4 4 4 4
The exponents describe the dependence of R;P; T; L on M and � .R � M z1�z2 ; P �
Mp1�p2 IT � Mt1�t2 ; L � Ms1�s2/

Let us consider how a star of fixed M moves in the HR diagram if � changes.
From (20.20) and (20.21) we have L � �4;R � �z2 ; which with (20.22) gives
T 8eff � L2�z2 � L1:5 for z2 � 0:5. This defines in the HR diagram a straight
line of smaller slope (� 5:3) than that of the main sequence. This line for M D
constant and � increasing goes to the upper left with a slope between that of the
main sequence and that of the lines R D constant.

The expression for t1 in (20.19) means that

T � M=R; (20.24)

which simply reflects the virial theorem (thermal energy � potential energy). Of
special interest are the central values of temperature and density, Tc and %c, for
which one has

Tc � M1�z1 ; %c � M1�3z1 : (20.25)

The values in Table 20.1 show that for increasing M;Tc increases relatively slowly,
while %c decreases. This trend is especially pronounced for CNO burning, where
Tc scarcely changes at all, typical variations being Tc � M0:2 and %c � M�1:4
(see Fig. 20.2). The predictions of the homology relations are at least qualitatively
recovered in the numerical solutions for main-sequence stars (Chap. 22).

20.2.3 The Role of the Equation of State

The procedure by which the homology solutions were obtained shows that their
existence rests entirely on the fact that the right-hand sides of (20.5) contain only
products of the variables, but no sums. This property is destroyed if the material
functions, instead of being products of powers of P and T , contain additive terms
as is in general the case with the equation of state. The simplest example is the
addition of radiation pressure to an ideal gas such that P D <%T=� C aT 4=3:
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Fig. 20.2 The central values of T and % (both logarithmic) for homologous main-sequence stars
of various M: The slope corresponds to a temperature sensitivity � typical for CNO burning

No strict homology relations are then possible. But one can try to make rough
approximations.

One usually writes the corresponding equation of state as

% � .�ˇ/
P

T
; ˇ D Pgas

P
D 1 � Prad

P
: (20.26)

The situation would be simple and homology relations would hold if ˇ were
constant throughout the model. Then a variation of ˇ obviously has the same effect
as that of � and we would find R � ˇz2 ; P � ˇp2 ; T � ˇt2 ; L � ˇs2 . In reality ˇ
is determined by P and T: For simultaneous variations of M and ˇ, therefore

1 � ˇ D Prad

P
� T 4

P
� M4t1

Mp1

ˇ4t2

ˇp2
; (20.27)

which, if we simply use (20.19), gives

1 � ˇ

ˇ4
� M2: (20.28)

Now, ˇ is generally not constant inside a star [except for the polytrope n D 3

as treated in Sect. 19.5; compare with the identical relation (19.56)], but we can
consider (20.28) as a relation between M and some kind of mean value of ˇ. One
then sees that ˇ decreases strongly with M; i.e. the contribution of the radiation
pressure to P increases with mass. Quite similarly we can write

L � Ms1 ˇs2 : (20.29)

Since ˇ decreases with increasing M , (20.29) can be written as L � Ms1�c .c > 0
for s2 > 0) and the M�L relation becomes less steep. For ˇ � 1 (large Prad),
relation (20.28) gives ˇ � M�1=2 such that L � Ms1�s2=2 D M . It is generally
true that with increasing mass, the pressure in homogeneous stars is increasingly
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dominated by radiation pressure, and the mass-luminosity relation is less steep than
for low-mass stars.

20.3 Homologous Contraction

Now we briefly consider the homologous contraction. This may apply to a chemi-
cally homogeneous star of given mass in hydrostatic equilibrium, if its radius is not
fixed by an M�R relation but changes in time. Let us assume that consecutive
models are homologous to each other. An example in which this assumption is
fulfilled is the contraction of a polytrope that does not change its polytropic index n:
The solution of the Lane–Emden equation for given n yields the mass value m as
a unique function of z only, where z is Emden’s dimensionless radius variable, i.e.
z � r=R (see Sect. 19.2). Therefore the mass elements remain at homologous points,
since their values of z do not change in time.

Homologous mass shells (� = constant) are here simply those which have the
same value of m; since the normalizing factor M remains constant. The radius of
any such shell is supposed to change by a rate Pr D @r=@t . In two neighbouring
models, separated by a time interval 
t , we have the values r and r 0 connected by
r 0 D r C Pr
t . This gives

r 0

r
D 1C Pr

r

t: (20.30)

For a homologous contraction, we must require that r 0=r D R0=R D constant
throughout the star. Then also

Pr
r

D
PR
R

(20.31)

must be constant, or
@

@m

�
@ ln r

@t

�
D 0: (20.32)

The relative rate of change of the other variables can then be easily expressed in
terms of Pr=r: From (20.32) we find by exchange of the two derivatives, and by
using (10.1),

@

@t

�
1

r

@r

@m

�
D @

@t

�
1

4�r3%

�
D 1

4�r3%

�
�3 Pr
r

� P%
%

�
D 0; (20.33)

which gives
P%
%

D �3 Pr
r
: (20.34)

The pressure at a layer of mass valuem is given by an integration of the hydrostatic
equation as
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P D
Z M

m

Gm

4�r4
dm: (20.35)

Differentiating this with respect to time and observing that Pr=r is constant through-
out the model, we have

PP D
Z M

m

@

@t

�
1

r4

�
Gm

4�
dm D �4 Pr

r

Z M

m

Gm

4�r4
dm: (20.36)

Equations (20.35) and (20.36) yield

PP
P

D �4 Pr
r
: (20.37)

If we have an equation of state with % � p˛T �ı; then P%=% D ˛ PP=P � ı PT =T .
Solving this for PT =T and replacing P% and PP by (20.34) and (20.37), we have

PT
T

D �4˛ � 3

ı

Pr
r
: (20.38)

The energy generation due to contraction is according to (4.47)

"g D cP T

 
rad

PP
P

�
PT
T

!
: (20.39)

We introduce (20.37), (20.38) and (20.31), thus obtaining

"g D cP T

�
�4rad C 4˛ � 3

ı

� PR
R
: (20.40)

For an ideal monatomic gas (rad D 2=5; ˛ D ı D 1) this becomes

"g D �3
5
cP T

PR
R
: (20.41)

Therefore "g > 0 for contraction . PR < 0). We also see that j"gj � j PR=Rj; and since
"g is proportional to T , it represents an energy source that is only rather moderately
concentrated towards the centre.

As already mentioned, homology considerations are important for rough inter-
pretations of numerical results, but their strict applicability is very limited. This
is ultimately because homology requires a very well concerted action of all mass
elements. It can hold approximately only for homogeneous stars. In Sect. 33.2 we
will encounter another type of homology which considers only certain parts inside
a star, and which applies to some very inhomogeneous stellar configurations.



Chapter 21
Simple Models in the U –V Plane

There are stars in which the nuclear energy generation proceeding close to the centre
creates such a high energy flux that the whole central region is convective. These
stars can be described by models with a convective core and a radiative envelope.
In later stages of stellar evolution the nuclear fuel in the central region of the star is
exhausted and nuclear burning takes place only at the surface of a burned-out core.
Under certain circumstances these models with shell burning can be described by
a core that is isothermal, since no energy has to be transported there, and that is
surrounded by a radiative envelope. In both cases a core solution of one type has to
be fitted to an envelope solution of another type. In the following we shall deal with
a classical fitting procedure which in the past was often used to construct models
for such stars (see Schwarzschild 1958; Wrubel 1958) and which gives valuable
insight into some of their general properties. Moreover, procedures like this can be
helpful in certain special cases where the usual, iterative numerical methods are not
practicable.

21.1 The U –V Plane

We define two dimensionless quantities using (1.2) and (2.4):

U WD d lnm

d ln r
D 4�r3%

m
; V WD �d lnP

d ln r
D %

P

Gm

r
: (21.1)

A solution which is regular in the stellar centre has the central valuesU D 3, V D 0,
as can easily be seen: a small sphere around the centre has the massm D 4�r3%c=3;

so that there U ! 3 and V � r2 ! 0. Near the surface the numerical value of U
becomes very small (as % does), as well as P=% .� T for the ideal gas or � %��1
for polytropes). Therefore V becomes very large.
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Fig. 21.1 The polytrope
n D 3=2 in the U –V plane.
The stellar centre is in the
lower-right corner .U D 3,
V D 0)

Compare two homologous models. Then U as well as V have the same value in
homologous mass shells. Indeed with r=r 0 D R=R0; m=m0 D M=M 0; and (20.9) it
follows that

U D 4�r3%

m
D 4�r 03%0

m0 D U 0 and correspondingly V D V 0: (21.2)

U and V are therefore also called homology invariants.
We now determine the quantities U and V for polytropes. From (19.11) and

(19.18), we find

U D �wn
�
1

z

dw

d z

��1
: (21.3)

With the expansion (19.12) one can see that indeed U ! 3 for z ! 0, independent
of the value of n: We furthermore find–with % D %cwn; P D Pc.%=%c/

1C1=n D
PcwnC1, and (19.18)–from (21.1) that

V D 4�G%2cr
2

Pc

�
�1

z

dw

d z

�
1

w
; (21.4)

and with (19.3) and (19.9)

V D �.nC 1/
z

w

dw

d z
; (21.5)

which indeed vanishes at the centre and becomes large near the surface where
w ! 0. Note that the functions U.z/ and V.z/ depend only on n: they are
independent of any other parameter of the model. This is the property which makes
a discussion of the U –V plane worthwhile. The function V D V.U / for n D 3=2 is
plotted in Fig. 21.1.
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Fig. 21.2 The isothermal
sphere for an ideal gas in the
U –V plane. The centre
(r D 0) is in the lower-right
comer (U D 3, V D 0),
while for the surface
(r ! R D 1) the curve
spirals into the point
U D 1; V D 2

The above polytropic relations hold for finite n only. The isothermal polytrope
for an ideal gas .n D 1) again is an exceptional case. Instead of (21.3) and (21.5)
one finds from (21.1) and the relations of Sect. 19.8

U D e�w

�
1

z

dw

d z

��1
; V D z

dw

d z
; (21.6)

where w now is the solution of (19.35). This case is shown in Fig. 21.2:
although the corresponding polytropic model has an infinite radius, its image curve
in the U –V plane spirals into the point U D 1, V D 2, which represents the
surface .z D 1). The spiral of the isothermal gaseous sphere unwinds and reaches
higher and higher values of V if degeneracy becomes important. In the limit case
of complete non-relativistic degeneracy, the image curve approaches that of the
polytrope n D 3=2 of Fig. 21.1.

The U –V plane has often been used to construct simple stellar models by
fitting core and envelope solutions. Clearly this is most profitable when the core
is polytropic with given index n and therefore all possible cores are represented by
a single, known curve in the plane. This is the case for stars with convective cores
(polytropic with n D 3=2) or with non-degenerate isothermal cores .n D 1).

The fitting requires continuity of r , P , T , l at the interface. If � is continuous,
then also %–and according to (21.1)–U and V have to be continuous at the fitting
point: core and envelope curves intersect (compare Figs. 21.3 and 21.4). If � is
discontinuous at the interface having there the values �1; �2, then the continuity of
P and T for an ideal gas requires %1=%2 D �1=�2, and (21.1) shows that

U1

U2
D V1

V2
D %1

%2
D �1

�2
; (21.7)

where subscripts 1 and 2 refer to core and envelope solutions at the interface
respectively. This means that the points (U1; V1) and (U2; V2) lie on a straight line
through the origin.
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Fig. 21.3 Fitting a radiative-envelope solution with a convective core in the U –V plane. (a) Three
envelope solutions with different values of the parameter C come from the upper left downwards
(solid lines). One of them fits to the convective-core solution (dashed line), which is given by the
polytrope of n D 3=2 and starts in the centre at U D 3, V D 0. At the fitting point, both curves
have the same gradient r D rad D 0:4 and the same tangent. (b) A radiative-envelope solution in
the U –V plane. The solution is shown by a solid line as far as r < 0:4, and by a dotted line where
r > 0:4 such that the assumption of radiative transport breaks down (After Schwarzschild 1958)

21.2 Radiative Envelope Solutions

We first consider solutions for the envelope where " D 0 and therefore
l D constant D L. The gas is supposed to be ideal, and the opacity is approximated
by a power law

� D �0%
aT �b; (21.8)

where �0 D constant (Note that here a representation in % and T is used which gives
a different exponent b than a representation in P and T .).

We want to obtain many different solutions from a given one by simple scaling.
For this aim we replace P; T;m; r by the dimensionless Schwarzschild variables
y; t; q; x (Schwarzschild 1946):

P D GM2

4�R4
y ; T D �

<
GM

R
t ; m D qM; r D xR: (21.9)
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Fig. 21.4 Three envelope solutions with different parameters C and the curve of the non-
degenerate isothermal core in the U –V plane. The dashed lines combine those points of the
envelope solutions where q D m=M reaches certain values. Since, in the case of a homogeneous
model, envelope and core solution must be fitted continuously in the U –V plane, one can see that
no complete models are possible for isothermal cores with more than about 0.38 M (This limit is
even lower if the core has a higher molecular weight than the envelope.). A possible fit for q � 0:3

between the envelope curve for lgC D �5:5 and the isothermal-core curve is indicated by a
heavy dot

The equation of state gives the density as

% D M

4�R3
y

t
: (21.10)

One can easily see that then the homology variables become U D x3y=.qt/ and
V D q=.tx/. The stellar-structure equations (10.1) and (10.2) give

dx

dq
D t

x2y
;

dy

dq
D � q

x4
; (21.11)

while the equation for energy transport (10.4) with expression (10.6) gives

dt

dq
D �C ya

taCbC3x4
; (21.12)



248 21 Simple Models in the U –V Plane

with

C D 3�0

4ac.4�/aC2

� <
�G

�bC4
LRb�3aMa�b�3: (21.13)

At the surface q D 1, and the solutions have to fulfil the boundary conditions

y D 0 ; x D 1 ; y=t D 0; (21.14)

the last of which guarantees that according to (21.10) the density vanishes there.
The singularity of the system (21.11) and (21.12) at the surface can be overcome

by an approximation. If one puts q D constant D 1 for the whole near-surface
region, one finds from (21.11) and (21.12) that

dy

dt
D 1

C

taCbC3

ya
;

dt

dx
D � a C 1

a C b C 4

1

x2
: (21.15)

The first equation has been integrated (the integration constant being chosen in such
a way that y D t D 0 at the surface). This is used for eliminating y from (21.11)
and (21.12), which then give the second equation (21.15).

The two ordinary differential equations (21.15) are integrated by separation of
the variables. The solutions can be used near the surface down to a safe distance
from the singularity. From there on the normal equations (21.11) and (21.12) can be
numerically integrated inwards.

Obviously one obtains a one-parameter set of solutions, the parameter being C .
Three such envelope solutions in the U –V plane are shown in Fig. 21.3a. All of
them come from the upper left and miss the central boundary condition (U D 3,
V D 0), since they have a singularity there. This does not matter, since anyway we
have to fit them to a core solution (compare also with Sect. 12.1). From (21.11) and
(21.12) it results that

r � d lnT

d lnP
D y

t

dt

dy
D C

yaC1

taCbC4q
; (21.16)

from which one can see that owing to the factor q�1 the value of r tends to infinity
near the centre. In fact r is small near the surface and increases inwards until it
reaches the critical value rad (see Fig. 21.3b). Further inwards the Schwarzschild
criterion (6.13) requires convection and the radiative-envelope solutions are no
longer valid.

21.3 Fitting of a Convective Core

In order to obtain a model with a convective core inside a radiative envelope we have
to fit the solutions of Sect. 21.2 with a polytropic solution of n D 3=2 starting at the
centre (U D 3, V D 0). The fit has to be done at the point where the envelope
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solution reaches r D rad. Joining all these points on the different envelope
solutions (different C ) gives a line r D rad in the U –V plane, which intersects
the core polytrope at the fitting point U �; V �: The envelope solution through this
point has the value C D C �: Because of the condition that the gradient r is also
continuous there, the solutions for core and envelope are tangential to each other, as
can be seen in Fig. 21.3a. At the fitting point the variables of the envelope solution
may be q�; y�; x�; t�, while the core polytrope has the variables z�;w�.

Let us assume a certain value for the mean molecular weight � in the envelope.
The fit has fixed C D C �; which according to (21.13) gives a relation between
L;R; and M: But L is determined by the energy generation in the core, for which
we assume a rate of

" D "0%T
�: (21.17)

In the convective core we can connect the Emden variable z with r by r D zr�=z�,
where r� D x�R from the outer solution. Then r�dl=dr D z�dl=d z, and with
% D %cw3=2; T D Tcw; we have the energy equation with � D l=L

d�

d z
D Bz2w�C3; B D 4�"0

L

�
x�R
z�

�3
%2cT

�
c : (21.18)

Continuity of % and T in core and envelope solutions requires

%� D %cw
�3=2 D M

4�R3
y�

t�
; (21.19)

T � D Tcw
� D �

<
GM

R
t�: (21.20)

With these two equations we can express %c; Tc as functions of w�; y�; t� (all known
from the integrations) and of M and R. The expressions inserted into (21.18) give

B D B0"0

�
�G

<
��

M �C2

LR�C3 ; (21.21)

where B0 is known from the numerical integrations to the fitting point. Since L is
to be generated in the core, � D l=L D 1 at the fitting point. Therefore integration
of (21.18) gives

1 D
Z z�

0

d�

d z
d z D B

Z z�

0

z2w�C3d z: (21.22)

This fixes the value B D B�; since z� is known, and the integral follows from a
simple quadrature.

The fitting procedure now has yielded two numerical values C �; B�. Therefore
for a given value of M one obtains L and R from (21.13) and (21.21). Of course,
one has to check afterwards that (21.17) only gives negligible contributions to L in
the envelope solution (where l D constant was assumed).
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Models of this type were first constructed by Cowling (1935). They have the
advantage that l appears in the structure equations only for the envelope where it is
constant (D L).

21.4 Fitting of an Isothermal Core

In stellar evolution we shall have to discuss models with an isothermal helium core
surrounded by a hydrogen-rich envelope. The luminosity is generated in a thin shell
at the interface. This will be idealized by assuming a discontinuity of l (from 0 to L)
at the interface.

Let us discuss here a model in which � is continuous at the interface so that the
image curve in the U –V plane is continuous at the fit.

In Fig. 21.4 we have plotted envelope solutions together with the isothermal-
core solution for an ideal gas. Along each envelope curve the value of q decreases
inwards. We have also plotted some lines q D constant. As one can see from the
figure there are no fits possible with q > qmax � 0:38, i.e. when more than 38 % of
the total mass lies within the isothermal core. For given q < qmax a fit is possible.
An example for a fit at q � 0:3 is shown in Fig. 21.4. One can show that such
a fit determines a model completely for given M . Physically more realistic is a
model in which � is higher in the core than in the envelope, which we idealize by
a jump of � at the interface. Then the curve in the U � V plane is discontinuous,
fulfilling the conditions (21.7) at the interface (�1 > �2). If one tries to fit core
and envelope with this condition, and say �1=�2 D 1:333=0:62, one finds that qmax

is considerably smaller: no fits are possible at q > qmax � 0:1. This gives the
Schönberg–Chandrasekhar limit for isothermal cores consisting of an ideal gas (see
Sect. 30.5) enclosed by the stellar envelope.



Chapter 22
The Zero-Age Main Sequence

We consider here a sequence of chemically homogeneous models in complete
(mechanical and thermal) equilibrium with central hydrogen burning. All of them
are composed of the same hydrogen-rich mixture, while the stellar mass M varies
from model to model along the sequence.

These models can represent very young stars which have just formed from the
interstellar medium, and in which the foregoing contraction (see Chap. 28) has
raised the central temperature so far that hydrogen burning has started. This provides
a long-lasting energy source, and consequently the stars change only on the very
long nuclear timescale �n. Within the much shorter Kelvin–Helmholtz timescale
(see Sect. 3.3), the stars will “forget” the details of their thermal history long before
the nuclear reactions have noticeably modified the composition. The only nuclear
changes that have taken place during the previous phase are the burning of the
light elements deuterium, lithium, beryllium and boron in the largest part of the
star, and the conversion of carbon to nitrogen in the centre. The latter reactions
consume approximately 1 % of the protons in the stellar core; the former ones are
orders of magnitude less important due to the very low abundances of the mentioned
elements. This is why one can reasonably treat them as homogeneous models in
thermal equilibrium. The now-beginning evolution, in which hydrogen is slowly
consumed in the stellar core, has such a long duration that most visible stars are
presently found in this phase. Our homogeneous models define its very beginning,
and their sequence is therefore more precisely called the zero-age main sequence
(ZAMS), since one usually counts the age of a star from this point on.

22.1 Surface Values

Homogeneous, hydrogen-burning equilibrium models can be very easily calculated
and are available for many different chemical compositions. We limit ourselves to
discussing a set of calculations with XH D 0:70;XHe D 0:28, such that all heavier
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Fig. 22.1
Hertzsprung–Russell diagram
with the zero-age main
sequence computed for a
composition with
XH D 0:70; XHe D 0:28. The
locations of models for
several masses between 0.1
and 55Mˇ are indicated

elements amount only to 0:02 of the mass.1 This is a chemical composition typical
for the younger population of stars found in the spiral arms of the Milky Way. The
metallicity Z is slightly higher than that of the Sun.

Figure 22.1 shows the Hertzsprung–Russell diagram for the models in the wide
range of stellar masses from 0.1Mˇ to more than 50Mˇ: L and Teff increase
with increasing M , thus forming the ZAMS, which coincides more or less with
the lower border of the observed main-sequence band. The slope of the ZAMS
below � 0:6Mˇ depends sensitively on the equation of state, the opacities, and
the atmospheric boundary conditions.

The important mass-radius and mass-luminosity relations for these models are
shown in Figs. 22.2 and 22.3 by the solid lines. In both cases they should constitute
a lower envelope to the distribution of stars, since radius as well as luminosity
are increasing during the main-sequence evolution and mass remains constant or
decreases slightly. Those objects in Fig. 22.2 clearly detached from the bulk of
objects are stars that have already developed off the main sequence and therefore
have considerably larger radii. Note the very good agreement with theory, although
the stars shown do not have identical composition and, in particular, not exactly
that of the models. Points below the theoretical sequence may also be due to
measurement errors. As predicted already by the simple homology relations for
main sequence models [see (20.20) and (20.21)], R increases slowly, and L

1Note that we will also use the notation X , Y , and Z for the mass fractions of hydrogen,
helium, and the sum of all remaining elements, commonly labelled “metals”, as is the case in
the astrophysical literature.
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Fig. 22.2 The line shows the
mass-radius relation for the
models of the zero-age main
sequence plotted in Fig. 22.1.
For comparison, the best
measurements (as collected
by Malkov et al. 2006,
containing the very important
catalogue of Andersen 1991)
of main sequence primary
components of detached and
visual binary systems are
shown as grey dots

Fig. 22.3 The line gives the
mass-luminosity relation for
the models of the main
sequence shown in Fig. 22.1.
Measurements of binary
systems are plotted for
comparison as in Fig. 22.2

increases strongly with increasing M . For an interpolation over a certain range of
M we may again write

R � M�; L � M� : (22.1)

From the slopes of the curve in Fig. 22.2 we find roughly � D 0:56 and 0.79 in the
upper and lower mass ranges, respectively. In the range of small values of M , there
is a pronounced maximum of the slope aroundM D 1Mˇ, indicating a remarkable
deviation from homologous behaviour in this range. With decreasing effective
temperature these models have outer convective zones of strongly increasing
extension (cf. Sects. 11.3.2, 11.3.3 and Fig. 22.7). This tends to decrease R, in
addition to other effects.

Also the slope of the M � L relation in Fig. 22.3 varies with M . Over the
whole mass range plotted, the average of � is about 3.37. For M D 1 : : : 10Mˇ
the average exponent is 3.89, while in the larger range M D 1 : : : 50Mˇ it is
3.35. The decreasing slope towards largerM is an effect of the increasing radiation
pressure (see below and Sect. 20.2.3).
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Let us consider the way in which the variation of the exponents � and � influences
the slope of the main sequence in the Hertzsprung–Russell diagram. EliminatingM
from the two relations (22.1), we find immediately that

R � L�=n : (22.2)

We introduce this into the relation L � R2T 4eff and obtain for the main sequence in
the Hertzsprung–Russell diagram the proportionality

L � T
�

eff; � D 4

1 � 2�=� : (22.3)

We have seen that for large stellar masses, � decreases and � remains about constant
with further increasingM: Equation (22.3) then gives an increase of �, which means
that the main sequence must become gradually steeper towards high luminosities.

We should mention that these two relations belong to the rare instances for which
a reasonable quantitative test of the theory is possible. Even here one is rather
restricted, since it is extremely difficult to obtain sufficiently precise measurements
of R;L; and M . From this point of view, the M � R relation should be the
more reliable one. In Figs. 22.2 and 22.3 a selection of the best observed main-
sequence double stars are plotted (Andersen 1991; Malkov et al. 2006). When
comparing the scattering in the two diagrams one should note that Fig. 22.3 has
an appreciably more compressed ordinate. The theoretical curves map out roughly
the lower border of the measured values. They would be shifted slightly upwards,
for example, by the assumption of a smaller hydrogen content. However, we have
compared zero-age main-sequence stars with real stars of varying composition
here. In view of the uncertainties and difficulties involved in theory as well as in
observation, one can scarcely expect a better fit, particularly when considering the
enormous range of values involved (a factor 250 in M , nearly 8 powers of 10 in L).

22.2 Interior Solutions

The behaviour of the interior may be illustrated by characteristic variables as
functions of m=M . They are plotted in Fig. 22.4 for two stellar masses in order
to demonstrate typical dependencies of the solutions on M .

The density % (Fig. 22.4a) increases appreciably towards the centre where we
have %c � 102 g cm�3 for 1 Mˇ, i.e. roughly a factor 109 larger than in the
photosphere. For 10Mˇ, the central density is smaller by more than a factor 10.
The inward increase of % indicates a very strong concentration of the mass elements
towards the centre, illustrated in Fig. 22.4b. For 1 Mˇ; the inner 30 % of the radius
(i.e. only 3 % of the total volume) contains 50 % of the mass; and in the outer 50 %
of R (i.e. 88 % of the volume) only about 15 % of M can be found.
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a b

c

d e

Fig. 22.4 The run of some functions inside zero-age main-sequence models for M D 1Mˇ

(solid lines) and M D 10Mˇ (dashed lines) with the same composition as in Fig. 22.1
(XH D 0:70; XHe D 0:28/I (a) density % (in g cm�3), (b) radial mass distribution m.r/=M ,
(c) temperature T (in K), (d) nuclear energy production (in erg g�1 s�1/, (e) local luminosity l

The temperature (Fig. 22.4c) also increases towards the centre. For 1 Mˇ, the
central value of 1:36 � 107 K is a factor 2,400 larger than the photospheric value.
Values of T > 3 � 106 K extend to m � 0:95M , so that the average T value
(averaged over the mass elements) is roughly 7:7 � 106 K. In a 10Mˇ star, T has
slightly more than twice the values of corresponding mass elements for 1 Mˇ.

The behaviour of T is necessarily reflected by that of the rate of energy
generation due to hydrogen burning (Fig. 22.4d). The dependence of " on T

(cf. Sect. 18.5.1), together with the T gradient, yields a strong decrease of " from the
centre outwards. In the 1Mˇ star, " has dropped by a factor 102 from the centre to
m D 0:6M , and still further outward it is quite negligible. This is particularly well
seen in Fig. 22.4e: 90 % of L is generated in the inner 30 % of M ; and l reaches
about 99 % of L at m=M D 0:53. In the central part of the 10Mˇ star, where



256 22 The Zero-Age Main Sequence

Fig. 22.5 The heavy solid line gives the central temperature Tc (in K) over the central density
%c (in g cm�3) for the same zero-age main-sequence models as in Fig. 22.1. The dots give the
positions of some models with masses between M D 0:10 and M D 50 (in solar masses). The
labels below the curve indicate the logarithmic fractional contribution of the radiation pressure
Prad to the total pressure in the centre. The dashed lines give the constant degeneracy parameter  
of the electron gas

Tc D 3 � 107 K, the dominant energy source is the CNO cycle (instead of the pp
chain in 1Mˇ). The much larger T dependence of " gives an even more pronounced
concentration of " towards the centre (Fig. 22.4d). In the innermost 30 % of M; "
drops by about a factor 103 (as compared to a factor 10 in the same interval of
1Mˇ). This corresponds to an " with an exponent of T roughly three times larger.
Further outwards, where T is low enough for the pp chain to dominate, the slope of
" becomes the same in both stars. In the 10Mˇ star, 90 % of the total luminosity is
generated within the innermost 10 % of the mass (Fig. 22.4e).

We have seen that in spite of all similarities there are characteristic differences
between the interior solutions for different values ofM . Some of these can be found
in the plot of the central values of temperature and density (Fig. 22.5). This diagram
exhibits at least qualitatively another prediction of the homology considerations
in Chap. 20: with increasing M , there is a slight increase of Tc together with a
substantial decrease of %c. Between M D 2Mˇ and 50Mˇ the differences are
� lgTc D C0:28 and � lg%c D �1:43. The striking change of the curve around
1:3Mˇ is a direct consequence of the transition from the CNO cycle to the pp-
chains as the dominating energy source. AtM D 1:4Mˇ, the CNO cylce dominates
at the centre, which reaches the critical temperature of lgTc D 7:25 (Fig. 18.8),
while at M D 1:9Mˇ the pp-contribution to the total energy production has fallen
below 50 % (see also Fig. 22.6). From the homology relations (20.25) and Table 20.1
the slope of the curve in Fig. 22.5 can be predicted: it has a small negative value at
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Fig. 22.6 For six zero-age
main-sequence models of the
same composition as in
Fig. 22.1 (mass in solar units
indicated along each curve),
the fraction that the CNO
cycle contributes to the total
energy generation rate at
different places inside the
model (characterized by the
corresponding local
luminosity l at the abscissa)
is shown

the high mass end (�0:16 compared to �0:20 from the numbers given above) and a
large negative value (. �2) forM < 1:3Mˇ. In addition, there are deviations from
homology, partly due to the appearance of the outer convective zone (the homology
relations were derived under the assumption of radiative energy transport), which
is deepening with decreasing mass. The extension of convective regions should
certainly influence the centre, since they have a less pronounced mass concentration
than radiative regions. Note that both flat parts of the Tc � %c curve in Fig. 22.5
belong to models in which the central part is convective (cf. Fig. 22.7). At the lowest
masses the stars are fully convective and follow the relations for a polytrope of index
n D 3=2 (Chap. 19 and Sect. 24.2).

In the upper range of masses degeneracy is negligible, while it becomes increas-
ingly important towards smaller M owing to the increasing density. Below 0.5Mˇ,
say, other deviations from the ideal gas approximation also become important in the
equation of state, for example, electrostatic interaction between the ions.

On the other hand, the radiation pressure Prad must increase towards larger M
owing to the increasing T , since Prad � T 4. At M D 1Mˇ, radiation contributes
only the negligible fraction of a few 10�4 to the total central pressure. This fraction
becomes about 1 % at 4Mˇ, while in the centre of the 50Mˇ star, Prad contributes
no less than 1/3 to the total pressure (see Fig. 22.5).

Another effect of the growing Tc, which also occurs around 1 Mˇ, is the
transition from the pp chain to the CNO cycle as the dominant energy source
(compare also Fig. 18.8). For models in the transition region from M D 1 Mˇ
to 3 Mˇ, Fig. 22.6 shows the contribution of "CNO to the local energy generation
rate as a function of l=L. The integral over such a curve gives the fraction of L due
to burning in the CNO cycle. This amounts only to a few percent forM D 1:2Mˇ.
In the 1:6Mˇ star, the CNO cycle already contributes 65 % at the centre, and nearly
one half of the total luminosity. It clearly dominates the whole energy generation
for 1:8Mˇ and more massive stars.
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22.3 Convective Regions

Knowledge of the extension of convective regions is very important in view of their
influence on the ensuing chemical evolution. A rough overview can be obtained
from Fig. 22.7, wherem=M and lgM=Mˇ are ordinate and abscissa. For any given
stellar mass M along a line parallel to the ordinate it is indicated what conditions
we would encounter when drilling a radial borehole from the surface to the centre.
In particular, one can see whether the corresponding mass elements are convective
or radiative. Aside from the stars of smallest mass (M < 0:25Mˇ), we can roughly
distinguish between two types of model:

convective core C radiative envelope (upper main sequence);

radiative core C convective envelope (lower main sequence).

The transition from one type to the other again occurs near M D 1Mˇ.
The distinction between convective and radiative regions is made here by

using the Schwarzschild criterion (see Sect. 6.1), which predicts convection if the
radiative gradient of temperature rrad exceeds the adiabatic gradient rad (The
gradient r� of the molecular weight appearing in the Ledoux criterion is zero
in these homogeneous models. Possible effects of overshooting will be discussed
in Chap. 30.). The variation of these gradients (together with that of the actual
gradient r) throughout the star is plotted in Fig. 22.8 for M D 1Mˇ and 10Mˇ.
For the abscissa, lg T is chosen, since this conveniently stretches the scale in the
complicated outer layers.

Let us start with the simpler situation concerning the convective core. When
comparing Fig. 22.8a, b, we see that the convective core in the more massive models
is caused by a steep increase of rrad towards the centre. The reason for this is that
the dominating CNO cycle , with its extreme temperature sensitivity, concentrates
the energy production very much towards the centre (cf. the curve l=L D 0:5 in
Fig. 22.7, and Fig. 22.4e). Therefore we find in these stars very high fluxes of energy
(l=4�r2) at small r , which produce large values of rrad. Figure 22.7 shows a
remarkable increase in the extent of the convective core for increasingM . The core
covers as much as 65 % of the stellar mass in a star of 50Mˇ, an increase caused by
the increasing radiation pressure (cf. Sect. 22.2 and Fig. 22.5), which depresses the
value of rad well below its standard value of 0.4 for an ideal monatomic gas [see
(13.12)]. In the centre of the 50Mˇ model, roughly 1/3 of P is radiation pressure,
and rad � 0:27. From Fig. 22.8b it is clear that a depression of rad in the central
region will shift the intersection with rrad (i.e. the border of the convective core)
outwards to smaller T . When we increase M to much larger values still, the top
of the convective core will finally approach the surface such that we should obtain
fully convective stars. We then approach models of the so-called supermassive stars
(see Sect. 19.10).
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Fig. 22.7 The mass values m from centre to surface are plotted against the stellar mass M for
the same zero-age main-sequence models as in Fig. 22.1. “Cloudy” areas indicate the extension of
convective zones inside the models. Two solid lines give them values at which r is 1/4 and 1/2 the
total radius R: The dashed and dotted lines show the mass elements inside which 50 % and 90 %
of the total luminosity L are produced

Fig. 22.8 The grey solid lines show the actual temperature gradient r D d lnT=d lnP over the
temperature T (in K) inside two zero-age main-sequence models of 1Mˇ (left panel) and 10Mˇ

(right panel). The corresponding adiabatic gradients rad (dotted lines) and radiative gradients rrad

(dashed lines) are also plotted, and the location of the ionization zones of hydrogen and helium are
indicated (arrows). The chemical composition of the models is the same as for those of Fig. 22.1

In less massive stars, the pp chain with its smaller temperature sensitivity
dominates. This distributes the energy production over a much larger area, so that the
flux and rrad are much smaller in the central region, which thus remains radiative.

Outer convective envelopes can generally be expected to occur in stars of low
effective temperature, as the discussion of the boundary conditions in Sect. 11.3.2
has already shown. When studying the different gradients in the outer layers of
cool stars (Fig. 22.8a), one finds a variety of complicated details. The variation
of rad clearly shows depressions in those regions where the most abundant
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elements, hydrogen (T & 104 K) and helium (T � 105 K), are partially ionized
(see Chap. 14). The most striking feature is that rrad reaches enormous values (more
than 105/. This is due to the large opacity 	, which here increases by several powers
of 10 (cf. Chap. 17). Therefore the Schwarzschild criterion indicates convective
instability: the models have an outer convective zone. In the largest part of it,
the density is so high that convection is very effective and the actual gradient r
is close to rad. Convective transport becomes ineffective only in the outermost,
superadiabatic part, where r is clearly above rad. Scarcely anything of all these
features appears in the hot envelope of the 10Mˇ star (Fig. 22.8b). rrad remains
nearly at the same level; even the photosphere is too hot for hydrogen to be neutral,
and only the small dip from the second He ionization is seen immediately below
the photosphere. This causes such a shallow zone with convective instability that
only for special cases, depending on the detailed chemical composition, convective
motions set it.

The outer convection zone gradually penetrates deeper into the star with decreas-
ing Teff. Its lower border finally reaches the centre at M . 0:25Mˇ (left end
of Fig. 22.7), such that the main-sequence stars of even smaller masses are fully
convective.

22.4 Extreme Values of M

The ZAMS ends at extreme low and high mass values. Only in recent years
detailed calculations for main-sequence stars of very lowM have become available.
The difficulties of modelling them lie in particular in the fact that the input
physics is complicated and the available data not very reliable. This concerns the
notorious problem of the treatment of convection, as well as the opacity values
for mixtures containing many molecules. Both these effects are important in very
cool envelopes. Complications for the interior structure are equally severe. They
arise, for example, from the difficult treatment of particle interaction in the low-
temperature high-density regime and influence the equation of state and the electron
screening of nuclear reactions. Progress has been made in the equation of state
under such conditions (Sect. 16.6), in the treatment of the opacities (Sect. 17.8) and
the calculation of the atmospheric structure. The latter is very important since stars
below � 0:2Mˇ are fully convective (Fig. 22.7) and their interior structure therefore
depends very much on the outer boundary conditions (Fig. 11.2).

Quite another problem concerns the relevance of the calculated equilibrium
models for real, evolving stars. At the low central temperatures in models of
extremely small masses, for example, the time for reaching equilibrium burning
can become exceedingly long. A preceding phase in which the original 3He is
burned may be at least equally important, but this 3He content is very uncertain.
And below about M D 0:1Mˇ, even the original contraction leads so far into
electron degeneracy that hydrogen burning is no longer ignited (refer to Chap. 28).
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In this sense one may speak of the “lower end of the main sequence” at this
mass value. Disregarding this evolutionary argument, however, one can ask whether
solutions for main-sequence models (homogeneous, hydrogen burning, complete
equilibrium) exist down to arbitrary small values ofM: It turns out that such models
end to exist at M � 0:08Mˇ. Real stars simply fail to provide all the luminosity
from nuclear burning alone and need thermal energies to supply the rest of the
energy. Such objects are called brown dwarfs and are no longer considered as
“real stars”. Details about very low-mass stars and brown dwarfs, their physical
properties and how they are modelled, can be found in the review by Chabrier and
Baraffe (2000). Although they are extremely faint, they are now routinely found
with large telescopes. A decisive test to confirm that a “star” is indeed a brown
dwarf is the lithium test: going down in mass along the main sequence, stars become
fully convective. Any change in element abundances due to hydrogen burning is
therefore reflected in the surface abundances. This includes lithium, which, as part
of the pp2 chain (18.62), is destroyed due to proton captures at temperatures above
�2:5 � 106 K. Its surface abundance is therefore very low on the lower main
sequence, as it is almost completely destroyed throughout the star. If the mass is
however low enough such that the critical temperature is not reached even at the
centre, lithium can survive and “reappears” for the very faintest main-sequence
stars. The mass at which such low central temperatures are reached is � 0:06Mˇ,
which is lower than the 0:08Mˇ, which denotes the transition from stars to brown
dwarfs. The lithium test has lead to the first definite detection of brown dwarfs.

In the direction towards largeM , on the other hand, the sequence of equilibrium
models can principally be continued up to the “supermassive” stars (see Sect. 19.10).
Long before they are reached, however, an instability occurs which sets in between
M � 60 and 100Mˇ (depending on the composition). It is a vibrational instability
caused by the so-called " mechanism (see Sect. 41.5) and supported by the large
amount of radiation pressure. Such stars, instead of sitting quietly at their proper
place on the main sequence, will start to oscillate with growing amplitude. This
may go so far as to throw off matter from the surface, until the mass is reduced
below the critical value for the instability.

22.5 The Eddington Luminosity

For massive, hot stars there exists another physical limit for hydrostatic stabil-
ity, which results from the increasingly important radiation pressure. According
to (13.1)

Prad D 1

3
U D a

3
T 4 :

Therefore there exists a gradient of the radiation pressure

dPrad

dr
D a

3
T 3

dT

dr
; (22.4)
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which exerts, just like the gas pressure gradient, an outward acceleration
(dPrad=dr < 0)

grad D �1



dPrad

dr
: (22.5)

(This outward force is already included in the hydrostatic equation, if the total
pressure is considered according to (13.2). Here we consider it separately only for
clarifying the effect.)

Using (5.8) we see that we can rewrite (22.5) as

grad D 	Frad

c
D 	Lr

4�r2c
: (22.6)

In case that radiation pressure completely dominates over gas pressure, a star can
no longer be in hydrostatic equilibrium if grad > �g. The sum of both accelerations
can be written as

g C grad D �Gm

r2

�
1 � 	Lr

4�cGm

�
D �Gm

r2
Œ1� �r � ; (22.7)

where �r can be understood as the ratio of the luminosity relative to the critical
luminosity at which the bracket changes sign, and thus the star becomes unbound.
For m D M this critical luminosity is called the Eddington luminosity and is

LE D 4�cGM

	
: (22.8)

Expressed in solar units it is

LE

Lˇ
D 1:3 � 104 1

	

M

Mˇ
(22.9)

and grows linearly with stellar mass. Since L � M3, stars obviously reach a limit,
where radiation pressure is able to drive a strong stellar wind, and which depends
on the opacity.

For hot, massive stars electron scattering is the dominating opacity source, which
can be approximated by (17.1), and is 	sc D 0:20.1 C X/. For a mass fraction of
hydrogen of 0.70 (22.9) simplifies to

LE

Lˇ
D 3:824 � 104 M

Mˇ
: (22.10)

ForM � 200Mˇ the luminosity of massive main-sequence stars reach the Edding-
ton limit and disperse. This is a rough estimate for an upper limit. In reality the
instability of the " mechanism occurs at lower mass. However, the Eddington limit
can become quite important in other situations.



Chapter 23
Other Main Sequences

The simplicity and the importance of the results obtained for the main sequence
suggest the extension of this concept to stars of quite different composition. We
can then describe a main sequence as any sequence of homogeneous models with
various massesM in complete equilibrium, consisting (mainly) of a certain element
which burns in the central region. In this sense, the (normal) main sequence as
treated before is a special case and is more precisely called the hydrogen main
sequence (H-MS). In a further step of generalization, we will even drop the
assumption of chemical homogeneity, thus arriving at the so-called generalized
main sequences (GMS) (Sect. 23.3). Of course, compared with the H-MS, the other
sequences are far less important for real, observed stars. But their properties yield
valuable information for understanding certain types of evolved stars, for example.

The numerical models shown in this chapter have been calculated with an older
equation of state and simpler opacities. Also, the chemical composition for the
hydrogen-rich models differs from that used in the last chapter and is for a slightly
higher (D 0:021) metallicity. But since we will discuss fundamental properties of
stars in this section, these details are of no relevance.

23.1 The Helium Main Sequence

The helium main sequence (He-MS) contains chemically homogeneous equilibrium
models that consist almost completely of He (with the usual few per cent of heavier
elements) and have central helium burning. In principle, one could imagine them
to be the descendants of perfectly mixed hydrogen-burning stars (however, perfect
mixing during evolution is very improbable). Or they may represent the remnants
of originally more massive stars that have developed a central helium core and then
lost their hydrogen-rich envelope.

In the Hertzsprung–Russell diagram (Fig. 23.1) the He-MS is situated far to the
left of the (normal) H-MS at fairly high luminosities. If we compare the same stellar
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Fig. 23.1 In the Hertzsprung–Russell diagram the solid lines show the normal hydrogen main
sequence (H-MS; XH D 0:685; XHe D 0:294), the helium main sequence (He-MS; XH D 0,
XHe D 0:979), and the carbon main sequence (C-MS; XH D XHe D 0; XC D XO D 0:497). The
labels along the sequences give stellar masses M (in units of Mˇ). Three lines of constant stellar
radius (R in units of Rˇ) are plotted (dashed)

massM on each sequence, we see that the helium stars have smaller radii and much
higher luminosities. The remarkable difference in L for given M is particularly
well illustrated by the M � L relations in Fig. 23.2. The main cause is certainly
the difference in the mean molecular weight �, which is 0.624 for the mixture used
for the stars on the H-MS and 1.343 for the helium stars. If everything else were the
same and the models were homologous, then we would expect from (20.20) for stars
with the same M a difference in luminosity given by � lgL D 4� lg� D 1:33.
This is in fact very nearly the shift between the two M � L relations in Fig. 23.2 at
M D 10Mˇ, while forM D 1Mˇ, we even have � lgL � 2:5.

The interior structure resembles roughly that of models on the upper H-MS.
The extreme temperature sensitivity of helium burning concentrates the energy
production into a small central sphere where the large energy flux produces a
convective core. This contains about 0:27M in the 1Mˇ star, and nearly 0.7M for
10Mˇ. The increase of the convective core is again a consequence of the increasing
radiation pressure: it contributes 1.5 % to the total pressure in the centre of the 1Mˇ
star, 18 % for 5Mˇ, and 32 % for 10Mˇ, which is very much more than for the
corresponding stars on the H-MS (6 � 10�4, 0.018, and 0.063, respectively). The
difference is due to the fact that helium burning requires temperatures roughly six
times higher, as can be seen in Fig. 23.3, which shows the central values of T and %.
The high radiation pressure provides relatively large amplitudes of pulsation in the
central region. This again produces a vibrational instability due to the " mechanism,
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Fig. 23.2 Mass–luminosity
relations for the models of the
hydrogen, helium, and carbon
main sequences of Fig. 23.1

Fig. 23.3 Central
temperature Tc (in K) and
central density %c=�e.%c in
g cm�3; �e D molecular
weight per electron) of the
models on the hydrogen,
helium, and carbon main
sequences of Fig. 23.1. The
labels along the lines give the
stellar mass M (in Mˇ). The
dashed lines indicate constant
degeneracy parameters  of
the electron gas

the onset of which occurs aroundM D 15Mˇ, depending somewhat on the content
of heavier elements.

Another property of the helium stars to be seen in Fig. 23.3 is their much larger
central density: for M D 0:3Mˇ, %c reaches 105 g cm�3, and, in spite of the
larger T , the electron gas has about the same degree of degeneracy as at the lower
end of the H-MS [In order to plot a unique degeneracy parameter  (see Chap. 15)
for compositions with different molecular weight per electron �e, the abscissa of
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Fig. 23.3 gives lg.%c=�e/. The He-MS and the C-MS (see below) have �e D 2,
while �e D 1:19 for the plotted H-MS.]. The increasing degeneracy causes the
sequence of stable helium-burning stars to terminate at aboutM � 0:3Mˇ.

23.2 The Carbon Main Sequence

The next major step in the nuclear history of a star is carbon burning. Thus, we
now consider a carbon main sequence (C-MS) consisting of homogeneous models
in complete equilibrium that have central carbon burning. Except for the usual
admixture of a few per cent of heavy elements, the composition can be either pure
12C, or a mixture of 12C and 16O in equal amounts, which represents roughly the
end products of stellar helium burning (For both assumptions the basic results, in
particular the luminosities, are not too different, since the molecular weights are
nearly the same.). The models of the C-MS are not so much used for describing
homogeneous carbon stars, but rather for the purpose of surveying carbon-burning
cores in highly evolved stars.

In the Hertzsprung–Russell diagram (Fig. 23.1) the C-MS is at Teff > 10
5 K even

to the left of the He-MS. For equal masses, models on the C-MS have remarkably
smaller R and larger L. The M � L relation for carbon stars is � lgL � 0:5

above that for helium stars (Fig. 23.2) because of the larger mean molecular weight
(� lg� � 0:11).

The interior solutions of carbon stars have similar properties to those of the
helium stars, for example, large convective cores and an appreciable amount of
radiation pressure. In a model of M D 3:5Mˇ, the convective core encompasses
about 45 % of the total mass, and the radiation pressure contributes more than 20 %
to the central pressure. Figure 23.3 shows that, according to the requirements of
carbon burning, the central temperatures are between 5 and 8�108 K. But the central
density is even more increased compared to helium stars. Therefore appreciable
degeneracy of the electron gas is already found in carbon stars around 1Mˇ. And
the sequence of stars with a stable carbon burning terminates at masses in the range
M � 0:9 : : : 0:8Mˇ. The exact value of this limiting mass depends somewhat on
the assumptions in the physical parameters. A well-known uncertainty comes, for
example, from neutrino losses, which can become noticeable in these very hot and
dense stars (Sect. 18.7). Large neutrino losses have the tendency to increase the
lower limit ofM for stable carbon burning. Figure 23.3 shows that in all three main
sequences the limiting mass occurs at roughly the same degree of degeneracy of the
electron gas ( � 4:5). The C-MS and the He-MS have a much simpler structure
than the H-MS, which is affected by the complications occurring near 1Mˇ, namely
the transition from convective to radiative cores and the growth of outer convection
zones with decreasing Teff.
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23.3 Generalized Main Sequences

The logical next step in extending the concept of main sequences is to drop the
condition of chemical homogeneity. This is suggested by the chemical evolution we
encounter in all stars: the conversion of hydrogen to helium by nuclear reactions
(which are concentrated towards the centre) produces a central helium core, while
the outer envelope retains its original hydrogen-rich mixture. If the temperatures are
high enough, helium burning will occur around the centre, and hydrogen burning
continues in a so-called shell source, i.e. a concentric shell starting at the bottom
of the hydrogen-rich envelope. Based on this picture, different types of significant
sequences may be defined. We will limit ourselves in the following to the simplest
case, which nevertheless finds useful applications.

For these generalized main sequences (GMS), we consider models in complete
equilibrium, with a chemical profile as shown in Fig. 23.4: a central helium core
of mass MHe, i.e. of the mass fraction q0 D MHe=M; is surrounded by an envelope
of mass .1 � q0/M with the usual hydrogen-rich mixture of unevolved stars. At
the interface of the two regions, the hydrogen content XH changes discontinuously
(“step profile”), while the hydrogen content in the envelope as well as the small
admixture of heavier elements in both regions is assumed to be fixed at some
reasonable values. The energy is supplied by central helium burning and (possibly)
by an additional hydrogen burning in a shell source at q0.

Each of these models is characterized by two parameters, the stellar massM , and
the relative core mass q0. We then obtain a generalized main sequence by keeping
q0 constant and varying M as a parameter. For each value of q0 there is one GMS.
In the evolution the value of q0 is not constant: q0 can slowly increase because of
the shell source burning, and it can increase by mass loss from the surface. We will
therefore consider GMS of various values of q0.

The upper limit is obviously q0 D 1, implying that the “core” encompasses the
whole star, which is then a homogeneous helium star. The GMS for q0 D 1 is
therefore identical with the well-known He-MS discussed in Sect. 23.1.

For values of q0 slightly below 1, the GMS are shifted appreciably to the right in
the Hertzsprung–Russell diagram (Fig. 23.5). They have already passed the H-MS
for q0 � 0:9 : : : 0:85, depending on the value ofM . In other words, the addition of a
relatively small hydrogen-rich layer on top of a helium star will remarkably increase
its radius and decrease Teff.

This behaviour changes completely if q0 drops below a certain value, which
is about 0:8 : : : 0:7, depending on M . Figure 23.5 shows that the GMS are then
compressed towards a limiting line far to the right-hand side of the Hertzsprung–
Russell diagram. This will turn out to be the Hayashi line, a limit for all stars in
hydrostatic equilibrium (Chap. 24). The closest approach to it is found roughly for
the GMS with q0 D 0:5. For even smaller q0, the GMS move slowly back to the
left in the Hertzsprung–Russell diagram. We conclude that the upper part of this
diagram can be covered at least once by these GMS, i.e. by very simple equilibrium
models depending on two parameters (M;q0) only.
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Fig. 23.4 Chemical composition inside the models on the generalized main sequences. The mass
concentrations of hydrogen XH (solid line) and helium XHe (dashed line) are plotted over the mass
variablem=M from centre to surface. X0 is the hydrogen content in the envelope. The relative core
mass isMHe=M D q0

Fig. 23.5 Hertzsprung–Russell diagram with generalized main sequences for models with helium
cores of relative mass q0 and hydrogen-rich envelopes of relative mass 1� q0 (cf. Fig. 23.4). The
sequences plotted here cover only the range from q0 D 1 (helium main sequence) to q0 D 0:2. For
comparison, the limiting case of the hydrogen main sequence (q0 D 0, dashed) is shown. Models
with a stellar mass M D 5 (in Mˇ) are indicated by solid dots, M D 2 by open circles, M D 1

by triangles, and M D 0:5 by squares (After Giannone et al. 1968)

Let us compare models with the same M on different GMS. If we connect
their points in Fig. 23.5, we obtain curves such as those plotted in Fig. 23.6 for
two values of M . This shows that the luminosity remains roughly constant in
the range q0 D 1 : : : 0:7. This is caused by two opposite effects nearly cancelling
each other: when we decrease q0 at M D constant, MHe decreases, which reduces
the luminosity of the core, LHe; approximately as given by the M � L relation for
the He-MS (Fig. 23.2, if here we takeMHe forM ). At the same rate, the mass of the
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Fig. 23.6 The solid lines connect models of the same stellar mass M (in Mˇ) on the different
generalized main sequences of Fig. 23.5. Labels along the lines give the q0 values of the generalized
main sequences (After Lauterborn, Refsdal, Weigert, 1971a)

envelope M.1 � q0/ increases, which gives an increasing energy production LH of
the hydrogen shell source, such that the total luminosity L D LHe CLH can remain
almost constant. The situation changes when q0 drops below, say, 0.7. The “helium
luminosity” LHe then decreases so strongly that it is compensated no longer by the
increase of LH, which eventually dominates L completely.

Not only the cases q0 D 0 and q0 D 1which give the ZAMS and the helium main
sequence, but also the cases in between sometimes give insight how stars behave,
for instance, in the case where in a close binary system mass flows from one star to
its companion. If a primary of, say, one solar mass evolves it forms a helium core, so
it resembles a star on a generalized main sequence with a certain value of q0. While
the evolution goes on q0 grows while simultaneously the star becomes a red giant.
If before the onset of helium burning the surface of it comes close to the companion
(to be more precise: when it fills the Roche lobe), mass flows from the red giant
onto the surface of the still unevolved secondary until only the helium core is left
and the original primary after thermal adjustment has become a star of the helium
main sequence. In the HR diagram the star has moved from the Red Giant branch to
the helium main sequence while its value of q0 has grown during the mass loss.



Chapter 24
The Hayashi Line

We have seen that convection can occur in quite different regions of a star. In this
section we consider the limiting case of fully convective stars, i.e. stars which
are convective in the whole interior from centre to photosphere, while only the
atmosphere remains radiative.

The Hayashi line (HL) is defined as the locus in the Hertzsprung–Russell
diagram of fully convective stars of given parameters (mass M and chemical
composition). Note that for each set of the parameters, such as mass or chemical
composition, there is a separate Hayashi line. These lines are located far to the right
in the Hertzsprung–Russell diagram, typically at Teff � 3; 000 : : : 5; 000K, and they
are very steep, in large parts almost vertical.

From the foregoing definition one may not immediately realize the importance of
this line. However, the HL also represents a borderline between an “allowed” region
(on its left) and a “forbidden” region (on its right) in the Hertzsprung–Russell
diagram for all stars with these parameters, provided that they are in hydrostatic
equilibrium and have a fully adjusted convection. The latter means that, at any
time, the convective elements have the properties (for instance the average velocity)
required by the mixing-length theory. Changes in time of the large-scale quantities
of the stars are supposed to be slow enough for the convection to have time to adjust
to the new situation; otherwise one would have to use a theory of time-dependent
convection. Since hydrostatic and convective adjustment are very rapid, stars could
survive on the right-hand side of the HL only for a very short time.

In addition, parts of the early evolutionary tracks of certain stars may come close
to, or even coincide with, the HL. It is certainly significant for the later evolution of
stars, which is clearly reflected by observed features (e.g. the ascending branches of
the Hertzsprung–Russell diagrams of globular clusters). One may even say that the
importance of the HL is only surpassed by that of the main sequence. It is all the
more surprising that its role was not recognized until the early 1960s when the work
of Hayashi (1961) appeared. The late recognition of the HL may partly be because
its properties are derived from involved numerical calculations. In the following we
will use extreme simplifications in order to make some basic characteristics of the
HL plausible.

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics
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24.1 Luminosity of Fully Convective Models

Let us consider the different ways in which the luminosity is coupled to the pressure-
temperature stratification of radiative and convective stars.

For regions with radiative transport of energy, we can write the “radiative
luminosity” lrad D 4�r2Frad according to (7.2) as

lrad D k0
radr; (24.1)

with the usual notation r D d lnT=d lnP and the “radiative coefficient of
conductivity”

k0
rad D 16�acG

3

T 4m

�P
: (24.2)

If a stratification of P and T is given, then the luminosity lrad is obviously
determined and can be easily calculated from (24.1).

For convective transport of energy by adiabatically rising elements we can write
accordingly from (7.7) the convective luminosity as

lcon D k0
con.r � rad/

3=2 (24.3)

with the coefficient

k0
con

�p
2

�
`m

HP

�2
r2cP T .%Pı/

1=2: (24.4)

Here we have made use of the hydrostatic equation and the definition (6.8) of the
pressure scale height. The mixing length `m was defined in Sect. 7.1.

In principle, we can again assume the luminosity to be determined using (24.3)
for a given P�T stratification. In practice, however, we would never be able to
calculate lcon from this equation for the stellar interior, since it would require the
knowledge of the value of r with inaccessible accuracy. The point is that lcon is
not proportional to the gradient r itself but rather to a power of the excess over
the adiabatic gradient, r�rad, which may be as small as 10�7 for very effective
convection (see Sect. 7.3). Therefore the convective conductivity k0

con must be very
high, since large luminosities lcon are carried. This may be looked at in another way:
by solving (24.3) for r and writing

r D rad.1C '/; (24.5)

we see that the luminosity influences the T gradient only through the tiny correction
'.� 10�7):

' D
"

lcon

r3=2
ad k

0
con

#2=3
: (24.6)
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Therefore one usually neglects this correction in the case of effective convection and
takes simply

r D rad; (24.7)

which is equivalent to assuming an infinite conductivity k0
con. Then de facto the

luminosity is decoupled from the T�P structure.
In order to fix the luminosity of a fully convective star, we have to appeal to the

only region where the gradient is sufficiently non-adiabatic. This is the radiative
atmosphere and a layer immediately below where the convection is ineffective,
i.e. strongly superadiabatic. We have seen that then the transport of energy is
essentially radiative (in spite of violent convective motions), and we can again use
(24.1). By this argumentation one arrives at the statement that the structure of the
outermost layers determines the luminosity of a fully convective star. This means,
on the other hand, that such stars are very sensitive to all influences and uncertainties
near their outer boundary.

Of course, if the energy production is prescribed, one would rather say that the
outer layers have to adjust to this value of L (for this point of view, see Sect. 24.5).

24.2 A Simple Description of the Hayashi Line

In order to derive some typical properties of the HL analytically, we shall use an
extremely crude model for fully convective stars (Further refinements of the picture,
though possible, would not be worth the large additional complications involved.).

We have seen that nearly all of the interior part of convective stars has an
adiabatic stratification, such that d ln T=d lnP D rad. We shall assume that
this simple relation between P and T holds for the whole interior up to the
photosphere, i.e. we neglect the superadiabaticity in the range immediately below
the photosphere. We also neglect the depression of rad in those regions near the
surface where H and He are partially ionized (see Figs. 11.2 and 14.1). We thus
simply assume rad to be constant throughout the star’s interior, say rad D 0:4,
which is the value for a fully ionized ideal gas. With these simplifications we
certainly introduce errors in the P�T stratification. However, they will be nearly
the same for neighbouring models, and we can hope to obtain at least the correct
differential behaviour.

We then have for the whole interior the simple P�T relation

P D CT 1Cn; (24.8)

i.e. the star is polytropic with an index nD 1=rad � 1D 3=2, and we can use
the earlier results for such stars (see Chap. 19). The constant C is related to the
polytropic constant K defined in (19.3). With P D <%T=�, one finds C D
K�n.<=�/1Cn. K and C are constant only within one model, but vary from star
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to star, which means that we do not have a mass-radius relation. From (19.9) and
(19.19) it follows that

K � %1=3c A�2 � %1=3c R2 � M1=3R; (24.9)

so that
C D C 0R�3=2M�1=2; (24.10)

where the constant C 0 is known for given n and �.
Relation (24.8) is now assumed to hold as far as the photosphere, where the

optical depth � D 2=3; P D P0; T D Teff; r D R; and m D M . Above this point
we suppose to have a radiative atmosphere with a simple absorption law of the form

� D �0P
aT b: (24.11)

Integration of the hydrostatic equation through the atmosphere yields the photo-
spheric pressure [cf. (11.13), where N� is replaced by (24.11)] as

P0 D constant

�
M

R2
T �b

eff

� 1
aC1

: (24.12)

We now fit this to the interior solution by setting P D P0; T D Teff in (24.8)
and then eliminating P0 with (24.12). For given values of M and � this yields a
relation between R and Teff, or between R and L, since L � R2T 4eff. Thus, any
value of R corresponds to a certain point in the Hertzsprung–Russell diagram. The
interior solutions form a one-dimensional manifold, since the constant C contains
the free parameter R for given M [and given �, see (24.10)]. In the Hertzsprung–
Russell diagram this is reflected by a one-dimensional manifold of points defining
the Hayashi line.

The fitting procedure is illustrated in Fig. 24.1. Each interior solution of the form
(24.8) with n D 3=2 is represented in this diagram by a straight line:

lgT D 0:4 lgP C 0:4

�
3

2
lgRC 1

2
lgM � lgC 0

�
: (24.13)

For fixed values of M and �, each of these lines is characterized by a value of R:
The atmospheric solutions (24.12) are another set of straight lines in Fig. 24.1:

.a C 1/ lgP0 D lgM � 2 lgR � b lgTeff C constant: (24.14)

The intersection of a line of the first set with a line of the second set, both with
the same value of R, fixes the corresponding value of Teff (and of P0). From R and
Teff we have L, i.e. a point in the Hertzsprung–Russell diagram. We then obtain the
Hayashi line by a continuous variation of R.
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Fig. 24.1 Fit of a polytropic
(n D 3=2) interior solution
(solid line) with an
atmospheric condition
(dashed line) for different
values of
R .R1 > R2 > R3 > R4/.
The photospheric points
obtained by this fit are
marked by dots. The dotted
line illustrates schematically
the effects of superadiabatic
convection and depression of
rad in an ionization zone for
R D R1

The formalism for this procedure, as described, yields immediately an equation
for the Hayashi line in the Hertzsprung–Russell diagram:

lgTeff D A lgLC B lgM C constant (24.15)

with the coefficients

A D 0:75a � 0:25
b C 5:5aC 1:5

; B D 0:5aC 1:5

b C 5:5aC 1:5
: (24.16)

We now need typical values for the exponents a and b in the atmospheric absorption
law (24.11). An important property of fully convective stars can immediately be
concluded from the discussion in Sect. 11.3: such stars must have very low values
of Teff, i.e. the Hayashi line must be far to the right in the Hertzsprung–Russell
diagram. For atmospheres this means that in most parts T . 5 � 103 K, and H�
absorption will provide the dominant contribution to �. If hydrogen is essentially
neutral, the free electrons necessary for the formation of H� ions are provided by
the heavier elements (see Sect. 17.5). A very rough interpolation gives a ' 1; b ' 3.
With these values (24.16) yields the coefficients

A D 0:05; B D 0:2: (24.17)

According to (24.15), the slope of the Hayashi line in the Hertzsprung–Russell
diagram is @ lgL=@ lgTeff D 1=A. Since A � 1, we conclude that the Hayashi
line must be very steep. The value of B � @ lg Teff=@ lgM means that the Hayashi
line shifts slightly to the left in the Hertzsprung–Russell diagram for increasing M.
These qualitative predictions, although derived from very crude assumptions, are
fully supported by the numerical results (see Fig. 24.3).
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Let us consider once more the reason for the steepness of the HL. At the
photosphere the pressures P0i of the interior solution (24.8), (24.10) and P0a of
the atmospheric solution (24.12) vary for constantM as

P0i � T 2:5eff

R3=2
; P0a � T

� b
aC1

eff

R
2

aC1

: (24.18)

First of all, we expect a very steep HL for small positive values of a. In fact, for
a D 1=3, P0i and P0a have the same dependence on R; then Teff does not vary with
R (and L), and the line is vertical. If this is not quite fulfilled, the fit P0i D P0a

requires the smaller variations of Teff with varying R, the more different the two
exponents of Teff in (24.18) are, i.e. the larger b.

The basic approximations made were to neglect the depression of rad in ion-
ization zones and to ignore superadiabatic convection. The dotted line in Fig. 24.1
indicates how these effects change the P�T structure relative to a simple polytrope.
One sees that they tend to increase the effective temperature. The precise value of
Teff obviously depends on the detailed structure of the outermost envelope. The
extension and the depth of the ionization zones and the superadiabatic layers change
systematically with L: This has the consequence that, in better approximations, the
coefficient A in (24.15) changes sign at L ' Lˇ. It is positive for smaller L; and
negative for larger L; so that the HL is convex relative to the main sequence.

Another important conclusion is that the whole uncertainty which remained in
the mixing-length theory of ineffective convection must occur as a corresponding
uncertainty in the precise value of Teff for the HL.

Finally, we note that the chemical composition enters into the position of the HL
in two ways. The interior is affected, since the polytropic constant C depends on �
via C 0 [see (24.10)], and the outer layers are particularly affected via the opacity �.

24.3 The Neighbourhood of the Hayashi Line
and the Forbidden Region

We now consider stars in hydrostatic equilibrium that are close to, but not exactly
on, their HL. Certainly the stars cannot be fully convective with an adiabatic
interior (otherwise they would be on the HL). Their interior is then no longer a
simple polytrope. They do not even have to be chemically homogeneous, since
they are not fully mixed by the turbulent motions. We must therefore expect that an
analytical treatment will be much more complicated. We will nevertheless try to give
some simple arguments which may help to make the numerical results plausible.
In the following, we treat models with a fixed value of M and the same chemical
composition (at least in their outer layers).
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An important indication can be obtained from the discussion of the envelope
integrations in Sect. 11.3. When integrating inwards into models with different Teff

(but with the same parameters M and � and, say, the same L), we will reach a
radiative region the earlier, the larger Teff . In other words, in models left of the HL
we will encounter a radiative region before reaching the centre. In these regions, the
gradient r < rad. Let us consider some average Nr obtained by averaging over the
whole interior (where we again neglect the complications in the outermost parts of
the envelope). On the HL we have Nr D rad. In a model to the left of the HL the
radiative part decreases the average value such that Nr < rad. This suggests that we
would have to allow Nr < rad in models to the right of the HL.

In order to prove this we treat models with a constant gradient r D Nr in the
interior and vary Nr slightly around rad. We then have again polytropic stars with
slightly different n (around 3/2). The interior solution is written as

P D CnT
1Cn; (24.19)

where Nr D .1C n/�1 and, similarly to (24.10),

Cn D C 0
n�

�n�1M 1�nRn�3: (24.20)

From now on we measure R and M in solar units. Then

C 0
n D <nC1

4�Gn
.nC 1/n

"
�
�
dw

d z

�
zDzn

#n�1
znC1
n Rn�3ˇ M1�nˇ : (24.21)

We extend relation (24.19) to the photosphere (P D P0; T D Teff), where we again
eliminate P0 by (24.12) and R by the relation R D c2L

1=2T �2
eff . This gives the locus

in the Hertzsprung–Russell diagram. The factor of proportionality in (24.12) may
be called c1. Choosing for simplicity a D 1; b D 3 in the opacity law, we obtain

lg Teff D ˛1 lgLC ˛2 lgM C ˛3 lg�C ˛4 lgC 0
n C ˛5 lg c1 C ˛6 lg c2; (24.22)

where the coefficients depend on n:

˛1 D 2 � n

13� 2n
; ˛2 D 2n � 1

13 � 2n ; ˛3 D 2.1C n/

13� 2n
;

˛4 D �2
13� 2n

; ˛5 D �˛4; ˛6 D 2˛1: (24.23)

The ˛i do not vary too much with small deviations of n from 3/2. This means, for
example, since ˛1 determines the slope, lines of neighbouring values of n are nearly
parallel to the HL. Without loss of generality, we may consider particular models
on and close to the HL with L D M D � D 1. The variation of lgTeff with n
is then only due to the variation of the last three terms in (24.22). One finds that
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Fig. 24.2 (a) In the Hertzsprung–Russell diagram, the Hayashi line (n D 3=2, heavy line)
is indicated, together with some neighbouring lines for interior polytropes with n > 3=2 and
< 3=2. (b) The same as Fig. 24.1 but with three different polytropic interior solutions for the same
value of R

@ lgTeff=@n > 0: the stars move to the right in the Hertzsprung–Russell diagram
with decreasing n (i.e. increasing Nr).

Thus, we have to expect the following situation (see Fig. 24.2): left of the HL
we have Nr < rad and some part of the model is radiative. On the HL, the model
is fully convective with Nr D rad. Models to the right of the HL should have
Nr > rad, which means that they should have a superadiabatic stratification in their
very interior (aside from the outermost zone of ineffective convection).

The mixing-length theory has shown that a negligibly small excess of r over rad

suffices in order to transport any reasonable luminosity in the deep interior of stars.
Then, what happens with a star that by some arbitrary means (e.g. initial conditions)
has been brought to a place to the right of the HL, such that some region in its
deep interior has remarkably large values of r � rad > 0‹ The results are large
convective velocities vconv � .r � rad/

1=2 and corresponding convective fluxes
[cf. (24.3)]. These cool the interior and heat the upper layers rapidly until the
gradient is lowered to r � rad and the star has moved to the HL. This will happen
within the short timescale for the adjustment of convection.

Another possibility for a star being situated to the right of its HL is, of course, that
it is not in hydrostatic equilibrium (which is assumed for the interior solution). But
a deviation from this equilibrium will be removed in the timescale for hydrostatic
adjustment, which is even shorter.

Therefore the HL is in fact a borderline between an “allowed” region (left)
and a “forbidden” region (right) for stars of given M and composition that are in
hydrostatic equilibrium and have a fully adjusted convection.
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Fig. 24.3 Top: The position
of Hayashi lines for stars of
M D 0:8Mˇ but different
composition. The helium
content is always 0.245, while
Z varies from 10�4 to 0.02.
Bottom: Pre-main-sequence
evolution along the Hayashi
line to the zero-age main
sequence for stars between
0.1 and 1.1 Mˇ and a
solar-like composition (Data
courtesy S. Cassisi)

24.4 Numerical Results

There are many results available giving the position of Hayashi lines for stars of
widely ranging mass and chemical composition and for different assumptions in the
convection theory. The latter concerns in particular the ratio of mixing length to
pressure scale height used for calculating the superadiabatic envelope.

Figure 24.3 shows typical results of calculations for stellar masses of up to
1:1 Mˇ. One sees that indeed the HLs plotted here are very steep, the exact slope
depending mainly on L: The dependence on M (lower panel) is roughly given by
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Fig. 24.4 The Hayashi line
for M D 5Mˇ with two
different assumptions for the
ratio of mixing length to
pressure scale height (After
Henyey et al. 1965)

@ lgTeff=@ lgM � 0:1, i.e. we find the expected weak increase of Teff with M [cf.
(24.22)]. The dependence on chemical composition (top panel) is, however, very
different from that given by (24.23), which yields ˛3 D 0:5. It predicts only a slight
decrease in Teff, when increasing the metallicity from 10�4 to 0:02, as in the left
panel of the figure. In that case lg� changes from �0.229 to �0.226, and lg Teff

should increase by � 0:002. The numerical result instead is @ lgTeff=@ lg� � �26,
i.e. with increasing molecular weight Teff is strongly reduced!

As mentioned earlier the chemical composition enters in several ways. A very
important factor certainly is the opacity in the atmosphere. For Teff . 5; 000K the
dominant absorption is due to H�, and � then is proportional to the electron pressure,
which in turn is proportional to the abundance of the easily ionized metals. It turns
out that a decrease of their abundance (usually comprised inZ) by a factor 10 shifts
the HL by � lgTeff � C0:05 to the left in the Hertzsprung–Russell diagram. This
explains the large effect of changing the composition seen in Fig. 24.3. However,
Fig. 24.4 shows that roughly the same shift can be obtained by the comparatively
small increase of lm=HP from 1 to 1.5. The uncertainty of the convection theory,
therefore, severely limits our knowledge of the HL.

The typical S-shape of the numerical Hayashi tracks in Fig. 24.3 are the result
of the sign change of coefficient A in (24.15), which was mentioned at the end of
Sect. 24.2. At the lowest end of the Hayashi tracks the models develop a radiative
core and begin to bend back to the main sequence, where they end once nuclear
burning has started at the centre, supplying the energy radiated from the surface.
This is the situation discussed in Sect. 24.3.

Thus, the HLs are far away from the main sequence in the upper part of the
diagram, and approach it in the lower part. This fact will turn out to influence the
evolutionary tracks of stars of differentM . Recall that the main-sequence stars were
found to be fully convective for M . 0:25Mˇ (see Sect. 22.3). This obviously
means that the corresponding Hayashi lines cross the main sequence there.
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24.5 Limitations for Fully Convective Models

In order to describe the HL, we have considered models for which the convection
was postulated to reach from centre to surface. This provided a polytropic interior
structure with typical decoupling from the luminosity. We have not yet asked
whether the physical situation will in fact allow the onset of convection throughout
the star. This depends on the distribution of the energy sources.

According to the Schwarzschild criterion (6.13), a chemically homogeneous
layer will be convective if

rrad � rad; (24.24)

where the radiative gradient [see (5.28)] is

rrad � �lP

T 4m
: (24.25)

If the energy sources were completely arbitrary, we could choose their distribution
so that (24.24) is violated at some point and the model could not be fully convective.
A trivial example would be a central core without any sources, with the result that
there l D 0; i.e rrad D 0. Then the core must be radiative. On the other hand,
we have the best chance of finding convection throughout a star of given L if the
sources are highly concentrated towards the centre (in the extreme: a point source),
which gives almost l D L everywhere.

We consider a contracting polytrope (see Sect. 20.3) without nuclear energy
sources, which is of interest for early stellar evolution. According to (20.41) the
energy generation rate is then only proportional to T; which means a rather weak
central concentration. For the sake of simplicity we even go a step further and
assume constant energy sources with

l

m
D L

M
D constant: (24.26)

We again use the opacity law (24.11) and the polytropic relation (24.8) with n D 1:5

(corresponding to r D rad D 0:4). Equation (24.25) then gives

rrad � L

M
C1CaT b�4C2:5.1Ca/: (24.27)

For a typical Kramers opacity with a D 1; b D �4:5 this becomes rrad � T �3:5.
Indeed, for all reasonable interior opacities, rrad has a minimum at the centre and
increases outwards. Therefore the centre is the first point in a fully convective star
where rrad drops below rad (and a radiative region starts to develop) if L decreases
below a minimum value Lmin.

The constant C depends on M and R as given by (24.10), and T � Tc � M=R

after (20.24). Introducing this into (24.27) we obtain



282 24 The Hayashi Line

rrad � LMb�5C2.1Ca/R�bC4�4.1Ca/: (24.28)

Let us again set a D 1, b D �4:5, which gives

rrad � LM�5:5R0:5: (24.29)

For models on the HL, the effective temperatures vary only a very little and we
simply take R � L1=2. Then,

rrad � L1:25M�5:5: (24.30)

For any given value of M the luminosity reaches Lmin if the central value of rrad

has dropped to 0.4. According to (24.30), Lmin depends on M as

Lmin � M4:4: (24.31)

This minimum luminosity (down to which models of the specified type on the
HL remain fully convective) decreases strongly with M: The decrease is in fact
steeper than that given by the M � L relation of the main sequence. This provides
the possibility that the HL for very small M can cross the main sequence without
reaching Lmin.

Note, however, that strictly speaking a “minimum luminosity” always refers to a
fixed distribution of the energy sources.



Chapter 25
Stability Considerations

Even the most beautiful stellar model is not worth anything if one does not know
whether it is stable or not. Stability is discussed again and again throughout this
book. Here we review the different types of stability considerations necessary for
stars. We intend to make the basic mechanisms and concepts plausible rather than
present the full formalism; the reader will find this, for example, in the review article
by Ledoux (1958).

25.1 General Remarks

It is not easy to give a very general concept of stability that is applicable to all
possible cases. Different definitions are discussed in La Salle and Lefschetz (1961).
We may use, for example, the following: let the solution of a system of (time-
dependent) differential equations be a set of functions y1.t/, y2.t/; : : : which we
comprise in the symbol y.t/. We define a “distance” between two such solutions
ya.t/; yb.t/ by

jjya.t/ � yb.t/jj WD
X
i

h�
yai .t/ � ybi .t/

�2i
: (25.1)

We then call the solution ya.t/ stable at t D t0 if for any t1 > t0 and for any
small positive number ı there exists a small positive number ı such that any other
solution yb.t/ having the distance jjya.t0/ � yb.t0/jj < ı at t D t0 will keep a
distance jjya.t1/ � yb.t1/jj < ".

This definition in plain words says that a solution is stable at a given point
t0 if all solutions that at t D t0 are in its neighbourhood remain neighbouring
solutions. The problems we are interested in can be reduced to first-order systems
in time. Therefore the above definition of neighbouring solutions also guarantees
neighbouring derivatives.
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Fig. 25.1 An example of stability in mechanics. A ball on a surface under the influence of gravity
(a) in stable and (b) in unstable equilibrium. In (c) the motion starting at point A is stable, but,
starting with zero velocity at point B; the motion is unstable

One normally is familiar with stability problems in mechanics. We recall a few
simple examples, the first being the freely rolling ball on a curved surface which is
concave in the direction opposite to gravity (see Fig. 25.1a). One solution is that of
equilibrium, where the ball rests in the lowest position. The initially neighbouring
position is obtained by a small perturbation, say, by a slight horizontal displacement.
The ball will then move about the equilibrium position, but it will never increase its
distance above its initial value: the equilibrium position is stable and friction would
merely restore the ball to its equilibrium position. In the case of a convex surface
(see Fig. 25.1b) the equilibrium is unstable, since after a small displacement the ball
will move further and further from the equilibrium position. While these examples
deal with the stability of an equilibrium in which the solution is time independent,
our general definition also concerns time-dependent solutions. The motion of a ball
rolling on the surface in Fig. 25.1c can be stable or unstable. The motion is stable if
it starts with zero velocity at a point A above B (non-periodic motion), or below B
(periodic motion). But a motion starting exactly at B with zero velocity and ending
at rest at C is unstable: a slight perturbation of the initial conditions can either
produce a periodic motion (the ball never overcomes the summit C ) or cause the
ball to roll beyond C and never come back.

When considering the influence of friction, one may naı̈vely expect that it
stabilizes an otherwise unstable motion, since it uses up energy. But the following
example will show that friction can also produce instability.
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We again consider the ball in the spherical bowl (Fig. 25.1a). But now we assume
that the bowl is rotating with an angular velocity ! around a vertical axis through
the minimum. Without friction no angular momentum can be transferred to the ball
which therefore does not know anything of rotation and behaves as in the non-
rotating case: the lowest position is stable. If there is friction, however, and the ball is
“kicked” out of its lowest (equilibrium) position, it will take up angular momentum
from the rotating bowl. For sufficiently large ! the ball goes to a new equilibrium
position outside the axis around which it rotates with ! and where the tangential
components of centrifugal and gravity forces balance each other. The lowest position
has obviously become unstable by the inclusion of friction.

25.2 Stability of the Piston Model

Closer to stars than the above mechanical examples is the piston model introduced
in Sect. 2.7, since it also incorporates thermal effects. We consider the stability of
an equilibrium solution with a certain constant height h: Will a solution originating
from a small displacement of the piston remain in its neighbourhood? This stability
problem has already been discussed in Sect. 6.6, where we made approximations
appropriate for the illustration of the stability of convective blobs. We now improve
the model by adding some complications typical of stars.

25.2.1 Dynamical Stability

In this case one assumes that there is no heat leakage, no nuclear energy generation,
and no absorption, i.e. " D � D � D 0 in (5.39). Therefore the entropy of the gas
remains constant during the displacement of the piston. In Sect. 6.6, we investigated
the resulting (adiabatic) oscillations of the model around the equilibrium position,
though with constant weight G� only. We now allow G� to vary with height
ŒG� D G�.h/� as we did in Sect. 3.2. This can be achieved, for instance, by putting
the piston model into an inhomogeneous gravitational field. Then the equation of
motion (2.34)

M �d2h
dt2

D �G� C PA (25.2)

with the perturbations (6.30) gives after linearization, instead of (6.32),

M �h0!2x C P0Ap �G�
hG

�
0 x D 0: (25.3)

Here G�
h WD d lnG�=d lnh.< 0/, while G�

0 D P0A D g0M
� is the equilibrium

value of G� and g0 is that of g: With the perturbed perfect gas equation (6.31) we
find
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�
!2h0

g0
�G�

h � 1

�
x C # D 0: (25.4)

This together with the adiabatic equation (6.36),

.�ad � 1/x C # D 0; (25.5)

gives for the eigenvalues of adiabatic oscillations ! D C!ad and ! D �!ad with

!ad D
�
.�ad CG�

h /
g0

h0

�1=2
; (25.6)

which replaces (6.37). Recall that the perturbation changes with time as ei!t . We
see that !ad is a real number only as long as �ad > �G�

h . In this case the small
perturbation is followed by a periodic oscillation which remains small for all times.
It is therefore stable in the sense of our definition of stability at the beginning of
this paragraph. But if �ad < �G�

h , then !ad is imaginary and one of the eigenvalues
! gives an amplitude growing exponentially in time: the equilibrium solution is
unstable (We will see in Sect. 25.3.2 that for stars the analogue of �ad > �G�

h is
�ad > 4=3.).

25.2.2 Inclusion of Non-adiabatic Effects

We now drop the assumption of strict adiabaticity. Non-adiabatic changes were
previously included in Sect. 5.4 (refer also to the last part of Sect. 6.6). The energy
equation of the piston model (5.39) includes the non-adiabatic terms for nuclear
generation ", absorption �, and heat leakage �. We consider " and � as functions of
P and T , while � shall be constant. Let F be the radiative flux through the gas. In
the case of thermal equilibrium (vanishing time derivatives) we have [see (5.37)]

"0m
� C �0m

�F D �.T0 � Ts/; (25.7)

where subscript 0 indicates the equilibrium and subscript s the surroundings. If
we perturb this equilibrium according to (6.30), we find for the perturbations after
linearization

i!.cvm�T0# C P0Ah0x/

D "0m
�.p "P C #"T /C �0m

�F.p�P C #�T /� �T0#; (25.8)

where the derivatives



25.2 Stability of the Piston Model 287

"P D
�
@ ln "

@ lnP

�
T

; "T D
�
@ ln "

@ ln T

�
P

;

�P D
�
@ ln �

@ lnP

�
T

; �T D
�
@ ln �

@ lnT

�
P

(25.9)

are taken at the values P0; T0.
The equation of motion (25.2) yielded (25.4) for which we now assume constant

weight of the piston (G�
h D 0, giving dynamical stability):

�
!2h0

g0
� 1

�
x C # D 0: (25.10)

Since % � h�1, the equation of state for an ideal (or “perfect”) gas gives (6.31)

p D # � x: (25.11)

System (25.8), (25.10) and (25.11) comprises three linear homogeneous algebraic
equations for the perturbations p; #; x. To find a solution it is necessary that the
determinant of the coefficients vanishes:

h0

g0
iu0!3 � h0

g0
.eP C eT /!

2 � 5

3
u0i! C eT D 0 (25.12)

with

eP D "0"P C �0F�P ; eT D "0"T C �0F�T � �T0

m� ; u0 D cvT0; (25.13)

where for the last relation we have assumed the gas to be ideal and monatomic
(Note that P0Ah0=m� D P0=%0 D 2u0=3.). Equation (25.12) becomes one with
real coefficients if instead of ! we use the eigenvalue � WD i!,

h0

g0
u0�

3 � h0

g0
.eP C eT /�

2 C 5

3
u0� � eT D 0: (25.14)

This is a third-order equation for the eigenvalue � (or !). While in the adiabatic
case (eP D eT D 0) we obtained two solutions � D ˙�ad D ˙i!ad (where !ad was
real), we now have three eigenvalues. If the non-adiabatic terms eP ; eT are small,
we can expect that two (conjugate complex) eigenvalues lie near the adiabatic ones:

� D �r ˙ i!ad; !ad D
�
�ad
g0

h0

�1=2
; (25.15)

where �r is real and j�rj � !ad. While in the adiabatic case the oscillation was
strictly periodic, the real part �r causes the amplitude of the oscillation to grow
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or decrease in time, depending on the sign of �r. Because of j�rj � !ad these
changes take place over a time much longer than the oscillation period, actually on
a scale corresponding to �adj in (5.41). This type of stability behaviour is called the
vibrational stability (compare Sect. 6.6). If the oscillation grows in time, the solution
leaves the neighbourhood of equilibrium, which therefore is unstable.

We now turn to the third root of (25.12) or (25.14), which occurs necessarily
with the dissipative terms eP ; eT . Instead of solving the third-order equation (25.14),
we will follow some heuristic arguments. The addition of non-adiabatic terms has
changed the rapid oscillations only to the extent that their amplitude varies on long
timescales (of the order of ��1

r ). We now look for the existence of a third solution
changing with this long timescale only. Then the inertia terms can be neglected and,
consequently, the terms with �3 and �2 disappear in (25.14). The solution of (25.14)
for this so-called secular stability problem is

� D �sec D i!sec D 3

5

eT

u0
: (25.16)

For sufficiently small non-adiabaticity eT , we can achieve j�secj � !ad, and
neglecting the �2 and �3 terms in (25.14) was justified. If �sec < 0, any perturbation
will decay within a kind of thermal adjustment time �adj � ��1

sec and the equilibrium
is secularly stable. But if �sec > 0, then it will grow on that timescale (independently
of vibrational stability): The equilibrium is secularly unstable.

We have now found the three well-known types of stability behaviour: dynami-
cal, vibrational, and secular stability . This classification is possible since j!adj �
j!secj, which is equivalent to saying that �hydr � �adj. From one type of stability
one cannot draw any conclusions about the behaviour of another type, for example,
a dynamically stable model can still be vibrationally or secularly unstable. If the
model were dynamically unstable, the other instabilities would be of no interest
since the model would move out of equilibrium long before any other instability
can develop.

We will find more or less the same behaviour in stars where also �hydr � �adj �
�KH. However, there we cannot solve the eigenvalue problem analytically any more.
This is the reason why we dwelt in such length on the stability of the piston model.

25.3 Stellar Stability

For the problem of stellar stability a very general definition, like that given at the
beginning of Sect. 25.1, has to be taken with care. For example, a star may be stable
in one phase (e.g. on the main sequence) and later on become unstable (e.g. in
the Cepheid phase). At any stage of evolution the solution (the stellar model) is
obtained for certain parameters, for instance, a certain chemical composition or
a certain distribution of entropy. It is reasonable to ask whether this solution is
stable in the following sense: Does a small perturbation decay rapidly compared
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to the change of the parameters of the model (e.g. its chemical composition)? Then
we would call the model stable. Therefore, the question of the Cepheid stability
is irrelevant for the stability of its main-sequence progenitor since the chemical
composition is different. The solution for a certain phase of evolution, in general,
is obtained by solving approximate equations. For example, complete equilibrium
may be assumed in the case of the main sequence, while only the inertia terms are
dropped for the evolution through the Cepheid phase. If such approximate models
approach an instability in the run of their evolution, the neglected time derivatives
become important and have to be taken into account. In general, then, the solution
obtained from better approximations tells us in which direction the evolution really
goes.

25.3.1 Perturbation Equations

We want to investigate the stability of a stellar model in complete equilibrium for
given input parameters M and chemical composition. Let the model be described
by r0.m/, P0.m/, T0.m/, l0.m/, which solve the time-independent stellar structure
equations. We test its stability by investigating how a neighbouring (perturbed)
solution evolves in time. We here restrict ourselves to spherically symmetric
perturbations which depend on m and t in such a way that the perturbed variables
become

r.m; t/ D r0.m/
�
1C x.m/ei!t

	
;

P.m; t/ D P0.m/
�
1C p.m/ei!t

	
;

T .m; t/ D T0.m/
�
1C #.m/ei!t	 ;

l.m; t/ D l0.m/
�
1C �.m/ei!t	 ; (25.17)

where the absolute values of x; p; # , and � are � 1. These variables have to fulfill
the time-dependent equations (10.1)–(10.4). As an example let us introduce (25.17)
into the equation of motion (10.2). If we linearize with respect to p and x; this
becomes

P 0
0

�
1C pei!t

�C P0p
0ei!t

D � Gm

4	r40

�
1 � 4xei!t�C !2

4	r0
xei!t ; (25.18)

where primes indicate derivatives with respect to m. Since P0; r0 obey (10.2), we
haveP 0

0 D �Gm=.4	r40 /: The time-independent terms in (25.18) cancel each other,
the exponentials drop out, and we are left with (25.19). By a similar procedure, we
find for the case of a radiative layer and an equation of state of the form % � P˛T �ı
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from (10.1), (10.3), (10.4) the equations (25.20)–(25.22):

p0 D �P
0
0

P0

�
p C

�
4C r30

Gm
!2
�
x

�
; (25.19)

x0 D � 1

4	r30%0
.3x C ˛p � ı#/: (25.20)

�0 D �"0
l0
.� � "Pp � "T #/ � i!

P0ı

l0%0

�
#

rad
� p

�
; (25.21)

# 0 D P 0
0

P0
rradŒ�P p C .�T � 4/# C � � 4x�: (25.22)

Equations (25.19)–(25.22) are four linear homogeneous differential equations of
first order for the variables p; #; x; � which have to obey certain boundary
conditions corresponding to those of the unperturbed solutions. They have to be
regular in the centre and to be fitted to an atmosphere. We will deal with the
boundary conditions in Chaps. 40 and 41, where they are shown to be equivalent
to four linear homogeneous equations. Therefore, solutions exist only for certain
eigenvalues of !; which have to be found numerically. There exists an infinite
number of eigenvalues for which the system can be solved. For each eigenvalue
!� one obtains a set of eigenfunctions p�.m/, #�.m/, x�.m/, ��.m/.

The term with !2.� Rr) in (25.19) comes from the inertial terms in the equation
of motion, while in (25.21), the term with i!.� PP ; PT / is due to the time derivatives
in the energy equation. The two corresponding timescales are �hydr and �adj D �KH.
Since �hydr � �KH, we have a situation similar to that described for the piston model
in Sect. 25.2. Correspondingly, in general, we can speak of dynamical, vibrational,
and secular stability.

There are, however, more complicated cases where this classification of stability
behaviour is not possible. For example, the relevant thermal timescale may not be
that of the whole star but a much shorter one for a small subregion. If the char-
acteristic wavelength of a thermal perturbation is short enough, the corresponding
adjustment time can become comparable or shorter than �hydr (of the whole star).
Another example is the case of a dynamically stable model which evolves in such a
way that it approaches marginal stability (!ad ! 0). Then the oscillations become
so slow that they certainly will not be adiabatic anymore: 1=!ad � �KH (although
�hydr � �KH still).

25.3.2 Dynamical Stability

Since in Chap. 40 we will treat this problem thoroughly, we merely present some
general results here. Instead of solving all four equations (25.19)–(25.22), one
can consider oscillations taking place on the timescale �hydr. Since �hydr � �adj,
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the temperature of the matter changes almost adiabatically. Instead of solving
(25.21) and (25.22) one just replaces # by prad in (25.20). Therefore (25.19) and
(25.20) present two equations for p and x with the eigenvalue !2. As we will see
in Chap. 40 the eigenvalue problem is self-adjoint. Then there exists an infinite
series of eigenvalues !2n which are real. (!n is either real or purely imaginary).
Therefore, they either correspond to periodic oscillations (!2n > 0) or exponentially
decreasing/increasing solutions (!2n < 0). The same behaviour was found for the
adiabatic case of the piston model. But now, with an infinite number of eigenvalues,
stability demands that for all eigenvalues !2n > 0, while even a single eigenvalue
with !2n < 0 is sufficient for instability.

How a star behaves after it is adiabatically compressed or expanded depends on
the numerical value of �ad. This can be most easily seen in the case of homologous
changes. Let us consider a concentric sphere r D r.m/ in a star of hydrostatic
equilibrium.

The pressure there is equal to the weight of the layers above a unit area of the
sphere, as shown by integrating the hydrostatic equation:

P D
Z M

m

Gm

4	r4
dm: (25.23)

We now compress the star artificially and assume the compression to be adiabatic
and homologous. In general, after this procedure, the star will no longer be in
hydrostatic equilibrium.

If a prime indicates values after the compression, then homology demands that
the right-hand side of (25.23) varies like .R0=R/�4 [cf. (20.37)] where R is the
stellar radius, while adiabaticity and homology demand that the left-hand side varies
as

.%0=%/�ad D .R0=R/�3�ad (25.24)

according to (20.9). Therefore, if �ad D 4=3, the pressure on the left-hand side
of (25.23) increases stronger with the contraction than the weight on the right:
The resulting force is directed outwards, and the star will move back towards
equilibrium: it is dynamically stable.

For �ad < 4=3 the weight increases stronger than the pressure and the star would
collapse after the initial compression (dynamical instability). For �ad D 4=3, the
compression leads again to hydrostatic equilibrium: One has neutral equilibrium.
The condition �ad > 4=3 corresponds to the dynamical stability condition �ad >

�G�
h for the piston model (Sect. 25.2.1).

In Chap. 40 we will see that �ad D 4=3 is also a critical value for non-homologous
perturbations. If �ad is not constant within a star, for instance, because of ionization,
then marginal stability occurs if a certain mean value of �ad over the star reaches the
critical value 4/3.

It should be noted that radiation pressure can bring �ad near the critical value
4/3 (see Sect. 13.2). This is the reason why supermassive stars are in indifferent
equilibrium, i.e. they are marginally stable (see Sect. 19.10).
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The critical value 4/3 depends strongly on spherical symmetry and Newtonian
gravitation. The 4 in the numerator comes from the fact that the weight of the
envelope in Newtonian mechanics varies as � r�2 and has to be distributed over
the surface of our sphere, giving another r�2. The 3 in the denominator comes
from the r3 in the formula for the volume of a sphere. Therefore, effects of general
relativity change the critical value (see Sect. 38.2) of �ad and make the models less
stable. Since we have assumed spherical symmetry in deriving the critical value of
�ad, rotation changes it, too. It can decrease the critical value of �ad and make the
models more stable.

25.3.3 Non-adiabatic Effects

The inclusion of non-adiabatic effects in a dynamically stable model brings us
to the question of its vibrational and secular stability (A dynamical instability
makes a perturbation grow so rapidly that any other possible instability of vibra-
tional or secular type is irrelevant because of their much longer timescales.).
Vibrational stability means an oscillation with nearly adiabatic frequency but with
slowly decreasing (stability) or increasing amplitude (instability). Such oscillations
describe the behaviour of pulsating stars and therefore are treated in detail in
Chap. 41.

Secular (or thermal) stability is governed by thermal relaxation processes. In
general these proceed on timescales long compared to �hydr and, therefore, the inertia
terms in the equation of motion can be dropped. This means that the term � !2 in
(25.19) can be omitted. Equations (25.19)–(25.22) together with proper boundary
conditions can then be solved, yielding an infinite number of secular eigenvalues
!sec. Normally they are purely imaginary (as in the case of the piston model). This
is what one expects from a thermal relaxation process, such as in the problem
of diffusion of heat. It is therefore all the more surprising that in certain cases
a few complex eigenvalues occur (Aizenman and Perdang 1971). The oscillatory
behaviour here comes from heat flowing back and forth between different regions in
the star (Obviously this could not occur in the single layer of the piston model.). If
instead of ! we again use � WD i!, the system (25.19)–(25.22) has real coefficients.
Therefore the eigenvalues � , if complex, appear in conjugate complex pairs. Again,
the sign of the real part of � (the imaginary part of !/ distinguishes between secular
stability or instability.

The most important application of the secular problem to stellar evolution
concerns the question whether a nuclear burning is stable or not. Secular instability
in degenerate regions leads to the flash phenomenon, while in thin (nondegenerate)
shell sources, it results in quasiperiodic thermal pulses.

In order to make the secular stability of a central burning plausible, we treat a
simple model of the central region, assuming homologous changes of the rest of the
star. Other secular instabilities which occur in burning shells or which are due to
nonspherical perturbations will be discussed later (Sects. 33.5 and 34.2).
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25.3.4 The Gravothermal Specific Heat

Let us consider a small sphere of radius rs and mass ms around the centre of a star
in hydrostatic equilibrium. If the sphere is sufficiently small, then P at rs and the
mean density in the sphere are good approximations for the central values Pc, %c.
Suppose that, as a reaction to the addition of a small amount of heat to the central
sphere, the whole star is slightly expanding and let the expansion be homologous.
Then any mass shell of radius r after expansion has the radius r C dr D r.1C x),
where x is constant for all mass shells. If after the expansion the pressure in the
sphere is Pc C dPc, then, similarly to (20.34) and (20.37), the resulting changes of
%c and Pc are

d%c

%c
D �3x; pc WD dPc

Pc
D �4x: (25.25)

We now write the equation of state in differential form,

d%c

%c
D ˛pc � ı#c; (25.26)

(#c WD dTc=Tc) as in (6.5) but here with constant chemical composition.
Elimination of d%c=%c and of x from (25.25) and (25.26) gives

pc D 4ı

4˛ � 3#c: (25.27)

According to the first law of thermodynamics the heat dq per mass unit added to the
central sphere is

dq D du C Pdv D cP Tc.#c � radpc/ WD c�Tc#c; (25.28)

where we have used (4.18), (4.21) and where according to (25.27)

c� D cP

�
1 � rad

4ı

4˛ � 3

�
: (25.29)

This quantity has the dimension of a specific heat per mass unit. Indeed, dT D
dq=c� gives the temperature variation in the central sphere if the heat dq is added.
In thermodynamics we are used to defining specific heats with some mechanical
boundary conditions, for example, cP and cv: For c� the mechanical condition is
that the gas pressure is kept in equilibrium with the weight of all the layers with
r > rs. This c� is called the gravothermal specific heat.

For an ideal monatomic gas (a D ı D 1;rad D 2=5), as we have approximately
in the central region of the Sun, one finds from (25.29) that c� < 0. This is
fortunate, since if in the Sun the nuclear energy generation is accidentally enhanced
for a moment (dq > 0), then dT < 0, the region cools, thereby reducing the
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overproduction of energy immediately. Therefore the negative specific heat acts
as a stabilizer. At first glance it seems as if the decrease of temperature after an
injection of heat contradicts energy conservation. But one has also to take into
account the Pdv work done by the central sphere. Indeed, while the centre cools
(#c < 0), the whole star expands, since elimination of pc and d%c=%c from (25.25)
and (25.26) gives x D �ı#c=.4˛ � 3/, which in the case ˛ D ı D 1 yields
x > 0. It turns out that, if heat is added to the central sphere, more energy is used
up by the expansion, and therefore some must be taken from the internal energy.
This behaviour is essentially connected with the virial theorem (see Sect. 3.1). A
corresponding property can be found for the piston model by assuming a variable
weight G� of the piston as in Sect. 3.2.

For a nonrelativistic degenerate gas (ı ! 0; ˛ ! 3=5) equation (25.29) gives
c� > 0: the addition of energy to the central sphere heats up the matter, which can
lead to thermal runaway.

25.3.5 Secular Stability Behaviour of Nuclear Burning

Having derived a handy expression for dq, we shall now use it in the energy balance
of the central sphere considered in Sect. 25.3.4. Energy is released in the sphere by
nuclear reactions and transported out of it by radiation (we assume here that the
central region is not convective). In the steady state gains and losses compensate
each other. Let " be the mean energy generation rate, and ls the energy per unit time
which leaves the sphere; then "ms � ls D 0. Now the equilibrium is supposed to be
perturbed on a timescale � , such that � is much larger than �hydr but short compared
to the thermal adjustment time of the sphere. Then, while hydrostatic equilibrium is
maintained, the thermal balance is perturbed.

For the perturbed state the energy balance is

msd" � dls D ms
dq

dt
� msc

� dTc

dt
: (25.30)

Here, dq is the heat gained per mass unit, which is expressed by c�dTc according to
(25.28).

If we now perturb the equation for radiative heat transfer (5.12),

l � T 3r4

�

dT

dm
; (25.31)

we obtain for ls
dls

ls
D 4#c C 4x � �Ppc � �T #c: (25.32)

For the perturbation of dT/dm we have made use of the fact that for homology
# D dT=T D constant and therefore d.dT=dm/ D d.T #/=dm D #dT=dm.
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From (25.25), (25.27) and (25.32) it follows that

dls

ls
D
�
4 � �T � 4ı

4˛ � 3
.1C �P /

�
#c: (25.33)

This, introduced into (25.30), gives

ms

ls

dq

dt
D .msd" � dls/ls D "T #c C "Ppc � dls

ls

D
�
."T C �T � 4/C 4ı

4˛ � 3."P C �P C 1/

�
#c; (25.34)

where we have made use of ls D "ms and of (25.27). Then with (25.30) we find

msc
�Tc

ls

d#c

dt
D
�
."T C �T � 4/C 4ı

4˛ � 3
.1C "P C �P /

�
#c: (25.35)

The sign of the bracket tells us whether for dTc > 0 the additional energy production
exceeds the additional energy loss of the sphere ([: : :] > 0). The sign of c� tells us
whether in this case the sphere heats up .c� > 0) or cools .c� < 0). Normally "T
is the leading term in the bracket, so that indeed [: : :] > 0. We first assume an ideal
gas (˛ D ı D 1; c� < 0) and obtain

msc
�Tc

ls

d#c

dt
D Œ"T C �T C 4."P C �P /�#c: (25.36)

Since c� < 0, one finds from (25.36) that (d#c=dt/=#c < 0, meaning that the
perturbation dTc decays and the equilibrium is stable if

"T C �T C 4."P C �P / > 0: (25.37)

This criterion is normally fulfilled. The only “dangerous” term is �T , which can be
as low as to �4:5 for Kramers opacity. But then, even "T D 5 for the pp chain
suffices to fulfill (25.37), since the other terms are positive.

Any temperature increase dTc > 0 would cause a large additional energy
overproduction "0"T dTc=Tc. But since the gravothermal heat capacity c� < 0, the
sphere reacts with dTc < 0, and this cooling brings energy production back to
normal. We then can say that the burning in a sphere of ideal gas proceeds in a
stable manner, the negative gravothermal specific heat acts like a thermostat. This,
for example, is the case in the Sun.

We go back to (25.35) for the general equation of state. Since normally "T
dominates the other terms in the square bracket (in some case "T > 20), we neglect
them for simplicity. Then (25.35) can be written
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d#c

dt
D ls"T

msTcc� #c WD 1

D
#c: (25.38)

Obviously D < 0 indicates stability, D > 0 instability. Since "T > 0 and, for an
ideal gas, c� < 0, the quantityD is negative: The nuclear burning is stable.

For a nonrelativistic degenerate gas we have ı D 0, ˛ D 3=5. Therefore, c� > 0
andD > 0: Any nuclear burning with a sufficiently strong temperature dependence
will then be unstable. This is the reason, for instance, why in the central regions
of a white dwarf there can be no strong nuclear energy source [as first shown by
Mestel (1952)]; the star would be destroyed by thermal runaway, or at least heat up
until it was not degenerate and then expand. Of course, then it would no longer be
a white dwarf. The same instability is also responsible for the phenomenon of the
so-called flash (compare Sect. 33.4) which occurs if a new nuclear burning starts
in a degenerate region. Note that the appearance of 4˛ � 3 in the denominator in
several equations, including (25.29) for c� and (25.35), does not become serious
even if ˛ ! 3=4 for partial nonrelativistic degeneracy, since the singularity can
be removed from the equation which one obtains if c� is inserted in (19.35) by
multiplication with 4˛ � 3.

From (25.38) one can draw another conclusion. Let us assume that in the central
region of a star there is no nuclear burning but that energy losses by neutrinos
(Sect. 18.7) are important. The nuclear energy production in the star may take place
in a concentric shell of finite radius. Part of this energy flows outwards, providing
the star’s luminosity, while part of it flows from the shell inwards towards the centre
where it goes into neutrinos. The maximum temperature then is in the shell and
not in the stellar centre. In Sect. 33.5 we shall see that this really can be the case
in models of evolved stars. If we now again look at (25.38), we have to be aware
that ls < 0. If "T > 0, as it is for neutrino losses (see Sect. 18.7), all the above
conclusions are contradicted because of the different sign of ls: The equilibrium is
stable if c� > 0, i.e. for degeneracy, but unstable if c� < 0, which is the case for an
ideal gas.

All our discussions here were based on the assumption of homologous changes
in the stellar model. Although stars clearly never change precisely in such a simple
way, it turns out that the above conclusions describe qualitatively correctly the
secular stability behaviour of stars. Deviations from homology only influence
the factors [e.g. in the bracket in (25.36)], thus modifying the exact position of
the border between secular stability and instability.
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Early Stellar Evolution



Chapter 26
The Onset of Star Formation

Stars form out of interstellar matter. With modern telescopes and instruments this
can nowadays be observed directly and in many phases of the formation process.
Indeed a homogeneous cloud of compressible gas can become gravitationally unsta-
ble and collapse. In this section we shall deal with gravitational instability and then
discuss some of its consequences. But before we do so it may be worth comparing
this instability with those discussed in Chap. 25. For gravitational instability the
inertia terms are important as well as heat exchange of the collapsing mass with its
surroundings. But it is not a vibrational instability, since the classification scheme
of Chap. 25 holds only if the free-fall time is much shorter than the timescale of
thermal adjustment. As we will see later, just the opposite is the case here, during
the earliest phases of star formation.

26.1 The Jeans Criterion

26.1.1 An Infinite Homogeneous Medium

We start with an infinite homogeneous gas at rest. Then density and temperature
are constant everywhere. However, we must be aware that this state is not a well-
defined equilibrium. For symmetry reasons the gravitational potential ˚ must also
be constant. But then Poisson’s equation r 2˚ D 4�G% demands % D 0. Indeed
the gravitational stability behaviour should be discussed starting from a better
equilibrium state, as we will do later. Nevertheless we first assume a medium
of constant non-vanishing density. If we here apply periodic perturbations of
sufficiently small wavelength, the single perturbation will behave approximately
like one with the same wavelength in an isothermal sphere in hydrostatic equilibrium
(which is a well-defined initial state).
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The gas has to obey the equation of motion of hydrodynamics

@v

@t
C .v � r /v D �1

%
rP � r˚ (26.1)

(Euler equation), together with the continuity equation

@%

@t
C vr%C %r � v D 0 : (26.2)

In addition we have Poisson’s equation

r 2˚ D 4�G% (26.3)

and the equation of state for an ideal gas

P D <
�
%T D v2s % ; (26.4)

where vs is the (isothermal) speed of sound. For equilibrium we assume % D %0 D
constant, T D T0 D constant, and v0 D 0: ˚0 may be determined by r 2˚0 D
4�G%0 and by boundary conditions at infinity.

We now perturb the equilibrium

% D %0 C %1 ; P D P0 C P1 ; ˚ D ˚0 C ˚1 ; v D v1 ; (26.5)

where the functions with subscript 1 depend on space and time. In (26.5) we have
already used that v0 D 0. If we substitute (26.5) in (26.1) and (26.4), assuming that
the perturbations are isothermal .vs is not perturbed), and if we ignore non-linear
terms in these quantities, we find

@v1

@t
D �r

�
˚1 C v2s

%1

%0

�
; (26.6)

@%1

@t
C %0r � v1 D 0 ; (26.7)

r2˚1 D 4�G%1 : (26.8)

The terms with index 0, describing the equilibrium part, have vanished, as usual.
This is a linear homogeneous system of differential equations with constant
coefficients. We therefore can assume that solutions exist with the space and time
dependence proportional to exp [i(kx C !t)] such that

@

@x
D ik ;

@

@y
D @

@z
D 0 ;

@

@t
D i! : (26.9)
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With v1x D v1; v1y D v1z D 0 we find from (26.6)–(26.8) that

!v1 C kv2s
%0
%1 C k˚1 D 0; (26.10)

k%0v1 C !%1 D 0; (26.11)

4�G%1 C k2˚1 D 0: (26.12)

This homogeneous linear set of three equations for v1; %1; ˚1 can only have
nontrivial solutions if the determinant

ˇ̌
ˇ̌
ˇ̌̌
ˇ
!

kvs2

%0
k

k%0 ! 0

0 4�G k2

ˇ̌
ˇ̌
ˇ̌̌
ˇ

is zero. Assuming a non-vanishing wave number k we obtain

!2 D k2v2s � 4�G%0: (26.13)

For sufficiently large wave numbers the right-hand side is positive, i.e. ! is real. The
perturbations vary periodically in time. Since the amplitude does not increase, the
equilibrium is stable with respect to perturbations of such short wavelengths.

In the limit k ! 1, (26.13) gives !2 D k2v2s , which corresponds to isothermal
sound waves. Indeed for very short waves gravity is not important, any compression
is restored by the increased pressure, and the perturbations travel with the speed of
sound through space.

If k2 < 4�G%0=v
2
s ; the eigenvalue ! is of the form ˙i�, where � is real.

Therefore there exist perturbations �exp.˙�t/ which grow exponentially with time,
so that the equilibrium is unstable. If we define a characteristic wave number kJ by

k2J WD 4�G%0

v2s
; (26.14)

or a corresponding characteristic wavelength

�J WD 2�

kJ
; (26.15)

then perturbations with a wave number k < kJ (or a wavelength � > �J/ are
unstable; otherwise, they are stable with respect to the perturbations applied here.
The condition for instability � > �J, where

�J D
�
�

G%0

�1=2
vs; (26.16)



302 26 The Onset of Star Formation

is called the Jeans criterion after James Jeans, who derived it in 1902. Depending
on the detailed geometrical properties of equilibrium and perturbation, the factors
on the right-hand side of (26.16) can differ.

For our special choice of perturbations the case of instability can be described as
follows: after a slight compression of a set of plane-parallel slabs, gravity overcomes
pressure and the slabs collapse to thin sheets. If we estimate ! for the collapsing
sheets only from the gravitational term in (26.13) (which indeed is larger than the
pressure term), we have i! � .G%0/

1=2 and the corresponding timescale is � �
.G%0/

�1=2, which corresponds to the free-fall time, as defined in Sect. 2.4.

26.1.2 A Plane-Parallel Layer in Hydrostatic Equilibrium

We have already mentioned the contradictions connected with the assumption of an
infinite homogeneous gas as initial condition. One way out of this difficulty is to
investigate the equilibrium of an isothermal plane-parallel layer stratified according
to hydrostatic equilibrium in the z direction. Perpendicular to the z direction
all functions are constant, the layer extending to infinity. This defines a one-
dimensional problem: %0; P0; T0 depend only on one coordinate, say z. Poisson’s
equation then is

d2˚0

d z2
D 4�G%0; (26.17)

while hydrostatic equilibrium, dP0=d z D �%0d˚0=d z, can be written with (26.4)
as

v2s
d ln%0
d z

D �d˚0
d z

: (26.18)

After differentiation of (26.18) one obtains from (26.17)

d2 ln %0
d z2

D �4�G
v2s

%0 : (26.19)

With the boundary condition %0 D 0 for z D ˙1, (26.19) has the solution

%0.z/ D %0.0/

cosh2.z=H/
; (26.20)

with

H D
� <T
2��G%0.0/

�1=2
D vs

Œ2�G%0.0/�1=2
; (26.21)

which can be seen if (26.20) and (26.21) are inserted into (26.19). The (stratified)
disc does not cause problems similar to those encountered in the case of the infinite
homogeneous gas.
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In order to investigate the stability of this disc one defines cartesian coordinates
x; y in the plane perpendicular to the z-axis and considers perturbations of the form
%1 � f .z/ exp Œi.kx C !t/�. Since the perturbations do not depend on y the layer
collapses in the x-direction to a set of plane-parallel “sticks” in y-direction in the
case of instability. We shall not go into the details of the stability analysis, which
has been described by Spitzer (1968). The result is that again there is a critical wave
number

kJ D 1

H
D Œ2�G%0.0/�

1=2

vs
(26.22)

and that instability occurs for wave numbers k < kJ, while perturbations with
k > kJ remain finite. This is very similar to what we have obtained in the
homogeneous case, as can be seen by comparing (26.22) and (26.14). The difference
in the numerical factors is due to the different geometry.

The two cases discussed above have in common that for smaller wave numbers
(larger wavelengths and therefore larger amounts of mass involved in the resulting
collapse) the equilibrium is unstable, while for larger wave numbers, it is stable. In
hydrostatic equilibrium the force due to the pressure gradient and the gravitational
force cancel each other. In general this balance is disturbed after a slight compres-
sion. If only a small amount of mass is compressed, the pressure increases more
than the force due to gravity, and the gas is pushed back towards the equilibrium
state. This is the case if a toy balloon is slightly compressed. Only the increase of
pressure counts, since the gravity of the trapped gas is negligible. The same is true
for the compressions which occur in sound waves where gravity plays no role. But
if a sufficient amount of gas is compressed simultaneously, the increase of gravity
overcomes that of pressure and makes the compressed gas contract even more.

26.2 Instability in the Spherical Case

In order to investigate the Jeans instability for interstellar gas in a configuration more
realistic than the two examples of Sect. 26.1, we now consider an isothermal sphere
of finite radius imbedded in a medium of pressure P � > 0. The sphere is supposed
to consist of an ideal gas. The structure of the sphere can be obtained from a solution
of the Lane–Emden equation (19.35) for an isothermal polytrope. The solution is cut
off at a certain radius where P has dropped to the surface pressure P D P �. The
stratification outside the sphere is not relevant as long as it is spherically symmetric
with respect to the centre, since then there is no gravitational influence of the outside
on the inside. Its only influence will be via the surface pressure, which we assume
to be constant during the perturbation.

The essential points of this problem can be easily seen if one discusses the virial
theorem for the sphere, as described in Sect. 3.4. Since our sphere of mass M and
radius R is isothermal, its internal energy is Ei D cvMT . For the gravitational
energy we write Eg D ��GM2=R, where � is a factor of order one. It can be
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obtained by numerical integration of the Lane–Emden equation and is related to the
polytropic index n by � D 3=.5� n/. For a fully convective sphere .n D 3=2/, for
example, its value would be 6/7; for the homogenous sphere with n D 0, � D 3=5,
and for an n D 3 polytrope (see Sect. 19.4) it is 1.5. Here, however, we use it as a
general factor that depends on the actual density distribution within the sphere. With
these expressions and with 	 D 2 [ideal monatomic gas; (3.8)] the virial theorem
(3.21) can be solved for the surface pressure P0 giving

P0 D cvMT

2�R3
� �GM2

4�R4
: (26.23)

The first term on the right is due to the internal gas pressure, which tries to expand
the sphere. It is proportional to the mean density. The second term is due to the
self-gravity of the sphere, which tries to bring all matter to the centre.

At this point we introduce two scaling factors for radius and pressure which allow
us to write (26.23) in dimensionless form

eR D �GM

2cvT
; eP D cvMT

2�eR3 ; (26.24)

and write
R D xeR; P0 D yeP : (26.25)

We then obtain instead of (26.23)

y D 1

x3

�
1 � 1

x

�
: (26.26)

We now discuss how P0 varies with R for fixed values of M , T , and �

(Fig. 26.1). For small x the value of y is negative. It changes sign with increasing
x at x D 1 (or R D eR), and approaches zero from positive values for x (or R)
! 1. x has a (positive) maximum at 4/3 (or P0 at R D Rm), a value which can be
obtained by differentiation of (26.26) or (26.23). After replacing cv by 3<=.2�/ we
find that dP0=dR vanishes at

Rm D 4�

9

G�M

<T D 4

3
eR : (26.27)

Suppose the sphere to be in equilibrium with the surroundings: P0 D P �. For R <

Rm, the surface pressure P0 decreases with decreasing R. Therefore, after a slight
compression,P0 < P � and the sphere will be compressed even more; it is unstable.
For R > Rm, the pressure P0 increases during a slight compression and the sphere
will expand back to equilibrium; it is stable (These simple plausibility arguments are
supported by the results of a decent stability analysis.). We have obviously recovered
the Jeans instability discussed in Sect. 26.1. This can be seen if in (26.27) M is
replaced by 4�R3m N%=3, where N% is the mean density of the sphere. We then obtain
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Fig. 26.1 The function given
in (26.23) in dimensionless
form (26.26). The variable y
and therefore also P0 change
sign at x D 1 (or at R D QR).
It has a positive maximum at
x D 4=3 (or at
R D Rm D 4 QR=3)

R2m D 27

16��

<T
G� N% : (26.28)

Here Rm is the critical radius of a gaseous mass of mean density N% and temperature
T which is marginally stable. We compare it with the critical Jeans wavelength
obtained in (26.16), which with v2s D <T=� becomes

�2J D <T�
G� N% : (26.29)

Clearly �J and Rm are of the same order of magnitude.
Obviously for a given equilibrium state, defined by a radius R and a surface

pressure P0, there exists a critical mass MJ, the so-called Jeans mass, where R D
Rm. Masses larger thanMJ are gravitationally unstable becauseR would be smaller
than the corresponding Rm, which grows linearly with M according to (26.27). If
slightly compressed they fall together. According to (26.28)

MJ D 4�

3
N%R3m D 27

16

�
3

�

�1=2 � <
�G

�3=2 �
T

�

�3=2 �
1

N%
�1=2

: (26.30)

Depending on the treatment of the perturbation problem and its geometry, one finds
slightly differing pre-factors in the expression for MJ, but they all give the same
order of magnitude.

We can rewrite (26.30) into a more convenient form (setting � D 1):

MJ D 27

16

�
3

�

�1=2 � <
G�

�3=2
T 3=2%�1=2

D 1:1Mˇ
�
T

10K

�3=2 �
%

10�19 g cm�3

��1=2 � �
2:3

��3=2
: (26.31)
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The scaling values % D 10�19 g cm�3 and T D 10K are typical for the conditions
in star-forming clumps within interstellar clouds. We assumed that all hydrogen
is in molecular form and helium is neutral, and therefore � � 2:3. We thus obtain
MJ � 1:1Mˇ as the typical mass of a clump of molecular gas from which stars form
because of the Jeans instability. The typical Jeans mass for the molecular cloud as
a whole, with % � 10�24 g cm�3 and T � 100K, would be around 105Mˇ, which
indeed is in the range of molecular cloud masses. However, it is believed that not
the cloud as a whole collapses, but rather that turbulence within the cloud leads to
overdense condensations with the conditions outlined above, which then collapse
due to the Jeans instability and which may fragment further to form stars of even
lower mass.

Equation (26.31) exists in various forms, which differ in the numerical factors.
This can be the result of different assumptions about �, or 	 not being equal to
2. For example, for a bimolecular gas, it would be 6/5. Sometimes also half of the
Jeans wavelength �J is used instead of Rm. All this can amount to a variation of the
typical Jeans mass by a factor of a few.

We have already shown, following (26.16), that the timescale for the growth of
the instability is � � .G%/�1=2, the free-fall time. This is of course also valid for
the present spherical case. For a density of % � 10�19 g cm�3, the collapse takes
place on a timescale of some 105 years. During collapse, � becomes shorter, since
the density increases.

This timescale � is long compared to that for thermal adjustment �adj. Since the
cloud is optically thin, �adj is the internal energy per unit mass divided by the rate of
energy losses owing to radiation. For typical neutral hydrogen clouds, Spitzer (1968)
and Low and Lynden-Bell (1976) estimate a loss 
 of the order 1 erg g �1 s�1. With
T D 10K we find �adj � cvT=
 � 10 years. Comparison with the free-fall time
of some 105 years shows that the collapse proceeds in thermal adjustment (which
turns out to mean that it is almost isothermal). In Sect. 26.3 we will show where this
breaks down. As a rough estimate a molecular cloud is optically thin for particle
densities below 10�10cm�3, or mass densities below 10�14 g cm�3, and optically
thick, if the density is higher.

So far, the external pressure P � has not entered our discussion, because we have
asked for the maximum pressure for given mass M at the cut-off radius R. If P.R/
is given by the external pressure P �, one can turn around the question and ask
for the maximum mass an isothermal sphere of given T and M can have before it
has to collapse. Such a sphere is called Bonnor-Ebert sphere, and the critical mass,
the Bonnor-Ebert mass MBE, is given here without derivation (Ebert 1955; Bonner
1956):

MBE D 1:18
<2

�2G3=2
T 2.P �/�1=2 Mˇ: (26.32)

As expected,MBE is increasing with its temperature because the thermal pressure
of the sphere can better balance the outer pressure and is decreasing with increasing
external pressure.
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26.3 Fragmentation

For a long time it was believed that large molecular clouds of 104 � � � 105Mˇ
were collapsing because they exceeded their Jeans mass. To actually form stars
of much lower mass from such clouds, fragmentation into smaller clumps, which
are collapsing faster than the cloud as a whole, is required. Due to progress of
theories, numerical simulations, and observations of molecular clouds the picture
has changed. Molecular clouds are highly turbulent, with supersonic motions of gas
streams depositing kinetic energy into the cloud, stabilizing it against gravitational
collapse. The same shock waves, on smaller scales, result in a local compression
of gas. This process is called gravoturbulent cloud fragmentation (Mac Low and
Klessen 2004) and leads to overdense gas filaments and clumps. Some of them
remain gravitationally bound and may collapse if they exceed their Jeans mass.

Even then, the question remains whether out of clumps of several solar masses
many stars of lower mass can form, or how stars with masses below 1Mˇ are
formed. Under what circumstances can fragments of a collapsing cloud become
unstable and collapse faster than the cloud?

At first glance it seems to be a natural mechanism for producing collapsing
objects with masses smaller than the initial MJ. Indeed, if a clump collapses
isothermally, then MJ decreases as %�1=2. If, however, the gas were to change
adiabatically, then for a monatomic ideal gas, rad D .d ln T=d lnP/ad D 2=5

or T � P2=5, and from P � %T , the temperature would change as T � %2=3,
and therefore MJ � T 3=2%�1=2 � %1=2 . So the Jeans mass would grow during
an adiabatic collapse. But already in Sect. 26.2 we have seen that under interstellar
conditions the thermal adjustment timescale is much shorter than the free-fall time,
which is of the order .G%/�1=2, and this also holds when the density increases
during collapse. One can therefore assume the collapse to be isothermal rather than
adiabatic. Then the Jeans mass becomes smaller than the mass of the originally
collapsing cloud. If it has dropped, say, to one half its original value, the clump can
split into two independently collapsing parts. This kind of fragmentation can go on
as long as the collapse remains roughly isothermal. It will stop as soon as matter
becomes opaque and the heat gained by gravothermal contraction can no longer
be radiated away (Note that in principle it is not justified to apply the concept of
the Jeans mass to an already collapsing medium, since it has been derived for an
equilibrium state. But we may do it for order-of-magnitude estimates.).

What are the final products of this fragmentation process? Will the collapsing
clump finally fall apart into a swarm of clumplets of planetary masses or even
smaller? Even detailed multidimensional simulations of the hydrodynamics and
thermodynamics of this complicated process cannot follow it in all details. But
we may just estimate when the thermal adjustment time of the fragments becomes
comparable with the free-fall time. Then the collapse can certainly not be isothermal
anymore and must approach an adiabatic one. As we have seen, then the Jeans mass
no longer decreases with increasing %. This means that subregions of the fragments
do not fall together on their own and fragmentation stops.
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For a detailed estimate, one has to know the radiation processes that cool the
gas during collapse. One can then find how long the gained work �Pdv can be
radiated away, as is done in modern radiation-hydrodynamical simulations of star
formation. Instead, we give a rough estimate of the mass limit of fragmentation
based on simple physical arguments, following Rees (1976), without specifying the
detailed radiation processes.

The characteristic time of the free-fall of a fragment is .G%/�1=2, and the total
energy to be radiated away during collapse is of the order of the gravitational energy
Eg � GM2=R (see Sect. 3.1), where M and R are the mass and radius of the
fragment. Therefore the rate A of energy to be radiated away in order to keep the
fragment always at the same temperature is of the order

A � GM2

R
.G%/1=2 D

�
3

4�

�1=2
G3=2M5=2

R5=2
: (26.33)

But the fragment at temperature T cannot radiate more than a black body of that
temperature (This implies approximate thermal equilibrium, which is not too bad
an assumption for the final stage of fragmentation, where matter starts to become
opaque.). Therefore the rate of radiation loss of the fragment is

B D 4�f�T 4R2; (26.34)

where � D 2�5k4=.15c2h3/ is the Stefan–Boltzmann constant, while f is a factor
less than 1 taking into account that the fragment radiates less than the corresponding
black body. For isothermal collapse it is necessary that B � A. The transition to
adiabatic collapse will occur if A � B . From (26.33) and (26.34) we find that this
is the case when

M5 D 64�3

3

�2f 2T 8R9

G3
: (26.35)

We assume that fragmentation has reached its limit whenMJ is equal to thisM . We
therefore replace M in (26.35) by MJ, R by

R D
�
3

4�

�1=3
M

1=3
J

%1=3
; (26.36)

and eliminate % with the help of (26.31). The Jeans mass at the end of fragmentation
is then obtained as

MJ D 81

64

�
3

�

�3=4
1

.�G3/1=2

�<
�

�9=4
f �1=2T 1=4

D 6:2 � 1030g f �1=2T 1=4 D 0:003Mˇ
T 1=4

f 1=2
; (26.37)

where T is in K and where we have set � D 1.
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Let us assume that the temperature T of the smallest elements is 10 K and,
further, that appreciable deviations from isothermal collapse occur when the
radiation losses have to exceed 10 % of the maximal possible (black-body) radiation
losses (f D 0:1). We then find from (26.37) that M � 0:001Mˇ. This rough
estimate is surprisingly close to the mass of the smallest optically thick, pressure-
supported protostellar cores that were found in numerical simulations. These objects
in fact grow in mass by accretion from the surrounding clump.

It should be noted that our result is dependent on the chemical composition
because the efficiency of cooling is higher the more heavy elements with rich
spectral line systems are present. In particular for stars of the first generation, which
are formed shortly after the Big Bang (also called Population III stars), cooling
is very inefficient and proceeds mainly via hydrogen molecules, which are even
dissociated easily at temperatures around 2,000 K. As a consequence, the smallest
condensations in a collapsing cloud of primordial material is of the order of 100Mˇ
(see Bromm and Larson 2004 for a review on first stars).

In the above considerations a number of complicating effects have been ignored.
The role of magnetic fields is manifold. They may stabilize clouds against collapse,
as long as there are ions in the gas, but are usually found to be too weak to do
so. However, they may help to mediate the angular momentum problem, which
is due to the fact that the initially present angular momentum in the cloud works
against gravitational collapse. Magnetic fields may allow the transport of angular
momentum away from collapsing clumps. Nevertheless, matter does not accrete
spherically onto the smallest condensation objects, but accumulates in an accretion
disc around it. Disc, protostellar object, and surrounding matter interact in a
complicated way through matter in- and outflow, where magnetic fields and angular
momentum influence the geometrical shape and efficiency. Magnetic fields also
appear to help in keeping clumps together, after the effects of turbulence, which
has created them in the first place, have faded. Zinnecker and Yorke (2007) as well
as McKee and Ostriker (2007) give comprehensive reviews of star formation theory.



Chapter 27
The Formation of Protostars

The Jeans criterion derived in the foregoing section follows from a first-order per-
turbation theory and gives conditions under which perturbations of an equilibrium
stage will grow exponentially. But the linear theory does not give information, for
instance, about the fully developed collapse, to say nothing about the final product.
For this, one has to follow the perturbation into the non-linear regime. We first
begin with some very simple cases, assuming always spherical symmetry for the
collapsing cloud.

27.1 Free-Fall Collapse of a Homogeneous Sphere

If, according to the Jeans criterion, a gaseous mass has become unstable and the
collapse has started, gravity increases relatively more than the pressure gradient.
The collapse is more and more governed by gravity alone, which is easily seen from
the following arguments. For spherical symmetry, the gravitational acceleration is
of the order GM=R2, where M and R are the mass and radius of the cloud. On the
other hand, an estimate of the acceleration due to the pressure gradient is

ˇ̌̌
ˇ1%

@P

@r

ˇ̌̌
ˇ � P

%R
� <
�

T

R
: (27.1)

The ratio of gravitational force to pressure gradient is therefore �M=.RT /, which
during isothermal collapse increases as 1=R. Consequently we here neglect the gas
pressure.

The free collapse of a homogeneous sphere can be treated analytically. At a
distance r from the centre the gravitational acceleration is Gm=r2, where m is the
mass within the sphere of radius r . If the pressure can be neglected, the sphere
collapses in free fall, according to the equation of motion

Rr D �Gm
r2
; (27.2)
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where the dots indicate the time derivatives of the radius r.m; t/. We now replacem
by 4� %0r30 =3, where the subscript zero indicates the values at the beginning of the
collapse, by assumption %0 D constant. Multiplication of (27.2) by Pr and integration
gives

1

2
Pr2 D 4�r30

3r
G%0 C constant: (27.3)

Choosing the integration constant so that Pr D 0 at the beginning, when r D r0, we
get

Pr
r0

D ˙
�
8�G

3
%0

� r0
r

� 1
��1=2

: (27.4)

In order to obtain only real values of r , it must always be less than r0, which means
that only the minus sign on the right of (27.4) gives relevant solutions.

For the solution of (27.4) we introduce a new variable �, defined by

cos2 � D r

r0
: (27.5)

Therefore
Pr
r0

D �2 P� cos � sin �;
r0

r
� 1 D sin2�

cos2�
; (27.6)

and (27.4) gives

2 P� cos2 � D
�
8�G%0

3

�1=2
: (27.7)

With the identity

2 P� cos2 � D d

dt

�
� C 1

2
sin 2�

�
; (27.8)

which is easily verified, we can write instead of (27.7) that

� C 1

2
sin 2� D

�
8�G%0

3

�1=2
t; (27.9)

where the integration constant is chosen such that the beginning of the collapse
(when r D r0 or � D 0) coincides with t D 0. It should be noted that r0 no
longer explicitly appears in the solution (27.9) and that %0 D constant. Therefore
the solution �.t/ is the same for all mass shells. Then, according to (27.6), r=r0 and
also Pr=r0 at a given time t are the same for all mass shells. This means that the sphere
undergoes a homologous contraction. Since Pr=r0 is independent of r0, the relative
density variation is independent of r0, and the sphere, which was homogeneous at
t D 0, remains homogeneous. The time it takes to reach the centre (r D 0 or
� D �=2) is the free-fall time

tff D
�

3�

32G%0

�1=2
; (27.10)
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which follows from (27.9) and is the same for all mass shells. With %0 D 4 �
10�23 g/cm3, corresponding to a slightly enhanced interstellar density, one obtains
tff � 107years. For a typical protostellar clump as in Sect. 26.2, with %0 D 4 �
10�19 g/cm3, (27.10) results in tff � 2�105 years. It should be noted that expression
(27.10) is very similar to the free-fall time �ff for a star we estimated in (2.17), if
there g is replaced by GM=R2 D 4�G%0R=3:

Of course, before the centre is reached the pressure will become relevant as the
gas becomes opaque and T increases. Then the free-fall approximation has to be
abandoned, and finally the collapse will be stopped.

27.2 Collapse onto a Condensed Object

As the collapsing cloud becomes opaque the heating will first start in the central
parts, since radiation can escape more easily from gas near the surface. Therefore the
collapse will be stopped first in the central region. In order to see what then happens
we consider a core which has already reached hydrostatic equilibrium, surrounded
by a still-free-falling cloud. We emphasize that usually matter carries angular
momentum, which is conserved, with the result that matter is first accumulated in
an accretion disc around the central object, from where it finally flows onto the
accreting body. This fact is ignored here.

Now let M be the mass of the core. For the sake of simplicity we neglect the
self-gravity of the free-falling matter. The simplest case is that for the steady state.
This would mean that the core is surrounded by an infinite reservoir of matter from
which a steady flow rains down. Then the mass flow with absolute radial velocity v,

PM D 4�r2%v; (27.11)

must be constant in space and time. Differentiation of (27.11) with respect to r gives
the continuity equation

2

r
C 1

%

d%

dr
C 1

v

dv

dr
D 0: (27.12)

If for v we take the free-fall velocity v D vff D ŒGM=.2r/�1=2 and assume M �
constant, we find

1

%

d%

dr
D � 3

2r
; (27.13)

or
%.r/ D constant

r3=2
: (27.14)

If R is the radius of the core, then at impact the free-falling matter has the velocity
vff.R/ D ŒGM=.2R/�1=2.
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The matter falling onto the core is stopped at its surface. The kinetic energy is
then transformed into heat, part of which is used to heat up the core, the rest being
radiated away. If we ignore the heating of the core, the radiation losses are

Laccr D 1

2
v2ff.R/

PM D 1

4

GM

R
PM: (27.15)

Laccr is called the accretion luminosity. Since for the steady-state solution we have
assumed constant M in the expression for vff, (27.15) is only valid if the accretion
timescale

�accr WD M= PM (27.16)

is long compared to the free-fall time tff.

27.3 A Collapse Calculation

The collapse of an unstable interstellar cloud can in principle be followed numer-
ically. We will describe the first, meanwhile classical collapse calculations of a
spherical, homogeneous cloud of one solar mass by Larson (1969). Although in the
meantime three-dimensional hydrodynamical calculations have become possible,
Larson’s work is nicely illustrating basic effects and remains conceptionally very
instructive. Modern one-dimensional calculations (e.g. Ogino et al. 1999) of
collapsing Bonnor-Ebert spheres (see Sect. 26.2) give in fact results very similar
to Larson’s original models. The mass fractions of hydrogen, helium, and heavier
elements were taken to be X D 0:651, Y D 0:324, and Z D 0:025, respectively.
The boundary conditions assumed that the surface of the sphere remained fixed. The
equations to be solved are the continuity equation

@m

@t
C 4�r2v% D 0 (27.17)

(with the radial velocity v having positive values in outward direction), the equation
of motion

@v

@t
C v

@v

@r
C Gm

r2
C 1

%

@P

@r
D 0; (27.18)

and the energy equation
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1

%

��
C 1

4�%r2
@l

@r
D 0; (27.19)

where u is the internal energy per unit mass. Here the terms on the left (except
for the last one) give the substantial derivative du=dt C Pd.1=%/=dt according to
d=dt D @=@t C v@=@r . In addition we have the relation
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@m

@r
D 4�r2%: (27.20)

Finally we need an equation which describes the energy transport by radiation.
Although the diffusion approximation is certainly not good in those parts of the
cloud which are optically thin (see Chap. 5), the equation

l D �16�acr
2

3�%
T 3
@T

@r
(27.21)

was used, which is identical with our equation (5.11). The errors introduced do not
change the qualitative (and maybe even the quantitative) results too much.

For the absorption properties of a gas at extremely low temperatures, other effects
than those due to atomic absorption and scattering discussed in Chap. 17 have to be
considered. As long as they exist, dust grains are the dominant source of opacity.
With increasing temperature (above 1,000 K) the dust particles evaporate. Then
the collapsing material becomes more transparent, the opacity being dominated by
molecules (Sect. 17.8).

With (27.17)–(27.21), one has five equations for the five unknown variables
m.r , t), v.r , t), P.r , t), T .r , t), and l(r , t), while %; �, and u are given material
functions of, say,P and T . The equation of state is assumed to be that of an ideal gas
(including effects of dissociation and ionization). The numerical solution now has to
be determined with one of the methods described in Sect. 12.3. The outer boundary
condition at r D R in these calculations is v.R; t/ D 0. Since the equations show
a singularity at the centre, one has to demand as inner boundary condition that
the solutions remain regular there. The initial conditions are v.r; 0/ D 0, while
P.r; 0/ and T .r; 0/ are constant, and therefore l.r; 0/ D 0. The initial values were
T .r; 0/ D 10K, %.r; 0/ � 10�19 g/cm3. It should be noted that then almost all
hydrogen is in molecular form. These are exactly the conditions we used for the
derivation of the typical Jeans mass for a realistic collapsing clump in Sect. 26.2.

In order to have instability at the beginning, the cloud of one solar mass must be
sufficiently dense and therefore small. Instability was found numerically by Larson
(1969) for R < 0:46GM�=.<T /. The close resemblance to the critical radius
(26.27) for homologous collapse should be noted. The calculations began with a
slightly compressed cloud with R D 1:63� 1017 cm. With the density 10�19 g cm�3
the free-fall time is 6:6 � 1012 s � 210; 000 years, according to (27.10), where we
already estimated such a value.

In the following we describe the different phases of the collapse.

27.4 The Optically Thin Phase and the Formation
of a Hydrostatic Core

In the very first phase the whole collapsing cloud remains optically thin and
therefore nearly isothermal with T � 10K.
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When the instability evolves into the non-linear regime the collapse becomes
non-homologous, which is not surprising in view of the outer boundary condition.
It holds the outer layers of the sphere at a fixed radius while the inner part is
free to collapse. Indeed during collapse the density increases rapidly in the central
part, while it remains practically constant in the outer regions. A small central
concentration, once formed, will necessarily enhance itself. The free-fall time of
a certain mass shell at distance r from the centre is of the order ŒG N%.r/��1=2, where
N%.r/ is the mean density inside the sphere of radius r . If N% increases towards the
centre, then the (local) free-fall time decreases in this direction. Therefore the inner
shells fall faster than the outer ones, and the central density concentration becomes
even more pronounced.

The calculations show that the density distribution–starting from % D constant–
approaches the form % � r�2 over gradually increasing parts of the cloud (see
Fig. 27.1). It is not surprising that it does not follow (27.14), since there we have
made assumptions (steady state, a free fall determined only by the gravity of a
central object, ignoring gas pressure) which are not fulfilled here.

The density profiles in Fig. 27.1 can be described as follows. A smaller and
smaller homogeneous mass collapses more and more rapidly, continuously leaving
behind more matter in the inhomogeneously contracting envelope. There the
timescale of collapse remains much larger because (1) the density is smaller and
(2) pressure gradients brake the free fall.

The collapse of the homogeneous central part resembles a free fall as long as
the matter can get rid of the released gravitational energy via radiation. The central
region becomes opaque once a central density of 10�13 g cm�3 is reached. Now the
further increase of density in the centre causes an adiabatic increase of temperature.
As a consequence the pressure there increases until the free fall is stopped.

This leads to the formation of a central core in hydrostatic equilibrium sur-
rounded by a still-falling envelope. Immediately after the core has reached hydro-
static equilibrium, its mass and radius are 1031 g and 6 � 1013 cm, similar to the
values estimated in Sect. 26.3 for the Jeans mass at the end of fragmentation, and
the central values are %c D 2 � 10�10 g cm�3, Tc D 170K. The free-fall velocity
at the surface of the core is 75 km/s. With increasing core mass and decreasing core
radius, the velocity of the falling material exceeds the velocity of sound in the core
surface regions. Therefore a spherical shock front is formed which separates the
supersonic “rain” from the hydrostatic interior. In this shock front the falling matter
comes to rest, releasing its kinetic energy. If all the energy released is radiated away
(which is approximately the case), the luminosity of the accreting core is given by
(27.15).

In certain respects the hydrostatic core resembles a star. But while the surface
pressure is virtually zero for a star, here it has to balance the pressure exerted by
the infalling material. If ve and %e are the velocity relative to the shock front and the
density of the falling gas just above it, respectively, and if Pi is the surface pressure,
then conservation of momentum demands that
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Fig. 27.1 The density % (in
g cm�3/ against the distance
from the centre r (in cm) in a
collapsing cloud. The density
distribution is shown by solid
lines for different times
(labels in 1013 s after the
onset of the collapse).
Regions with homologous
changes remain homogeneous
.@%=@r D 0/; regions in free
fall approach a distribution
with % � r�2 (i.e. a slope
indicated by the dashed line)
(After Larson 1969)

Pi D %ev
2
e D %e

GM

2R
; (27.22)

where M and R are the mass and radius of the core. This equation is a special case
of the more general condition for shock fronts (see Landau and Lifshitz 1987, Vol. 6,
p. 320) according to which the quantity P C%v2 must have the same values on both
sides of the front. In (27.22) P is neglected outside the front and v inside.

Another difference between an accreting core and a real star is that the accretion
energy is released in a thin surface layer, while in a star, the energy source is in the
deep interior.

At first glance one would expect the whole core to be isothermal. But while mat-
ter is raining down on its surface the core is contracting. This has the consequence
that Laccr as given by (27.15) increases for PM � constant (since M grows and
R decreases). Since during contraction gravitational energy is released in the deep
interior of the core, there must be a finite temperature gradient in order to transport
this energy outwards. The diameter of the accreting core in hydrostatic equilibrium
is already comparable to the dimensions of the solar system (see Fig. 27.2).

27.5 Core Collapse

The accreting hydrostatic core heats up in its interior. We have to keep in mind
that the gas consists mainly of hydrogen that at low temperatures is in molecular
form as H2. When the central temperature reaches about 2,000 K, the hydrogen
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Fig. 27.2 The collapse of a gas cloud of 1Mˇ. (a) After about 1:3 � 1013 s, the cloud has
formed an optically thick core. The collapse is stopped there, and a shock front develops at the
interface between the core, which is in hydrostatic equilibrium, and the still freely falling envelope.
(b) When the core has become dynamically unstable owing to dissociation of H2, a second collapse
occurs within the core, forming a second shock front at much smaller r . (c) Schematic plot of the
absolute value of the velocity v (in cm s�1/ and the density % (in g cm�3/ against r (in cm), for
a time shortly after the formation of a second core within the first one. The regions of the shock
fronts are characterized by steep (positive) slopes in the velocity curve

molecules dissociate. The equilibrium between molecular and atomic hydrogen
is governed by an equation similar to the Saha equation (see Sect. 14.1). Like
ionization, dissociation influences the specific heat, since not all the energy injected
into a gas goes into kinetic energy, a fraction being used to break up the molecules
into atoms. This decreases �ad. For hydrogen molecules there are f D 5 degrees
of freedom, three belonging to translation and two to rotation around two possible
axes. Consequently �ad D .f C 2/=f D 7=5 D 1:40: This is much closer to the
critical value 4=3 D 1:33 (see Sect. 25.3.2) than in the case of a monatomic gas
.�ad D 5=3 D 1:667/. Only a slight reduction of �ad owing to dissociation therefore
brings it below the critical value 4=3. Then the hydrostatic equilibrium becomes
dynamically unstable, and the core starts to collapse again.

In Larson’s calculations this happened when the core has, compared to the initial
values, twice the mass and half the radius. It collapses as long as the gas is partially
dissociated. When almost all hydrogen in the central region is in atomic form,
�ad increases above 4=3 (approaching the value 5=3 for a monatomic gas) and the
collapsing core forms a dynamically stable subcore in its interior. This core, which
is generally called protostar has an initial mass of 1:5 � 10�3Mˇ and an initial
radius of 1:3Rˇ. Its central density is 2�10�2 g cm�3 and the central temperature is
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Fig. 27.3. The central evolution of a 1Mˇ cloud from the isothermal collapse to the ignition of
nuclear burning. The central temperature Tc (in K) is plotted over the central density %c(in g cm�3).
(After Masunaga and Inutsuka 2000)

2� 104 K. At the surface of this protostar there is another shock front. The situation
is illustrated in Fig. 27.2b, c. As a consequence of the second collapse the density
below the outer shock front decreases, and the outer shock finally disappears. More
recent calculations by Masunaga et al. (1998) and Masunaga and Inutsuka (2000),
which follow the collapse of a 1Mˇ clump through the whole sequence outlined
above, confirm it to high degree. Their calculations include a better treatment of
the radiative transport and can follow the collapse for a longer time due to a higher
spatial resolution. The main difference with respect to Fig. 27.2c is that the velocities
at the second shock front reach final values a factor of 10 higher than shown here,
while the first shock front has already disappeared. The density profile is, however,
very similar to that of Larson’s original calculation.

The evolution of the centre of the 1Mˇ cloud, as it results from the radiation-
hydrodynamical simulation by Masunaga and Inutsuka (2000), starting from the
original Jeans instability, is given in Fig. 27.3. The curve starts on the left during
the isothermal collapse. After the matter has become opaque, T rises adiabatically.
The slope is at first close to 0.4 (corresponding to �ad D 1:4 for H2), but then
becomes considerably less owing to partial dissociation (� D 1:1), and finally
approaches 2=3 (corresponding to �ad D 5=3 for a monatomic gas).

The central compression is adiabatic as long as the accretion timescale �accr

of the core (or of the innermost core, if there are two) is short compared to its
Kelvin–Helmholtz timescale �KH. But the more the envelope is depleted the more
the accretion rate will diminish and consequently �accr will grow. When it exceeds
�KH the core can adjust thermally and the evolution of the central region ceases to
be adiabatic. Since then PM has become very small, the protostar has practically
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Fig. 27.4. Sketch of the mass flow within a collapsing protostellar sphere. From the original cloud,
matter is accreted onto the protostar that sits at the centre of the figure. Because of angular
momentum conservation, most of it accumulates in an accretion disc. Part of the matter finally
falling onto the star is however ejected in a bipolar jet along the axis of rotation. The jet also
may gain additional material directly from the disc due to heating of the inner disc (According to
Zinnecker and Yorke 2007)

constant mass. We shall discuss its further evolution with constant M in the next
section.

We repeat once more that these calculations were made without considering the
fact that the angular momentum of the prestellar cloud leads to the formation of an
accretion disc. Most of the matter falling onto the central protostar has first circled
the star in this disc.

At the same time the protostar may start to lose mass due to stellar winds and
bipolar outflows and jets. All this has already been revealed by observations. The
interaction between cloud, protostar, and disc is complicated and also depends
on the presence of magnetic fields. This phase has to be investigated by three-
dimensional magnetohydrodynamical simulations (Banerjee and Pudritz 2007). The
situation is illustrated in Fig. 27.4.

27.6 Evolution in the Hertzsprung–Russell Diagram

A plot of the evolution of a collapsing cloud in the Hertzsprung–Russell
(HR) diagram has to be made with care. The radiation emitted by the core is
absorbed in the falling envelope, particularly by dust grains, which heat up and
reradiate in the infrared. One can assign an effective temperature to the protostellar
models. Defining an effective radius R at the optical depth 2/3 one can derive
an effective temperature Teff from L D 4�R2	T 4eff. Evolutionary tracks for
initial masses of 1Mˇ and 60Mˇ are given in Fig. 27.5. Although the numerical
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Fig. 27.5. Hertzsprung–Russell diagrams with evolutionary tracks for protostars of 1Mˇ and
60Mˇ. The tracks start at the lower right, where the thermal radiation of the clouds is in the
infrared, and they finally approach the zero-age main sequence (ZAMS, dot-dashed). In the case
of 60Mˇ, part of the mass of the envelope is blown away so that a star of only 17Mˇ settles
down on the main sequence. The corresponding Hayashi lines are indicated by broken lines (After
Appenzeller and Tscharnuter 1974, 1975a,b)

results shown in this figure are quite old, the newer calculations by Wuchterl and
Tscharnuter (2003) have confirmed the overall picture very well. To an outside
observer the collapsing cloud remains an infrared object as long as the envelope is
opaque to visible radiation. The evolutionary track, therefore, starts extremely far
to the right in this diagram. This, of course, is no contradiction to the statements
about a forbidden region to the right of the Hayashi line (Chap. 24) since the falling
envelope (including the “photosphere”) is far from being in hydrostatic equilibrium.
Even if we could see the already hydrostatic core, we would not observe a normal
star, since its boundary conditions are still perturbed by infalling matter.

The thinning out of the envelope has several effects: the first is that it becomes
more transparent, and the photosphere (� D 2=3) moves downwards until it
has reached the surface of the hydrostatic core. With decreasing radius of the
photosphere, Teff must increase in order to radiate away the energy. In the whole
first phase (through the maximum of L in the evolutionary tracks of Fig. 27.5) the
luminosity is produced by accretion: L D Laccr � PM . With decreasing PM , the
luminosity L decreases until it is finally provided by contraction of the core.

It is generally found that for low-mass stars accretion onto the protostar stops
well before central temperatures for hydrogen ignition is reached. For massive stars,
however, accretion continues while central hydrogen burning has already set in.
Therefore, when the newborn star finally separates from its surrounding cloud and
becomes visible it has already consumed part of its hydrogen fuel and has evolved on
the main sequence. Massive stars are therefore unlikely to be found on the ZAMS.

Another effect is the influence of accretion on the boundary conditions of the
core. Strong accretion heats up the surface of the core so much that the core is
nearly isothermal and the ram pressure %ev

2
e is appreciable. With decreasing PM the
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boundary conditions become “normal”. The core surface cools down, a temperature
gradient is built up, and a convection zone develops downwards from the surface.

This convection may or may not penetrate down to the centre. If the object is
fully convective, has “normal” boundary conditions, and is already visible, we must
see it on the Hayashi line. In any case we have the transition from a protostar to a
normal contracting star in hydrostatic, but not yet in thermal, equilibrium.

In this chapter we could only sketch the complicated and still not fully under-
stood process of star formation. We concentrated on the evolution of individual
contracting spheres that eventually become single stars, which is sometimes called
the “classical picture” of star formation. In reality, stars form in clusters, which
are the result of the many condensed regions of large molecular clouds, in which
magnetic fields, turbulence, rotation, and gravity interact in complicated ways. We
refer the reader to the reviews by Mac Low and Klessen (2004) and Zinnecker and
Yorke (2007) for more details about this field.



Chapter 28
Pre-Main-Sequence Contraction

In the last section we left the newly born star while it was still contracting in
hydrostatic, but not yet thermal, equilibrium. Essential features of this contraction
can already be understood by assuming simple homologous changes. It will turn out
that the fate of such a sphere is mainly determined by the equation of state.

28.1 Homologous Contraction of a Gaseous Sphere

A star which has not yet reached the temperature for nuclear burning has to supply
its energy loss by contraction. This is a consequence of the virial theorem and of
energy conservation as discussed in Sect. 3.1. We have seen, in particular, that part of
the released gravitational energy goes into internal energy, while the rest supplies the
luminosity [see (3.12)]. The characteristic timescale is �KH, as shown in Sect. 3.3.

In the following we will be concerned with the centre of the star. For this we
can use the relations of Sect. 20.3, which hold for any mass shell of a homologously
contracting star. The equation of state (for fixed chemical composition) was written
there as d%=% D ˛dP=P �ıdT=T . According to (20.34) and (20.38), the variation
of the central temperature, dTc, is related to the variation of the central density, d%c,
by

dTc

Tc
D 4˛ � 3

3ı

d%c

%c
: (28.1)

This defines a field of directions in the lg %c–lgTc plane as displayed in
Fig. 28.1. Each arrow there indicates how Tc changes during contraction (d%c > 0).
According to (28.1) the slope depends on the equation of state via ˛ and ı. For an
ideal gas ˛ D ı D 1 and (28.1) becomes

dTc

Tc
D 1

3

d%c

%c
: (28.2)
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Fig. 28.1 The vector field given by (28.1) in a diagram showing the temperature T (in K) over the
density %=�e (in g cm�3/. The arrows indicate the direction in which the centre of a homologously
contracting star would evolve. In the upper-left part the equation of state is that of an ideal gas,
and therefore the arrows have a slope of 1/3. The thin solid line at which the degeneracy parameter
 D 0 indicates roughly the transition from the ideal gas to degeneracy of the electrons. The
critical line along which ˛ D 3=4 is dot-dashed. On this curve the arrows point horizontally while
below it the arrows point downwards

Here the slope is 1/3, a contracting ideal gas heats up (the latter conforms with the
conclusions drawn from the virial theorem in Sect. 3.1). The same slope also holds
for non-negligible radiation pressure (ˇ < 1) as can be seen if (13.7) is introduced
into (28.1). In Fig. 28.1 the evolutionary track of a (homologously) contracting ideal
gaseous sphere is a straight line with slope 1/3. This necessarily leads closer to
the regime of degeneracy, which is separated from that of ideal gas by a line of
slope 2/3 [see (16.6) and Fig. 16.1]. The onset of degeneracy changes ˛ and ı
and decreases the slope of the arrows in Fig. 28.1. In the limit of complete non-
relativistic degeneracy one has ˛ ! 3=5 and ı ! 0. What happens to a sphere
which is contracting and becomes more and more degenerate? Then ˛ will pass
the value 3/4 when ı is still finite and the slope given by (28.1) will change sign.
Further contraction leads to cooling: the stronger the degeneracy the steeper will
be the then negative slope, until finally the stellar centre tends to cool off at almost
constant density. In the case of complete relativistic degeneracy, with ˛ D 3=4 and
ı D 0, the factor on the right of (28.1) becomes indeterminate. Then the ion gas -
although its pressure is negligible compared to that of the degenerate electrons - will
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Fig. 28.2 Temperature T (in K) over density %=�e(in g cm�3/ with the vector field and the lines
 D 0 and ˛ D 3=4 as in Fig. 28.1. The heavy lines give the “evolutionary tracks” of the centres of
three homologously contracting stars of different masses. Mass M1 is so large that the evolution is
not remarkably influenced by degeneracy, and the centre continuously heats up during contraction.
For massM2.< M1/ degeneracy becomes important in the centre, and consequently a homologous
contraction cannot bring the central temperature above a few 107 K (which is not sufficient to
start helium burning). Mass M3.< M2/ while contracting will start to cool off even before the
temperature of hydrogen burning is reached

determine the slope. A dash-dotted line in Fig. 28.1 connects the points of vanishing
slope .˛ D 3=4).1

For the sake of simplicity let us first ignore the fact that nuclear reactions set in
at certain temperatures. Obviously, the evolutionary track of a contracting gaseous
sphere in the lg %c–lgTc diagram depends very much on the starting point at the left-
hand border, as can be seen from Fig. 28.2. If a stellar centre starts there sufficiently
low it will reach a maximum temperature and begin to cool again after entering the
domain of degeneracy. But if it started on the left at a sufficiently high temperature,
it will never be caught by degeneracy and thus will continue to heat up.

Which types of spheres do reach a maximum temperature, and which types have
the privilege of heating up forever? This depends on the mass of the sphere. In order
to show this we consider two homologous spheres of an ideal gas with masses M
and M 0 D M=x and radii R and R0 D R=z. Then, according to (20.9), %c=%

0
c D

xz�3; Pc=P
0
c D x2z�4, and therefore, for an ideal gas, Tc=T

0
c D x=z. If we now

compare states in which the two spheres have the same central density (xz�3 D 1),

1Since the dash-dotted line in Fig. 28.1 gives the impression of delineating a hill, this kind of
figure is sometimes called Thomas-mountain after H.-C. Thomas who first used it to illustrate the
evolution of homologously contracting stellar cores.
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we have Tc=T
0

c D x2=3 D .M=M 0/2=3. This means that in Fig. 28.2 the evolutionary
tracks of larger masses are above those of smaller masses. Consequently it is the less
massive spheres which will finally be forced by degeneracy to cool off after having
reached a maximum central temperature, being smaller the smaller the mass.

This has immediate consequences for the nuclear reactions, which we have
ignored up to now. We know that a nuclear burning in a wide range of densities
occurs at a characteristic temperature: hydrogen burning near 107 K and helium
burning at 108 K (Since here we are discussing early phases of stellar evolution, we
exclude the pycnonuclear reactions, which occur at extremely high densities only;
see Sect. 18.4). One can therefore expect that a contracting sphere below a certain
critical mass may never reach the temperature of hydrogen burning, since its central
temperature never reaches 107 K. This is the case for M3 in Fig. 28.2.

This important result deduced from simple homology considerations is also
manifested in computer calculations of more realistic stellar models. Although the
cores formed in the protostar phase do not contract completely homologously, their
centres evolve in the lg %–lg T plane very similarly. Protostars of mass less than
about 0:08Mˇ never ignite their hydrogen and thus never become main-sequence
stars. These are the brown dwarfs we already introduced in Sect. 22.4. Here we
have encountered an evolutionary aspect of the lower end of the main sequence:
protostars born with too little mass never reach the state of complete equilibrium by
which the main-sequence models are defined. Even if some nuclear reactions have
started, they are so slow at these low temperatures that equilibrium abundances (rate
of destruction = rate of production) of the involved nuclei are not reached even in
the lifetime of the galaxy.

We shall see later that analogous considerations can be used to explain critical
masses for the ignition of each higher nuclear burning in contracting cores of
evolved stars. Helium burning is not reached by stars of an initial mass below
approximately 0:5Mˇ; for carbon burning, it has to be above 6Mˇ. And masses
above � 8Mˇ will never be caught by degeneracy in this way (see Sect. 35.2).

28.2 Approach to the Zero-Age Main Sequence

We have seen that a contracting star of more than 0.08Mˇ ignites hydrogen in
its centre and becomes a star on the zero-age main sequence (ZAMS). While the
luminosity of the star was originally due to contraction, it now originates from
nuclear energy. These two energy sources are quite differently distributed in the star.
According to (20.41), "g �T is not so much concentrated towards the centre, while
hydrogen burning with "pp �T 5 and "CNO �T 18 has strong central concentration.
Clearly the transition from contraction to hydrogen burning requires a rearrange-
ment of the internal structure. The protostar becomes a zero-age main-sequence star
with properties very close to those described in Chap. 22. The difference arises from
the fact that some nuclear reactions, for example, the proton captures on 2H, 7Li, or
12C, start at temperatures lower than those of core hydrogen burning.
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The way in which nuclear reactions take over the energy production can now
be followed by detailed numerical models following the approach to the main
sequence of contracting protostars. We first discuss the results for one solar mass.
Some reactions of the CNO cycle as given in (18.64) become important before the
central temperature has reached that of equilibrium hydrogen burning (where the
participating nuclei have equilibrium abundances). At a central temperature of about
106 K, all the 12C that had been in the interstellar cloud will burn into 14N via the
reactions of the first three lines in (18.64). However, the following 14N.p; �/15O
reaction is much slower–and therefore often called the bottleneck reaction–such that
the full CNO cycle cannot be completed. Once switched on, this process will take
over the energy generation and stop the contraction. Because of the high temperature
sensitivity of ", the energy is released close to the centre. Consequently the energy
flux l=4�r2 is large, and a convective core that contains almost 10 % of the total
mass develops. At the same time, the first reactions of the pp chain become relevant,
transforming H into 3He [see the first two lines of (18.62)]. With decreasing 12C
the pp reactions become more important, and 3He can be destroyed by 3He+3He
and 3He+4He [the two reactions in the third line of (18.62)]. As a consequence the
concentration of 3He reaches a maximum at m D 0:6M . Outside, the temperature
is too low to form 3He, while inside, 3He is used up to form 4He. This characteristic
shape of the 3He abundance curve remains throughout the main-sequence evolution
(see Fig. 29.3). With the depletion of 12C in the central region the convective core
disappears and the pp chain becomes the dominant energy source.

The situation is similar for more massive stars. But then instead of the pp
chain, the CNO cycle finally takes over and the abundance of 12C becomes that of
equilibrium. For stars of M > 1:5Mˇ the effect of pre-main-sequence 12C burning
can even be seen in the computed evolutionary tracks in the Hertzsprung–Russell
diagram: there seems to be another, relatively short-lived main sequence to the right
of the ordinary (hydrogen) main-sequence. Contracting protostars stay there until
their 12C fuel is used up before they move on to the main sequence. This somewhat
prolongs the time a protostar needs to reach the ZAMS.

The numbers quoted here are from pre-main-sequence evolution calculations that
ignore the detailed results of Chap. 27. They start out with a cool protostar on the
Hayashi line and follow the ensuing quasi-hydrostatic contraction until the model
reaches the hydrogen main sequence. The errors introduced by this simplification
are not too large and certainly become negligible towards the end of pre-main-
sequence contraction when the thermal history of accretion is forgotten by the star.

This has to do with the fact that, whatever the thermal history of the protostar, its
structure has adjusted to thermal equilibrium after a Kelvin–Helmholtz time. Since
the main-sequence timescale (which is relevant for the ensuing evolution) is much
longer, the stars settle on the ZAMS quite independently of their past. Whatever their
detailed history, tracks of protostars of the same mass and chemical composition
lead to the same point on the ZAMS.

We now turn to the question of how rapidly stars of different M approach the
ZAMS. Decisive for this is the Kelvin–Helmholtz timescale �KH � cv NTM=L. The
mean temperature NT does not vary too much withM , since Tc is anyway just below
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Fig. 28.3 Colour-magnitude diagram of the young open cluster NGC 602. The dots are the cluster
stars. Overlaid are pre-main-sequence evolutionary tracks for masses between 3:0Mˇ and 0:5Mˇ

(black lines; top to bottom) as well as isochrones obtained from these tracks with ages of 1, 5, and
10 Myr (grey lines; top to bottom) (After Cignoni et al. 2009)

the ignition temperature of hydrogen. As a rough estimate for L, we may take the
corresponding ZAMS luminosity, since the evolutionary tracks in their final parts
are at about that luminosity (see Fig. 27.5). Then L � M3:5 and �KH � M�2:5. This
means that massive protostars reach the ZAMS much faster than their low-mass
colleagues.

In the Hertzsprung–Russell diagrams of very young stellar clusters one finds that
only massive stars are on the main sequence, while the low-mass stars lie to the
right of it. As an example we show in Fig. 28.3 the case of NGC 602 (Cignoni et al.
2009), a very young star cluster with a population of stars born only a few million
years (Myrs). From comparison with low-mass pre-main-sequence evolutionary
tracks and isochrones2 it is obvious that many stars have not yet reached the main
sequence. Similar cases in the Milky Way are the Pleiades (80 Myrs) and NGC 2264
(5 Myrs). It seems that, because of their longer �KH, these stars are still in the
contraction phase and have not yet begun with nuclear burning. Among them are
flare stars (UV Ceti stars), Herbig AE/BE, and T Tauri variables. The cause of their
(irregular) variability is not yet fully understood, but is ascribed to circumstellar or
chromospheric activity in connection with rotation as well as internal pulsations.

2An isochrone is the locus of stellar models of identical age, but different mass in the Hertzsprung–
Russell diagram.



Chapter 29
From the Initial to the Present Sun

There is evidence on Earth that the Sun has shone for more than 3,000 million years
with about the same luminosity. From radioactive decay in different materials of
the solar system, one nowadays assumes that it was formed 4.57 Gigayears (Gyrs;
109 years) ago. Since then, the Sun has lived on hydrogen burning, predominantly
according to the pp chain, and its interior has been appreciably enriched in 4He. In
the following we show how a model of the present Sun can be constructed.

29.1 Known Solar Data

Although the Sun is a very ordinary star of average mass and in a quiet state of
main-sequence hydrogen burning, it is a unique object for stellar evolution theorists.
For no other star so many quantities are known with comparable accuracy obtained
by so many different and independent methods. From Kepler’s laws and known
distances within the solar system we can derive its mass and radius as well as
the total luminosity. This yields the effective temperature by application of the
Stefan-Boltzmann law. Neutrino experiments on Earth (see Sect. 29.5) allow the
determination of conditions in the innermost energy producing core. And the art
of (helio-)seismology has returned with high accuracy the run of the sound speed
throughout most of the solar interior, the helium content of the outer convective
envelope, and its depth. These quantities restrict the modelling of the present Sun
and allow a comparison with stellar evolution theory at a degree of precision which
is almost unique in astrophysics. Table 29.1 summarizes the fundamental solar
parameters and the method to derive them. Note that the rather large uncertainty
in the solar mass is the result of the uncertainty in Newton’s constant of gravity G.
Kepler’s third law returns their combination,GMˇ, with a precision of 10�7!

There is still one significant uncertainty in the solar quantities, and this is
the present surface (or convective envelope) composition. The determination by
Grevesse and Noels (1993) was considered to be very close to the real com-
position, as it also agreed very well with meteoritic values in those elements
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Table 29.1 Solar quantities and how they are derived

Quantity Value Method

Mass .1:9891 ˙ 0:0004/ � 1033 g Kepler’s third law
Radius 695; 508˙ 26 km Angular diameter plus distance
Luminosity .3:846 ˙ 0:01/ � 1033 erg s�1 Solar constant
Effective temp. 5; 779˙ 2 K Stefan-Boltzmann law
Z=X 0:0245 ˙ 0:001 Meteorites and solar spectrum

0:0165 (new determination)
Age 4:57˙ 0:02 Gyr Radioactive decay in meteorites
Depth of conv. env. 0:713˙ 0:001Rˇ Helioseismology
Env. helium content 0:246˙ 0:002 Helioseismology

.Z=X/ is given twice: the more traditional value by Grevesse and Noels (1993) and the more recent
one by Asplund et al. (2005)

that can be compared. However, new analyses of the solar spectrum (Asplund
et al. 2005, 2009), done with sophisticated three-dimensional, non-LTE radiation-
hydrodynamics methods, returned (see Table 29.2) much lower values in particular
for the volatile elements C, N, and O, which cannot be measured accurately in
meteorites. The difference is a reduction of the total amount of metals relative to
hydrogen, (Z=X ), by 30 %! The latest revision by Asplund et al. (2009) for the solar
element composition resulted in somewhat higher abundances than the 2005 values
but still distinctively lower than the Grevesse and Noels numbers. Consequently, the
structure of solar models using the 2009 abundances lies between the two other
cases, which we will present in the following. This issue is not yet settled, but
since the solar composition is the yardstick for all abundance determinations in
astrophysics, the outcome will certainly be of great importance.

As we will see, the older abundance data yielded solar models in very good
agreement with helioseismology. The lower abundances deteriorate this. In the
following we will present a standard solar model based on the older Grevesse and
Noels (1993) abundances, since such a model appears to be closer to the real solar
structure, even if this could be due to coincidence.

A standard solar model is derived under the assumptions of spherical symmetry
and hydrostatic equilibrium, ignoring effects of rotation and the influence of
magnetic fields. Convection is usually treated in mixing-length theory, and no
overshooting is assumed. The only effect beyond these most basic assumptions is
the inclusion of atomic diffusion, since it turned out that models which disregarded
this disagree more with seismic results. This is true for both sets of solar abundances
mentioned above.

A solar model has to match the solar radius, luminosity, and surface abundance
of metals at the solar age. The evolution is started from the pre-main-sequence
hydrostatic contraction until the solar age. The mass can be kept fixed because mass
loss is known to be unimportant.
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Table 29.2 Solar
atmospheric and meteoritic
abundances of the most
important elements, as
determined by Grevesse and
Noels (1993; “GN93”) and
Asplund et al. (2005,
“AGS05”)

Element GN93 AGS05 Meteorites

H 12:00 12:00 8:25

C 8:55 8:39 7:40

N 7:97 7:78 6:25

O 8:87 8:66 8:39

Ne 8:08 7:84 �1:06
Na 6:33 6:17 6:27

Mg 7:58 7:53 7:53

Al 6:47 6:37 6:43

Si 7:55 7:51 7:51

S 7:21 7:14 7:16

Cl 5:50 5:50 5:23

Ar 6:52 6:18 �0:45
Ca 6:36 6:31 6:29

Ti 5:02 4:90 4:89

Cr 5:67 5:64 5:63

Mn 5:39 5:39 5:47

Fe 7:50 7:45 7:45

Ni 6:25 6:23 6:19

Z=X 0:0245 0:0165

Abundances are given in logarithms of particle abun-
dance on a scale on which hydrogen has the abundance
of 1012

The abundance of helium cannot be determined from the
spectrum and is therefore missing
Errors are for most elements in the range of 0.02–
0.06 dex
Neon and argon can be determined only indirectly from
coronal abundance ratios with respect to oxygen, and are
basically absent in meteorites
The bottom line gives the total metallicity in mass frac-
tions relative to hydrogen

29.2 Choosing the Initial Model

While the observations yield information about the mass abundance Z of heavier
elements, it is difficult to determine spectroscopically the helium content Y of
the solar surface. One therefore uses Y as a free parameter. This is actually the
initial helium content Yi, which will change during the evolution due to the effects
of nuclear burning and diffusion. Its value cannot be compared directly with an
observed value. Sedimentation–the main effect of diffusion–will also lead to a
reduction of Z=X with time. Therefore also the initial metallicity Zi has to be
chosen such that after 4.57 Gyr the present Z=X is obtained. Furthermore, there
is no information about the mixing length `m to be used in the convection theory
(see Chap. 7). One normally expresses `m in units of the local pressure scale height
HP and treats the dimensionless quantity `m=HP as another free parameter.
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Fig. 29.1 Finding a model that for given values of Z D 1�X �Y describes the present Sun. For
arbitrary values of Y , `m one obtains a ZAMS model at A, from where it shifts along the broken
and dotted arrow as a result of independent changes of Y and `m, respectively. Based on this, one
guesses the values of Y; `m that yield the model at B . Its evolution is calculated from age zero .B/
to t D 4:57 � 109 years (C ). The guessed values Y; `m are modified until C coincides with D
(present Sun)

We now sketch the way to obtain a solar model using some simplifications.
These are not done in numerical calculations, but they allow us to use properties
of simplified models. We first ignore diffusion. Then .Z=X/i is known from the
present photospheric abundances. We now start the construction of an initial solar
model with trial values of Yi and `m=HP . Since the model changes only on the (long)
nuclear timescale, it can well be approximated by assuming complete equilibrium.
This means that in addition to the inertia term in (10.2) the time derivatives in the
energy equation (10.3) can be neglected. The evolution can then be followed from
the ZAMS until a time of 4:57 � 109 years after the onset of hydrogen burning
has elapsed. During this time interval the molecular weight in the central regions
increases owing to the enrichment of helium. Consequently, the luminosity increases
slightly, as can be expected from the homology relation (20.20) according to which
the luminosity should increase like �4. (The fact that the solar evolution is not
homologous changes the result only quantitatively.) At the same time, the point
in the Hertzsprung–Russell (HR) diagram moves slightly to the left. If our choice of
the free parameters were correct, the model after 4:57 � 109 years should resemble
the present Sun. But, in general, this will not be the case, and the evolutionary track
will miss the image point of the present Sun. One therefore has to adjust the two
free parameters in order to end up with the present Sun.

A variation of the mixing length changes the radius slightly, but turns out to have
almost no influence on the luminosity. Therefore, while varying `m, the initial model
will move almost horizontally (Fig. 29.1). If, on the other hand, Yi is changed, the
mean molecular weight � varies. With increasing helium content, � also increases,
and since the computed models roughly behave as the homologous models of
Sect. 20.2.2, the image point of the model moves to the upper left on a line below
the main sequence [see the arguments after (20.23)].

Since small changes in the two parameters do not modify the form of the
evolutionary track very much, the whole track makes an approximately parallel
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Table 29.3 Dependence of
solar model quantities on
model parameters

`m=HP Yi Zi

L=Lˇ 0:038 8.515 �38:60
R=Rˇ � 0:129 2.019 �7:05
.Z=X/=.Z=X/ˇ 0:043 0.523 56:0

The table entries are to be read as the partial derivative of
the column quantity with respect to the row quantity
The strongest influence by each parameter is in italics

shift. Therefore one can find values for Yi and `m=HP for which the end point of
the evolutionary track coincides with the point of the (observed) present Sun. The
procedure is illustrated in Fig. 29.1. A model constructed in this way, and by using
the standard assumptions for the input physics, is often called a “standard solar
model”.

Table 29.3 gives an overview of the partial derivatives @y=@x in the vicinity of the
final, calibrated solar model, where y corresponds to the solar observable (rows) and
x to the model parameter (columns). The values were obtained from the solar model
calculations presented in the next section. While the absolute numbers depend a lot
on the individual calculation, the relative ratios are very similar for all solar model
calibrations. Clearly, the initial helium content affects mostly the luminosity and the
mixing length the radius of the solar model. The initial metallicity Zi has not only
an obviously direct effect on Z=X but also, due to the change of �, on luminosity.

The values of the initial Y and `m=HP , which after 4:57 � 109 years lead to the
present Sun, depend sensitively on the details of the computations, for instance, on
the opacities used and the equation of state applied.

29.3 A Standard Solar Model

After the procedure to compute a standard solar model has been outlined, we now
show the results of such a detailed computation. The final model agrees with the
present solar luminosity and effective radius (Table 29.1) to 1 part in 104 or better
and has Z=X D 0:0245 according to the analysis of Grevesse and Noels (1993),
from which also the chemical composition (Table 29.2) was taken. The effect of
diffusion was included. Up-to-date tables for the equation of state (Sect. 16.6) and
the opacities (Sect. 17.8) were used, the latter for the same metal composition of
Grevesse and Noels (1993). The calculation starts with a homogenous pre-main-
sequence model, since the assumption of a homogenous ZAMS model in complete
equilibrium would already be too inaccurate (see Sect. 28.2).

All modern stellar evolution codes using the same physical input data are able
to produce a standard solar model that reproduces known properties of the Sun at a
similar accuracy and agree very well with each other.

The evolution in the Hertzsprung-Russell diagram is shown in Fig. 29.2. It begins
with a fully convective, contracting pre-main-sequence model. At an age of 1.7 Myr
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Fig. 29.2 Evolution of the standard solar model from the initial pre-main-sequence contraction to
the present age. Ages in million years are indicated along the track. Notice the drastic slowdown
of the evolution as soon as the nuclear timescale has become the dominant one and the rapid
pre-main-sequence evolution on thermal timescales during the hydrostatic contraction along the
Hayashi line. The main-sequence evolution and the phase immediately preceding it are magnified
in the inset for clarity. The zero-age main sequence of Fig. 22.1 is shown as well. Since the solar
composition is not exactly the same, the evolutionary path of the Sun is slightly offset from this
ZAMS

the centre begins to become radiative; at that time logL=Lˇ has already dropped to
0.163. The evolution slows down considerably in the following. At 28.3 Myr and a
luminosity of logL=Lˇ D �0:038 and logTeff D 3:748 a transient convective core
begins to develop due to the strongly peaked energy release of the CN conversion.
It lasts for about 120 Myr at which time the luminosity minimum has been reached.
From there on the evolution proceeds on the very long nuclear timescale as the very
short linear part of the track that ends at the solar position.

The initial homogeneous composition of this standard solar model is Xi D
0:7058, Yi D 0:2743, and Zi D 0:0199. Z=X therefore was initially 0.0282 and
has dropped at the photosphere to 0.0245 due to the settling of all heavier elements
and the corresponding increase of hydrogen in the convective envelope. This effect
is visible in Fig. 29.3, where the hydrogen and metal content X and Z as functions
of m=M are plotted; the final surface hydrogen abundance is 0.7377 and that of
metals 0.0181. They are higher, respectively lower than the initial ones because of
the sedimentation of all elements heavier than hydrogen below the thin convective
envelope. This leads to the sudden increase of hydrogen abundance to the higher
and constant value in the convectively mixed outermost layers. Accordingly, the
abundance of metals (dashed curve in Fig. 29.3) decreases at the beginning of the
convective envelope.

In the central region of the present Sun, quite an appreciable percentage of the
original hydrogen has already been converted into helium. The central value of X
has dropped to 0.338. The abundance of 3He, also shown in Fig. 29.4, displays
the characteristic shape discussed in Sect. 28.2 due to its evolution towards an
equilibrium value within the pp chain.
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Fig. 29.3 Element abundances in a model for the present Sun (age 4:57� 109 years) as a function
of m=M . Shown are the mass fractions of hydrogen, (X , solid line), metals (Z, multiplied by a
factor 10, dashed line), and of 3He (multiplied by 100, dotted line). The initial values for X and Z
in the homogeneous model were 0.7058, respectively 0.0199. The increase in X and the decrease
in Z in the outermost regions is due to the effect of diffusion

Some details of the solar structure are shown in Fig. 29.4. The left panel shows
the concentration of mass. More than 80 % are contained within 40 % of the solar
radius or just 6.4 % of the volume. Temperature rises over two orders of magnitude
within the outermost 20 % of the radius, but then only by another factor of ten
until the centre. Pressure and density profiles have a similar shape like that of
temperature. In the right panel the strongly peaked energy generation is shown,
which results in the fact that over 90 % of the total luminosity are reached already at
r=Rˇ D 0:2, corresponding to a mass coordinate of only 0.3. Note the similarity of
the solar structure to that of the 1Mˇ ZAMS model of Fig. 22.4. Although the Sun
has burnt hydrogen for almost 5 billion years, it still has the shape of a young star.

Had we used the abundances of Asplund et al. (2005; middle column in
Table 29.2) with the corresponding present value for Z=X of 0.0165, the structure
of that solar model would hardly be distinguishable from the one shown in Fig. 29.4.
However, initial and present composition would be different: the initial abundances
in that case are Xi D 0:7261, Yi D 0:2599, and Zi D 0:0140, and the present solar
surface values are X D 0:7578, Y D 0:2297, and Z D 0:0125.

The outer convective zone of our standard solar model reaches down to a
temperature of 2:2 � 106 K. The radius of its inner boundary is r D 0:713 Rˇ,
and the corresponding mass is 0:9761Mˇ.

The temperature gradients r; rad, and rrad as defined in Chaps. 5–7 are plotted
in Fig. 29.5. In the near-surface regions where lgP < 5:0, one finds rrad < rad and
the layer is stable (Fig. 29.5a). Then convection sets in where rrad exceeds rad. In
the outermost part of the convective zone the convection is very ineffective and r
is close to rrad, according to the considerations in Sect. 7.3. But r does not follow
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Fig. 29.4 Internal structure of the standard solar model as function of relative solar radius r=Rˇ

rrad to the extreme values (which at lgP D 9 reach a maximum of 4:1 � 105/. It
never exceeds 0.9. Owing to partial ionization of the most abundant elements, rad

is not constant in the outer region of the solar model, as we have already shown in
Fig. 14.1b. The deeper inside, the more the actual gradient approaches the adiabatic
one, following it up and down (Fig. 29.5a, b). In Fig. 29.5c the convective velocity
obtained from U , rrad, and r according to (7.6) and (7.15) is given in units of the
(isothermal) velocity of sound vs D .<T=�/1=2. At the top of the convection zone,
v=vs reaches its maximum of about 0.4.

29.4 Results of Helioseismology

It is not surprising that one can produce models for the present Sun which have
the correct position in the HR diagram, since three free parameters, Yi, `m and Zi,
can be varied to adjust the quantities L, R, and Z=X . Therefore obtaining a solar
model with the right age at the right position in the HR diagram and the right surface
composition is not much of a test of stellar evolution theory.

At present there are two observational tests to compare the solar interior with
model calculations. One are solar neutrino experiments, which will be discussed in
the next section. They test the conditions at the solar centre, where nuclear reactions
take place. The other one allows an almost complete “view” of the solar interior
and is based on the investigation of non-radial solar oscillations, commonly called
helioseismology. We shall deal with such oscillations later (see Sect. 42.4). For the
moment it is sufficient to state that the frequencies of thousands of non-radial solar
oscillation modes, measured with extremely high precision, depend in particular on
the sound speed profile throughout the Sun. In the following we discuss the most
important results for the solar interior.
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a

c

b

Fig. 29.5 Some properties of the model for the present Sun described in the text. (a) The
temperature gradients in the outer layers, against the pressure P (in dyn cm�2/. In the outermost
layers the actual gradient r (gray-shaded line) coincides with rrad (dashed line), which then,
however, goes up to values above the range of the ordinate. The strong depression of rad (lower
short-dashed line) for lg P > 5 is due to hydrogen ionization. (b) The same curves as in (a) but
with compressed scales, such that the whole interior of the model is covered. rrad is still out of the
range for almost all of the outer convective zone. The depression of rad is caused by the ionization
of H, He, and HeC (at values of lgP around 6, 8, and 10). Note that the centre of the Sun is close
to convective instability. (c) The convective velocity v in units of the local velocity of sound, vs, in
the outer convective zone of the Sun

The first one is that the transition from the nearly adiabatic temperature gradient
to the radiative one at the bottom of the convective zone leaves a significant change
in the slope of the square of the sound speed divided by the gravitational acceleration
(Gough 1986). This allows a very accurate determination of the bottom of the
convective envelope, which is at 0:713 ˙ 0:001Rˇ. The solar model of Sect. 29.3
has exactly the same depth of the convective zone. The solar model with the newer
abundance determination, in contrast, is convective to 0:731Rˇ. This would favour
the older abundances, provided that the physical input (equation of state, opacities,
diffusion theory) is correct.

The second envelope quantity that can be determined by seismology is the
envelope helium content and is based on the fact that the quantity �1, defined
in (13.18), depends on the chemical composition and therefore allows the
determination of the helium abundance as the ionization of helium modifies �1.
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Fig. 29.6. The difference in sound speed c between that of the standard solar model computed in
this chapter (“model”) and that determined by helioseismology (“sun”; grey shaded line). Using
the more recent abundance determination by Asplund et al. (2005) results in a larger difference
(dotted line). The vertical line denotes the lower boundary of the convective envelope

The result is Y D 0:246 ˙ 0:005, where for the error we have also considered
possible systematic uncertainties. Again, the solar model with older abundances
agrees with this value, having Y D 0:244, while the alternative model results in a
lower value for helium of Y D 0:230.

Finally, the sound speed profile throughout most of the solar interior can be
determined. The difference with respect to the standard solar model is shown in
Fig. 29.6 for both determinations of the solar abundances. As before, the older
one results in a model closer to the seismic results, even if the reasons for this
good agreement are not clear. The uncertainty of the seismic sound speed is below
0.002 for r=Rˇ between 0.2 and 0.7. Towards the centre it is increasing due to the
small number of modes extending into the core, and in the outermost layers it is
larger because of the uncertainties concerning the damping of oscillations in the
atmosphere. Therefore the only significant deviation of the solar model sound speed
profile from the seismically determined one is the maximum of the grey line just
below the convective envelope.

Although the discrepancy between model and seismic data appears to be large for
the alternative model, one should keep in mind that the agreement is still within one
per cent everywhere. Ignoring the effect of diffusion in the solar model calculation,
which, when looking at its effect in Fig. 29.3, appears to be rather small, would result
in a very similar discrepancy between model and seismic result. Overall, helioseis-
mology confirms that stellar evolution theory can reproduce the structure of the Sun
with an accuracy that is much higher than usually found in astrophysical situations.

29.5 Solar Neutrinos

Some of the nuclear reactions of the pp chain, as well as of the CNO cycle, produce
neutrinos (Sect. 18.5.1). In addition, there are also neutrinos due to the very rare pep
and hep reactions
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1H C1 H C e� ! 2H C � .pep/

3He C1 H ! 4He C eC C � .hep/; (29.1)

the latter one being the trivial way to produce 4He after the reactions of (18.61),
but it is occurring in only 10�8 of all cases. However, the energy of the emitted
neutrino is close to 10 MeV, and it is therefore necessary to consider this reaction.
As already discussed in Sect. 18.7, the neutrinos leave the star practically without
interacting with the stellar matter. The energy spectrum of neutrinos from ˇ decay
is continuous, since the electrons can take part of the energy away, while neutrinos
released after an inverse ˇ decay are essentially monochromatic. Therefore most
reactions of the pp chain have a continuous spectrum, while the pep-reaction (29.1)
and the electron capture on 7Be (18.62) have a line spectrum. Since 7Be can decay
into 7Li either in the ground state or in an excited state, this reaction gives two
spectral lines. The neutrino spectrum of the Sun as predicted from the reactions of
the pp chain, computed from our standard solar model, is given in Fig. 29.7. In
order to obtain the neutrino spectrum of the present Sun one cannot use the simple
(equilibrium) formulae (18.63) and (18.65), but must compute the rates of all the
single reactions given in (18.62), (18.64) and in addition the reactions of (29.1) in a
nuclear network.

Since the solar neutrinos can leave the Sun almost unimpeded they can in
principle be measured in terrestrial laboratories and thus be used to learn directly
about conditions in the innermost solar core. This difficult task indeed has been
undertaken since 1964, when John Bahcall and Raymond Davies began to plan for
an underground neutrino detector in a mine in Homestead, North Dakota. Forty
years later the experiments finally have confirmed the standard solar model, and
R. Davies received the Nobel Prize for his work. The time in between, however, was
characterized by the “solar neutrino problem”. The history of solar neutrino physics
and the resolution of the problem is summarized in detail in Chap. 18 of the textbook
by Weiss et al. (2004) and in Bahcall and Davies (2000).1

The solar neutrino problem consisted in the fact that since the first results from
the so-called chlorine experiment by Davies there was a lack of neutrinos compared
to solar model predictions. The chlorine experiment is sensitive to neutrinos with
energies above 0.814 MeV and therefore, as can be seen in Fig. 29.7 mainly to the 8B
neutrinos, with some contribution from pep, hep, and 7Be neutrinos. The experiment
is based on the reaction 37Cl C � ! 37Ar, where the decays of radioactive argon
nuclei are counted. The rate of neutrino captures is commonly measured in solar
neutrino units (SNU). One SNU corresponds to 10�36 captures per second and per
target nucleus. The predicted counts amount to 7.5 SNU for the chlorine experiment,
the measurements averaged over several decades to only 2:5˙0:2 SNU. The deficit
could indicate that the solar centre is cooler than in the models.

1There is also a review by Bahcall (Solving the Mystery of the Missing Neutrinos) at the
electronic library of the Nobel prize committee (URL: nobelprize.org/nobel prizes/
physics/articles/bahcall).
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Fig. 29.7. The neutrino spectrum of the Sun as predicted from the theoretical standard solar
model. The solid lines belong to reactions of the pp chain while the broken lines are due to
reactions of the CNO cycle. The neutrinos from most of the reactions have continuous spectra,
while monoenergetic neutrinos come from 7Be and from the pep-reaction (29.1). The flux � for
the continuum sources is given in cm�2 s�1 MeV�1 and for the line sources in cm�2 s�1. The
sensitivity of the three types of neutrino experiments is indicated above the figure and by the
shaded regions

To improve the experimental evidence, additional experiments were started. First,
another kind of radiochemical detector using gallium in the detector fluid measured,
due to a much lower energy threshold, the majority of neutrinos, including those
from the pp-reaction. Later, electron-scattering detectors were developed, which
are sensitive to the highest energies only, but which provide directional information
about the neutrino source (For these detectors the hep-neutrinos of (29.1) have to be
taken into account.). All experiments confirmed that the solar neutrino flux was of
the right order of magnitude, and therefore that indeed the Sun shines by the nuclear
fusion of hydrogen, but they also consistently measured a deficit of neutrinos. This
deficit, however, varied between different kinds of detectors.

The various ideas on how to solve the solar neutrino problem are discussed
in Chap. 18 of Weiss et al. (2004). With more and more experimental data it
became evident that even hypothetical changes to the solar centre cannot solve
the problem and that the solution is most likely to be found in the proper-
ties of neutrinos. All nuclear reactions emit electron neutrinos, and these are
the only ones that were measured in terrestrial experiment, with the exception
of the electron-scattering Sudbury Neutrino Observatory experiment in Canada,
where heavy water (with a high percentage of deuterium isotopes) was used as
the detector. Here also reactions with the two other types (flavours) of neutri-
nos, muon and tau neutrinos can be detected. Summing these and the electron
neutrinos up, the total number of detections is completely consistent with the
solar model prediction, within a few per cent. What created the apparent solar
neutrino deficit is the fact that neutrinos can change their flavour, both while
travelling through vacuum and more efficiently in the presence of electrons in



29.5 Solar Neutrinos 341

the solar interior. A similar effect was also confirmed for muon neutrinos aris-
ing in the Earth’s upper atmosphere from high-energy cosmic radiation, when
measured before or after they have travelled through the Earth’s interior. The
modelling of the solar interior, together with sophisticated experiments, has there-
fore resulted in new knowledge about fundamental properties of neutrinos. In
particular, these so-called neutrino oscillations are possible only if neutrinos have
mass.



Chapter 30
Evolution on the Main Sequence

30.1 Change in the Hydrogen Content

In the main-sequence phase, the large energy losses from a star’s surface are
compensated by the energy production of hydrogen burning (see Sect. 18.5.1).
These reactions release nuclear binding energy by converting hydrogen into helium.
This chemical evolution of the star concerns primarily its central region, since the
energy sources are strongly concentrated towards the centre (Sect. 22.2).

Somewhat larger volumes are affected simultaneously if there is a convective
core in which the turbulent motions provide a very effective mixing. If the extent of
convective regions and the rate of energy production "H for all mass elements are
known, the rate of change of the hydrogen content XH can be calculated according
to Sect. 8.2.3.

The situation is particularly simple for stars of rather small mass (say 0:1Mˇ <

M . 1Mˇ) that have a radiative core. In the absence of mixing, the change of XH

at any given mass element is proportional to the local value of "H. After a small time
step �t , the change of hydrogen concentration is �XH � "H�t everywhere (with a
well-known factor of proportionality). Following the chemical evolution in this way
over many consecutive time steps, one obtains “hydrogen profiles” [i.e. functions
XH.m/] as shown in Fig. 30.1. At the end of the main-sequence phase, XH ! 0 in
the centre.

With the change in the hydrogen profile also a change in the energy generation
rate "H takes place (Fig. 30.2). Initially, it has a maximum at the centre, since there
temperature is highest and the abundance of hydrogen almost the same everywhere
in the core. However, in the course of evolution, though temperature rises in
the centre, the hydrogen abundance drops, and after some time, the maximum "H,
which depends on both of these quantities, is larger outside the centre. This can
be seen first for the model of 8:2 � 109 years (dotted line in Fig. 30.2). When the
centre is completely depleted of hydrogen, "H D 0 there and the energy generation
profile looks like the strongly peaked (solid) line, corresponding to the final model of
Fig. 30.1. Energy is now being produced effectively in a shell around the exhausted

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics
Library, DOI 10.1007/978-3-642-30304-3 30, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 30.1 Hydrogen profiles
showing the gradual
exhaustion of hydrogen in a
star of 1Mˇ. The
homogeneous initial model
consists of a mixture with
XH D 0:700 and
XHe D 0:280. The hydrogen
content XH over m=M is
plotted for seven models
which correspond to an age of
0.0, 2.2, 4.2, 6.2, 8.2, 10.2,
and 11:2 � 109 years after the
onset of hydrogen burning

Fig. 30.2 Profiles of nuclear
energy production "H from
hydrogen burning (in erg/gs)
for some of the models for
which hydrogen profiles are
shown in Fig. 30.1. These are
the ones at the very beginning
of hydrogen burning
(dash-dotted line) and at ages
of 6.2 (dashed), 8.2 (dotted),
and 11:2 � 109 years (solid
line). The maximum energy
generation rate in this latter
model is 170 erg/gs

core. This “hydrogen-shell burning” is taking place within the much larger region,
in which core hydrogen burning has reduced the hydrogen content. It leads to a
steepening of that profile and to a narrowing of the burning shell. Hydrogen burning
is now even for this 1Mˇ star proceeding via the CNO cycle.

In more massive stars, the helium production is even more concentrated towards
the centre because of the large sensitivity to temperature of the CNO cycle. But
the mixing inside the central convective core is so rapid compared to the local
production of new nuclei that the core is virtually homogeneous at any time.
Inside the core, �XH � N"H�t with an energy production rate N"H averaged over
the whole core. The only difficulty comes from the fact that the border of the
convective core may change during the time step �t . The numerical calculations
show that for stars below 10Mˇ the mass Mc of the convective core decreases
with progressive hydrogen consumption, which leads to a hydrogen profile XH.m/,
as shown in Fig. 30.3 for a 5Mˇ star. At the end of central hydrogen burning,
one has a helium core with MHe � 0:1M , and the envelope in which XH still
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Fig. 30.3 The hydrogen
profile XH.m/ that is
established in a 5Mˇ star of
the same composition as in
Fig. 30.1 during and at the
end of hydrogen burning in a
shrinking convective core.
With decreasing central
hydrogen content the age of
the models is 0.7, 23, 55, 78,
and 82 � 106 years

3

3

3

3

Fig. 30.4 Energy production
profiles for the models with
an age of 0.7 (dash-dotted),
55 (dotted), 78 (dashed), and
82� 106 years (solid line) of
Fig. 30.3. "H, the energy
generation rate by hydrogen
burning (in units of erg/gs), is
about 104 times larger than in
the 1Mˇ star (Fig. 30.2) and
has a maximum of
2:6� 104 erg/gs in the last
model

has almost its original value. The corresponding energy production is shown in
Fig. 30.4. Notice that it is more and more concentrated towards the centre with
progressing main-sequence evolution and that the energy producing shell is located
just outside the helium core left after the end of central hydrogen burning. Similar
hydrogen and energy production profiles are established in stars with other values of
M . The main difference is that with increasingM the hydrogen profile is gradually
shifted to larger values of m=M , i.e. the relative mass of the produced helium
core increases with M . The corresponding increase of the convective core with
increasingM for zero-age main-sequence (ZAMS) models has already been shown
in Fig. 22.7.

This simple scenario is seriously complicated, particularly for rather massive
stars, by two uncertainties in the theory of convection (convective overshoot and
semiconvection). These effects will be dealt with separately in Sect. 30.4.
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30.2 Evolution in the Hertzsprung–Russell Diagram

At the beginning of the main-sequence phase the models are located in the HR
diagram on or near the ZAMS as described in Chap. 22. Numerical solutions show
that their positions change relatively little during the long phase in which hydrogen
is exhausted in the central region. A typical evolutionary track (for a 7Mˇ star of
the same population I mixture as before) is given in Fig. 30.5a. Starting from point
A on the ZAMS, the luminosity increases by about � lgL D 0:240 to point B
and about � lgL D 0:059 from B to C . The rise of L is due to the increasing
mean molecular weight when 1H is transformed to 4He, in accordance with the
prediction of the homology relations [see, e.g. (20.20)]. The evolution from B to C
is so fast that � increases only a very little in this short time interval. From the
change of r for different values of m (see Fig. 31.3) one clearly sees that the star
evolves non-homologously, which ultimately is because the chemical composition
changes only in the central region. The solutions show that the effective temperature
decreases fromA toB by� lgTeff � �0:089 and then increases again to pointC by
� lgTeff � 0:038. This corresponds to an increase of the radius by � lgR � 0:299

(A to B) and a decrease by � lgR � 0:047 (B to C ). Point B is reached after
about 3:67 � 107 years, roughly when the central hydrogen content has dropped
to XH � 0:05. At point C , when XH D 0 in the centre, the age is 3:74 � 107

years.
The evolutionary tracks are very similar for all stellar masses for which the

hydrogen content is exhausted in a convective core of appreciable mass, i.e. on the
whole upper part of the main sequence (see Fig. 30.5b). The increments of lgL from
A to B and from A to C become somewhat larger for larger values of M , while the
changes of lg Teff remain about the same. The structure of the evolutionary tracks
is different for smaller masses which have radiative cores. This can be seen in the
lower part of Fig. 30.5b. Of particular interest is the star withM D 1:2Mˇ, since it
barely develops a convective core of only 0:05Mˇ. This is also visible in the shape
of its track in the Hertzsprung–Russell diagram, which appears to be a transition
between those for lower and higher masses.

A common feature of all evolutionary tracks described here is that they point in
some direction above the ZAMS. This is the case only for an evolution producing
chemically inhomogeneous models (composed of a helium core and a hydrogen-rich
envelope). In an evolution assuming complete mixing of the whole model, � would
have a constant spatial distribution and would increase in time. Then the star would
evolve below the ZAMS, in accordance with the discussion after (20.23). Aside
from all details, the observations (e.g. cluster diagrams) show that evolved stars are
in fact above and to the right of the ZAMS, i.e. the stars obviously develop chemical
inhomogeneities in their interior. This conclusion is very important, in particular,
for the theory of stellar rotation. It excludes, for example, a complete mixing by the
large-scale currents of rotationally driven meridional circulations (Chap. 44).
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a b

Fig. 30.5 Hertzsprung–Russell diagrams with evolutionary tracks for population I stars during
central hydrogen burning (main-sequence phase). The tracks start on the zero-age main-sequence
and extend into the post-main-sequence phase. (a) For stellar mass M D 7Mˇ. Some charac-
teristic models are labelled by A (age zero), B (minimum of Teff), and C (exhaustion of central
hydrogen). (b) For stellar masses M D 0:8, 1.0, 1.2, 1.5, 2.0, 3.0, 5.0, 7.0, and 10Mˇ. The
dotted parts of the tracks indicate their continuation into the ensuing phase after central hydrogen
exhaustion

30.3 Timescales for Central Hydrogen Burning

The time �H a star spends on the main sequence while burning its central hydrogen
depends on M . This is because its luminosity L increases so strongly with M . Let
us consider this timescale:

�H D EH

L
; (30.1)

where EH is the nuclear energy content that can be released by central hydrogen
burning. As a rough estimate, we assume that the same fraction of the total mass of
hydrogen MH in the star is consumed in all stars. Then we have EH � MH � M .
Since L does not vary very much in this phase, we take the M –L relation of the
ZAMS, L � M� [cf. (22.1)]. Introducing these proportionalities into (30.1), we
have for the dependence of �H onM

�H.M/ � M

L
� M1��: (30.2)

For an average exponent in theM –L relation of, say, � D 3:5, one has �H � M�2:5,
i.e. a strong decrease of �H towards larger values ofM .

Of course, the numerical results are influenced and modified by a variety of
details. The sequence of calculations made for Fig. 30.5b yields �H=.10

6 years/ D
23,283.89, 2,420.24, 303.32, 37.42, and 18.91 for M=Mˇ D 0:8; 1:5; 3:0; 7:0; and
10, respectively. In all the cases with a convective core, by far the largest part of �H
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Fig. 30.6. Hydrogen-burning
times against stellar mass
obtained from the
calculations done for
Fig. 30.5b

is spent in the first phase between points A and B , while the last part (B–C ) covers
only about 3% : : : 5%. Figure 30.6 shows the main-sequence lifetime as function
of mass in a double-logarithmic plot. The mean slope is � �2:8, corresponding to
� � 3:8.

Although the absolute values are very uncertain (Sect. 30.4), the general trend
is clear and has remarkable consequences for the observed HR diagrams of star
clusters, by which it is confirmed. Assume that all stars of such a cluster were formed
at the same time, i.e. that they now have the same age �cluster. We must then conclude
that all stars with masses larger than a limiting massM0 have already left the main-
sequence region, while stars with M < M0 are still on the main sequence. M0 is
given by the condition �cluster D �H.M0/. This is the basis for the age determination
of such clusters.

30.4 Complications Connected with Convection

The seemingly nice and clear picture of the main-sequence phase as described
above is unfortunately blurred by the notorious problem of convection. Questionable
points include the precise determination of those regions in the deep interior in
which convective motions occur and therefore the extent to which the chemical
elements are mixed. The mixing influences the later evolution, since the chem-
ical profile, which is established and left behind, is a long-lasting memory. We
briefly mention two problems, the first of which concerns all main-sequence stars
having convective cores, while the second occurs only in the more massive of
these stars.
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30.4.1 Convective Overshooting

We consider the situation in the surroundings of the outer boundary of a convective
core of mass Mbc, as calculated without allowance for overshooting. This means
that here we have defined the boundary to be at the position of neutral stability, i.e.
where

rrad D rad (30.3)

according to the classical criterion (6.13). (Without much loss of generality, we may
here treat a chemically homogeneous layer, for example, in the model for a ZAMS
star.) Complete mixing and a nearly adiabatic stratification with r D rad C ".0 <

" � 1/ is assumed in the convective region below Mbc, while no mixing and r D
rrad is assumed for the radiative region aboveMbc (cf. Chaps. 6 and 7, in particular
Sect. 7.3).

This model implies an obvious problem: the boundary between the regimes in
which convective motions are present .v > 0/ and absent .v D 0/ is determined
by the criterion (30.3), which essentially relies on buoyancy forces, and therefore
describes the acceleration Pv rather than the velocity v (cf. Sect. 6.1). Rising
elements of convection are accelerated until they have reached Mbc; the braking
starts only beyond this border, which is passed by elements owing to their inertia.
The situation is the same as if we were to hope that a car would come to a full stop
at the very point where one switches from acceleration to braking. The only way to
substantiate this would be to try it (once) right in front of a hard and solid enough
wall.

Simple estimates (e.g. Saslaw and Schwarzschild 1965) indeed give the impres-
sion that there is such a hard wall for elements passing the border Mbc. We have
seen in Sect. 7.4 that in the deep interior of the star the elements rise adiabatically
such that re D rad. From (7.5) we then see that the buoyancy force kr acting on an
element is

kr � r � rad ; (30.4)

with a positive factor of proportionality. Below the border, kr is small and positive
(small acceleration) since r � rad is extremely small and positive (�10�6). In
contrast to this, the braking above the border is by orders of magnitude more
efficient. We have assumed that there r is equal to rrad, which drops rapidly below
rad (in Fig. 22.8b by about 0.1 within a scale height). So the force kr due to r �rad

soon reaches rather large and negative values: therefore an overshooting element
can be stopped within a negligible fraction of the pressure scale height.

A significant overshoot, therefore, could result only if the braking were sub-
stantially reduced (the “wall” softened). A possibility for this was outlined by
Shaviv and Salpeter (1973), who pointed to the recoupling of the overshoot on the
thermal structure of the layer. Consider the temperature excess DT of a moving
element (re D rad) over the surroundings (gradient r). According to (7.4), we have
DT � r � rad, and DT becomes negative above the border, i.e. the overshooting
elements become cooler than the surroundings, which results in a cooling of the
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upper layers and an increase of the gradient r. We may describe it in terms of the
convective flux (positive, if it points outwards), which according to (7.3) is

Fcon � v �DT (30.5)

(with positive factors of proportionality). Above the border, the upward motion
.v > 0/ of cooler elements .DT < 0/ represents a negative Fcon. In order to
maintain a constant total flux

F D Fcon C Frad D l

4�r2
; (30.6)

with Fcon < 0, the radiative flux Frad must become larger than the total flux F . From
(7.1) and (7.2) we immediately have

Frad

F
D r

rrad
; (30.7)

which shows that r > rrad for Frad > F . The increase of r, however, reduces the
absolute values of r � rad and of the braking force kr compared with the situation
without overshooting; the elements can penetrate farther into the region of stability
than originally estimated, etc.

To find out whether or not this provides an appreciable amount of overshooting
is a difficult problem and one that is still far from being solved. In order to find
the point where the velocity v vanishes, one needs a self-consistent and detailed
solution (including velocities, fluxes, gradients) for the whole convective core.
This can only be obtained by using a theory of convection, the uncertainties of
which now enter directly into the interior solution of the star. Even if we want
to apply the mixing-length theory, the procedure is not clear. Instead of the usual
local version of the theory, one needs a non-local treatment. At a given point, for
example, the velocity of an element or its temperature excess depends not only on
quantities at that point, but on the precise amount of acceleration (and braking)
which the element has experienced along its whole previous path. All prescriptions
for evaluating this and for averaging quantities like v or DT are as arbitrary as the
choice of the mixing length. In fact any detailed modelling of the convective core
by a mixing-length theory is necessarily ambiguous. For example, it encounters
the difficulty that a core extends over less than a pressure scale height [the local
expression of which, HP D �dr=d ln P , becomes 1 at the centre according
to (11.7)]. Different authors using different prescriptions have arrived at answers
ranging from virtually no overshoot to rather extensive overshoot; and all of them
have been questioned (see Renzini 1987). In the following we present a physically
motivated treatment by Maeder (1975). Figure 30.7 shows the typical run of some
characteristic functions as obtained from such calculations for M D 2Mˇ and
˛ D `m=HP D 1. Below the “classical” border of stability (rrad D rad), one has
typically r � rad � C10�4 which is enough to accelerate the convective elements
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Fig. 30.7. Velocity v and
temperature excess DT of
rising convective elements
and the ratio of the radiative
flux Frad relative to the total
flux F around the border of
stability (rrad D rad) in a
star of 2Mˇ. Overshooting
calculated with
˛ D `m=HP D 1 extends to
the point where v D 0 (after
Maeder 1975)

to 30 � � �40ms�1. Above the border, where still v > 0, but DT < 0; Frad exceeds
the total flux F by about 10 %, while r � rad ranges from �10�4 to �10�2. The
overshooting reaches to the point with v D 0, which occurs at about 14 % of the local
scale height HP above the border, corresponding to an increase of the mass of the
convective core Mc of more than 30 %. This amount depends on the assumed value
of ˛, because the velocity of the convective elements depends on the mixing length
`m according to (7.6). Figure 30.8a shows the hydrogen profile established during
hydrogen burning in a 7Mˇ star calculated with such overshooting for different ˛
(The limit case ˛ D 0 is the model calculated without overshooting.). The influence
of overshooting on the evolutionary tracks is shown in Fig. 30.8b. The consequences
of an increased helium core at the end of this phase are an increased luminosity, an
increased age (by about 25 % for ˛ D 1) due to the enlarged reservoir of nuclear
fuel, and lower effective temperatures reached during the main-sequence evolution.
This leads to a broadening of the upper main-sequence compared to calculations
without overshooting. Indeed, the observed width of the upper main-sequence is
one test to estimate the amount of overshooting from convective cores in massive
stars (Maeder and Meynet 1991). However, if such overshooting occurs, its main
effect will show up only later, during the phase of helium burning (see Sect. 31.4).

As mentioned at the beginning of Chap. 7 efforts to develop more realistic
convection models, based on either the Reynolds stress approach or on multi-
dimensional simulations, have been made. Such models would be non-local by
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Fig. 30.8. Central hydrogen
burning for a 7Mˇ star
(initial mixture XH D 0:602,
Xrest D 0:044) with
overshooting according to
different assumptions for the
ratio ˛ D `m=HP (˛ D 0

means no overshooting). (a)
The hydrogen profile at the
end of this phase. (b) HR
diagram with evolutionary
tracks (Matraka et al. 1982)

nature and therefore include the necessary conditions for treating also overshooting
more realistically.

Up to the present time two standard methods for modelling overshooting are
being used in numerical calculations. The first one is based on a simple extension
of the convectively mixed region above the boundary defined by the Schwarzschild
criterion. This extension lov is parametrized in terms of the local pressure scale
height at the boundary

lov D ˛ovHP : (30.8)

The parameter ˛ov is typically of order 0:1 � � � 0:2 for modern stellar models. It has
no relation to the mixing-length parameter ˛MLT, and is most often determined
by fitting models to observed colour-magnitude diagrams (e.g. Stothers and Chin
1992). For the overshooting region the assumption r D rad is usually made. One
sometimes speaks of “convective penetration” instead of overshooting. Strictly
speaking, the temperature gradient should be at least slightly subadiabatic, otherwise
convective elements would not be decelerated.

In an alternative approach, convective overshooting is considered to be a diffusive
process with a diffusion constant

D.z/ D D0 exp
�2z

fovHP

; (30.9)

where z is the radial distance from the formal Schwarzschild border and fov the
free parameter of this description. D0 sets the scale of diffusive speed and is
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Fig. 30.9. Fit of isochrones to the colour-magnitude diagram of the open cluster NGC 2420
(adopted from Pietrinferni et al. 2004). The dashed line is obtained from stellar models without
overshooting, and the solid line for models with overshooting, treated in the approach of (30.8),
with a parameter ˛ov of about 0.1. The “hook” at the end of the main-sequence can be reproduced
correctly only with overshooting taken into account. Note that the isochrone age is 3.2 Gyr for this
case, while it is lower (2 Gyr) for the case without overshooting to balance the fact that in this case
main sequence luminosities are lower. Except for the turn-off region the two isochrones are almost
identical

derived from the convective velocity obtained from mixing-length theory and taken
below the Schwarzschild boundary. This approach is based on two-dimensional
hydrodynamical simulations of thin convective envelopes in A-type stars and
cool white dwarfs. Although its theoretical foundation is therefore limited, it has
been used in a variety of situations and been shown that it also can be used
to reproduce the width of the upper main sequence, and the colour-magnitude
diagrams of open clusters (Fig. 30.9), with a numerical value of fov in the range
of 0:02. The hydrodynamical models also indicate that the temperature gradient in
the overshooting layers is close to the radiative one. A further advantage of this
approach is that it can easily be added to a stellar evolution code that already has
implemented diffusion (Sect. 8.2.2). In both cases the extent of the overshooting
region has to be limited for small convective cores because of the divergence ofHP

near the centre, as one otherwise gets unrealistically large mixed cores.
The “diffusive” approach (30.9) leads to smoother chemical profiles than those

resulting from (30.8). This is quite obvious from the example we show in Fig. 30.10
for a star of 15Mˇ. The solid black lines are for the calculation without over-
shooting taken into account. The receding convective core leaves behind a profile
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Fig. 30.10. Hydrogen profiles
in a 15Mˇ star during the
main-sequence evolution. The
solid black lines refer to a
model without, the dashed
grey lines to one with
overshooting being included.
Four models at approximately
the same central hydrogen
content, but not necessarily
the same age, are being
compared

characterized by small steps mixed with shallow, homogeneously mixed regions,
which have been unstable to convection locally. In Fig. 30.12 this kind of structure
shows up as “convective tongues” in the upper panel. The dashed grey lines are
the resulting chemical profiles if overshooting according to (30.9) is included. Due
to the exponentially declining mixing speed the profiles are very smooth. It is
also clearly seen how overshooting extends the homogeneously mixed core by
about 0:05M in this case. For a large part of the main-sequence evolution the
Schwarzschild boundary of the convective core remains at about the same mass
coordinate as in the case without overshooting. Only in later main-sequence phases
it changes (see Fig. 30.12, top and middle panel).

But as mentioned before the question of overshooting is quite open and can be
settled only by use of a better theory of convection. This also concerns the question
how the amount of overshooting varies with stellar parameters, such as mass and
composition, and whether it occurs at all convective boundaries. So far, both issues
can be addressed only tentatively by comparison with observations.

30.4.2 Semiconvection

Another phenomenon related to convection introduces a large amount of uncertainty
in the evolution of rather massive stars, say, forM > 10Mˇ (This limit depends on
the chemical composition; it can even be around 7Mˇ for hydrogen-rich mixtures
of extreme population I stars.).

In these stars during central hydrogen burning the convective core retreats,
leaving a certain hydrogen profile behind; the radiative gradient rrad outside the
core starts to rise and soon exceeds the adiabatic gradient rad. This happens in a
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Fig. 30.11. Schematic
illustration of the example for
semiconvection discussed in
the text. The solid line in (a)
shows a hydrogen profile in
which semiconvection occurs.
Complete mixing in this layer
would lead to the dashed
“plateau”. The gradients in
the same range of m are
sketched in (b), indicating the
radiative-semiconvective-
convective properties of the
different layers

region with outwardly increasing hydrogen content (decreasing molecular weight
�); therefore r� � d ln�=d lnP > 0, which makes the layer dynamically stable
(Sect. 6.1). Considering the classical criteria for convective stability according to
Schwarzschild and Ledoux we find

rad < rrad < rad C '

ı
r�: (30.10)

As described in Sect. 6.3 a layer in which (30.10) is fulfilled is vibrationally unstable
(“overstable”). A slightly displaced mass element starts to oscillate with slowly
growing amplitude and penetrates more and more into regions of different chemical
composition. This results in a rather slow mixing which is called semiconvection.
The treatment of this process is complicated, one difficulty being that any degree of
mixing must have a noticeable reaction on the stratification in the mixed layer.

Suppose that semiconvection occurs in some region of an originally very
smooth hydrogen profile (solid line in Fig. 30.11a). The corresponding gradients
are schematically sketched in Fig. 30.11b. The solid line is the decisive gradient of
the Ledoux criterion. The region is fully convective in the innermost part, because
rad < rrad and r� D 0. Next follows a radiative zone because of the drop of rrad,
above which a semiconvective layer exists, which would be convective according
to the Schwarzschild criterion, but is stabilized due to the positive r�-term. If
the mixing in the semiconvective region were very efficient, we would obtain a
“plateau” in the profile (dashed line in Fig. 30.11a). There are obviously two main
effects of such a mixing on the gradients. Firstly, any change of profile changes
the value of r�, which goes to zero in the plateau. Secondly, the mixing increases
the hydrogen contentXH in the lower part and decreases XH in the upper part of the
mixed region. In massive main-sequence stars the opacity is largely dominated by
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electron scattering, for which � � .1CXH/, [cf. (17.2)]. Since rrad � �, [cf. (5.28)],
the radiative gradient rrad is increased in the lower part and decreased in the upper
part of the mixed area. Therefore both these changes (of r� and of rrad), which
are due to the mixing, will modify the decisive terms entering into (30.10), and
as a result some parts can completely change their stability properties (convective-
semiconvective-radiative). Whether a semiconvective layer becomes more stable or
unstable to convection depends on the overall result of both effects. In the situation
sketched, most likely the lower part, in which hydrogen content increases, will
become fully convective, while the radiative envelope will grow deeper into the
formerly semiconvective layer.

The slow mixing in semiconvective regions can be considered as a diffusion
process (see, for instance, Langer et al. 1985). The resulting profile will depend
on the timescale �diff of that kind of diffusion and its ratio to the typical timescale in
which the stellar properties change (e.g. the composition due to nuclear reactions).
For example, a relatively small �diff (large diffusion coefficient) will tend to mix
to such an extent that convective neutrality is nearly reached with rrad � rad. In
fact this is yet another approach to treat semiconvection in numerical calculations:
Semiconvective layers are mixed to such an extent that neutrality is achieved.
In this case one does not aim at describing the physical properties in detail but
rather aims at a likely final situation. In general one should expect a continuous
change of the profile and radiative, semiconvective, and fully convective regions
moving slowly through the star. Unfortunately the coefficient of diffusion cannot
yet be determined satisfactorily, which is rather serious, since, as in the case
of overshooting, the details of the established profile are very decisive for the
later evolution of these stars. In Fig. 30.12 we show an example for the different
convective and semiconvective layers establishing in a 15Mˇ star during the main-
sequence evolution, when different approaches to overshooting and semiconvection
are employed. The semiconvective layers outside the fully convective core in the
Schwarzschild case (top panel in the figure) change their character–convective or
radiative–with time, depending on changes in the thermal structure and on mixing.
The result is a typical tongue-like extent of convective layers, separated by radiative
“tongues”, and a H/He profile that shows many irregular steps. This kind of structure
can already be seen in the early works Langer (1989, 1991) in stars of 30 and 20Mˇ.

Additional complications can arise from the interaction of semiconvection and
overshooting. Note that semiconvection can also play a role in later phases, for
example, if a convective core increases during helium burning and expands into
a region of different chemical composition.

30.5 The Schönberg–Chandrasekhar Limit

Since the nuclear timescale for central hydrogen burning is large compared to the
Kelvin–Helmholtz timescale, stars can be well represented by models in complete
equilibrium throughout this phase. The question is now whether this continues to
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Fig. 30.12. Convective and
semiconvective regions in a
star of 15Mˇ for three
different treatments of
convection. The top figure
shows fully convective
regions (dark grey) if the
Schwarzschild criterion is
applied. The bottom panel
shows the result if the Ledoux
criterion is used, and slow
semiconvective mixing is
done according to the
diffusive approach by Langer
et al. (1985; with the free
parameter in this description
set to 0.1). Semiconvective
regions are indicated by light
grey. The central panel
finally shows the case with
overshooting considered as a
diffusive process according to
(30.9), with fov D 0:02. Note
that only the convective core
(rrad � rad) is shown; the
region of overshooting, which
extends over more than 5 % of
the mass, is not visible in this
figure (but see Fig. 30.10)

be valid also for the subsequent evolution. At the end of central hydrogen burning,
the star is left with a helium core without nuclear energy release surrounded by
a hydrogen-rich envelope. At the bottom of this envelope, the temperature is just
large enough for further hydrogen burning, which continues at this place in a shell
source (see Figs. 30.2 and 30.4). The problematic part is the possible structure and
change of the helium core. A core almost in thermal equilibrium without nuclear
energy sources cannot have a considerable luminosity, and hence must be nearly
isothermal, since dT=dr � l .

Therefore we consider here equilibrium models consisting of an isothermal
helium core of mass Mc D q0M and a hydrogen-rich envelope of mass
(1 � q0/M (see Fig. 30.13). For simplicity the chemical composition is taken to
change discontinuously at the border of the two regions. The luminosity is supplied
by hydrogen-shell burning at the bottom of the envelope. In the following, solutions
for the core (subscript 0 at its surface q D q0) and solutions for the envelope
(subscript e at the lower boundary q D q0) are first discussed separately and then
fitted to each other. In view of their importance we will look at the surprising results
from different points of view.
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Fig. 30.13. Schematic
temperature profile in an
equilibrium model having an
isothermal helium core of
mass q0M . Hydrogen burns
in a shell source at the bottom
of the envelope, indicated by
the dashed part of the line

30.5.1 A Simple Approach: The Virial Theorem and Homology

Important properties of such models can be understood by rather simple considera-
tions, which give at least a qualitatively correct picture. We assume the isothermal
core after central hydrogen burning to consist of an ideal monatomic gas (molecular
weight �core). To this core, we apply the virial theorem in the form (3.21) which
contains a term for the non-vanishing surface pressure P0. Solving for P0, we
obtained (26.23), which we here rewrite as

P0 D C1
McT0

R3c
� C2M

2
c

R4c
; (30.11)

where C1; C2 are positive factors, and C1 � cv D 3<=.2�core). This describes the
resulting surface pressure P0 as the difference between the average interior pressure
(first term � N%T0) and the self-gravity term (second term �Rc Ng N%), when we use
N% � Mc=R

3
c and Ng � Mc=R

2
c .

For simplicity we assume Te to be kept at a constant value by the thermostatic
action of hydrogen burning. The fitting condition at q0 then requires

T0 D Te D constant; (30.12)

and P0 depends only onMc and Rc. As explained in Sect. 26.2 the counteraction of
the two terms in (30.11), which depend on different powers ofRc, has the result that,
forMc D constant, P0 has a maximum value P0max at Rc D Rcmax [see (26.27)],

Rcmax D C3
Mc

T0
; P0max D C4

T 40
M2

c
; (30.13)

with some positive constants C3; C4. This can be obtained by solving
@P0=@Rc D 0 (for constant T0) from (30.11). The function P0.Rc) for given Mc

and T0 is sketched in Fig. 30.14. From (30.13) we see that P0max � M�2
c , i.e. the

maximum surface pressure of the core decreases strongly with the mass Mc of the
core.
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Fig. 30.14. The solid line shows schematically the pressure P0 at the surface of the isothermal core
as a function of the core radius Rc. Horizontal lines indicate the pressure Pc at the bottom of the
envelope for three different relative core masses q0. The stable solution is marked by a dot and the
unstable solution by an open circle; the solution at P0max, is marginally stable

For the functions at the bottom of the envelope we simply assume that all possible
envelopes are homologous to each other. Then from (20.9) and (20.24) follow Pe �
M2=R4 and Te � M=R: The latter relation together with (30.12) means that M=R
D constant, such that the relation for Pe becomes

Pe D C5
T 40
M2

: (30.14)

We see that Pe is independent of Rc and has the same dependence on T0 as P0max,
but decreases with M instead of Mc. This can lead to difficulties! In Fig. 30.14 the
envelope pressure Pe according to (30.14) is given by a horizontal straight line, the
height of which depends onM .

The remaining fitting conditions for a complete solution of the star require
Rc D re and P0 D Pe, i.e. we look for an intersection of the two types of curves in
Fig. 30.14. Obviously this can be obtained only if Pe 	 P0max, which together with
(30.13) and (30.14) gives the condition

q0 � Mc

M
	 qSC; (30.15)

i.e. the relative core mass q0 must not exceed a certain limiting value, which is the
Schönberg–Chandrasekhar limit qSC. This limit was already derived in Sect. 21.4
from fitting solutions for isothermal cores and for envelopes in the U–V plane.

For q0 < qSC we have Pe < P0max, and there are two intersections in
Fig. 30.14. The solution for the smaller value of Rc is thermally unstable,
the other one is stable. This can be made plausible by a simple argument.
Figure 30.14 shows that, if we slightly increase the core radius of the stable solution,
P0 drops below Pe and the envelope tends to compress the core, thus restoring the
equilibrium state. The opposite behaviour (further increase of an initial expansion,
since P0 exceeds Pe/ can be seen to result from the perturbation of the unstable
equilibrium state, and this rough argument is confirmed by a strict eigenvalue
analysis.
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The solutions merge for q0 D qSC .Pe D P0max) which corresponds to neutral
stability. And there are no solutions possible for q0 > qSC, since Pe always exceeds
P0. In such a case some basic assumption of our present picture has to be dropped
(e.g. equilibrium or ideal gas). In particular the Schönberg–Chandrasekhar limit
does not apply for the case of a degenerate electron gas. This will be discussed
later.

The value of qSC has been computed by Schönberg and Chandrasekhar (1942).
It depends on the ratio of the molecular weights �core=�env, since the envelope
pressure depends on �env; while P0 depends on �core via C1. One can write roughly

qSC D 0:37

�
�env

�core

�2
; (30.16)

which means for a pure helium core �core D 4=3 and for a hydrogen-rich envelope
qSC � 0:09. This value is certainly exceeded by the helium cores that are left after
central hydrogen burning in stars of the upper main sequence. Stars of somewhat
smaller mass may encounter the same difficulty later, when the shell source burns
outwards, thus increasing the mass of the helium core above the critical value. The
Schönberg–Chandrasekhar limit is therefore quite relevant for the evolution in any
phases in which at a first glance one would expect isothermal cores of ideal gas to
appear.

30.5.2 Integrations for Core and Envelope

More reliable curves in the P � Rc diagram (Fig. 30.14) can be easily obtained by
numerical integrations for core and envelope (Roth 1973).

An envelope solution can be calculated for given M and Mc by requiring the
lower boundary conditions l D 0; r D R0 to hold at M D Mc: The solution gives
Pe and Te at m D Mc. By varying Rc, one obtains a set of solutions which gives
Pe.Rc/; Te.Rc/. Two typical envelope curves Pe.Rc) are shown in Fig. 30.15a. It
turns out that these curves, in their important parts, are nearly independent of Mc

but are raised essentially by a decrease ofM [This is qualitatively the same as in the
approximation (30.14).]. The temperature Te varies, in fact, very little along such
an envelope curve. For later applications (Sect. 31.1) we briefly mention the surface
values of these envelope solutions. Those with large values of Rc are located near
the main-sequence. With decreasing Rc they move to the right in the HR diagram,
and envelopes with the smallest values of Rc are close to the Hayashi line.

The solution for an isothermal core with temperature T0 can be obtained by a
straightforward integration starting at the centre with an assumed value of P D Pc

and continued until m D Mc is reached. At this point one finds a pair of values
P D P0 and r D Rc. Many such integrations for different values of the parameter
Pc then give the curve P0.Rc) for the core. The solid line in Fig. 30.15b gives such
a curve for cores of mass Mc D 0:18Mˇ and T0 D 2:24 � 107 K. The lower-right
part (small P0, largeRc) corresponds to small central pressures Pc: With increasing



30.5 The Schönberg–Chandrasekhar Limit 361

Fig. 30.15. Some typical curves of the pressure P (in dyn cm�2/ against the core radius Rc (in
cm). (a) The pressure Pe at the lower boundary of the envelope for a stellar mass M D 2Mˇ and
two values of the core mass Mc (in Mˇ). (b) The pressure P0 at the surface of isothermal cores of
different mass Mc (in Mˇ). The arrows along the solid curve indicate the direction of increasing
central pressure. The dotted spiral is with neglect of degeneracy. (c) Sketch of core and envelope
curves for the case of three intersections giving three complete solutions (filled circles stable, open
circle unstable) (After Roth 1973)

Pc the curve leads up to the maximum and decreases again (This corresponds to
the maximum of the core curve in Fig. 30.14, while the horizontal envelope curves
there are now replaced by envelope curves like those in Fig. 30.15a.). Then it would
follow the dotted spiral, if we artificially suppress the deviation from the ideal-gas
approximation in the equation of state. This may be compared with the spiral in the
U –V plane obtained for an isothermal core in Fig. 21.2. An increasing Pc, however,
implies an increasing degeneracy of the electron gas. This “unwinds” the spiral and
P0 drops, while a gradually increasing fraction of the core becomes degenerate.
When degeneracy encompasses practically the whole core, P0 rises again strongly
with decreasing Rc (upper-left end of the solid curve in Fig. 30.15b). The dashed
and dot-dashed lines demonstrate how the curve changes whenMc is decreased. As
predicted by (30.13) the maximum shifts to smaller Rc and larger P0. The main
effect, however, is that the minimum is less and less pronounced. This goes so
far that finally the maximum, which is decisive for the existence of a Schönberg–
Chandrasekhar limit, has disappeared. A similar change of the structure of the curve
is obtained if, instead of decreasingMc, we increase the temperature T0.

30.5.3 Complete Solutions for Stars with Isothermal Cores

As mentioned, each sequence of envelope solutions yields a relation Te D Te.Rc).
Assume now that along a corresponding sequence of isothermal-core solutions



362 30 Evolution on the Main Sequence

Fig. 30.16. Complete equilibrium solutions for four different stellar masses M (in Mˇ) having
an isothermal core of mass Mc D q0M . Each solution here is characterized by its core radius Rc

and its relative core mass q0. Branches with thermally stable solutions are shown by solid lines
and branches with unstable solutions by dashed lines. The turning point at q0 D qSC defines the
Schönberg–Chandrasekhar limit (After Roth 1973)

T0 is varied such that T0.Rc/ D Te.Rc) for all Rc. This deforms a core curve
in Fig. 30.15b only slightly. Any intersection of this new core curve with a
corresponding envelope curve gives a complete solution, since we then have at
m D Mc

re D Rc; Pe D P0; Te D T0; le D l0 D 0; (30.17)

i.e. continuity of all variables.
Suppose that the core curve has a pronounced maximum. We can then obviously

expect to have up to three solutions (see Fig. 30.15c), one with an ideal gas (largest
Rc), the second with partial degeneracy (intermediate Rc), and the third with
large degeneracy (smallest Rc) in the core. If the envelope curve passes below the
minimum or above the maximum of the core curve, there will be only one solution.
And there can also be only one solution with a monotonic core curve.

The resulting solutions for different values ofM andMc can best be reviewed by
representing them as models in which q0 D Mc=M varies as a parameter while M
is fixed (Fig. 30.16). Each model is represented here by its core radius Rc in order
to give an easy connection with the foregoing fitting procedure.

Figure 30.16 shows that for larger M the sequence of equilibrium solutions
consists of three branches. Two of them contain thermally stable models (solid
lines), the other unstable models (dashed). On the upper and lower stable branches,
the isothermal cores have no or strong degeneracy respectively. The branches are
connected by two turning points (at q1, and qSC) where the models have marginal
stability. A real star would first evolve along the upper stable branch, increasing
its core at nearly constant radius. When the mass of the core reaches the turning
point, the core will contract on a thermal timescale (q0 staying constant because of
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the much longer nuclear timescale) to the lower branch. The turning point with the
larger q0 defines the Schönberg–Chandrasekhar limit. Its value qSC turns out to be
nearly independent of M . For q1 < q0 < qSC, there are three solutions, otherwise
one solution. When going to gradually smaller M , we see that q1 approaches
qSC, until both turning points merge and finally disappear for M < 1:4Mˇ. For
such small M , therefore, one has only one (stable) branch and no Schönberg–
Chandrasekhar limit. This agrees with what one expects from the core curves given
in Fig. 30.15b. It shows, for example, that the curves are already monotonic for
M D 1:3Mˇ and q0 	 0:1 (i.e. Mc 	 0:13Mˇ/ (The exact mass values depend
not only on the chemical composition, but also on the detailed physical input of the
stellar models. Those given here are from the model calculations by Roth 1973, but
are representative.). Instead of Rc, we might have plotted the stellar radius R over
the parameter q0. As mentioned above, small Rc corresponds to large R and vice
versa. The sequences for large enoughM would then exhibit a stable dwarf branch
for q0 < qSC, a stable giant branch for q0 > qSC and an unstable intermediate
branch.

In evolutionary models one will encounter a smooth profile rather than a
discontinuity of the chemical composition. In such a case various definitions of
the core mass are possible: it can be the point at which XH > 0, or where the
maximum of shell source burning is located. Since the shell is comparably thin, the
various definitions do not differ too much from each other, anyhow. The Schönberg–
Chandrasekhar limit can be identified by the departure from thermal stability, i.e. by
a higher fraction of thermal to nuclear energy. In any case, one finds again that
qSC � 0:1.



Part VI
Post-Main-Sequence Evolution



Chapter 31
Evolution Through Helium Burning:
Intermediate-Mass Stars

31.1 Crossing the Hertzsprung Gap

After central hydrogen burning, the star has a helium core, which in the absence
of energy sources tends to become isothermal. Indeed thermal equilibrium would
require that the models consist of an isothermal helium core (of mass Mc D q0M ,
radius Rc), surrounded by a hydrogen-rich envelope [of mass (1 � q0/M ] with
hydrogen burning in a shell source at its bottom. Such models were discussed in
detail in Sect. 30.5. We now once more consider the case of M D 3Mˇ, which is
typical for stars on the upper part of the main sequence (say M > 2:5Mˇ). The
possible solutions were comprised in a series of equilibrium models consisting of
three branches. This is shown in the first graph of Fig. 30.16, and again in Fig. 31.1,
which also gives schematically the position in the HR diagram.

Suppose that the relative mass of the core q0 has not yet reached the
Schönberg–Chandrasekhar limit qSC.�0:1/ at the end of central hydrogen
burning. The model then can easily settle into a state contained in the
uppermost branch of Fig. 31.1a, which consists of stars close to the main
sequence (Fig. 31.1b). Let us imagine a “quasi-evolution” of this simple model
by assuming that Mc grows because of shell burning while complete equilibrium is
maintained. The result is that the model is shifted towards the right in Fig. 31.1a.
This proceeds continuously until the model reaches the Schönberg–Chandrasekhar
limit, represented by the turning point which terminates the uppermost branch.
Further increase of Mc would require the model to jump discontinuously onto the
lower branch in Fig. 31.1a. This decrease of Rc (i.e. compression of the core) would
be accompanied by a large jump in the HR diagram, from the main sequence to the
region of the Hayashi line (Fig. 31.1b). This means that such equilibrium stars have
to become giants because the main-sequence solutions (which the stars had selected
owing to their history) cease to exist, while the red giant solutions (which have
coexisted for a long time) are still available. In Fig. 31.1a, b the quasi-evolution of
increasingMc is indicated by solid lines, while those parts which can obviously not
be reached are broken. We will see that basic features of this jump in the simple
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Fig. 31.1 (a) The same series of equilibrium models for M D 3Mˇ as in Fig. 30.16. The core
radius Rc is plotted against the core mass Mc. In a quasi-evolution with increasing mass Mc of the
isothermal helium core, the model shifts along the solid lines, as indicated by the arrows. (b) The
corresponding position in the HR diagram

quasi-evolution (particularly the compression of the core together with an expansion
of the envelope to a red giant stage) are recovered in the real evolution which, of
course, leads through non-equilibrium models. In any case, a phase of thermal
non-equilibrium must follow after central hydrogen burning since a continuation
via suitable equilibrium models would involve a discontinuity.

As an example for the real evolution we take numerical solutions obtained
for upper main-sequence stars with our standard Pop. I initial mixture .XH D
0:70;XHe D 0:28;Xrest D 0:02). This model was calculated neglecting overshoot-
ing from the convective core completely and is a continuation of the main-sequence
evolution shown, for example, in Fig. 30.3. The transition from central to shell
burning can be seen from Fig. 31.2a. Any line parallel to the ordinate indicates what
one would encounter in different layers when moving along the radius of the star at
that moment of the evolution. Figure 31.2b gives the corresponding evolutionary
track in the HR diagram. The first part of Fig. 31.2a (from A to C/ shows the
phase of central hydrogen burning which exhausts 1H in the core within about
7:9� 107 years for 5Mˇ. With hydrogen being depleted there, the burning together
with the convection ceases rather abruptly in the central region. At the same time,
hydrogen burning intensifies in an initially rather broad shell around the core, i.e.
in the mass range of the outwards-increasing hydrogen content left by the shrinking
convective core (cf. Fig. 30.3a). Later this shell source narrows remarkably in mass
scale, particularly when it has consumed the lower tail of the hydrogen profile.
After phase C the evolution is so much accelerated that the abscissa had to be
expanded. The models are no longer in thermal equilibrium, i.e. the time derivatives
("g D �T @s=@t) in the energy equation are not negligible [cf. (4.47) and (4.48)].
The star has now encountered the situation outlined earlier in this section.

The radial motion of different mass elements in this phase is shown in Fig. 31.3
for the same star. After a short resettling at the end of central hydrogen burning
(pointC ) we see that core and envelope change in opposite directions: an expansion
of the layers above the shell source (at m � 0:14M ) is accompanied by a
contraction of the layers below. The fact that Pr changes sign at the maximum of



31.1 Crossing the Hertzsprung Gap 369

a

b

Fig. 31.2 (a) The evolution of the internal structure of a star of 5Mˇ of Population I. The abscissa
gives the age (in units of 106 years) since the beginning of the evolution on the main sequence.
Each vertical line corresponds to a model at a given time. The different layers are characterized
by their values of m=M: “Cloudy” regions indicate convective areas. Heavily hatched regions
indicate where the nuclear energy generation ("H or "He) exceeds 102 erg g�1 s�1. Regions of
variable chemical composition are dotted. The letters A : : :G above the upper abscissa indicate the
corresponding points in the evolutionary track, which is plotted in Fig. 31.2 (b) with a solid line.
The grey line in the Hertzsprung-Russell diagram shows the evolution of a star of the same mass
and composition, but with convective overshooting included

a shell source is a pattern very characteristic for models with strongly burning
shell sources; it can occur in quite different phases of evolution, for contracting or
expanding cores, for one or two shell sources. Such shell sources seem to represent
a kind of mirror in the pattern of contraction and expansion inside a star (“mirror
principle” of radial motion).
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Fig. 31.3 The radial
variation of different mass
shells (characterized by their
m=M values) in the
post-main-sequence phase of
the same 5Mˇ star. The
letters A : : :E correspond to
the evolutionary phases
labelled in the two Figs. 31.2

The "g term also changes sign at the maximum of the shell source. One finds
that "g > 0 in the contracting core and "g < 0 in the expanding envelope. The
energy released in the contracting core must flow outwards, which prevents the core
from becoming isothermal. Such a massive star starts on the main sequence with
relatively low central density (cf. Fig. 22.5) and therefore remains non-degenerate
during the contraction phase described here, which then leads to heating. When the
central temperature has reached about 108 K, helium is ignited. The core has thus
tapped a large new energy source which stops its rapid contraction, and the star again
reaches a stage of complete (thermal and hydrostatic equilibrium. The whole core
contraction from C toD has proceeded roughly on the Kelvin–Helmholtz timescale
of the core (in 32:3 � 106 years for 5Mˇ). In the same time, the outer layers have
rapidly expanded, and the stellar radius is increased appreciably (roughly by a factor
15 in Fig. 31.3).

The evolutionary path in the HR diagram for the 5Mˇ star is shown in Fig. 31.2b.
The expansion transforms the star into a red giant so rapidly that there is little chance
of observing it during this short phase of evolution. This explains the existence of
the well-known Hertzsprung gap, an area between main sequence and red giants
with a striking deficiency of observed stars. It is a direct consequence of stars with
cores reaching the Schönberg–Chandrasekhar limit after central hydrogen burning.

The evolution is qualitatively similar for all stars in which helium burning is
ignited before the core becomes degenerate and in which possible complications
due to semiconvection cannot prevent the star from moving close to the Hayashi line.
This includes stellar masses of, say, 2:5Mˇ < M < 10Mˇ. A set of evolutionary
tracks in this phase for differentM is shown in Fig. 31.4.
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Fig. 31.4 The HR diagram with evolutionary tracks from the zero-age main sequence to the end
of central helium burning for stars with different masses M (from 3Mˇ to 10Mˇ) and for an
initial composition with XH D 0:70; XHe D 0:28. The instability strip of Cepheids is indicated by
the broken line

In Fig. 31.2b the second track (grey line) is that of the same 5Mˇ star, but
here overshooting from the convective cores during hydrogen and helium burning is
taken into account. The extent of the overshooting corresponds to about 0.2 pressure
scale heights at the Schwarzschild boundary, equivalent to an increase in mass by
more than 20 %. The region in which material is mixed to the stellar centre is thus
extended, the main-sequence evolution lasts longer, and the extension of the main-
sequence phase in the HR diagram is larger. Point B along the track is 470 K cooler
than for the evolution without overshooting and 26 % more luminous. Point C, the
end of core hydrogen burning, which now lasts 96.3 instead of 79.9 Myr, moves in a
similar way. The wider main sequence is observationally confirmed, and indeed the
width of the upper main sequence required the inclusion of convective overshooting
in stellar models for massive stars. All the subsequent evolution takes place at higher
luminosity, which can be explained according to (20.20) by the larger increase of
the mean molecular weight for the whole star during core hydrogen burning.

31.2 Central Helium Burning

As a consequence of the rapid contraction and heating of the core, central helium
burning sets in (at the age of 8:3 � 107 years for our 5Mˇ star). The star is then
in the red giant region of the HR diagram, close to the Hayashi line (D–E in
Fig. 31.2b). Correspondingly it has a very deep outer convection zone, which can
be seen in Fig. 31.2a to reach down to m=M � 0:17. The larger M , the deeper
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Fig. 31.5 Variation of the
abundance of 12C and 16O
during the depletion of 4He in
the centre of the 5Mˇ star,
whose internal evolution was
shown in Fig. 31.2

the convection zone penetrates, and it reaches into layers in which the composition
was already slightly modified by the earlier hydrogen burning. Therefore some
products of this burning are now dredged up by the convection and distributed all
over the envelope. This is called the first dredge-up event. We here encounter one
of the mechanisms by which nuclear species produced in the very deep interior
can be lifted to the stellar surface. For example, the 12C=13C isotope ratio drops
from its initial value of approximately 90 to values close to 20. This is the result
of mixing material that has undergone CNO burning, where the equilibrium value
of 12C=13C � 5 was established, with pristine matter in the envelope having the
initial value. Furthermore, the nitrogen abundance increases at the expense of that
of carbon, and even the surface helium abundance increases slightly by a few per
mille. The carbon isotope ratio can be determined rather accurately from stellar
spectra of giants and confirms the presence of the first dredge-up and thus also the
CNO burning in the deep stellar interior.

The high temperature sensitivity of helium burning causes a strong concentration
of the energy release towards the centre and therefore the existence of a convective
core. The core contains roughly 3–4 % of M , i.e. much less mass than during
hydrogen burning.

At first the dominant reaction is 3˛ ! 12C (cf. Sect. 18.5.2). With increasing
abundance of 12C the reaction 12C C˛ ! 16O gradually takes over. When 4He
has already become rather rare the depletion of 12C on account of 16O is larger
than the production of 12C by the 3˛ reaction, and 12C decreases again after having
reached a maximum abundance. This is explained by the fact that the production of
12C is proportional to X3

˛ , while its depletion is proportional to X˛X12. The change
of the abundances can be seen from Fig. 31.5, which shows the final composition
for such stars to be 12C and 16O in roughly equal amounts with only a very small
admixture of 20Ne. In the example shown, the ratio 16O/12C is 51:47; if overshooting
is included in the models, it changes slightly to 55:42 due to the different history
of the temperature stratification of the core. Note, however, that the final ratio of
16O/12C depends strongly on the rather uncertain reaction rate for 12C.˛; �/16O.
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The experimentally determined values have been varying by factors of 2–3 over the
years. One of the most recent and widely used rate is that by Kunz et al. (2002),
which–at 100 million K–is about 40 % higher than the classical one by Caughlan
and Fowler (1988), but 40 % lower than the one recommended in the NACRE
compilation (Angulo et al. 1999). Generally, the 16O=12C ratio as well as 20Ne/16O
increases with increasing stellar mass, since T increases.

The phase of central helium burning lasts roughly 1:6 � 107 years, which is
about 20 % of the duration of the main-sequence phase. This fraction seems to be
surprisingly large in view of the facts that nowL is somewhat higher, the exhausted
core is much smaller, and the specific gain of energy (per unit of mass of the fuel)
is only 1/10, as compared with hydrogen burning. The simple reason is that most of
the total energy output in this phase comes from hydrogen-shell-source burning. For
a star of 5Mˇ helium burning contributes only about 7 %, 26 %, and 42 % at points
E;F; andG, respectively: a rather small release of nuclear energy inside the core is
obviously sufficient to prevent it from contraction and to bring the whole star nearly
into thermal equilibrium. The luminosity LHe produced between points E and F
by helium burning in a helium core of mass MHe is roughly equal to the luminosity
a pure helium star of M D MHe would have on the helium main sequence (cf.
Sect. 23.1). In fact the helium-burning core resembles in several respects a star on
the helium main sequence with M D MHe. For later applications we note that the
radius RHe of the core changes rather little during most of this phase. It increases
very slowly until the central helium content has dropped to XHe � 0:3. It is only
in the final phase of central helium burning (XHe < 0:1) that the core contracts and
RHe drops appreciably (cf. Fig. 31.3). It should be mentioned that the evolution will
be affected by convective overshooting, which enlarges the convective core also
during central helium burning, but does not extend its duration appreciably. The
larger supply of nuclear fuel is compensated by the higher luminosity. In case of the
star shown in Fig. 31.2b it lasts 1:59 � 107 years.

Let us now look at the HR diagram in Fig. 31.2b. After point E the star (the one
calculated without overshooting, but this discussion applies also to the more general
case, as can be seen from Fig. 31.4) goes at first down along the Hayashi line, then
leaves this line and moves back to the left. The “bluest” pointF; for 5Mˇ, is reached
after 1:4 � 107 years (88 % of the helium-burning phase) when the central helium
content is down to about XHe � 0:15. The track then leads back towards point G
in the vicinity of the Hayashi line. The further evolution in which another loop may
occur will be discussed in Sect. 31.5.

The extension of the loops, i.e. the distance of their bluest points from the
Hayashi line, depends on the stellar mass M. We limit the discussion to a range
of not too large masses, say M < 10Mˇ, where the situation is relatively simple
and clear. Large loops are obtained for stars with large M . With decreasing
M the loops become gradually smaller and finally degenerate to a mere down
and up along the Hayashi line. This can be seen in Fig. 31.4, which gives the
evolutionary tracks for a comparable set of computations. The loops for different
stellar masses cover a roughly wedge-shaped area which is bordered by the Hayashi
line and the connection of the bluest points of the loops (i.e. points F where Teff
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Table 31.1 Characteristic points and the time elapsed after the zero-age main-sequence stage in
the evolutionary tracks of the models shown in Fig. 31.4

t (in 106a) lg L=Lˇ lg Teff (K)

3Mˇ E 319.95 2.459 3.633
E 0 327.24 1.809 3.692
F 337.69 1.810 3.692
G0 409.83 2.012 3.672

4Mˇ E 145.71 2.787 3.626
E 0 158.74 2.343 3.674
F 163.48 2.439 3.695
G0 176.65 2.437 3.661

5Mˇ E 82.62 3.082 3.615
E 0 91.92 2.758 3.654
F 96.05 2.963 3.739
G0 98.32 2.816 3.648

6Mˇ E 52.97 3.344 3.605
E 0 58.82 3.069 3.640
F 61.51 3.369 3.886
G0 63.21 3.138 3.635

8Mˇ E 28.82 3.787 3.585
E 0 31.50 3.532 3.617
F 32.54 3.869 4.024
G0 34.40 3.739 3.676

10Mˇ E 19.09 4.126 3.569
E 0 20.31 3.854 3.603
F 20.85 4.198 4.125
G0 22.00 4.165 3.909

The meaning of the points E;E 0; F; G0 is explained in the text

has a maximum). The duration of characteristic phases as obtained from these
calculations can been seen from Table 31.1. Point E 0 corresponds to the minimum
of L after E; where the leftwards motion starts, while G0 indicates the end of the
central helium burning [As with most numerical values obtained up to now from
evolutionary calculations, these data should be taken as an indication of typical
relative properties, rather than as absolutely reliable. For other data see the original
literature.]. The situation is much more complicated for still larger masses, where
the loops do not continue to grow withM and the tracks remain well separated from
the Hayashi line. Unfortunately this depends on the uncertain details of the mixing
during the earlier main-sequence phase (compare Sects. 30.4 and 31.4), and of the
poorly known mass loss rates.

The importance of the loops comes from the fact that they occur during a nuclear,
slow phase of evolution in which the star has a sufficient chance of being observed
(contrary to the foregoing phase of core contraction). We therefore expect to find
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Fig. 31.6 Equivalent of an HR diagram (magnitude V against colour index B � V / for the
cluster NGC 1866 (after Musella et al. 2006; data courtesy E. Brocato). Crosses indicate identified
Cepheid variables with well-observed light curves and known period

helium-burning stars as red giants in the area of the HR diagram covered by the
loops. This is in fact the case, as can be seen from HR diagrams of open clusters
(see, e.g. Fig. 31.6). They often show a more or less extended giant branch, which
is clearly separated from the main sequence by the Hertzsprung gap, and which sets
out nicely the range of loops for the corresponding values ofM .

31.3 The Cepheid Phase

It is of particular significance that the loops are necessary for explaining the
observed ı Cephei variables. The observations show that these stars are giants,
located in the HR diagram in a narrow strip roughly parallel to the Hayashi line
and a few 102 K wide (cf. Fig. 31.4). Indeed the theory of stellar pulsations which
will be described in Chap. 40 predicts that a star is vibrationally unstable if it is
located in the “instability strip” of the HR diagram, where the observed Cepheids
are found (Fig. 31.6). This is a consequence of the way in which the outer stellar
envelope (particularly the helium ionization zone) reacts on small perturbations.
When a stellar model has evolved into the instability strip, the oscillation will grow
to finite, observable amplitudes. This phenomenon does not show up in the normal
evolutionary calculations which are carried out by neglecting the inertia terms in the
equation of motion, since these terms are necessary to obtain an oscillation at all.
The calculated evolution therefore gives only the unperturbed solution.
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The evolutionary tracks discussed above cross the instability strip up to three
times. For all stars a first crossing occurs in the short phase of core contraction
when the star moves from C to D (Fig. 31.4). This passage is so rapid that there is
scarcely a chance for observing a star as a Cepheid in this phase. So we are left with
the much slower second and third passages, which occur only for sufficiently large
loops. According to Fig. 31.4 this is roughly the case for all stars with M � 5Mˇ.
This lower mass limit for Cepheids depends of course on all the uncertainties of the
loops in the computed evolutionary tracks.

The theory of stellar pulsations (Chaps. 40 and 41) also gives the period ˘ of
the oscillation. For the evolutionary models the theory in fact yields values of ˘
comparable with the observed Cepheid periods, which are in the range of 1–100
days. In a first approximation,˘ is shown to depend only on the mean density N% of
the whole star as

˘
p N% D constant; N% � M=R3: (31.1)

Indeed˘ is of the order of the hydrostatic timescale �hydr introduced in (2.19).
Since the Cepheid strip is rather narrow, each passage defines reasonably well a

pair of average values of L and R; and (31.1) then gives the corresponding period
˘ . When going from the lowest to the highest passages in Fig. 31.2b, we find that
˘ increases since its variation is dominated by the increase of R; which enters into
N% with the third power. In fact, this, together with the properties of the instability
strip discussed in Chap. 41, will be shown to lead to the famous ˘–L relation
of Cepheids, which is the basic standard for the determination of extragalactic
distances.

During a passage through the Cepheid strip from right to left .E ! F /; the
radius R decreases, which means that ˘ must also decrease according to (31.1).
During a passage in the opposite direction .F ! G/, the period ˘ will increase.
From (31.1) and the Stefan-Boltzmann law (11.14) one derives for the period change

d log˘

dt
D 3

4

d logL

dt
� 3

d logTeff

dt
: (31.2)

If we take as an example the 5Mˇ model of Table 31.1, we can calculate the
average d˘

dt
(in the conventional units of s/year) for both passages. The pulsation

periods at points E 0, F , and G0 are approximately 4.4, 2.7, and 5.8 days, and the
period changes are predicted to be �9:5�10�3 s/year for the first crossing and 2:8�
10�2 s/year for the return passage. For more massive stars these rates can be higher
by a factor of 104, as can easily be inferred from Table 31.1. These predicted changes
of the period can in fact be measured by high-precision photometric observations
covering many periods. An analysis of over 200 Milky Way Cepheids by Turner
et al. (2006) confirmed the generally good agreement between observations and
theoretical predictions. Two Cepheids, ˛ UMi (Polaris) and DX Gem, show such
high period changes that they are believed to belong to that rare group of stars which
are currently crossing the Hertzsprung gap.

The duration of a passage �cep increases strongly towards lower values of L (i.e.
of ˘ ). For an assumed width of � lgTeff D 0:05 for the strip, the crossing on the
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Fig. 31.7 Well-determined masses of Cepheids in comparison with the luminosity of the tip of
blue loops as function of mass from different theoretical stellar evolution calculations. The long-
dashed line was obtained without the inclusion of overshooting; the solid and dot-dashed lines
with moderate overshooting (from two different calculations), and finally the short-dashed one
from models with strong overshooting. The empirical Cepheid masses seem to indicate slightly
more overshooting than used in the two “moderate” cases (after Evans et al. 1998)

way fromE to F takes �cep D 2:4� 106 years for 5Mˇ. For 8Mˇ the strip is wider
(� lgTeff � 0:1) and �cep D 0:25 � 106 years. From �cep one can draw conclusions
on the number of Cepheids to be expected. It turns out that this number should
increase substantially towards smaller values of ˘ , reach a maximum (at a period
of a few days), and then drop steeply, since the loops no longer reach the Cepheid
strip. This is at least qualitatively in agreement with the observations.

A less favourable result concerns the masses of the Cepheids. One value,
called the “evolutionary mass” Mev, can be obtained with the help of evolutionary
calculations essentially by comparing the luminosities. On the other hand, non-
linear pulsation calculations show that the form of the light curves should depend
on M , and a comparison with observed light curves gives a “pulsational mass”
Mpul. Now one finds that Mev notoriously exceeds Mpul by 15–20 %. This result
is confirmed by a handful of Cepheids for which the mass can be determined from
the dynamics of binary systems. This problem has been amply discussed in the
literature (Cox 1980; Keller 2008). Two solutions are considered: either the stars
have lost the “excessive” mass by stellar winds prior to becoming Cepheids, or
convective overshooting increases the mass of the helium core and the luminosity
of Cepheids (see Fig. 31.2b), such that for given ˘ , hence L, a lower mass Mev is
deduced. The latter solution appears to be the more realistic one (Keller 2008), as
it appears to solve the problem for Cepheids with dynamic masses (Fig. 31.7). On
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the other hand, overshooting tends to reduce the loops through the instability strip
both because largerMHe leads to less extended loops (cf. Sect. 31.4) and because of
the fact that the instability strip is inclined to higher Teff for higher luminosity. For
some stellar masses and compositions models with overshooting therefore avoid the
Cepheid phase altogether.

We have dwelt at length on this short phase of evolution, since the Cepheids are
important and offer a major fraction of those rare cases which, at least in principle,
allow a quantitative test of the theory.

31.4 To Loop or Not to Loop : : :

In Sect. 31.3 we saw how important it is to find evolutionary tracks looping through
the red giant region during central helium burning. It was all the more noteworthy
when one learned that the loops depend critically on some uncertain input param-
eters (e.g. �; ", treatment of convection, composition) used in the calculations. A
detailed classification of all influences, including their mutual interaction, is far too
involved. Rather we point out a few characteristic properties of the models which
allow a phenomenological prediction on the looping (We here follow the discussion
of Lauterborn et al. 1971a,b; for other descriptions see Robertson 1971; Fricke and
Strittmatter 1972).

For not too large masses (say, M . 7Mˇ/, the evolution through the loops
is so slow that the "g terms scarcely play a role. So we can reproduce the loops
sufficiently well by models in complete equilibrium. Let us again consider solutions
for the helium core (mass Mc, radius Rc, luminosity l0) and for the hydrogen-rich
envelope separately before fitting them to a full solution. The core luminosity l0
is supplied by central helium burning; hydrogen-shell burning at the bottom of the
envelope gives the additional luminosity L–l0.

For given chemical composition a solution for the envelope can be obtained after
specifying a pair of values Rc; l0 as inner boundary conditions at m D Mc (This is
quite analogous to the usual central conditions r D l D 0 at m D 0:). Any solution
gives a point in the HR diagram as well as pressure and temperature aMc, i.e. values
forL; Teff; P0; T0. For the first part of the loop, helium burning contributes relatively
little to L: Consequently we may approximate the envelope by setting l0 D 0 (This
can be done, of course, only for the calculation of the envelope which is dominated
by hydrogen burning; in the core, l0 cannot be neglected since it represents the whole
local luminosity of this region.). The envelope solutions there form a two-parameter
set in which we treat Mc; Rc as free parameters.

Next we look for a simple description of the chemical composition in the
envelope. Figure 31.8a shows a typical hydrogen profile. A rather moderate increase
of XH is the relic of hydrogen consumption in the convective core during the main-
sequence phase. The very narrow shell source has already eaten away the lower part
of this profile (dashed) and produced a steep increase of XH above the momentary



31.4 To Loop or Not to Loop : : : 379

Fig. 31.8 The hydrogen abundance in an evolved star. (a) The convective core has left a fairly
smooth profile (dashed line) which afterwards is steepened by shell burning. The shell is centred
at m0. Consequently XH D 0 for m < m0. For m > m0, there is still a region in which XH is not
constant. (b) Schematic description of the chemical profile given by the solid line in (a)

helium core. We idealize this by a profile described by the parameters�m and�X ,
as shown in Fig. 31.8b. The further shell burning will obviously increase Mc and
decrease�m and �X .

Now the envelope solution and its position in the HR diagram depend on the
four parametersMc; Rc �m;�X . We would like to have a simple function of these
parameters which can serve as a measure for the separation from the Hayashi line.
The back-and-forth motion in the loop would then correspond to a non-monotonic
variation of this function. A hint for a suitable procedure can be found in Fig. 31.1.
The envelopes there shift monotonically to the right in the HR diagram, while the
cores move through all three branches of the series of equilibrium models with
increasing ratioMc=Rc. This is essentially the surface potential of the core and plays
a decisive role in many descriptions of radial expansion and contraction during the
evolution. So we consider an “effective core potential”:

' WD h
Mc

Rc
; (31.3)

where we countMc; Rc in solar units. The function h D h.�m;�X ) takes account
of the influence of the chemical profile. We normalize it by setting h D 1 for a
simple step profile .�m D �X D 0) and specify it later for other profiles. For a
step profile and for M D 5Mˇ five sequences of envelope solutions with constant
Mc are shown in Fig. 31.9. The plotted lines ' D constant illustrate that ' may
indeed serve as an indicator of the distance from the Hayashi line. In particular we
can find a critical value 'cr such that all envelopes with

' > 'cr (31.4)

are close to, and move upwards along, the Hayashi line with increasing '. The line
' D 'cr may therefore roughly connect the minima of the envelope curves, and
from Fig. 31.9 we see that lg 'cr D 0:93 for 5Mˇ. For M D 3Mˇ and 7Mˇ, it is
0.83 and 0.99, respectively.
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Fig. 31.9 Envelope solutions
for M D 5Mˇ with
homogeneous composition
down toMc.h D 1) for
different values of the core
mass Mc (in Mˇ). Lines of
constant core potential ' are
indicated (After Lauterborn
et al. 1971a)

The function h is defined so that models with different profiles but equal distances
from the Hayashi line have the same '. Numerical experiments with different
profiles have shown that the simple approximation

h D econstant��m��X (31.5)

is sufficient. Here h depends only on the product �m � �X , i.e. to say on the
amount of excess helium in and just above the shell source. The profile influences
the envelope mainly through a hydrostatic effect.

Finally, relations between Mc and Rc have to be derived from solutions for the
core. Each solution of an envelope of givenMc; Rc yields a pair of valuesP0; T0. For
each Mc we vary Rc and get the functions P0.Rc) and T0.Rc), which are taken as
outer boundary conditions for the core. For a specified composition and differentMc

the core solutions then give the required relation Rc.Mc/, which is quite different
for ' larger or smaller than 'cr, namelyMc=Rc � M0:4

c .' < 'cr) and �M0:25
c (' >

'cr). Therefore this factor tends to increase ' when the shell source burns outwards.
We then have, in addition, the influence of the chemical evolution of the core on
Rc. As mentioned earlier, an appreciable effect occurs only after the central helium
content has dropped below, say, 0.1. The following rapid decrease of Rc tends to
increase '. Both these effects (the increase of Mc and the decrease of Rc) tend to
shift the model to the right in the HR diagram and may therefore finish a loop, but
they can never start it.

Obviously the responsibility for the onset of a loop rests with the function h: In
fact, when the shell source burns farther into the profile,�m and�X (cf. Fig. 31.8)
become smaller and h decreases according to (31.5). This outweighs the increase
of Mc=Rc in the first phase after E; and ' becomes smaller (Fig. 31.10). Sooner or
later, however, the factorMc=Rc takes over, since it continues to grow steadily, while
h will level off near its maximum h D 1 when the shell source has “crunched up”
almost the entire profile. Therefore ' reaches a minimum 'min and then increases
again. The turning of ' at 'min can be caused either by the growth of Mc or by
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Fig. 31.10 Sketch of the
effective potential ' as a
function of the core mass Mc

for an evolution through a
loop. The points E;F;G
refer to those in Fig. 31.2

the drop of Rc due to helium depletion. Which of these effects occurs earlier will
depend on the ratio of the timescales for shell source and central burning.

So we have found a non-monotonic variation of '. Whether this results in a loop,
and if so the length of the loop, will depend on 'cr and the starting value '.E/
by which we denote the value of ' at point E: For small M;'.E/ exceeds 'cr by
so much that even 'min remains above 'cr, and no loop occurs. The variation of '
then is reflected only in a motion down and up near the Hayashi line (Fig. 31.4, for
M . 4Mˇ). High values of M bring '.E/ close to 'cr, and therefore in the further
evolution ' goes below 'cr. A case with 'min < 'cr is illustrated in Fig. 31.10. When
' drops below 'cr the model detaches from the Hayashi line and starts looping to
the left. The turn to the right begins at point F when ' D 'min.

Now it is obvious that many factors can modify the loops. For example, all
properties changing the ratio of the timescales for central helium burning and
shell burning can shift 'min and thus the bluest point of the loop. In particular,
we have to mention all the uncertainties concerning convection. Appreciable
overshooting on the main sequence shifts the whole profile outwards. This
can increase Mc and consequently '.E/ � 'cr such that the loop becomes
smaller if it is not completely suppressed. Other factors affect the decisive
upper part of the hydrogen profile. Aside from careless integrations during the
main-sequence phase there are also physical uncertainties which can leave faulty
profiles in the models. An example is the mixing by the outer convection zone
during its deepest penetration, which in turn depends on the chosen mixing length
in the superadiabatic layer. A similar problem causes the semiconvective region in
main-sequence stars of large M (cf. Sect. 30.4.2). The assumption that this region
is fully mixed leads to a plateau in the calculated profile with a discontinuous drop
ofXH at its bottom. The presence or absence of this plateau must strongly influence
the function h: Correspondingly the literature presents quite different evolutionary
tracks for massive stars during helium burning (some with loops near the Hayashi
line, others more to the left and completely detached from this line) for different
assumptions on the semiconvective mixing.

In the following we present some examples for these effects. In Fig. 31.11 the
evolution of a 9Mˇ star is shown for two different chemical compositions and
different treatment of convection as well as a numerical aspect. In the top panel
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a

b

Fig. 31.11 Sensitivity of blue loops during core helium burning for a star of 9Mˇ and two
compositions. (a) (top panel): for X D 0:70, Z D 0:02. The black solid line is a calculation
with Schwarzschild criterion and without overshooting, which is included in the model shown by
the dashed line. The solid grey line is using the same physical assumptions as in the first case, but
with a coarse spatial resolution during the core hydrogen burning phase. (b) (bottom panel): for
X D 0:66, Z D 0:04. The two lines correspond to the cases without (solid) and with (dashed)
overshooting

(for a case with Z D 0:02) the inclusion of overshooting (dashed line) simply
shifts the track to higher luminosity, as expected, with respect to the “standard”
case without overshooting and using the Schwarzschild criterion for convection.
However, when reducing the spatial resolution of the model (solid grey line), the
chemical profile at the end of core hydrogen burning differs from the standard case,
such that near the end of core helium burning convection brings fresh helium from
outside the convective helium core, leading to a rejuvenation of the helium burning
and resulting is a second loop before the star finally returns to the Hayashi line. Note
that all calculations were terminated once helium at the centre was exhausted.

In the lower panel of Fig. 31.11, for Z D 0:04, the standard case is shown again
(solid line), which is similar to the standard case for the previous mixture. However,
in this case, overshooting (dashed line) enlarges the convective core sufficiently such
that the loop is reduced to a very small “looplet” close to the Hayashi line. These
numerical results agree well with the analysis done above.
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Fig. 31.12 Teff as function of age (years) for the 9Mˇ models of Fig. 31.11b

A further example how different assumptions concerning convection affect the
loops can be found in Fig. 32.1 for a star of 15Mˇ. In this particular case, the
use of the Ledoux criterion and semiconvective mixing lead to a quite extended
loop, while the application of the Schwarzschild criterion as well as the inclusion of
overshooting suppress it.

We see that details, which have originated from different regions and from earlier
phases when the effects were scarcely recognizable, can now pop up and modify the
evolution appreciably. The present phase is a sort of magnifying glass, also revealing
relentlessly the faults of calculations of earlier phases.

Finally, we demonstrate in Fig. 31.12 that the crossing of the Hertzsprung gap
and the onset of the blue loop happen on a thermal timescale as discussed in
the preceding paragraphs and that the “looplet” for the case with overshooting of
Fig. 31.11b (dashed line) is taking place on a much longer, nuclear timescale. We
show the effective temperature as function of age. The nearly vertical drop after
the main sequence (hottest points reached during the evolution) corresponds to the
Hertzsprung gap crossing on a thermal timescale of about 1:1 � 105 years (taken as
the time between logTeff D 4:2 and 3.7); the leftward evolution on the blue loop
(from logTeff D 3:65 to 4.0) lasts 9 � 104 years. The looplet, in contrast, needs
almost 3 � 106 years.
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31.5 After Central Helium Burning

In the central core, helium burning terminates when 4He is completely processed
to 12C, 16O, and 20Ne (in various ratios, depending on the temperatures, i.e. on the
stellar mass, and on the reaction rates used). The burning continues in a concentric
shell surrounding the exhausted core, and the formation of this shell source for
5Mˇ can be seen in Fig. 31.2a. While the helium shell burns outwards, the CO
core increases in mass and contracts. Obviously the situation resembles that before
central helium burning. Now, however, the star has two shell sources, since the
hydrogen shell is still burning at the bottom of the hydrogen-rich envelope. In the
model shown in Fig. 31.2b the star then begins a steep upward evolution in the HR
diagram. In some cases a second, smaller loop is initiated depending on the same
quantities as mentioned in Sect. 31.4. In this phase the helium region between the
two shell sources expands, and the temperature in the hydrogen-shell source drops
so far that hydrogen burning ceases. The mass of the CO core roughly doubles. The
hydrogen later reignites and can compete with the energy release by the helium shell
only when the stellar luminosity has increased by almost a factor of ten and when
the CO-core has again doubled its mass to � 0:16M ). These two quantities are in
fact correlated, as we shall see in Chaps. 33 and 35.

From Fig. 31.2a we see that the outer convective envelope gradually reaches
further down until it contains more than 80 % of the stellar mass. Its lower boundary
clearly penetrates into a range of mass through which the hydrogen-shell source has
burned during the preceding �107 years, processing all 1H to 4He, and nearly all 12C
and 16O to 14N. These nuclei are now dredged up by the outer convection zone and
can appear at the surface. This is usually called the phase of the second dredge-up,
during which also the surface helium content, which has risen from an initial value
of 0.28 to 0.29 during the first dredge-up, increases again to 0.31 in this example.
It happens only in a mass range above 3–5Mˇ, but not for massive stars.

With the inward motion of the lower border of convection, the H–He discon-
tinuity has come rather close to the helium-shell source where T � 2 � 108 K.
This hot helium shell moves outwards until it is close enough to the hydrogen-
rich layers so that they heat up and hydrogen is ignited–the hydrogen-shell source
is reactivated. This mixing of hydrogen at the same time reduces the mass of the
hydrogen-exhausted core, which will later become the white-dwarf remnant of such
stars. The second dredge-up therefore prevents the formation of more massive white
dwarfs, too.

Before we continue discussing the stars in this mass range in Chap. 35, we have to
describe the evolution of massive and low-mass stars through central helium burning
in the next chapters.



Chapter 32
Evolution Through Helium Burning:
Massive Stars

The evolution of massive stars (stars with M & 8 � � � 10) through the phases of
central hydrogen and helium burning would be quite similar to that of intermediate-
mass stars (Chap. 31) if it were not for a few effects that influence it appreciably
and which are specific for this mass range. The fact that the size of the convective
core is encompassing large fractions of the star (Fig. 22.7) makes uncertainties
connected with the treatment of convection even more important. These are twofold:
semiconvection and overshooting, which we introduced already in Sect. 30.4.
Furthermore, massive stars are known to have intensive mass loss, which in some
cases are able to uncover the cores such that layers with a composition modified
by nuclear fusion processes become visible. These are the so-called Wolf-Rayet
stars. Finally, massive stars can rotate with surface rotation speeds of up to a few
hundred km/s, or to an appreciable fraction of the break-up speed. This leads, as we
will see in Chap. 44, to additional mixing processes beyond convective mixing, and
further effects. The modelling of massive star evolution therefore becomes quite
complicated and uncertain because of these physical effects which are not well
understood. We will discuss their general influence in the following.

32.1 Semiconvection

The problem of semiconvection was already introduced and illustrated in
Sect. 30.4.2 and Fig. 30.12. It is of particular importance for the evolution of stars
above, say, 10Mˇ, and results from the fact that the convective core contains less
and less mass during the main-sequence evolution. This “shrinking” of the core
is due to the increasing concentration of nuclear energy production, taking place
via the CNO cycles, towards the centre with increasing core temperature. It leaves
behind a region of varying chemical composition around the convective core, with
material that experienced only some amount of nuclear fusion surrounding inner
layers, where the conversion of hydrogen to helium proceeded further. In these
layers, both the stabilizing molecular gradient r� and the radiative temperature

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics
Library, DOI 10.1007/978-3-642-30304-3 32, © Springer-Verlag Berlin Heidelberg 2012

385



386 32 Evolution Through Helium Burning: Massive Stars

Fig. 32.1 Evolution of a 15Mˇ star of initial composition X D 0:70, Y D 0:28, Z D 0:02

with different treatments of core convection. The solid black line is the resulting evolution if
the Schwarzschild criterion is applied, the dotted one in case of the Ledoux criterion, with slow
semiconvective mixing, and the dashed one for the case with the inclusion of overshooting and the
Schwarzschild criterion. The grey solid line, finally, has been computed with more overshooting
and additional mass loss

gradient rrad are strongly oscillating functions of depth, depending on the exact
chemical profile left behind by the shrinking core. In numerical models this profile
depends on the spatial and temporal resolution of the models and their evolution,
but also, for example, on the detailed interpolation in sets of opacity tables. In
particular, it is quite important how accurately the varying chemical composition
at each position inside the star is represented by these tables. As a consequence of
these fluctuating terms in (30.10), the stability condition may be fulfilled in some
parts of these critical regions, but not in others. The result is a region above the
core with fluctuating radiative and convective layers, the exact structure of which is
rather uncertain to compute.

If the Schwarzschild criterion for convection is used, the stabilizing molecular
weight gradient in (30.10) is omitted and the layers become convective more easily
and earlier in the evolution. This is the situation displayed in the top panel of
Fig. 30.12 for a sample calculation of a 15Mˇ star. Since the separation between
the convective core and the semiconvective layers outside of it may be rather small,
a connection of both may occur, which “rejuvenates” the core by mixing fresh
hydrogen into the burning region. The main-sequence evolution is thus extended and
happens at higher luminosities. In Fig. 32.1 we show the resulting evolutionary track
in the HR diagram (solid line) of a calculation, in which this effect was avoided. In
this case the core helium burning is starting already during the evolution towards the
red region, at a temperature of logTeff D 4:17 (we have set, rather arbitrarily, this
phase to the point, when the helium luminosity has reached 20 % of the hydrogen
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luminosity). This is at an age of 9.35 Myr, and the core helium burning lasts for
another 1.43 Myr. At that time the star is beyond the luminosity minimum close to
the red (super-)giant region. The onset of core helium burning is connected with the
small loop at logTeff � 4:15.

The lower panel in Fig. 30.12 and the dotted line in Fig. 32.1 correspond to
the case of the Ledoux criterion. In this case the semiconvective layers above the
shrinking core mix only slowly, and a more gradual chemical gradient between
the hydrogen-exhausted core and the envelope is maintained. This is illustrated in
Fig. 32.2, which compares the hydrogen profile at the end of the main sequence
for the two criteria for convective stability. In the Ledoux case, the profile in the
outer parts of the initially convective core (out to m=M � 0:35) is very smooth,
whereas in the case of the Schwarzschild criterion it shows steps due to the sporadic
appearance of localized convective regions.

In the Ledoux case, the main sequence lasts longer for 1.4 Myr, and the helium
burning starts only 40,000 years later, at logL=Lˇ D 4:41 and logTeff D 3:78,
i.e. after the star has crossed the Hertzsprung gap on a thermal timescale and is
approaching the luminosity minimum close to the Hayashi line, along which it
quickly ascends within a few 104 years. Due to the deep convective envelope the
chemical composition is homogeneous down to m=M � 0:25 (Fig. 32.2, lines
showing the helium profile), while in the Schwarzschild case, steps still exist,
because at this stage, when the central helium content is 0.48, the star has not yet
reached the red giant region.

The most striking difference is the blue loop that the Ledoux model performs
during core helium burning. At its hottest extension, the central helium content is
reduced to 19 %; it is exhausted when the star is about halfway back to the giant
region. This phase lasts for 1.23 Myr, comparable to the duration of central core
helium burning in the Schwarzschild case. The fact that stars in that mass range,
calculated using the Ledoux criterion for convection and under the assumption of
slow semiconvective mixing, first become red giants and then perform blue loops
was very crucial in explaining the pre-explosion evolution of the progenitor of
supernova SN1987A, a star known as Sanduleak �69ı202 (see, e.g. Woosley et al.
1988; Langer 1989).

32.2 Overshooting

The effect of overshooting on the interior evolution of the same star is visible
in the middle panel of Fig. 30.12. The evolutionary path in the HR diagram
(Fig. 32.1) is shifted in a similar way as was shown in Fig. 31.2b, i.e. to higher
luminosities. Due to the enlarged convectively mixed core, central hydrogen burning
lasts now for 12.12 Myr, i.e. about 2.8 Myr (30 %) longer than for the case without
overshooting. This corresponds roughly to the increased amount of fuel for the
nuclear fusion, which can also be recognized from the hydrogen profile shown
in Fig. 32.2. Note also that overshooting has the additional effect of creating a
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Fig. 32.2 Chemical composition profiles for selected models along the evolution shown in
Fig. 32.1. Shown are the hydrogen and helium mass fractions (indicated by the usual symbols
X and Y ) as function of relative mass. The solid lines refer to the models calculated with the
Schwarzschild criterion, the dashed lines to those with the Ledoux criterion for convection, and
finally the dotted ones to the case with convective overshooting. The models were taken at the end
of the main sequence when the central hydrogen abundance had been reduced to 0.01, and during
core helium burning, when the central helium abundance is at 0.48

smooth chemical profile. The increase in luminosity of 4 logL=Lˇ � 0:11 at
the end of the main sequence agrees well with a simple estimate using (20.20),
which predicts L � �4, where � is the mean molecular weight obtained from
that of the hydrogen-rich envelope and of the helium-rich core. � increases from
0.83 to 0.90 when overshooting is enlarging the core, and therefore logL by
approximately 0:14. Core helium burning starts again halfway through the crossing
of the HR diagram, but without a visible feature in the track, and lasts for another
1.2 Myr. Although overshooting enlarges the convective helium-burning core, too,
the increased luminosity leads to an overall reduced duration of this nuclear phase.
This star does not perform any loop. This agrees with the similarity of the helium
profile with that of the Schwarzschild case (Fig. 32.2).

Overshooting is even more important for more massive stars. Figure 32.3 shows
evolutionary tracks for stars of 40 and 50Mˇ. For reference, the solid track of the
40Mˇ star was calculated without any overshooting, while the dotted grey line
does include it. The broadening of the main-sequence phase and the increase in
luminosity are obvious. The core hydrogen burning phase is extended from 4.47 to
4.69 Myrs, too. The models for the 50Mˇ star all include overshooting, but differ in
the criterion for convection. One realizes that until the end of core hydrogen burning
(after 4.14 respectively 4.12 Myrs), both tracks are almost identical, but differ
afterwards, when the newly established hydrogen shell encounters the hydrogen
profile, which, due to the use of the Schwarzschild (dotted line) or Ledoux (solid
line) criterion, is different. As we discussed in the previous section, the treatment of
convection influences strongly the post-main-sequence evolution!
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Fig. 32.3 Evolution of 40 and 50Mˇ stellar models calculated with various assumptions concern-
ing semiconvection, overshooting, and mass loss. For the 40Mˇ star three cases are shown: one
with neither overshooting nor mass loss using the Schwarzschild criterion for convection (black
solid track), one with strong overshooting (grey dotted), and one with additional mass loss (black
dot dashed). In total, this last model loses about 5Mˇ. The black solid line for the 50Mˇ star
refers to a case with overshooting and mass loss; the Ledoux criterion for convection was used
here. For comparison, using the Schwarzschild criterion results in the grey dotted line. Finally, the
grey dash-dotted line corresponds to a case with significantly enhanced mass loss. The final mass
of this model is 28Mˇ compared to 37.5 and 42:4Mˇ in the former cases

32.3 Mass Loss

In addition to the complications of the interior evolution due to convection, the
evolution of massive stars is also much stronger influenced by mass loss due to
stellar winds than that of stars of low and intermediate mass. These strong stellar
winds are driven by the radiation field and therefore increase with luminosity and
effective temperature (the energy density of radiation scales with T 4eff). For a review
of winds from hot stars, see Kudritzki and Puls (2000). In the following we used the
empirical mass loss formula by Vink et al. (2001) in our models.

In Fig. 32.1 (grey solid line) we show the evolution of the 15Mˇ model when
mass loss is added and the amount of overshooting is increased even further, to
now about 0:3HP. Accordingly, luminosity increases even further, and the main-
sequence phase extends over 12.8 Myr. The mass loss rate on the main sequence
is of the order of 1 � 2 � 10�8 Mˇ=year and drops by a factor of a few when the
star gets cooler. At the end of helium burning 1:15Mˇ is lost due to stellar winds.
Since the amount of mass loss is below 10 % of the initial mass, the influence on
the track, when compared to the case with overshooting, but no mass loss (dashed),
is very small.
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This is different for the two stars of Fig. 32.3. The 40Mˇ star, when calculated
with mass loss (black dot-dashed line), loses mass at a level close to 10�6 Mˇ=year,
which amounts, over the main-sequence lifetime of 4.54 Myrs to a reduction to
35:52Mˇ. Since the mass loss timescale is much longer than the nuclear timescale,
the star can always adjust to the reduced mass and evolves at any time similar to
a star of the same instantaneous constant mass. Note, however, that the width of
the main-sequence phase, that is the effective temperature of the “hook” indicating
the end of core hydrogen burning is very similar to that of the track without mass
loss. The convective core of the star is not influenced very much by the mass loss
from the stellar surface. Until the end of core helium burning, the star loses only a
further 0:03Mˇ; this is due to the short duration of this phase and the cooler stellar
temperatures, which reduce the mass loss rate by more than an order of magnitude.

All calculations of the 50Mˇ star have been done with mass loss. However, in
the case shown by the grey dash-dotted line the mass loss rate by Vink et al. was
artificially enhanced by a factor 3. While the stellar mass in the cases with normal
mass loss amounts to 42:5Mˇ after the main-sequence, here the model loses 12Mˇ
over 4.47 Myrs. Mass loss after the main sequence is negligible in all cases. Since
this enhanced mass loss is so strong, the star can no longer evolve unperturbed.
One can see this in the early part of the main sequence: instead of increasing in
luminosity, the track bends down trying to follow a sequence of unevolved stars
of decreasing mass. Only during the second half of core hydrogen burning, when
the nuclear timescale is further reduced, the usual evolution proceeds, but at lower
luminosity and also with a smaller extension of the main sequence. Indeed, the
convective core is smaller than in the cases with normal mass loss (17 instead of
27Mˇ in this phase; compare this to 22Mˇ of the 40Mˇ star with Schwarzschild
criterion, the evolution of which resembles most closely this one).

The maximum mass loss rate is 5 � 10�6 Mˇ=year for the last case presented.
With even more extreme mass loss, up to 10�4 Mˇ=year and above, the track would
even turn around and the star evolve to temperatures higher than the main sequence
(compare this to the generalized main sequences of Sect. 23.3 for large values of
q0). During this evolution, the wind would uncover nuclear-processed layers of the
star: first hydrogen-rich layers with high nitrogen abundance (from CNO-burning),
later helium-rich layers, and even later possibly carbon-rich, hydrogen-free layers
that experienced helium burning. These different surface compositions define the
sequence of different types of Wolf-Rayet stars (WN, WC). Such models have been
computed and presented by, for example, Maeder and Meynet (1987). However,
stars with such strong winds can no longer be considered as having an optically thin
atmosphere on top of the opaque interior. Instead, interior, atmosphere, circumstellar
envelope and hot, fast stellar wind should be treated together and consistently (see,
e.g. Schaerer 1996).

The evolution of massive stars is further influenced significantly by rotation and
the mixing of the interior induced by rotation (see Chap. 43). Massive stars are
known to rotate with surface velocities of several hundred km/s, sometimes close
to break-up velocities. Modelling rotating stars is an active field of research going
beyond the scope of this book. Therefore we refer the reader to the monograph by
Maeder (2009)



Chapter 33
Evolution Through Helium Burning:
Low-Mass Stars

33.1 Post-Main-Sequence Evolution

Compared to more massive stars, those of lower masses (typically M < 2:3Mˇ)
evolve in a qualitatively different way after the exhaustion of hydrogen in their
central regions. There are several reasons for this difference. Low-mass main-
sequence stars have small, or no, convective cores, and degeneracy is important,
if not on the main sequence, then shortly afterwards. In addition they start at a point
on the main sequence much closer to the Hayashi line than the starting points of
massive stars.

For example, if hydrogen is consumed in a well-mixed convective core, there
will be a helium core of appreciable mass at the very end of central hydrogen
burning. However, stars of around 1Mˇ have no convective cores; they consume
hydrogen as illustrated in Fig. 30.1. Consequently they produce a growing helium
core starting at zero mass. Therefore there is a smooth transition from central to
shell burning. These stars start with such large central densities (&102 g cm�3/ that
the electron gas is at the border of degeneracy, which has several consequences. The
Schönberg–Chandrasekhar limit (Sect. 30.5) is not important: initially, the core mass
Mc is below 0.1M . When, however, with outward burning shell sourceMc > 0:1M ,
the core contraction has produced sufficient degeneracy, making this limit irrelevant.
The stars can then well exist in thermal equilibrium with a degenerate, isothermal
helium core. This means that there is no “need” for a rapid core contraction
as described in Sect. 31.1 and no equivalent of the Hertzsprung gap. Another
consequence of degeneracy is that core contraction is not connected with heating.
This is in contrast to the pre-main-sequence contraction (Sect. 28.1) and to post-
main-sequence core contraction, which leads to helium ignition in massive stars.

At least in the first phases to be discussed here, the growth of the core mass is
slow (since the productivity of the shell source is low), and the whole core settles at
the temperature of the surrounding hydrogen-burning shell. This means that the core
temperature is far from that of the ignition of helium (�108 K). In low-mass stars,
helium burning will be seen to start much later owing to secondary effects, after
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the core mass has grown up to a certain limit. Therefore the shell-burning phase
between the central hydrogen and helium burning is a nuclear, slow phase, and one
can expect to find many such stars in the sky.

The contraction of the core is (as in the case of larger M ) accompanied by an
expansion of the hydrogen-rich envelope outside the shell source. However, as long
as the luminosity does not change drastically, the expansion cannot carry the star far
away from its starting point on the main sequence. The reason is that this point is
already close to the Hayashi line, which cannot be crossed (Chap. 24).

Any further expansion of the envelope is only possible if the luminosity
increases. In fact the calculations show that L now increases by more than a factor
102 while Mc grows.

Surprisingly enough it turns out that L soon depends on the properties of the
core only and is practically independent of the mass of the envelope (and therefore
of M ). In this phase the models can be well described analytically by a generalized
form of homology.

33.2 Shell-Source Homology

Consider a model in complete equilibrium consisting of a degenerate helium core
(mass Mc, radius Rc/ surrounded by an extended envelope of hydrogen with
abundance XH and mass Menv D M � Mc. The core mass Mc grows owing to
hydrogen-shell burning, which provides the luminosity L:

PMc D L

XHEH
(33.1)

(whereEH is the energy gain per unit mass of hydrogen). This equation could easily
be integrated if L were constant. However, while evolution proceeds, L grows too
since there is a relation betweenL andMc. The properties of the shell (and therefore
L/ are mainly determined by Mc and Rc, while they are almost independent of the
properties of the envelope. This can be understood from the fact that the core is
highly concentrated and the gravity at its surface is very large. Then, according to
hydrostatic equilibrium, jdP=dmj � m=r4 is very large, and P drops by powers
of 10 within a thin mass shell just above the core surface. The typical situation is
illustrated in Fig. 33.1. In other words, the extended envelope above this layer is
nearly weightless and has no influence on the burning shell.

We now present an analytic approach of Refsdal and Weigert (1970) giving
relations between the properties of the core and the physical variables in the
hydrogen-burning shell. For this purpose we will generalize the homology consid-
erations of Chap. 20 and use again the power approximations for � and ":

� D �0P
aT b; " D "0%

n�1T �: (33.2)
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Fig. 33.1 A schematic
sketch of the run of pressure
in the vicinity of a thin shell.
Mc is the mass of the core;
the shell extends toM0.r0/.
Its thickness is 4r , i.e.
M0 D Mr.Rc C 4r/ (After
H. Ritter,
priv. communication)

Here we have replaced the exponent � used in Chap. 20 by n � 1.
For the gas pressure we will use the ideal-gas equation

P D <
�
%T ; (33.3)

since we only want to apply it to regions outside the core, where the gas is not
degenerate. We also neglect radiation pressure since it is not important for low-
mass stars. In Chap. 35 we shall apply the relations derived here to more massive
stars and then take radiation pressure into account.

We now assume for the density, temperature, pressure, and local luminosity in
the region of the hydrogen-burning shell (i.e. for Rc � r � Rc C 4r) that there
exists a simple dependency on Mc and Rc:

%.r=Rc/ � M'1
c R

'2
c ; (33.4)

T .r=Rc/ � M 1
c R 2c ; (33.5)

P.r=Rc/ � M�1
c R

�2
c ; (33.6)

l.r=Rc/ � M�1
c R

�2
c : (33.7)

These homology-type relations have the following meaning: we compare two stellar
models of different core masses Mc and M 0

c and core radii Rc and R0
c: We define

homologous points, r and r 0, in the two models by

r

Rc
D r 0

R0
c

I (33.8)

the physical quantities at homologous points in the two models shall then be con-
nected by relations (33.4)–(33.7). This indeed is very similar to the considerations
of Sect. 20.1, though there the homologous points were defined with respect to the
total radius R; whereas we here define them with respect to the core radius Rc.
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While there, for example, in (20.9), the physical quantities vary like powers of M
andR, they here vary like powers ofMc andRc. For example, with our new concept
of homology, (20.9) is replaced by (33.4) and (33.6), which are written explicitly as

%

%0 D
�
Mc

M 0
c

�'1 �Rc

R0
c

�'2
; (33.9)

P

P 0 D
�
Mc

M 0
c

��1 �Rc

R0
c

��2
: (33.10)

We now introduce relations (33.4)–(33.7) into the stellar-structure equations in order
to determine the exponents. We therefore write (2.4), (5.11), and (4.42) in the form

dP � Mc%d.1=r/ ; (33.11)

d.T 4/ � �%l d.1=r/ D �0%P
aT bl d.1=r/ ; (33.12)

dl � "%d.r3/ D "0%
nT �d.r3/ ; (33.13)

with positive factors of proportionality. In (33.11) we have assumed that m � Mc

= constant, which is a sufficient approximation in the region in which P drops to
negligible values. This assumption yields decisive differences from the relations
discussed in Chap. 20. Introducing (33.4)–(33.6) into (33.3) we easily obtain for the
exponents

�1 D '1 C  1; �2 D '2 C  2 : (33.14)

We now integrate (33.11)–(33.13) over the shell, starting with (33.11): we choose
a radius r0 sufficiently larger than Rc that P.r0=Rc/ � P.r=Rc/, and find from
(33.11) that

P.r=Rc/ D P.r0=Rc/C
Z 1=r

1=r0

GMc%d.1=r/ � GMc

Rc

Z x

x0

% dx ; (33.15)

with x D Rc=r . If we do the same for another model with M 0
c ; R

0
c, we find for the

pressure at the homologous radius r 0

P 0.r 0=R0
c/ � GM 0

c

R0
c

Z x

x0

%0 dx D GM 0
c

R0
c

�
M 0

c

Mc

�'1 �R0
c

Rc

�'2 Z x

x0

% dx ; (33.16)

where (33.9) has been introduced into the integral. Comparing (33.16) with (33.15)
yields

P.r=Rc/ � M'1C1
c R'2�1c ; (33.17)

and if we compare this with (33.6) we find

�1 D '1 C 1; �2 D '2 � 1 : (33.18)
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The same procedure can be carried out using (33.12) and (33.13). For the integration
in the first case we again choose r0 sufficiently far outside, where the temperature
is small compared to its values in the shell; for the integration of (33.13) we take
r0 D Rc, where the local luminosity vanishes. We then obtain

.4 � b/ 1 D '1 C a�1 C �1 ; (33.19)

.4 � b/ 2 D '2 C a�2 C �2 � 1 ; (33.20)

�1 D n'1 C � 1; �2 D n'2 C � 2 C 3 : (33.21)

Equations (33.14) and (33.18)–(33.21) are eight linear inhomogeneous algebraic
equations for the eight exponents in (33.4)–(33.7). The solutions are

'1 D �� � 4C aC b

N
; '2 D � � 6C a C b

N
;  1 D 1;  2 D �1 ;

�1 D 1C '1; �2 D '2 � 1; �1 D � C n'1; �2 D 3 � � C n'2 ;

(33.22)

with
N D 1C nC a : (33.23)

Equations (33.22) allow us to determine the variations of the physical quantities
from one model (characterized by Mc; Rc) to another (characterized by M 0

c; R
0
c).

The temperature and the local luminosity at homologous points vary as

T � M 1
c R 2c D Mc=Rc ; (33.24)

l � M�Cn'1
c R3��Cn'2

c : (33.25)

This holds for all homologous points, also for those at the upper border of the range
of integration where l D L. Therefore the luminosity of these shell-source models
depends onMc (rather than onM ) and on the mode of energy generation (in striking
contrast to main-sequence type models, cf. Chap. 20). As an illustration we assume
a D b D 0 (electron scattering, see Sect. 17.1) and � D 13; n D 2 (CNO cycle, see
Sect. 18.5.1). Then '1 D �3; '2 D 7=3, and we find

L � M7
cR

�16=3
c : (33.26)

We have obtained relations T .Mc; Rc) and L.Mc; Rc) independent of M . In order
to see how T and L vary along an evolutionary sequence of models with increasing
Mc, one has to know how Rc varies with Mc. Since the cores in the evolution under
consideration are degenerate, they resemble white dwarfs whose radii decrease with
increasing mass (see Sect. 19.6, Chap. 37). We therefore can expect from (33.24)
that the temperature in the shell source increases withMc, and according to (33.26),
the luminosity increases strongly with Mc even with Rc = constant (this increase
being much steeper than the L.M/ relation for main-sequence stars).
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Fig. 33.2 The luminosity ls (solid curve, left ordinate) at the top of the hydrogen-burning shell
around a degenerate helium core of mass Mc: The dotted line indicates the importance of the
radiation pressure, the value of ˇ.D Pgas=Ptotal) being given by the ordinate at the right. When
Mc approaches the Chandrasekhar mass MCh (Sect. 19.7; dot-dashed vertical line), the luminosity
curve has the tendency to approach the Eddington luminosity LE (dashed line) for which gravity
equals the radiation-pressure gradient (for an opacity dominated by electron scattering; see
Sect. 22.5)

We now need a relation Rc.Mc/. The classical mass-radius relation for white
dwarfs (Chap. 37) is, of course, not directly applicable to these cores. Below the
shell there must be a transition from complete through partial to no degeneracy.
Compared to the outer layers of white dwarfs, this transition region is very hot (like
the shell source) and may occupy an appreciable fraction of the core volume (For
a discussion of this problem, see Refsdal and Weigert 1970.). Nevertheless, as a
simple example for Rc.Mc/ we here take the relation for the cold white dwarfs of
Table 37.1, yielding d lnRc=d lnMc for different values ofMc. This can be used in

d lnL

d lnMc
D �1 C �2

d lnRc

d lnMc
; (33.27)

which follows from (33.7). The coefficients �1 and �2 are determined by (33.22).
For a D b D 0; n D 2; � D 14, one finds d lnL=d lnMc � 8 � � � 10. We can
also integrate (33.27) numerically when starting from a correctly computed model,
which gives an initial value L for a givenMc. The results of such an integration, ls,
are shown in Fig. 33.2 by the left part of the solid curve where radiation pressure
can be neglected (ˇ � 1).



33.3 Evolution Along the Red Giant Branch 397

For the temperature at homologous points, say at the bottom of the hydrogen-
burning shell, instead of (33.27), we obtain from (33.24)

d lnT

d lnMc
D 1 � d lnRc

d lnMc
; (33.28)

and we get d lnT=d lnMc somewhat larger than 1. Since the cores are assumed to be
isothermal, this also gives the increase of the central temperature Tc. We see that in
this way Tc can be raised to helium ignition even by models in complete equilibrium.

33.3 Evolution Along the Red Giant Branch

In the following we describe the evolution of a star of 1:3Mˇ as calculated by
Thomas (1967) in a pioneering paper. The chemical composition of the initial model
on the ZAMS is XH D 0:9;XHe D 0:099;Z D 0:001, which at that time seemed to
be the appropriate mixture for a star of population II. The essential results, however,
do not depend too much on the chosen chemical composition, as we will show
later and in Fig. 33.5. The initial model has L D 1:91Lˇ; Teff D 6; 760K. Nuclear
energy is released in the central region at Tc D 1:48 � 107 K. There is a small
convective core containing 4.3 % of the total mass, which disappears long before
the exhaustion of hydrogen in the centre. There is also an outer convective zone,
which reaches inwards from the photosphere to about r � 0:95R:

The evolutionary track in the HR diagram is shown in Fig. 33.3, while the internal
evolution is illustrated by Fig. 33.4. In the HR diagram the image point of the model
first moves upwards and then to the right. At the same time, the model switches from
central nuclear burning to shell burning, as can be seen in Fig. 33.4. We have already
learned from the shell-source homology of Sect. 33.2 that the luminosity must grow
with increasing core mass. The calculated evolution confirms these predictions once
the core is sufficiently compressed. The track is very close to the Hayashi line,
leading up along the giant branch to higher luminosities and correspondingly larger
radii. The neighbourhood of the line of fully convective stars can also be seen from
the internal structure of the models. Figure 33.4 shows that the outer convective
zone penetrates deeply inwards until more than 70 % of the total mass is convective.
It then reaches into layers which are already contaminated by products of nuclear
reactions (see dotted area in Fig. 33.4). The processed material is distributed over
the whole convective region and therefore also brought to the surface. This type of
partial mixing, the first dredge-up, we have already encountered for more massive
stars in Chap. 31.

The monotonic increase of the luminosity is interrupted when the hydrogen-
burning shell reaches the layer down to which the outer convective zone has mixed
at the moment of deepest penetration. At this point the mixing has produced a
discontinuity in molecular weight between the homogeneous hydrogen-rich outer
layer and the helium-enriched layers below. When the shell source reaches the
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Fig. 33.3 The evolutionary track of a star of 1:3Mˇ with the initial composition XH D
0:9; XHe D 0:099; Z D 1 � XH � XHe D 0:001 as computed by Thomas (1967). The letters
A�D refer to the corresponding evolutionary states in Fig. 33.4. The arrows indicate the direction
of the evolution. This direction is reversed for a short period between the dotted horizontal lines.
This transient drop in luminosity at about lg L=Lˇ D 2 occurs when the hydrogen-burning shell
crosses the chemical discontinuity left behind when the bottom of the outer convective zone moves
outwards again in the mass scale after it has reached its deepest extension (see Fig. 33.4)

discontinuity, the molecular weight of the shell material becomes smaller. This
causes the drop of luminosity at L� 100Lˇ (see Fig. 33.3) as can easily be
understood.

For this purpose we follow the considerations of Sect. 33.2, but this time, we vary
the molecular weight � at homologous points while keeping Mc, Rc, and all other
parameters constant. Analogously to (33.4)–(33.7) we write

%.r=Rc/ � �'3 ; (33.29)

T .r=Rc/ � � 3 ; (33.30)
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Fig. 33.4 The evolution of the internal structure of a star of 1:3Mˇ plotted in the same manner as
in Fig. 31.2a. The main region of hydrogen burning is hatched; “cloudy” areas indicate convection.
Regions of variable hydrogen content are dotted (After Thomas 1967)

P.r=Rc/ � ��3 ; (33.31)

l.r=Rc/ � ��3 ; (33.32)

and with the same procedure as in Sect. 33.2 we find

'3 D 4 � b � �

N
;  3 D 1; �3 D '3; �3 D � C n'3 ; (33.33)

withN D 1CnCa: For example, using again the values � D 13; n D 2; a D b D 0

as in Sect. 33.2, we see that (33.32) becomes l � �7. Therefore the luminosity
decreases with decreasing �, which explains the transient reduction of L: After
the shell source has passed the discontinuity, � remains at its reduced value and
the luminosity grows again with increasing core mass. As the star passes three
times through the region between the two dotted horizontal lines in Fig. 33.3,
observations have a higher probability of finding stars in this luminosity range
than in the neighbouring ones. In luminosity functions of globular clusters, which
give the number of stars per brightness bin, this event in the evolution of low-mass
stars shows up as a localized peak, which is either called Thomas peak, or simply
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Fig. 33.5 The evolutionary track of a star of 0:85Mˇ and composition XH D 0:7499, XHe D
0:25, and Z D 0:0001. This is the modern version of Fig. 33.3 calculated with a modern stellar
evolution code and a Pop. II composition typical for metal-poor globular clusters. The evolution
proceeds from the main sequence to the tip of the red giant branch at logL=Lˇ � 3:2, through
the helium flash to the horizontal branch

the bump. Indeed, in high-quality photometry of clusters, it can be found easily. As
an example, we refer the reader to the case of NGC 5824 (Zoccali et al. 1999).

Evolutionary calculations for somewhat different total masses M yield similar
results. Near the main sequence the tracks are shifted relative to each other according
to their different starting points on the ZAMS. When approaching the Hayashi line
the tracks merge (This is not exactly true, since different total masses have slightly
different Hayashi lines.). After the cores are sufficiently condensed they are virtually
independent of the envelope (and therefore of the total mass M ). However, they
determine the total luminosity according to the L.Mc) relation. Consequently stars
of different M but the same Mc have the same L and are practically at the same
point in the HR diagram.

The same convergence of the evolution for different M must occur for all
properties of the shell source and the core. For example, the central values of density
and temperature converge to the same evolutionary track in the %c–Tc plane.

Numerical calculations show that with growing core mass the temperature in the
core rises. This is due to two effects which are of approximately the same order.
The first is the increase of the temperature in the surrounding shell source where
T � Mc=Rc after (33.24). While this effect already occurs in models of complete
equilibrium, there is an additional effect due to non-stationary terms. With growing
Mc the core contracts, releasing energy. If this occurs rapidly enough, it heats up the
transition layer below the shell, and therefore the whole core. An inward-directed
temperature gradient is built up in the transition region, such that the energy released
by "g terms is carried away. However, this is not the whole story, since at the same
time conditions in the core are such that cooling by plasma neutrinos, which were
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discussed in Sect. 18.7 (see also Fig. 18.11), becomes important and modifies the
temperature gradient, as will be seen in Sect. 33.5. The core evolution is enhanced
by increasing L: the rate PMc is proportional to L, which in turn increases by a
high power of Mc, and the process speeds up more and more. Both these effects,
controlled by the growth of Mc, finally increase the core temperature to �108 K at
which helium is ignited. This happens when Mc � 0:48Mˇ, almost independently
of M , but slightly decreasing with increasing metallicity. The matter in the core
is highly degenerate, and the nuclear burning is unstable. The resulting thermal
runaway terminates the slow and quiet evolution along the giant branch.

33.4 The Helium Flash

We start with some analytic considerations and assume that helium is ignited in
the centre, where the electron gas is assumed to be non-relativistic and degenerate.
In Sect. 25.3.5 we have discussed the secular stability of nuclear burning in a small
central sphere of massms; “luminosity” ls D "ms, and gravothermal specific heat c�.
Assuming a homologous reaction of the layers above, a small relative temperature
perturbation #c.D dTc=Tc) was shown in (25.35) to evolve according to

P#c D ls

cPmsTc
."T C �T � 4/#c ; (33.34)

where we have set ı D 0 and therefore c� D cP according to (25.29). For helium
burning we have "T > 19 (see Sect. 18.5.2), which certainly dominates the other
terms in the parenthesis which thus is positive: the onset of helium burning in the
degenerate core is unstable and results in a thermal runaway. The timescale of the
thermal runaway is of the order cPmsTc=ls D cP Tc=", i.e. of the order of the thermal
timescale of the helium-burning region.

The homologous linear approximation which yielded (33.34) can only give a
very rough picture of the events after helium ignition. Nevertheless we can try to
discuss the consequences which follow from our simple formalism. From (25.25)
and (25.26) one obtains

d%c

%c
D 3ı

4˛ � 3#c ; (33.35)

and for the completely degenerate non-relativistic gas, where ˛ D 3=5; ı D 0, we
find d%c D 0. Therefore, while during the thermal runaway the central temperature
is rising, the matter neither expands nor contracts. The central density remains
constant, and in the lg%c–lgTc diagram, the centre evolves vertically upwards as
indicated in Fig. 33.6. The reason is that in the (fully) degenerate gas the pressure
does not depend on temperature and therefore remains constant during the thermal
runaway. But only an increase of pressure could lift the weight of the mass above
and cause an expansion. Since the Pdv work is zero, all nuclear power goes into
internal energy. During the thermal runaway there is an enormous overproduction of
nuclear energy. The local luminosity l at maximum comes to 1011Lˇ, about that of
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Fig. 33.6 Schematic sketch of the changes of temperature and density during the helium flash.
After the ignition temperature is reached in the regime of degeneracy the temperature rises almost
without a change of density until degeneracy is removed near the broken line. Then a phase of
almost isothermal expansion ensuesfollowed by a phase of stable helium burning in the non-
degenerate regime

a whole galaxy, but only for a few seconds (The expression “helium flash” is quite
appropriate indeed!). However, almost nothing of it reaches the surface, since it is
absorbed by expansion of the non-degenerate layers above.

With increasing temperature at constant density, the degeneracy is finally
removed. This happens roughly when in Fig. 33.6 the border .˛ D 3=4) between
degeneracy and ideal gas is crossed. Then with further increase of T the core
expands. With the removal of degeneracy the gravothermal specific heat becomes
negative again and central helium burning becomes stable; the expansion stops
the increase of temperature. The overproduction then is gradually removed by
cooling until the temperature has dropped to “normal” values for quiet (stable)
helium burning. In the lg %c–lgTc plane the core settles near the image point of
a homogeneous helium star of mass Mc, which is of the order of 0:48Mˇ.

There is another prediction we can make for the changes in the HR diagram.
Until the onset of helium burning the total luminosity of the star (which is just the
power produced in the shell) increases with increasing core mass as expected from
(33.26). After degeneracy is removed in the central region, the core expands and Rc

increases. During the short phase of the flash, Mc remains practically unchanged.
From (33.26) we therefore expect the luminosity to be appreciably reduced after the
flash phase, and this indeed can be seen from Figs. 33.3 and 33.5.

33.5 Numerical Results for the Helium Flash

In Sect. 33.4 we have tacitly assumed that the maximum temperature is in the centre.
This, however, is not the case if neutrinos–as we discussed them in Sect. 18.7–are
created in the very interior of the core and provide an energy sink there, since they
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Fig. 33.7 The temperature T (in K) as a function of the mass variable m in a 1:2Mˇ model
with solar metallicity, shortly before the onset of (unstable) helium burning (solid line). Owing
to neutrino losses the maximum temperature does not occur in the centre but near m=M D 0:1

(indicated by the dot). The dashed line (deviating from the solid one only near the dot) shows
how the ignition of helium burning has raised the temperature at this position inside the star only
104 years later

leave the star without noticeable interaction. Then the maximum of temperature is
not in the centre but at a finite value of m (see Fig. 33.7). From there, energy flows
outwards (l > 0) and inwards (l < 0). This energy is released by core contraction in
the transition zone below the burning shell as mentioned in Sect. 33.3. The transport
mechanisms are radiation and conduction. The inward-going energy is carried away
by neutrinos. Then the ignition of helium and the flash will not take place in the
centre but in the concentric shell of maximum temperature. This is nearm=M D 0:1

according to Fig. 33.7 [Note that in the calculations shown in Fig. 33.4 an unusually
low value of � in the envelope was assumed. Therefore, according to (33.30) and
(33.32), T in the shell source and L are smaller for the sameMc andRc, and helium
ignites at correspondingly largerMc, in this case at m=M � 0:3, cf. Fig. 33.10.].

In Fig. 33.8, the evolution is shown in a lg %–lg T diagram for the shell in which
helium is ignited. We see that the shell behaves roughly as predicted in Fig. 33.6
for the centre. When the temperature of helium burning is reached at point A, the
core matter heats up. After degeneracy is removed near point B; the core expands
and a non-degenerate phase follows with stable helium burning, roughly at the same
temperature at which the flash phase had started but at much lower densities. The
internal structure of the model after the ignition of helium is indicated in Fig. 33.10.

The calculations by Thomas (1967) were carried out with neutrino rates which
turned out to be too high. In calculations for 1:3Mˇ, with more realistic neutrino
rates (and composition), the igniting shell was at m=M D 0:11, similar to the value
in Fig. 33.7, which is based on calculations with the most recent neutrino loss
rates. Sweigart and Gross (1978), and more recently Salaris and Cassisi (2005),
investigated in detail the dependence of the core mass and the location of the
temperature maximum as function of mass, helium content, and metallicity. For
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Fig. 33.8 Temperature T (in
K) versus density % (in
g cm�3/ for the mass shell at
which helium ignites in the
1.3Mˇ model. The letters
A–C refer to the
corresponding evolutionary
slates in Figs. 33.3 and 33.4.
The dashed line (degeneracy
parameter  D 0 for �e D 2)
roughly separates the regimes
of degeneracy and
non-degeneracy of the
electron gas (After Thomas
1967)

stellar masses in the range 0:7 � M=Mˇ � 2:2 helium ignites at m=M � 0:17 for
M D 0:7Mˇ, while with increasing total mass the shell of ignition moves closer to
the centre.

The changing luminosity provided by the hydrogen shell and helium burning is
displayed in Fig. 33.9. The timescale in this figure changes several times due to the
different phases of the flash, which starts very slowly over several 105 years (not
shown), but accelerates dramatically once logLHe=Lˇ > 3. Within a few years
logLHe=Lˇ > 10, but drops equally fast after the peak. Around this time, when
the layers above the flash location begin to expand, the hydrogen shell basically
extinguishes due to the drop in temperature, while the total luminosity remains
almost constant. In the following 105 years the hydrogen shell reignites and L
drops as predicted in Sect. 33.4. The flash and the resulting convection heat up
the core such that the lower boundary of helium fusion is moving inwards within
approximately one million years. In all hydrostatic calculations this progression is
connected with small, secondary helium flashes, as can be seen in the figure. When
the star finally settles on the horizontal branch, the core, which is now burning
helium under non-degenerate conditions, is already enriched in carbon by about 5 %.

Although the properties of the regions in which the flash occurs can change
drastically within a few seconds, it seems as if inertia terms can be neglected even
in the most violent phases of the flash. Another open question is, how convection
behaves during the rapid evolution of the helium flash and whether the ignition of
helium and the flash in a shell proceeds in strict spherical symmetry. Such question
can only be answered with 2- and 3-dimensional hydrodynamical calculations.
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Fig. 33.9 Changes in total (L), hydrogen (LH), and helium (LHe) luminosity with time during the
helium flash in the 0:85Mˇ star of Fig. 33.5. t D 0 is defined for the moment whenLHe=Lˇ D 5,
and the zero-age horizontal branch is reached 1:325�106 years later. This is defined as the point of
minimal total thermal energy and indicated by the vertical dashed line. Vertical dotted lines delimit
ranges of different scale for the time axis

These, however, need such enormous computational resources that so far only parts
of stars can be modelled and their evolution be followed for only a short period of a
few hours to days. This restricts such simulations to the peak of the helium flash and
the inner core of the star. Mocák et al. (2008, 2009) have done such simulations and,
apart from some details, confirmed the overall applicability of the 1-dimensional,
spherical, and hydrostatic stellar models. However, they seem to predict a much
faster heating of the core and the absence of the secondary flashes. This is one of
the several unanswered questions connected with the helium flash. Another one is,
whether during the flash matter is expelled from the surface.

If helium is ignited off centre, then the burning forms a shell enriched in carbon
and oxygen which surrounds a helium sphere. But if the molecular weight decreases
in the direction of gravity, the layer is secularly unstable: a mass element pushed
down so slowly that it could adjust its pressure and temperature to that of the new
surroundings .DP D 0;DT D 0, in the terms of Chap. 6) would have a higher
density .D% > 0, because D� > 0) and would sink deeper. This corresponds to
the “salt finger instability” discussed in Sect. 6.5. In the case discussed here it will
cause mixing between the shell in which carbon and oxygen are produced, and the
helium region below. The linear stability analysis is rather easy, though it is difficult
to follow the instability into the non-linear regime and, for instance, to determine
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Fig. 33.10 The evolution of the internal structure of a star of 1.3Mˇ during the helium flash. The
zero point of the abscissa corresponds to the age 7:474 � 109 years of the abscissa of Fig. 33.4.
The main regions of nuclear energy release are hatched; the hydrogen-burning shell is, in the mass
scale of the ordinate, so narrow that it appears as a broken line. It extinguishes at t � 10�3 years.
“Cloudy” areas indicate convection. The close approach of the outer convective envelope and the
convective region above the helium-burning shell is shown with a strongly enlarged ordinate in a
window at the lower right. There the dotted area indicates the transition region of the chemical
composition left by the (then extinguished) hydrogen-burning shell

the characteristic time for this mixing process. Simple assumptions about the flow
pattern suggest that mixing due to the inwardly decreasing molecular weight is slow
compared to the nuclear timescale and can therefore be neglected (Kippenhahn et al.
1980a,b). The multidimensional hydrodynamical models by Mocak and co-workers
mentioned above indeed show the occurrence of such fingers, which, however, the
authors ascribe to Rayleigh-Taylor instabilities. They could be followed for less than
2 days only.

More spectacular mixing than in the case just discussed can occur if the
convective shell, forming above the helium-burning shell during the flash, merges
with the outer convective layer. Then hydrogen-rich matter will be mixed down to
regions with high temperatures where simultaneous helium and hydrogen burning
give rise to quite unusual nuclear reactions and chemical compositions. Although
the boundaries between the two convective zones come very close to each other,
they do not merge usually. This can be seen in the detailed picture on the lower
right of Fig. 33.10. But there are situations where such “flash-induced mixing”
indeed happens. The first example is stars with zero initial metallicity, so-called
Population III stars, and with M . 1:0Mˇ. In such stars only the pp chains can
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produce helium, and this leads to a different temperature stratification, which allows
the penetration of the hydrogen/helium discontinuity by the convective layers above
the helium ignition shell (Fujimoto et al. 1990). The result of the flash-induced
mixing are surface abundances drastically enhanced in carbon produced by triple-
alpha reaction and in nitrogen resulting from proton captures on some of this carbon
(Schlattl et al. 2001). The second case where this was encountered is Pop. II stars
with extremely thin hydrogen envelopes (of order 10�4 Mˇ), which could be the
result of enhanced mass loss on the red giant branch (RGB). Due to the low envelope
mass the hydrogen shell is extinguishing and the star leaves the RGB, returning
first to hotter temperatures and then entering the white dwarf cooling phase. If
on its way across the Hertzsprung-Russell diagram the helium flash sets in (such
stars are also called “hot flashers”), convection can penetrate into the envelope to
engulf protons into the hot helium-burning regions, which leads to a “CNO flash”.
As a consequence the surface is enriched both in helium and carbon, and the star
resembles, both in composition and its location, stars at the very hot end of the
horizontal branch (see Sect. 33.6). For more details we refer the reader to Cassisi
et al. (2003).

33.6 Evolution After the Helium Flash

After the violent phase of the helium flash there follows a phase of quiet burning
in non-degenerate matter. The transition to this is not particularly well covered by
calculations; one of the few exceptions is shown in Figs. 33.5 and 33.9. Most authors
prefer to start with models that belong to a later state in which the models already
resemble the horizontal-branch stars of globular clusters. These methods and how
accurately they reproduce the full calculations carried through the complete flash
event can be found in Serenelli and Weiss (2005). One should keep in mind, though,
that the comparison is done with spherical symmetric, hydrostatic models. Once
multidimensional hydrodynamical models are available for all phases of the helium
flash, one will see how accurate the hydrostatic models are themselves.

Although during the flash helium is ignited in a shell, it will also burn in the
central region after some time, and the stars can be approximated by models on
generalized main sequences (cf. Sect. 23.3). For example, a 0.9Mˇ star, having
a helium core of 0:45Mˇ after the flash, corresponds to the generalized main
sequence for q0 D 0:5. Then from Fig. 23.5 we expect that the model should lie
in the HR diagram near the Hayashi line at a luminosity of about L � 100Lˇ,
appreciably lower than just before the flash. This is also what we had expected from
the analytic discussion at the end of Sect. 33.4, and the historical evolutionary track
in Fig. 33.3 in fact already pointed downwards in the right direction. The modern
calculation of Fig. 33.5 covers the whole post-flash part. When in the subsequent
phase q0 increases with growing Mc; the model should cross over to generalized
main sequences of larger q0, i.e. move to the left with slightly increasing luminosity.
This also applies when comparing models of the same core, but different total
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mass, and therefore different values of q0. Thus, the analytic discussion and the
generalized main sequences already sketch basic properties of the phase following
the helium flash, which is identified as the (zero-age) horizontal branch.

Detailed calculations, first carried out by Faulkner (1966) in order to reproduce
the horizontal branch of globular clusters, show that the models after the helium
flash depend not only on q0 but also on the chemical composition. He compared
models of different mass M in complete equilibrium at the onset of quiet helium
burning in a core of Mc D 0:5Mˇ with a hydrogen-burning shell at the bottom of
the envelope. For M > 0:75Mˇ (at about solar metallicity) they were close to the
Hayashi line, but for a smaller mass, they were located considerably to the left. In
order to cover the whole observed horizontal branch with such models for a fixed
metallicity, one has to assume that the models differ in mass. In a globular cluster,
where all stars have the same age and all stars at the tip of the RGB and on the
zero-age horizontal branch (ZAHB) had nearly the same initial mass, the horizontal
extent of the horizontal branch provides stringent evidence for different mass loss
during the previous phase, either before or during the helium flash. This question
still awaits a final answer, but the most likely scenario is the following:

During the slow evolution before the helium flash the stars lose an appreciable,
but from star to star different, amount of mass from their surfaces. Then the stars
start their evolution after the flash with the same core masses but different envelope
masses: those which have lost more mass lie on the left, while those which have lost
only little mass lie in the red region (Fig. 33.12).

To some degree, however, the observed horizontal branches reflect the evolution
of stars after their appearance on the zero-age branch. When their cores grow owing
to shell hydrogen burning, and the helium is consumed in their central part, their
evolutionary tracks loop back and forth, populating the horizontal branch. The
observed branches are not simply the locus of zero-age models. We will come to the
further evolution in Sect. 33.7. Since the horizontal branch crosses the instability
strip (see Chap. 41) we can expect pulsating horizontal-branch stars. Indeed there
one finds the RR Lyrae variables.

Faulkner’s results revealed another important property of zero-age models. If
one keeps the total mass constant but decreases their metal content, then the
models move to the left of the HR diagram. This helped to understand an observed
correlation between horizontal-branch characteristics of different globular clusters
and their composition: the concentration of stars on the horizontal branch shifts from
left to right with increasing contents of heavier elements. This is usually called
the first parameter effect for horizontal-branch morphology. Observations point
to a second parameter, which so far has not been identified undisputedly. There
exist pairs of globular clusters of (almost) identical age and the same metallicity,
but different numbers of stars on the red and blue part of the horizontal branch.
Examples for such famous “twins” are M13 and M3, and NGC 362 and NGC 288.
Among the candidates for the second parameter are age, helium content, and the
density of stars inside the cluster.

Detailed, full evolutionary calculations confirm all these dependencies. We show
in Fig. 33.11 the location of ZAHB models for three different metallicities, ranging
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Fig. 33.11 Zero-age horizontal-branch (ZAHB) models for different compositions. The ZAHB
brightness increases with decreasing metallicity, which is in this version Z D 0:016, 0.005, and
0.0001. The two lines for Z D 0:005 correspond to ages of 15 Gyr (dotted) and 5 Gyr (solid)

Fig. 33.12 Evolution on the horizontal branch starting at the zero-age position for models with
different mass loss rates during the preceding red-giant phase, indicated by the �-parameter in
the mass loss formula (9.1). The main-sequence mass was Mi D 0:85Mˇ in all cases; at the
beginning of the horizontal-branch evolution, the models have 0.85, 0.66, and 0:56Mˇ (right to
left). The loops correspond to the so-called “mini pulses”. The dashed lines indicate the location
of the instability strip, continuing that for classical Cepheids (Fig. 31.4). In this strip, the RR Lyr
and BL Her variable stars are found; they are obviously stars either in or after the HB phase
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from Z D 0:0001 to Z D 0:016. The lower the metallicity, the brighter the stars
on the ZAHB. Along each ZAHB, mass and therefore envelope mass varies. The
coolest models were obtained from calculations ignoring mass loss, the hottest ones
have only very thin hydrogen envelopes left. For the two more metal-rich cases
they were obtained by removing mass from the coolest ZAHB models. This is one
of the mentioned approximative ways to construct such models. The ZAHB for
Z D 0:0001was taken from calculations that followed the complete evolution from
the ZAMS through the core helium flash to the horizontal branch. The zero-age
stage was identified with the model having the smallest thermal energies.

In this logTeff-logL=Lˇ diagram the horizontal branch appears to be “hori-
zontal” only in some Teff regions. This is partly because of the narrow range in
luminosity shown, but its appearance in fact also depends a lot on the photometric
band it is observed in. However, if extending over the full temperature or colour
range, it never is completely horizontal.

The ZAHB for Z D 0:005 in Fig. 33.11 appears as a pair. The slightly brighter
branch corresponds to an age of 15 Gyr, the other one to one of 5 Gyr. This in turn
reflects the slight dependence of the core mass at the helium flash on initial mass:
the brighter branch originates from stars below � 1:0Mˇ, the dimmer one from
M � 1:3Mˇ.

More details about the dependency of the ZAHB luminosity on core mass, helium
content, and metallicity, including quantitative results from theoretical models, can
be found in Salaris and Cassisi (2005), Chap. 6.3.

33.7 Evolution from the Zero-Age Horizontal Branch

A so-called ZAHB model has a homogeneous non-degenerate helium core of mass
Mc � 0:45 � 0:50Mˇ, surrounded by a hydrogen-rich envelope of mass Menv D
M � Mc. The total luminosity consists of comparable contributions from (quiet)
central helium burning and from the hydrogen-burning shell.

A complication occurs during the following evolution of these models. The
stars have a central convective core which becomes enriched in carbon and oxygen
during helium burning. The opacity in this temperature-density range is dominated
by free-free transitions. However, the free-free opacity increases with increasing
carbon and oxygen abundance as can be seen from the factor B in (17.5) and
(17.6), which depends on the square of the nuclear charge. As a consequence the
radiative gradient inside the Schwarzschild boundary grows during core helium
burning, and a discontinuity in rrad at the edge of the convective core develops. The
situation is similar to that in massive stars on the main sequence (see Sect. 30.4.2)
where the opacity is governed by electron scattering and decreases with increasing
helium abundance. In this case the core is therefore shrinking during the main-
sequence evolution. The radiative layers of increasing hydrogen content above the
core can locally become convective if some mixing increases the hydrogen content
(Fig. 30.3).
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Fig. 33.13 Change in the run
of the radiative temperature
gradient with time during the
evolution on the horizontal
branch (see text). Three
situations 1–3 for increasing
time are sketched (after
Salaris and Cassisi 2005)

A similar semiconvective situation is given outside the convective helium-
burning core on the horizontal branch. If some mixing, for example, due to
overshooting, mixes C/O-enriched material outside the formal Schwarzschild bor-
der, the radiative gradient will increase there and convection sets in. Such cores
therefore have the tendency to grow, and a jump in rrad at the convective core
boundary cannot develop in the early phase of HB evolution. Detailed models show
that the radiative gradient then tends to increase and to develop a minimum inside
the growing convective core, which, due to the continuing mixing of helium-rich
layers and the combined effect of changing physical quantities, at some point begins
to become smaller, until it drops to the value of the adiabatic value. This change
in the radiative gradient with time is sketched in Fig. 33.13 for three consecutive
times. Further mixing at the core border then would lead to a stabilization of an
intermediate region, and therefore to the development of a radiative zone inside the
core. In real stars one expects therefore mixing up to a composition that leads to a
marginally unstable layer with rrad D rad. This partially mixed layer constitutes
another case of semiconvection, and was discussed first by Castellani et al. (1971).
The development of this situation is indicated by the line labelled “3” in Fig. 33.13,
and the real situation in a stellar model calculated with semiconvection is shown in
Figs. 33.15 and 33.16.

If a continuous, slow growth of the convective core is inhibited, a strong
discontinuity at its edge is developing. As in the case of massive stars, during the
further evolution, a sudden mixing between the core and the overlying, helium-rich
layers may occur, which leads to a sudden increase in the core’s helium content
and a loop in the HR diagram. The occurrence of these so-called “breathing pulses”
depends a lot on the details of the treatment of convection and of the border of
the convective core. The most favourable situation for their occurrence is when the
Schwarzschild criterion for convection is used, but they are probably an artefact
of the calculations (see the discussion in Salaris and Cassisi 2005). In most of the
models we show in Figs. 33.12 and 33.14 they are not present.

Figure 33.14 shows evolutionary tracks for the horizontal-branch evolution of
the same initial pre-ZAHB model with M D 0:6856Mˇ (Z D 0:0001), calculated
with either the Schwarzschild criterion for convection (solid line), the Ledoux
criterion and semiconvection (dotted line), or with overshooting (dashed line). The
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Fig. 33.14 An example for horizontal-branch evolution using different treatments for convection.
The evolution begins at a pre-ZAHB position (diamond symbol) for a mass of 0:6856Mˇ

(Z D 0:0001). The grey triangles and circles refer to models used for Fig. 33.16. Solid line:
Schwarzschild criterion; dashed: Schwarzschild and overshooting; dotted: Ledoux criterion and
semiconvection. The horizontal line indicates where the interior hydrogen profile of the models of
Fig. 33.15 was taken

Fig. 33.15 The hydrogen profile in three horizontal-branch models taken from the tracks of
Fig. 33.14, taken at approximately the same luminosity. The linestyles refer to the same cases
as in the previous figures

overshooting model initially follows the track of the Schwarzschild case, until
after the hottest point on the evolution the core is expanding; generally higher
luminosities are reached, but also a second loop close to the initial ZAHB position
takes place. After this the track with overshooting is slowly approaching the one
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a

b

Fig. 33.16 (a) The radiative (black lines) and adiabatic (grey lines) temperature gradients in two
models of Fig. 33.14, indicated there by triangles, calculated with the Schwarzschild criterion. The
solid line refers to a state at the beginning and the dashed line to the end of horizontal-branch
evolution. The dash-dotted line shows the helium mass fraction in the latter model. (b) The same
for the case using the Ledoux criterion and semiconvection. The two models are indicated by
circles in Fig. 33.14. Additionally, the Ledoux-gradient rL (6.12) is shown as the grey dotted line.
Notice the fact that rrad is almost identical to rad as the result of semiconvective mixing

calculated with semiconvection. In this latter case, only one extended loop takes
place in the final phase of approaching the ZAHB (which here can be identified
with the hottest point on the track), and then the evolution is proceeding smoothly
to higher luminosities and cooler temperatures. In Fig. 33.15 we show the run of
hydrogen abundance inside models taken at approximately the same luminosity
of logL=Lˇ D 1:82. The composition jump at the edge of the convective core
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is clearly visible for the Schwarzschild case, as is the similarity between the
overshooting and semiconvection model in this late phase of the HB evolution.

The mass of the helium core grows owing to hydrogen-shell burning, while in
the convective core helium is consumed and carbon and oxygen are produced. After
some time a pure carbon-oxygen core will be formed in the central region of the
helium core. Then nuclear burning takes place in two shells (hydrogen and helium
burning), and in the subsequent phases of evolution, the masses below these shells
will grow.

The models evolve from the ZAHB first in the slow phase of central helium
burning with a hydrogen-burning shell. This phase, which lasts for several 107 to
up to 108 years, is followed by a phase of rapid evolution during which the models
go from helium burning in the centre to shell burning. In this phase another kind
of loops appears, which is clearly visible in Fig. 33.12; these are the so-called
“mini-pulses”, which were described early on by Mazzitelli and D’Antona (1986).
The steep chemical profile of models calculated with the Schwarzschild criterion
(Fig. 33.15) leads to a thinner helium shell; such shells can be thermally unstable.
We will discuss such shell instabilities in more detail in Chap. 34. After this initial
shell-burning phase a slow phase of double shell burning occurs.

The general direction of the evolution is towards higher luminosity and a return
to the Hayashi line. Depending on the relative energy production of helium core and
hydrogen shell the models initially show more or less extended excursions towards
higher Teff (see the model with the lowest mass compared to the coolest one in
Fig. 33.12).

The evolutionary tracks lead upwards with increasing core mass, and the
corresponding branch in the HR diagram is called the asymptotic giant branch
(AGB). It has to be distinguished from the red giant branch (RGB), along which
the image points in the HR diagram move upwards before ignition of helium.
The models of the post-horizontal-branch evolution occupy a region above the
horizontal branch. During their evolution some of them cross the instability strip
(see Chap. 41), where one finds the pulsating BL Herculis1 stars (compare the

sketch in Fig. 33.12). In contrast, the RR Lyrae variables are stars, which are still
on the horizontal branch, and which are located in the region, where it crosses the
instability strip.

1BL Her stars belong to the class of type II Cepheids, which used to be called collectively
W Virginis stars. Nowadays the latter term is used for even brighter stars in the same instability
strip, which cross it during an excursion from the AGB.



Part VII
Late Phases of Stellar Evolution

The more advanced the evolution of stars is, the less it is possible to treat it with
simple models or even analytic descriptions. Instead, numerical calculations are
the only way to follow the evolution. Therefore, in the following chapters, we
will rely almost solely, with a few exceptions, on results from models produced in
the computer. At the same time, the complications from poorly known physics are
becoming more and more important. This is in particular true for the treatment of
convection and of mass loss, not to speak of the influence of rotation and additional
mixing mechanisms. Unfortunately, the late evolution of stars depend a lot on
exactly these physical effects. The following chapters therefore give an overview of
our current understanding of stellar evolution after the core helium-burning phase.
It is very likely that this will change–hopefully improve–in the future.



Chapter 34
Evolution on the Asymptotic Giant Branch

34.1 Nuclear Shells on the Asymptotic Giant Branch

In stars of low and intermediate mass, i.e. in stars of initial mass . 8Mˇ, the phase
following the end of core helium burning is of special interest. It is characterized by
the presence of two nuclear burning shells around a carbon-oxygen core, of which
one–the helium shell–is thermally unstable. Stars in this mass range and phase of
the evolution populate the so-called asymptotic giant branch (AGB), previously also
known as “second-ascent branch”. In this chapter we give an overview over the
important physical effects which are characteristic for AGB stars. As we will see,
the evolution is highly complicated and the numerical models far from being perfect.
For more details and a much more thorough discussion, we refer the reader to the
review by Herwig (2005) and to the textbook by Habing and Olofsson (2003). The
classical review by Iben and Renzini (1983) is still worth being studied, too.

After the end of core helium burning and after the hydrogen shell has burned
outwards for some time, the temperature in this shell drops, and hydrogen-shell
burning extinguishes. This phase of the evolution is often called the early AGB
(E-AGB). The layer of transition between the hydrogen-rich envelope and the region
of helium stays now at a fixed value of m: In stars above M � 4Mˇ convection
may reach below the H–He discontinuity and mix more ashes of hydrogen shell
burning to the surface. This is the second dredge-up we already encountered in
Chap. 31. But there is still the active helium-burning shell moving to higher values
of m and therefore approaching the bottom of the hydrogen-rich envelope. Since
helium burning proceeds at a temperature of &108 K, which is about ten times the
temperature of hydrogen ignition, hydrogen burning starts again, and once more
there are two shell sources. In this phase, shell burning becomes secularly unstable,
resulting in a thermal runaway. This leads to a cyclic phenomenon (reoccurring
here within some 104–105 years) known as thermal pulses (TP). Their general
properties will be discussed in Sect. 34.3 in connection with their appearance in
intermediate-mass stars where the unstable shells initially are in the deep interior,
and the response of the surface is moderate. In the case of low-mass stars, the
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Fig. 34.1 Schematic evolutionary track of a star of 0:6Mˇ .XH D 0:749; XHe D 0:25) for the
phases after central helium burning. The model moves upwards along the asymptotic giant branch
(AGB) until thermal pulses occur (indicated by full circles). The changes during a pulse are shown
only for pulse 9 and pulse 10. Before the last pulse (11), for which only the onset is shown, the
track has reached the white-dwarf area of the HR diagram. The main sequence (MS), the horizontal
branch (HB), and a line of constant radius in the white-dwarf region are indicated (after Iben and
Renzini 1983)

luminosity and the surface temperature can vary appreciably with each pulse. This
is the more pronounced the less mass is left above the unstable shells, as we will
see in Sect. 34.7. If a thermal pulse occurs in certain critical phases (with neither
too much nor too little mass above the shells) the models can even move rapidly
through large regions of the HR diagram (Kippenhahn et al. 1968; Schönberner
1979). The evolution displayed in Fig. 34.1, shown as an illustrative example and
taken from the review article “Asymptotic Giant Branch Evolution and Beyond” by
Iben and Renzini (1983) goes through 11 pulses, the onsets of which are indicated by
heavy dots. The variation of the surface values is not very pronounced, since there is
enough mass above the nuclear shells to damp the changes caused by the instability.
This phase is also called the thermally pulsing AGB (TP-AGB) to discriminate it
from the E-AGB.

The pulses are more or less an envelope phenomenon and are of no influence on
the core. The inner part of the CO-core resembles more and more a white dwarf.
Only the hydrogen-rich envelope, small in mass but thick in radius, at first gives the
star the appearance of a red giant. After the envelope mass has dropped below, say,
one per cent, the envelope starts to shrink. With decreasing envelope mass the star
moves typically within a few thousand to 104 years to the left of the main sequence
(see Fig. 34.1). This is the post-AGB phase. Then shell burning extinguishes and the
star becomes a white dwarf. In the case shown, the star experiences a final thermal
pulse (11), which will lead to large excursion in the HRD. This will be discussed
further in Sect. 34.9.
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It is clear that the mass in the envelope is diminished by two effects: the hydrogen
burning at the bottom and mass loss from the surface. Therefore the stage at which
the star leaves the asymptotic branch, turning to the left, is sensitive also to the
amount of mass loss in the red giant phase. This influences the mass of the final
white dwarf (cf. Sect. 35.2) and limits the number of thermal pulses (see Sect. 34.6).

34.2 Shell Sources and Their Stability

Stars on the AGB are the first to have more than one nuclear shell. Their productivity
may change considerably and even go to zero for some time. Neighbouring shell
sources can influence each other, since each type of burning requires a separate
range of temperature. For example, if a helium shell source operating at roughly
2 � 108 K approaches a hydrogen-rich layer, we can expect an enormous increase
of hydrogen burning, which usually proceeds at T . 3 � 107 K. It is also clear that
different shell sources will generally move with different “velocities” Pmi through
the mass, unless their contributionsLi to the total luminosity are in certain ratios. If
Xi denotes the mass concentration of the reacting element ahead of the shell source,
and qi the energy released by the fusion of one unit of mass, then Pmi D Li=.qiXi /.
For example, on the AGB, the relative motion of the hydrogen and helium shell
sources through the mass is given by the ratio

PmH

PmHe
D LH

LHe

qHe

qH

XHe

XH
: (34.1)

This gives a stationary situation with roughly equal velocities only if LH � 7LHe,
since typically XH � 0:7;XHe � 1; and qH=qHe � 10. Otherwise the two shell
sources approach each other or the inner one falls behind.

Shell-source models for several evolutionary phases can be approximated well
by solutions obtained by assuming complete equilibrium. While burning outwards,
a shell source has the tendency to concentrate the reactions over steadily decreasing
mass ranges. One then has to deal with rather short local nuclear time scales, defined
as those time intervals in which the burning shifts the very steep chemical profile
over a range comparable to its own extension. This would require computations of
tens of thousands models with very short time steps, if it were not for the influence
of mass loss (see Sect. 34.6).

All changes become much more rapid, and the assumption of complete equi-
librium certainly has to be dropped if the shell source is thermally unstable. The
reasons for such instabilities will be made plausible by considering a very simple
model for the shell source and its perturbation. The procedure is completely anal-
ogous to that used in Sect. 25.3.5 for the stability of a central nuclear burning. The
only difference between the two cases is that the burning regions are geometrically
different and the density reacts differently to an expansion.

Let us compare the two cases of a central burning and a shell-source burning in
Fig. 34.2. In the central case, the mass of the burning region is m � %r3, and an
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Fig. 34.2 The main region of
nuclear energy production
(hatched) in the cases of (a)
central burning and (b) shell
source burning

expansion dr > 0 with dm D 0 requires a relative change of the density [compare
with (25.25)]

d%

%
D �3dr

r
: (34.2)

In the case of a shell source of thickness D, we write the upper boundary of the
burning region as r D r0 C D (cf. Fig. 34.2b). For relatively small D the mass in
the burning shell is m � %r20D. If the burning region expands with roughly r0 D
constant as a reaction to an energy perturbation, we have dr D dD, and the condition
dm D 0 now leads to

d%

%
D �dD

D
D � r

D

dr

r
: (34.3)

We now assume that the mass outside r0 C D expands or contracts homologously.
Then for the pressure in the shell we can use the relation dP=P D �4dr=r as in
(25.25). When comparing (34.3) with (34.2) we see that we only have to replace the
factor 3 by the factor r=D when going from the central case to that of a shell source.
This can be done directly in expression (25.29) for the gravothermal heat capacity
c�. For simplicity we neglect the perturbation of the flux dls and have from (25.30)

c� dT

dt
D d" I c� D cP

�
1 � rad

4ı

4˛ � r=D
�
: (34.4)

(Note that the time derivative dT=dt represents a differential perturbation; it could
be replaced by d.dT=dt/ since T D T0 C dt with time-independent T0.) If c� is
positive, then the shell source is unstable, since an additional energy input .d" > 0)
leads to higher T and further increased burning.

We first recover the well-known flash instability in the case of strong degeneracy
of the electron gas with ı ! 0. Indeed we have seen in Chap. 33 that the helium
flash occurs in a shell rather than in the centre if the central part is cooled by neutrino
emission.

In addition, (34.4) shows that there is a new instability which can occur even for
an ideal monatomic gas .˛ D ı D 1;rad D 2=5) and which has no counterpart in
the case of central burning. It depends only on the geometrical thickness D of the
shell source. IfD=r is small enough (in our simple representation smaller than 1/4),
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c� is positive and the shell source is secularly unstable. This instability of a shell
source is called pulse instability for reasons which will become obvious very soon.

It is amazing that such a simple geometrical property can cause a thermal
instability, though it becomes more plausible if we consider the change of the
pressure in the shell source as a hydrostatic reaction to the lifting of the layers above
(for which we simply assume homology). Suppose that the shell tries to get rid of the
perturbation energy by expansion. A substantial relative increase of the thickness
dD=D>0 gives the same absolute value for the relative decrease of the density
d%=% < 0, but only a very small relative increase dr=r; if D=r � 1 [cf. (34.3) and
Fig. 34.2b]. This means that the layers above are scarcely lifted, so that their weight
remains about constant and hydrostatic equilibrium requires dP=P � 0. In fact with
the homology relation dP=P D �4dr=r and (34.3) we find the connection between
dP and d% to be

dP

P
D 4

D

r

d%

%
: (34.5)

Considering the equation of state

d%

%
D ˛

dP

P
� ı dT

T
; (34.6)

we see that expansion .d%=%<0) necessarily leads to an increase of the temperature
.dT=T > 0/, since dP=P ! 0 for D=r ! 0:

d%

%
D �ı dT

T
: (34.7)

Therefore the expansion of a thin shell source does not stabilize it, but rather
enforces the liberation of energy by heating. This means that the shell source reacts
just as if the equation of state were % � 1=T , which, of course, gives instability
[cf. (34.4) with ˛ D 0 and ı D 1].

While the foregoing discussion provides the main points correctly, it can easily
be completed by also considering the perturbation of the local luminosity. Then
some of the surplus energy can flow away, and instability requires, in addition, that
the temperature sensitivity of the burning exceeds a certain limit, which is usually
fulfilled. The eigenvalue analysis of such stellar models has shown that they are
indeed thermally unstable and that the unstable modes are complex (Härm and
Schwarzschild 1972).

The pulse instability was first found (Schwarzschild and Härm 1965) for a
helium shell source in calculations for a 1Mˇ star. The same type of instability
was encountered independently in a model for 5Mˇ during the two-shell phase, and
here it turned out that the instability leads to nearly periodic relaxation oscillations,
which were called thermal pulses, as described below (Weigert 1966). They are now
known to be a genuine property of those low- and intermediate-mass stars, which
are massive enough to ignite helium and evolve into the double-shell burning phase
of the AGB.
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A unified scheme for the stability of shell sources has been developed by Yoon
et al. (2004). It includes the present case of geometrically thin shells as well as the
flash instability of Sect. 33.4 and demonstrates that shells are more stable, if they
are geometrically thick, non-degenerate, or hotter.

34.3 Thermal Pulses of a Shell Source

Thermal pulses occur in models containing one or more shell sources, and in stars of
different masses and compositions. We start by describing their properties according
to the calculation of the first six pulses in a 5Mˇ model, found for the first time
in a star in this mass range by Weigert (1966). Although the physical details and
numerical treatment of the models have changed a lot since then, the basic picture
of thermal pulses is still the same. The instability occurs in the helium shell source
after it has reached m=M � 0:1597. It then contributes only a little to the surface
luminosity L; which is almost completely supplied by the nearby hydrogen shell
source located at m=M � 0:1603:

The instability results immediately in a thermal runaway: the shell source reacts
to the surplus energy with an increase in T; which enhances the release of nuclear
energy, etc. The increase of T is connected with an expansion according to (34.7).
This can be seen from Fig. 34.3a, b which give T and % at maximum "He in the
unstable shell source as functions of time (Note that the thermal runaway in a flash
instability would proceed with % D constant.). Since helium burning has an extreme
temperature sensitivity, the increase of T strongly enhances the productivityLHe of
the shell source, in later pulses even to many times the surface value L: But most of
this energy is used up by expansion of the layers above, and this expansion reduces
considerably the temperature in the hydrogen shell source, such that LH decreases
significantly. After starting rather slowly the thermal runaway accelerates more and
more until reaching a sharp peak within a few years. The helium shell source is now
widely expanded and is therefore no longer unstable. The whole region then starts to
contract again, which heats up the hydrogen shell source so that it regains its large
productivity. Within a time of a few 103 years the whole region has asymptotically
recovered its original overall structure, the helium shell source becomes unstable
again and the next pulse starts. Figure 34.3 shows that the amplitude of the pulses
and the time between consecutive pulses grows (in these calculations from 3,200
to 4,300 years). The reason for these changes is that the chemical composition
around the shells changes considerably from pulse to pulse. Later calculations (for
an early review, see Iben and Renzini 1983; for more recent results Wagenhuber
1996) showed that a nearly periodic behaviour is usually reached after roughly 20
pulses. The amplitude of a pulse has then become so large that during the maximum
LHe exceeds L by orders of magnitude. The changes of the chemical composition
still provide a small deviation from periodicity. Otherwise we would expect strictly
periodic relaxation oscillations, i.e. the solution would have reached a limit cycle.
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Fig. 34.3 Thermal pulses of
the helium shell source in a
5Mˇ star after central helium
burning. For the first six
pulses, some characteristic
functions are plotted against
time from the onset of the
first pulse. T is in K, % in
g cm�3 (After Weigert 1966)

The surface luminosity (Fig. 34.3d) drops in each pulse by typically � lgL �
0:1 : : : 0:2 for models with rather massive outer envelopes. The visible reaction of
the surface is much more pronounced if the pulses occur in a shell source close
to the surface. Such models can move quite spectacularly through the HR diagram
(compare with Sect. 34.9).

The properties of the thermal pulses depend on the type of star in which they
occur. The cycle time �p (between the peaks of two consecutive pulses) becomes
smaller with increasing mass Mc of the degenerate CO-core inside the helium
shell source. From a large sequence of calculations Paczyński (1975) derived the
following rough relation:

lg

�
�p

1year

�
� 3:05C 4:50

�
1 � Mc

Mˇ

�
: (34.8)

ForMc � 0:5Mˇ the cycle time is of the order of 105 years, while near the limit
mass Mc � 1:4Mˇ it would be of the order of 10 years only. We now consider
the number of pulses that can occur until Mc has reached 1.4 Mˇ. Suppose that the
hydrogen shell source moves outwards by �m per cycle time and produces most
of the energy L�p . Although L � Mc (cf. Sect. 34.4), �m decreases strongly with
growing Mc owing to the decrease of �p. One can estimate that, depending on the
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details of the model, the total number of pulses (determined mainly by the very
small �p in the last phases) must be 8; 000 : : : 10; 000 before Mc � 1:4Mˇ. Of
course, the shell source cannot burn further than to within a few 10�3M from the
surface. Therefore the total number of pulses will be much smaller if the stellar mass
is well below 1.4Mˇ, either originally or owing to mass loss. In low-mass stars one
can expect only ten pulses or so, as seen, for instance, in Fig. 34.1. These, however,
occur very close to the surface and can affect the observable values certainly much
more than pulses of a shell source in the deep interior.

During a thermal pulse, the star changes quite rapidly, particularly in the layers
of the shell sources. Consequently the calculations have to use short time steps
(often of the order of 1 year), and the number of models to be computed per
pulse is large (or order 103/. Additionally the fact that the helium shell is thermally
unstable implies that the models have to be calculated with high precision to prevent
unwanted thermal runaways. This makes the calculations even more challenging,
and in fact, AGB calculations still suffer from numerical problems. It is therefore
clear that one cannot hope to compute straightforwardly through the whole phase
of about 104 pulses in intermediate-mass stars. In reality this is–fortunately–never
needed, as mass loss on the AGB reduces the envelope mass quickly enough to limit
the number of TPs to a few tens.

For stars of small mass (originally or by mass loss) the situation is better. One
can certainly calculate through all of the relatively few pulses that occur before such
a star becomes a white dwarf.

34.4 The Core-Mass-Luminosity Relation for Large
Core Masses

Since the direct computation of TP-AGB models is so difficult, one may try to
suppress the pulses artificially by neglecting the time-dependent terms ."g/ in
the energy equation and computing models in complete equilibrium. This gives
(hopefully) an average evolution which might suffice in order to describe the
evolution of the central core, and therefore of the final fate of the star.

An alternative approach are the so-called synthetic AGB models (see, e.g.,
Renzini 1981, or Marigo et al. 1996), where the global properties of AGB stars
are followed using fitting functions such as (34.8) for the pulse durations. Extensive
analytical fitting functions were derived by Wagenhuber and Groenewegen (1998)
for quantities such as the luminosity, the pulse duration and interpulse time, the core
mass at the first pulse, and many more. These functions were derived by fitting them
to numerical models and are valid for various masses and chemical compositions,
but simpler versions can be derived analytically. This is particularly true for the
important core-mass-luminosity relation on the AGB.

We have seen that medium-mass stars, after central helium burning, develop a
degenerate CO-core which is separated from the hydrogen-rich envelope by a thin
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helium layer. At its bottom there is helium-shell burning, which contributes only,
say, 10 % to L: Most of the luminosity is produced in a hydrogen shell source at
the bottom of the envelope. It is not too bad an approximation if we simply assume
L � LH, the hydrogen luminosity generated above a condensed core of mass Mc

and radius Rc. We also have seen that L increases with increasing Mc (giving the
upwards motion along the asymptotic branch) and here face the same situation as for
low-mass stars on the ascending giant branch. One can again derive the dependence
of the properties of the shell on Mc and Rc by homology relations as in Sect. 33.2,
assuming the simple power laws (33.2) for � and ". But since we are dealing with
rather massive cores and high temperatures here, the radiation pressure cannot be
neglected. We therefore have to replace (33.3) by

P D <
�
%T C ˛

3
T 4 D 1

ˇ

<
�
%T: (34.9)

If again we write in the neighbourhood of given P and T the equation of state as
a power law, % � P˛T �ı , we know from (13.7) that ˛ D 1=ˇ; ı D .4 � 3ˇ/=ˇ.
Therefore we have as equation of state

P � %ˇT 4�3ˇ: (34.10)

As in (33.4)–(33.7), we write the quantities %; T; P; and l in the shell as powers of
Mc and Rc. By the same procedure as in Sect. 33.2 we can derive equations for the
exponents. For the sake of simplicity we restrict ourselves to the case a D b D 0

and obtain, instead of (33.22),
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; �2 D 3 � � � 3n
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ˇ (34.11)

with

N D .4 � 3ˇ/.1C n/C .1 � ˇ/.� � 4/: (34.12)

For ˇ D 1 the relations (34.11) and (34.12) agree with (33.22) and (33.23) for
a D b D 0.

With increasing core mass, ˇ in the shell must decrease strongly, as can be seen
from the following considerations. From (34.9) and (34.10) we have

ˇ � %T

P
� %1�ˇT �3.1�ˇ/: (34.13)
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If we here replace %; T by (33.4) and (33.5), then the dependence of ˇ onMc; Rc is
given by

d lnˇ

d lnMc
D .1 � ˇ/

�
.'1 � 3 1/C .'2 � 3 2/

d lnRc

d lnMc

�
: (34.14)

One may start from an initial model that has been computed by solving the stellar
structure equations numerically. This gives initial values for Mc; Rc; L; and ˇ.
Starting from these initial values we want to integrate (34.14). For simplicity, let
us take for the derivative on the right-hand side of (34.14) Chandrasekhar’s mass-
radius relation of white dwarfs, and for the exponents in the energy generation
nD 2; �D 14. The result of such an integration is shown by a dotted line in
Fig. 33.2. In the same way, (33.27) can be integrated with �1; �2 from (34.11)
and ˇ.Mc/ as derived from the solution of (34.14). This gives the solid curve in
Fig. 33.2. In spite of all approximations used, the integrated curves illustrate clearly
the essential points.

For small core masses, ˇ � 1 and the relation (33.25) holds, giving a steep
increase of L with Mc ŒL � M7

c after (33.26)]. For larger Mc, radiation pressure
becomes more and more important and ˇ decreases. This gives a much smaller
slope of the L.Mc/ curve. Indeed in the limit ˇ D 0 (34.11) gives �1 D 1; �2 D 0;

independent of n and �:
L � Mc: (34.15)

TheL-Mc relation has become extremely simple, and we do not have to worry about
the correctRc-Mc relation. Indeed from numerical models Paczyński (1970) derived

L

Lˇ
D 5:92 � 104

�
Mc

Mˇ
� 0:52

�
(34.16)

as an interpolation formula for sufficiently large Mc. The corresponding formula
by Wagenhuber and Groenewegen (1998) contains a linear term as well, but has
additional correction terms which improve the fit also for low core masses and which
take into account different metallicities of the models. It is therefore much more
complicated than (34.16).

34.5 Nucleosynthesis on the AGB

We now turn to the change of the chemical composition by a combination of burning
and convection. Figure 34.4 shows (with expanded scales) m against t during the
peak of two pulses of the models by Weigert (1966). The high fluxes near the
maximum of helium burning create a short-lived, pulse-driven intershell convection
zone (ISCZ), which, in the later pulses of this calculation, comes very close to the
H–He discontinuity. For a short time, almost the entire matter between the two shells
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Fig. 34.4 Evolution of the mass shells around the two shell sources in a 5Mˇ star near the maxima
of the first and sixth thermal pulses of the helium shell source (compare Fig. 34.3). The mass
variablem is plotted against time, starting from an arbitrary zero point. Note the strongly expanded
scales on both axes. Cloudy areas indicate the intershell convection zone (labelled here as CS)
and the outer convective zone (OCZ); hatched areas show the regions of strongest nuclear energy
production ." > 3� 107 erg g�1 s�1/ (After Weigert 1966)

is mixed into the helium-burning shell, the products of which are spread over the
intershell region. The outer convection zone (OCZ), which extends to the surface,
can be seen to reach down nearly to the hydrogen shell source. The lower boundary
of the OCZ moves during each pulse at first somewhat outwards, and then back again
(compare also with Fig. 34.5, where the t axis is more compressed). Depending on
mass, composition, and in particular on the assumption of mixing by convection
or rotation, the ISCZ may even reach beyond the H–He discontinuity and dredge
hydrogen into the intershell region but also enrich the outer layers with carbon.
Similarly, the lower border of the OCZ can descend beyond the former location of
the H–He discontinuity into the intershell region. Also in this case, hydrogen-rich
material is transported downwards, while intershell material is dredged up by the
OCZ and distributed over the whole outer envelope. This event is called the third
dredge-up, and its reality is witnessed by the existence of carbon stars, stars on the
AGB, in which the ratio of carbon-to-oxygen abundance is C/O> 1. In models with
no mixing processes apart from convection according to the Schwarzschild criterion,
the third dredge-up occurs only in stars of low mass and very low metallicity. This
is not in agreement with observations, which found modifications of the surface
composition also in more metal-rich and more massive stars. They can only be
explained by the third dredge-up, and this requires additional mixing processes in
the models, which could be overshooting or mixing induced by rotation. In Fig. 34.6
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Fig. 34.5 Evolution of the mass elements around the two shell sources (broken lines) during the
first six thermal pulses in a 5Mˇ star (compare Fig. 34.3). The “cloudy” area represents the outer
convective zone (OCZ). The intershell convection zone (ISCZ) (labelled CS in Fig. 34.4) at the
maximum of each pulse is so short-lived that it appears here as a vertical spike. The time (in years)
between consecutive pulses is indicated at the top (After Weigert 1966)

we show a sketch of the sequence of mixing episodes leading to dredge-up and the
formation of a so-called 13C-pocket. In some models this additional mixing is added
ad hoc with an efficiency tuned to reproduce the observations. The third dredge-up
is one of the major problems of stellar evolution theory.

The mixing between layers containing protons and those burning helium at high
temperatures is the beginning of interesting nucleosynthesis in stars on the AGB.
Helium burning transforms 4He into 12C and 16O, and the hydrogen shell source
converts 16O and 12C into 14N, which is left behind when the shell burns outwards
between two pulses (between, e.g. t3 and t5 in Fig. 34.6). The ISCZ of the next
pulse sweeps these 14N nuclei down into the helium shell source where they are
burned in the chain 14N .˛; � ) 18F .ˇC�/18O .˛; �/22Ne. During a pulse in fairly
massive stars, and therefore within the pulse-driven convective zone, the helium
shell source attains a temperature so high that 22Ne is also burned in the reaction
22Ne (˛; n/25Mg. This can provide a neutron source sufficiently strong to build up
elements beyond the iron peak in the s-process (i.e. with neutron captures being
slow compared with beta decay; see Sect. 18.7; Iben 1975; Truran and Iben 1977).

In other cases a corresponding neutron source may be provided by 13C nuclei,
which are burned via the chain 12C .p; �/ 13N .ˇC�/ 13C .˛; n/ 16O in the helium
shell. This happens, in contrast to the neon neutron source, between pulses and
in a radiative environment (beginning at t3 and t6 in Fig. 34.6). For this neutron
source to operate it is necessary to bring a sufficient amount of 13C into the helium
shell, which is achieved by mixing hydrogen-rich material from the envelope into
the 12C-rich region during the pulse phase in which the hydrogen-burning shell is
extinguished (Fig. 34.6; t2 � t3). The protons are then captured by the 12C nuclei to
form 13C. The region of high 13C abundance is known as the 13C-pocket, and will
provide the neutron source later in the pulse cycle. According to theoretical models
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Fig. 34.6 Schematic sketch of the mixing episodes during thermal pulses, following similar
representations in the reviews by Busso et al. (1999; Fig. 5) and Herwig (2005; Fig. 3). In contrast
to Fig. 34.5, dredge-up is occurring here due to suitable assumptions about mixing processes, for
example, due to the inclusion of overshooting. Shown is the region between the two shell sources
and the bottom of the outer convection zone (OCZ). The mass scale is of order a few hundredths
of a solar mass. At time t1 the thermal pulse of the He-shell starts and triggers the intershell
convection zone (ISCZ), which grows in mass and may reach the H-shell location at time t2. The
H-shell, however, has extinguished at this time due to the radial expansion of the intershell. After
the pulse terminates, the OCZ can extend deeper than before (at t3) and mixes both protons into
the intershell as well as carbon, produced in the He-shell and transported upwards by the ISCZ,
into the envelope. Upon contraction of the intershell, the OCZ recedes, the H-shell reignites, and
the proton-enriched intershell layers heat to sufficiently high temperatures to allow 12C.p; �/13C
reactions in a radiative environment, forming the 13C-pocket, which marks the start of s-process
nucleosynthesis (see text; “s” in the figure). At t4 the next pulse cycle starts, eventually leading to
dredge-up of s-process elements and carbon to the surface of the AGB star. The interpulse time
t4 � t1 is of order 104 years, the timescale t3 � t1 (or t6 � t4) is a few hundred years

this is the preferred neutron source in most AGB stars. Only in stars of higher mass
the neon source may act as well. The main source for s-process elements appear to
be AGB stars of lower mass. This is in agreement with theoretical models, which
predict the third dredge-up to happen more easily in the lower mass range of AGB
stars.

Such mixing and nuclear burning episodes may lead to modifications of the
surface composition of AGB stars. We already mentioned that they may become
enriched in carbon, initially produced in the helium shell, but subsequently mixed by
the ISCZ and the OCZ to the surface. If a neutron source is operating and s-process
elements are created, they, too, may appear at the photosphere. The detection of
99Tc in the atmosphere of Mira variables (pulsating AGB stars) by Merrill (1952)
proved the in situ production of this rare-earth element, as this isotope is unstable
with a half-life time of only 211,000 years. Another signature of mixing between
the convective envelope and nuclear burning regions is the presence of 19F in
AGB stars. It is created by the reaction 15N.˛; �/19F, which is taking place in
the helium shell. The necessary production of 15N can happen through different
paths, one of them being 18O.p; ˛/15N (see the neon neutron source, p. 428). Other
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possibilities include the production of protons through .n; p/-exchange reactions,
which therefore connects 19F with the occurrence of the s-process and the presence
of a neutron source.

Another modification of the surface composition, particularly of the ratio of 12C
to 14N, can occur if the lower boundary of the OCZ becomes hot enough to start
reactions of the CNO cycle. This event is known as hot bottom burning (HBB), and
occurs primarily in more massive AGB stars. It may even convert a carbon star back
into an oxygen star (C/O < 1). The details of all these processes and their results
are still rather uncertain, since they depend critically on the precise extensions of the
two convective zones involved (the OCZ and the ISCZ) and on any other potential
mixing process that may occur.

Nucleosynthesis on the AGB is very complex and depends on the details of
mixing episodes and temperatures encountered. Due to the simultaneous presence
of protons, ˛-particles, and possibly neutrons at temperatures of several 107 K up to
�2 � 108 K, elements from C to Al are both produced and destroyed by proton and
˛ captures. The primary production site is the helium shell, which creates C and O.
If these elements encounter protons, 14N will be the result. AGB stars can therefore
be the source of primary nitrogen (Primary elements are produced directly from the
basic building blocks, hydrogen and helium. Secondary elements, in contrast, are
the result of nucleosynthesis of pre-existing heavier elements. An example would be
the nitrogen resulting from CNO processes on the main sequence.). If 14N is further
exposed to ˛-particles in the helium shell, 18O and then 22Ne will result. In the
more massive AGB stars, temperatures can be high enough for further ˛-captures,
resulting in various Mg isotopes. Proton captures on Ne, Na, and Mg may change
the isotope ratios and eventually lead to Al, including 26Al, which has a half-life
time of almost a million years. It decays under emission of 1.81 MeV � -photons,
contributing partially to the galactic � -rays. Isotope ratios may further be modified
by neutron capture reactions. 14N, for example, acts as a so-called neutron poison,
as it very effectively captures neutrons, thereby reducing the neutron flux needed for
the s-process.

The detailed analysis of the abundances of these and the s-process elements
is a very important way to learn about the internal evolution of AGB stars. An
extensive discussion of nucleosynthesis in AGB stars can be found in the review by
Lattanzio and Wood (in Habing and Olofsson 2003, p. 24). Chemical yields from
AGB stars have been published by Karakas (2010), and Busso et al. (1999) reviewed
in particular the s-process in AGB stars.

34.6 Mass Loss on the AGB

There is plenty of observational evidence that AGB stars suffer significant mass loss
through stellar winds such that mass loss is, next to the thermal pulses, the second
major factor determining the evolution on the AGB. Direct evidence comes from
observations of circumstellar envelopes which enshroud luminous AGB stars, and
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may make them visible only in the infrared. The analysis of winds and circumstellar
shells shows that mass loss rates range from 10�8 Mˇ=year to 10�5 Mˇ=year
and are strongly correlated with increasing luminosity and decreasing effective
temperature. The highest rates effectively terminate the AGB evolution by removing
the envelope within several thousands of years to a level, where the star leaves
the giant region (as in Fig. 34.1). In this phase, the stellar wind is often called
a superwind, a term coined by Renzini in 1981, to indicate that it is orders of
magnitudes higher than the standard Reimers wind (9.1). We will not go into the
details of the observations and the physics of AGB winds, but give, as an illustrative
example, a fit formula by van Loon et al. (2005) that describes the mass loss rate
(in Mˇ/year) for oxygen stars (C/O < 1) as a function of the star’s position in the
HRD, and demonstrates the high sensitivity to effective temperature:

log PMAGB D �5:65C 1:05 � log

�
10�4 L

Lˇ

�
� 6:3 � log

�
Teff

3500K

�
: (34.17)

Generally, it is believed that the winds of AGB stars are due to the coupling of
the radiation field to dust forming in the outer atmospheres. The formation of
dust is favoured by very low temperatures, which are achieved during and due
to large-amplitude stellar pulsations (see Chap. 40). Indeed, many AGB stars are
known to be pulsating stars of type Mira or semi-regular and long-period pulsators
(periods are between 100 and 1,000 days). In addition, temperature variations
during TPs also modulate the mass loss. The complex interplay between pulsating
envelopes, the chemistry of dust formation, and the interaction with radiation poses
an extremely difficult chemistry-radiation-hydrodynamics problem. So far, such
models have been successful for carbon-rich atmospheres, and theoretical dust-
driven wind models and mass loss rates are available for carbon stars. Again, as
an example that is sufficient to make order-of-magnitude estimates for the mass loss
rate, we give the fitting formula to theoretical carbon-dust models by Wachter et al.
(2002):
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Such fitting formulae may be accurate within one or two orders of magnitude.
Within this accuracy, the similarity of the dependencies on L and Teff in (34.17)
and (34.18) is interesting. More about AGB mass loss can be found in the textbook
by Habing and Olofsson (2003).

A more indirect but very convincing fact that demonstrates the importance of
mass loss from AGB stars comes from the initial-final-mass relation, pioneered by
Weidemann (1977; revised 2000). We describe briefly the general idea: spectrosopy
of white dwarfs allows to determine surface gravity gD GM=R and Teff. The
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Fig. 34.7 The initial-final mass relation. The data points and their error bars are taken from Salaris
et al. (2009). The dashed line is the empirical relation derived by Weidemann (2000). The solid
line is the relation predicted from theoretical AGB evolution models for Z D 0:02 (After Weiss
and Ferguson 2009)

former quantity, which can in principle also be determined from gravitational photon
redshift, together with known mass-radius relations (Chap. 37) yields the white
dwarf’s mass. Theoretical cooling curves for the so determined mass, together with
Teff, give the cooling age, tcool. If the white dwarfs are in a stellar cluster, the age t
of this cluster can be determined from comparison with isochrones of appropriate
composition. Since the white dwarfs are the descendants of former main-sequence
stars in the cluster, the difference t � tcool is the age the progenitor spent in the pre-
white dwarf stages. This time is dominated by the main-sequence lifetime, which is
depending on the initial mass, as we have estimated in (30.2) and plotted in Fig. 30.6.
In this way, the initial mass can be determined. Since the more massive AGB stars
and their mass loss are more interesting, open clusters of several 100 Myrs are
mainly investigated. However, also binary systems, in which one component is a
white dwarf, are suitable. A famous example is Sirius B; popular clusters are the
Hyades, the Pleiades, and Praesepe.

Figure 34.7 shows the empirical initial-final-mass relation (Salaris et al. 2009;
data points), the previous analytical fit by Weidemann (2000), and the prediction
from theoretical AGB evolution (Weiss and Ferguson 2009), which included
overshooting and mass loss according to (34.17) and (34.18). Within the errors the
theoretical models lie well within the empirical data. This is an indication that the
total mass loss is described well by the models. Notice that a 6Mˇ star ends as
a white dwarf of only 1Mˇ. It has lost a total of 5Mˇ, and this happens mostly
on the TP-AGB. The second remarkable result is that even for the highest masses
(� 8Mˇ) the final white-dwarf mass is well below the critical Chandrasekhar mass
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of � 1:4Mˇ. This will turn out to be an important fact in relation to the progenitors
of supernovae (Chap. 36).

34.7 A Sample AGB Evolution

In this section, we will present the complete evolution of a star of 2Mˇ and a stan-
dard composition (X D 0:695, Y D 0:285, ZD 0:02) from the main-sequence until
the final white-dwarf state. The calculations for this and many other values for mass
and composition were done by A. Kitisikis (PhD thesis, Munich University, 2008)
and published by Weiss and Ferguson (2009). They are the first attempt to include as
many crucial physical aspects of AGB evolution as possible. Overshooting is treated
according to (30.9), and applied at all convective boundaries. The opacity tables
used include variations of C and O abundance and therefore are sensitive to dredge-
up processes and in general lead to lower Teff in case of carbon enhancement of
the envelope due to the third dredge-up. Mass loss is included in parametrized form
following (34.17) and (34.18), depending on the C/O ratio. Figure 34.8a gives an
overview of the full evolution, and Fig. 34.8b shows the TP-AGB phase. Figure 34.9
summarizes details during the TPs.

The evolution starts on the main sequence, which lasts for 1.075 Gyr. A further
58 Myr are spent on the RGB, before helium ignites in a moderately energetic
core helium flash, with a peak helium luminosity of “only” logLHe=Lˇ D 7:2. The
surface luminosity of logL=Lˇ D 2:87 is also lower than that of the RGB tip of
low-mass stars indicating that at this mass, we are already in the transition region to
intermediate-mass stars. Core helium burning, which lasts for 177 Myr, takes place
in a barely visible loop around logL=Lˇ D 1:8. Then the star starts to climb the
E-AGB, and the first thermal pulses set in around logL=Lˇ D 3:0. Figure 34.8b
shows this part of the HRD in more detail. In the course of the TPs the peak
luminosity increases and the effective temperature drops. This leads to stronger mass
loss. The last TP, which sets in after C/O > 1 is reached, leads to a strong excursion
to temperatures as low as 2,000 K. After this final pulse, due to the fast shedding
of the envelope, the star contracts and crosses the HRD within 4,100 yrs. Its mass,
and therefore the final white-dwarf mass, is 0:543Mˇ. The E- and TP-AGB last for
15.4 and 2.6 Myr.

Details of the TP-AGB phase are given in Fig. 34.9. As mentioned in Sect. 34.3,
an asymptotic pulse behaviour is slowly approached after about 10 TPs, but not
completely reached, even after all 15 pulses. The first pulse is, as is very often found
in such calculations, different from the subsequent ones. The surface luminosity
drops more than for the 5Mˇ star of Fig. 34.3, due to the less massive envelope.
However, it also shows a very short-lived peak of 500 ‘years’ duration, which is
not visible in Fig. 34.3. This is found in many models with massive envelopes and a
deep penetration of the OCZ down to the hydrogen-burning shell.

Figure 34.9 also shows the interaction of dredge-up, effective temperature and
mass loss. With increasing pulse number, the star gets increasingly cooler. At the
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a

b

Fig. 34.8 (a) Evolution of a
star of 2Mˇ and Z D 0:02

from the ZAMS to the
white-dwarf cooling stage
(Weiss and Ferguson 2009).
(b) Detail view of the
TP-AGB phase, with 15 TPs,
the last one leading to an
excursion to very low Teff, the
final expulsion of the stellar
envelope, and the beginning
of the post-AGB transition to
hot Teff at nearly constant L.
For details about the
calculations, see text

same time, the carbon abundance in the envelope increases in each pulse due to
dredge-up, ensured by the application of convective overshooting from the ISCZ.

The dredge-up in fact starts already with the first thermal pulse, but is interrupted
until TP 9. Then a significant increase up to C/O D 1 takes place. Note that also
some oxygen–the second result of helium burning–is dredged up. The increase in
nitrogen is due to protons ingested from the envelope. The abundances in Fig. 34.9
are given in mass fractions, while the C/O ratio is in number fractions. This is the
reason why the carbon abundance remains below that of oxygen, but C/O > 1

after pulse 14. At this moment, a strong increase in opacity due to the carbon-rich
atmosphere leads to a drop in Teff, and thus, due to the high sensitivity of the mass
loss rate to temperature, to a strong increase in PM . In the corresponding panel PM
increases to levels above 10�5 Mˇ=year, such that the total mass (middle panel) is
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Fig. 34.9 Physical quantities during the TPs of the same model as in Fig. 34.8. The panels show,
from top to bottom: total luminosity L (left scale) and Teff (right scale); helium and hydrogen shell
luminosity; total and C/O core mass; pulsation period (left scale) and mass loss rate (right scale);
and finally C/O ratio at the surface (left scale) and C, N, and O mass fractions (right scale)
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reduced to the core mass within 3:4�104 years. The pulsation period (second-to-last
panel, left scale) is only a rough estimate and is needed only to decide when standard
Reimers wind is replaced by (34.17) for C/O < 1 or (34.18) for C/O > 1. Dust-
driven winds, for which large-amplitude pulsations are a necessary prerequisite (see
Sect. 34.6), are taken into account only for periods longer than 400 days.

34.8 Super-AGB Stars

There is a small mass range between intermediate-mass and massive stars that may
extend, depending on composition and author, from 7 to 12Mˇ or from � 8

to 10Mˇ, in which stars may ignite carbon burning off-centre under partially
degenerate core conditions. Above the upper mass limit carbon ignites at the non-
degenerate centre of stars, and below the lower mass limit, the core does not reach
the necessary ignition temperature of about 7 � 108 K. To reach this temperature
requires core masses in excess of �1Mˇ, which, according to the empirical
findings and theoretical predictions of the initial-final mass relation, (Fig. 34.7) is
not obviously possible. Nevertheless, this option should not be excluded.

Siess (2006b, and reference therein) describes in detail the complicated evolution
of such stars. The mass range, at a metallicity of ZD 0:02, is between 9 and
11:3Mˇ. Here, we summarize only the main events in it. The carbon flash happens
analogously to the helium flash we encountered earlier. It leads to a heating and
expansion of the C/O core. However, these structural changes lead to a quenching of
carbon burning, and core contraction is resumed. This now takes place under much
less degenerate conditions, such that the core heats up and a second carbon ignition,
in the literature called a “flame”, sets in, and leads to central carbon burning. After
this phase, which may last a few thousand years, carbon burning proceeds in a
radiative shell around a neon-oxygen core. If it encounters carbon pockets around
the core, convection zones may appear for some time.

There is also a number of convective episodes in the outer regions of the star.
For example, the OCZ may reach the hydrogen-helium boundary before or during
central carbon burning. This constitutes the second dredge-up we already know. It
leads to the extinction of the hydrogen shell. The helium shell is providing most
of the star’s luminosity, and since the shell may be convective, in some stars, this
convection zone may merge with the OCZ. As a result, the mass of the hydrogen-
exhausted core is reduced substantially.

Carbon burning can also be quenched again due to strong cooling by neutrino
losses such that after core carbon burning the He-shell is the only nuclear energy
source of the star. Obviously, this shell is thermally unstable and will resume thermal
pulses, during which the hydrogen is also reignited. This is the reason for the
name super-AGB stars, as such stars share properties with AGB stars, but are more
luminous. Since mass loss has to be minor in order to allow a sufficient core growth
during the AGB phase, the envelope mass is still substantial and super-AGB stars
may indeed suffer up to thousand TPs.
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Fig. 34.10 Transition masses between different evolutionary paths for stars, and their final fate.
MH,MHe,Mup,Mn, andMSN correspond to the minimum initial stellar mass for hydrogen, helium,
and carbon ignition, the formation of a neutron star, and for stars undergoing a type II supernova
explosion. The final fate of the star and its remnant are indicated for each mass range. Note that
these mass limits depend crucially on the initial composition and on the detailed computations
(After Siess 2006b)

The final fate of super-AGB stars depends on the mass of the NeO core. If it
exceeds � 1:37Mˇ after carbon burning, the nuclear evolution will go through all
phases just as for massive stars. If it is slightly lower than this value initially, Ne
ignition can be avoided and the core can grow due to shell burning and develop a
highly degenerate NeO core of 1:37Mˇ. It will not undergo the thermal pulses,
but will end as a so-called electron-capture supernova (see Sect. 36.3.4), which
is initiated by electron-capture reactions on 24Mg, 24Na, and other isotopes. This
leads, among other effects, to the reduction of electron pressure, and a subsequent
collapse of the core. A low-mass neutron star will be the remnant after the supernova
explosion. If the NeO core mass always stays below this critical core mass, the
star will end–after envelope expulsion–as a NeO white dwarf. In Fig. 34.10 an
overview of the various mass limits separating the different evolutionary paths is
given (adapted from Siess 2006b). These limits are very uncertain and depend a lot
not only on the details of the computations, but also on the initial composition. In
fact some limits may not even exist at all metallicities, because of effects of mass
loss or overshooting.
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Fig. 34.11 Example for a
late thermal pulse in a star of
initially 2:7Mˇ, according to
Althaus et al. (2005)

34.9 Post-AGB Evolution

Stars of low and intermediate mass leave the AGB mainly due to the very short-lived
superwind phase. Depending on the phase of the TP cycle this happens, the star may
have a hydrogen- or helium-shell providing the majority of the total luminosity. The
post-AGB stars are therefore divided into hydrogen and helium burners. The latter
group generally has longer HRD-crossing timescales.

With increasing Teff, mass loss is quickly dying out. Depending on the density
and expansion velocity of the circumstellar shell which was lost during the TP-
AGB phase, the increasingly higher number of UV photons emerging from the star,
which is crossing the HRD to very high temperatures, may ionize the circumstellar
matter and lead to the creation of a planetary nebula. The critical values for Teff are
30,000 K and 60,000 K for hydrogen and helium ionization. In addition, a hot wind
with velocities of the order of 1,000 km/s ploughs into the slowly expanding shell
(of a few tens of km/s), compressing it and creating shocks.

At the bluest point in the evolution (see Figs. 34.1 and 34.8), the shell is finally
fading away and the star begins its final cooling phase and becomes a white dwarf.

However, in some cases, the star may still suffer a last thermal pulse. Such late
pulses are found in numerical calculations both during the HRD crossing and during
the earliest cooling phases. In the course of such a late TP the star returns to the
AGB and resumes a second HRD crossing. We show such an excursion in the HRD
in Fig. 34.11. Due to the mixing and burning episodes connected with the pulse the
thin envelope undergoes drastic changes in its composition. In fact, there is a small
number of stars which evolved drastically over a few decades including changes of
the surface composition. These are generally connected with late TP events. Famous
examples are Sakurai’s object (V4334 Sgr), FG Sge, and V650 Aql. There is still
a discrepancy between the timescales for the changes between the models and the
objects, but this may be due to insufficient theories for time-dependent convection.
This kind of objects and their relation to post-AGB evolution have been reviewed
by Schönberner (2008).



Chapter 35
Later Phases of Core Evolution

35.1 Nuclear Cycles

The stellar evolution described above may seem to be rather complicated with regard
to the nuclear shell instabilities, but also where the changes of the surface layers are
concerned, for example, in the case of evolutionary tracks in the HR diagram. The
processes appear much simpler and even become qualitatively predictable if we
concentrate only on the central evolution. Extrapolating from central hydrogen and
helium burning of sufficiently massive stars, we can imagine that the central region
continues to pass through cycles of nuclear evolution which are represented by the
following simple scheme:

nuclear burning
% &

core heating exhaustion of fuel
- .

core contraction

The momentary burning will gradually consume all nuclei inside the convective
core that serve as “fuel”. The exhausted core then contracts. This raises the central
temperature until the next higher burning is ignited etc.

As long as this scheme works, gradually heavier elements are built up near the
centre from cycle to cycle. The new elements are evenly distributed in convective
cores which usually become smaller with each step. For example, in the first cycle
(hydrogen burning), the star develops a massive helium core, inside which a much
smaller CO core is produced in the next cycle (helium burning), and so on.

We have also seen that after the core is exhausted the burning usually continues
in a concentric shell at the hottest place where the fuel is still present. A shell source
can survive several of the succeeding nuclear cycles, each of which generates a new
shell source, such that several of them can simultaneously burn outwards through
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Fig. 35.1 Schematic illustration (not to scale) of the “onion skin structure” in the interior of a
highly evolved massive star. Along the vertical radius and below the horizontal radius some typical
values of the mass, the temperature (in K), and the density (in g cm�3/ are indicated

the star. They are separated by mass shells of different chemical composition;
gradually heavier elements are encountered when going inwards from shell to shell.
One then speaks of an “onion skin model”. A schematical cross section of such a
model is shown in Fig. 35.1. The shell structure of the chemical composition can
in fact become more complicated than that, since some shell sources bring forth a
convective (or semiconvective) subshell, inside which the newly processed material
is completely (or partially) mixed. This can be recognized in Fig. 36.4, which shows
the interior composition of a model for a 25Mˇ star in a very advanced stage (just
before core collapse, see Chap. 36). We have also seen that, depending on the change
of T in certain regions, a shell source may stop burning for some time and be
reignited later.

The simple evolution through nuclear cycles as sketched above can obviously
be interrupted, either temporarily or for good. From the discussion of the nuclear
reactions in Chap. 18 we know that the cycles must come to a termination, at the
latest, when the innermost core consists of 56Fe (or neighbouring nuclei) and no
further exothermic fusions are possible. However, it is easily seen that the sequence
of cycles can be interrupted much earlier by another effect. Each contraction
between consecutive burnings increases the central density %c. Assuming homology



35.2 Evolution of the Central Region 441

for the contracting core (cf. Sect. 28.1) and ignoring the influence of the rest of the
star, we obtain from (28.1) the change of the central temperature Tc

dTc

Tc
D
�
4˛ � 3

3ı

�
d%c

%c
: (35.1)

The decisive factor, in parenthesis on the right-hand side, depends critically on the
equation of state which is written as %�P˛T �ı . For an ideal gas with ˛ D ı D 1,
we have dTc=Tc D .1=3/.d%c=%c/. This means that each contraction of the central
region increases the temperature, as well as the degeneracy parameter of the elec-
tron gas Œ D constant for dT=T D .2=3/.d%=%/ (cf. Sects. 15.4 and 16.2)]. With
increasing degeneracy the exponents ˛ and ı become smaller. When the critical
value ˛ D 3=4 is reached (ı is then still > 0), the contraction (d%c>0) no longer
leads to a further increase of Tc according to (35.1). The degeneracy in the central
region has obviously decoupled the thermal from the mechanical evolution, and the
cycle of consecutive nuclear burnings is interrupted. In this case the next burning
can be ignited only via more complicated secondary effects, which originate, for
example, in the evolution of the surrounding shell source (cf. Sect. 33.2).

Other complications may arise if the central region of a star suffers an appreciable
loss of energy by strong neutrino emission (cf. Sect. 18.7). We have already seen
(Sect. 33.5) that this can decrease the central temperature and, therefore, influence
the onset of a burning.

In any case, the nuclear cycles tend to develop central regions with increasing
density and with heavier elements. We should note, however, that the later nuclear
burnings are not capable of stabilizing the star long enough for us to observe many
stars in such phases (as is the case with central hydrogen burning and helium
burning). The main reason for this is the strongly decreasing difference in binding
energy per nucleon (Fig. 18.1). Table 35.1 on page 447 gives typical durations
for the various hydrostatic burning phases. From carbon burning on, these are
comparable, respectively much shorter than the thermal timescale of the star. This
means that any change in the core is no longer reflected by a change of surface
properties, and therefore the star remains at its position in the Hertzsprung-Russell
diagram. From the outside, one cannot see whether the star is 10,000 years or 10 h
before the final core collapse!

35.2 Evolution of the Central Region

The description of the nuclear cycles in Sect. 35.1 has already given a rough outline
of the central evolution of a star. We recognize it easily in Fig. 35.2, where the
evolution of the centre is plotted in the lg %c–lgTc plane according to evolutionary
calculations for different stellar masses M , covering the full range from brown
dwarfs to the most massive stars. We see that Tc indeed rises roughly �%1=3c

[cf. (35.1)] as long as the central region remains non-degenerate. Of course, the
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Fig. 35.2 Evolution of the central values of temperature Tc (in K) and density %c (in g cm�3/

for stars of all masses (from 0.05Mˇ to 120Mˇ). The tracks are labelled with the stellar mass
M (in Mˇ). The tracks have been collected from different sources but are all for a metallicity
of approximately Z D 0:02. The brown dwarf track (M D 0:05Mˇ) includes the pre-main-
sequence phase and is from Baraffe et al. (2003). Stars with M from 0.45 to 5Mˇ are from the
authors, those with M D 8:8, 9.5, and 12:0Mˇ (the super-AGB range) from Siess (2006a), and
the massive stars (M D 15, 40, and 120Mˇ) from Limongi and Chieffi (2006) (Data courtesy of
I. Baraffe, M. Limongi, L. Siess)

details of the central evolution are much more complicated than predicted by the
simple vector field in Fig. 28.1. During the burnings the curves bulge out to the upper
left. This is not surprising, since then the changes are far from homologous [which is
assumed in (35.1) and for Fig. 28.1], for example, owing to the restratification from
a radiative to a convective core. After these interludes of burning, the evolution
returns more or less to the normal slope. A parallel shift of the track from one to
the next contraction is to be expected, since the contracting region (the core) will in
general have a larger molecular weight, but a smaller mass.

We have already mentioned in Sect. 28.1 and in Sect. 35.1 the important fact that
each contraction with Tc � %

1=3
c brings the centre closer to the regime of electron

degeneracy. The degree of non-relativistic degeneracy is constant on the steeper
lines T � %2=3. Once the central region has reached a certain degree of degeneracy
(where ˛ D 3=4 in the simple model of Sect. 28.1), Tc no longer increases, and
the next burning is not reached in this way (if at all), as we have already seen in
Fig. 28.2. This happens the earlier in nuclear history, the closer to degeneracy a star
has been at the beginning, i.e. the smaller M is (cf. Fig. 35.2). Recall (Sect. 22.2)
that with increasing mass, also Tc increases, but %c decreases (Fig. 22.5). Therefore
which nuclear cycle is completed before the star develops a degenerate core depends
on the stellar mass M:

If the evolution were to proceed with complete mixing, we would only have to
consider homogeneous stars of various M and different compositions, and to see
whether their contraction leads to ignition (M >fM0) of a certain burning or to a
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degenerate core (M <fM0). These limits for reaching the burning of H, He, and C
are fM0 � 0:08; 0:3; and 0:8Mˇ, respectively.

We know that the evolution lies far from the case of complete mixing, and only
the innermost core of a star is processed by nuclear burning. But for sufficiently
concentrated cores, the central contraction proceeds independently of the conditions
at its boundary, i.e. independently of the non-contracting envelope. Therefore the
above values fM0 give roughly the limits for the masses of the corresponding cores.

Standard evolutionary calculations (assuming a typical initial composition, no
convective overshooting, and no mass loss) give the following characteristic ranges
of M , which we already mentioned earlier. After central hydrogen burning, low-
mass stars withM <M1.He/ � 2:3Mˇ develop degenerate He cores. After central
helium burning, intermediate-mass stars with M <M1.CO/� 9Mˇ develop a
degenerate CO core. And in massive stars with M >M1(CO) even the CO core
remains non-degenerate while contracting for the ignition of the next burning. The
precise values of the limiting masses M1 depend, for example, not only on the
assumed initial composition but also on details of the physical effects considered.
Another important influence is the downwards penetration of the outer convection
zone after central helium burning (in the second dredge-up phase). This lowers the
mass of the core and therefore encourages the evolution into stronger degeneracy,
i.e. it lowers M1 (cf. Sect. 34.8). The depth of the second dredge-up depends on the
choice of the mixing length parameter and the inclusion of convective overshooting.
In Fig. 35.2 we see that the models with M D 0:05, 0:45, and 8:8Mˇ just miss the
ignition of H, He, and C, respectively.

After a star has developed a strongly degenerate core it has not necessarily
reached the very end of its nuclear history. This is only the case if the shell-source
burning cannot sufficiently increase the mass of the degenerate core. However, the
next burning is only delayed, and it will be ignited later in a “flash” if the shell
source is able to increase the mass of the core to a certain limit M 0

c . We have
seen in Sect. 33.3 that the critical mass for ignition of helium in a degenerate
core is M 0

c.He/� 0:48Mˇ, which agrees with the case shown in Fig. 35.2. The
corresponding critical mass of a degenerate CO core is M 0

c.CO/� 1:4Mˇ as we
shall see immediately. Note that these limits are appreciably larger than the corre-
sponding lower limits (fM0) for reaching a burning by non-degenerate contraction,
as described above. This indicates the possibility that the evolution depends dis-
continuously onM around the limitsM1(He) andM1(CO). For example, stars with
M DM1.He/��M ignite helium via a flash in a degenerate core of mass 0:48Mˇ,
while stars withM DM1.He/C�M can ignite helium burning via core contraction
in (nearly) non-degenerate cores of about 0:3Mˇ (cf. the idealized scheme in
Fig. 35.3). Here one could imagine a bifurcation at M DM1, where fluctuations
would decide into which of the two regimes the star turns. In reality (by which we
mean numerical models) the limit is “softened up” (a little bit of degeneracy leading
to a baby flash, etc.), as can be seen in Fig. 5.19 of Salaris and Cassisi (2005). Nev-
ertheless, the transition range is narrower than �0:5Mˇ between the two regimes.

The ignition of He and C under degenerate conditions in the 1.0 and 8:8Mˇ stars
of Fig. 35.2 first leads to a strong cooling and expansion of the core, followed by a
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Fig. 35.3 The solid line
shows schematically the mass
Mc of the helium core at the
onset of helium burning as a
function of the stellar
mass M . The broken line
shows the core mass at the
end of hydrogen burning in
low-mass stars, before the
electron gas in the core
becomes degenerate

temperature increase and further expansion until stable core He burning is reached.
This realistic evolution is more complicated than the simple picture illustrated in
Fig. 33.6.

The evolution of degenerate CO cores is similar to that of degenerate helium
cores in low-mass stars (Sects. 33.3 and 33.4). The structure of the core is more or
less independent of the details of the envelope. Therefore the evolution of the central
values converges for stars of different M as long as the core mass is the same (cf.
Fig. 35.2, M D 0:45 and 1:0Mˇ). While the mechanical structure of such a core
is determined by its mass Mc; its thermal properties depend on the surrounding
shell source and on the neutrino losses. If the shell source were extinguished, the
core would simply cool down with %c D constant (on a vertical line in Fig. 35.2) to
the white-dwarf state, as can be seen in this figure for the lower and intermediate-
mass values. The brown dwarf will end as a hydrogen white dwarf, that with
M D 0:45Mˇ as a helium white dwarf, those with higher masses up to 8:8Mˇ as
carbon-oxygen white dwarfs, and the one with 9:5Mˇ possibly as a oxygen-neon
white dwarf.

The continuous burning of the shell source increasesMc; which in turn increases
the temperature in the shell source (cf. Sect. 33.2). It also increases the central den-
sity, as we know from the discussion of the structure of degenerate configurations
(Sect. 19.6), i.e. the evolution goes to the right in Fig. 35.2. The contraction due to
this effect releases a large amount of gravitational energy, which, in the absence of
energy losses (by conduction or neutrinos), would heat the core adiabatically.

However, there are strong neutrino losses "� in this part of the T -% diagram
(cf. Fig. 18.11), which modify the whole situation. Since "� increases appreciably
with T , we should first make sure that there is no thermal runaway in the degenerate
core (a “neutrino flash”), in analogy to a flash at the onset of a burning. This can
be easily shown by the stability consideration presented in Chap. 25, where we
analysed the reaction of the central region on an assumed increase d" of the energy
release. This led to (25.30) with gravothermal heat capacity c� (25.29). Now we
replace d" by the small energy loss �d"� . If we neglect the perturbation of the flux
(dls D 0) for simplicity, (25.29) and (25.30) become

c� dT

dt
D �d"�; c� D cP

�
1 � rad

4ı

4˛ � 3

�
: (35.2)
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Obviously the reversal of the sign of the right-hand side in the first equation (35.2)
has reversed the conditions for stability. An ideal gas with ˛ D ı D 1 has the
gravothermal heat capacity c� < 0, and neutrino losses are unstable since PT > 0

(a thermal runaway with ever increasing neutrino losses). Degenerate cores with
˛ ! 3=5; ı ! 0 have c� > 0, i.e. PT < 0, and these cores are stable: a small
additional energy loss reduces T and "� such that the core returns to a stable balance.
In the following scheme we summarize the different properties of thermal stability
we have encountered:

Burning Neutrinos
(" > 0) (�"� < 0)

Ideal gas Stable Unstable
Degeneracy Unstable Stable

According to Sect. 34.3 the scheme also holds for burning in shell sources, where
we have in addition the pulse instability for thin shells. We recall that a general
treatment of the shell source stability is possible (Yoon et al. 2004).

Numerical calculations approve the above conclusions: instead of leading to
a thermal runaway, the neutrino losses cool the central region of a degenerate
core such that "� remains moderate. Typical “neutrino luminosities” L� (D total
neutrino energy loss of the star per second) remain only a fraction of the normal
“photon luminosity” L: In Fig. 35.4 we show a very instructive example from an
early model by Paczyński (1971). Although a star of only 3Mˇ is almost certainly
never able to develop a CO core of more than 0:8Mˇ, the figure still shows all
principle effects: The temperature profiles inside the cores of two different Mc

are shown in Fig. 35.4 by the broken S-shaped curves. They follow roughly lines
of "� D constant. With increasing Mc the point for the centre moves along the
solid line to the right, and extremely high values of %c would necessarily occur if
Mc could go to the Chandrasekhar limit of 1.44Mˇ. Shortly before this limit, at
Mc � 1:4Mˇ, the central values reach the dotted line "� D "C to the right of which
pycnonuclear carbon burning dominates over the neutrino losses, "C > "� . Now
carbon burning starts with a thermal runaway. If this happens in the centre, then
explosive carbon burning will finally disrupt the whole star, such that one should
expect a supernova outburst that does not leave a remnant (a neutron star); compare
this also with Chap. 36. We have already seen (Sect. 34.8) that in more massive
stars carbon ignition starts in a shell, such that the star survives this event, but
the principal story remains that the degenerate CO core is ignited when its mass
Mc � 1:4Mˇ, although it depends on the initial mass and varies, according to Siess
(2006b), between 1.1 and 1:5Mˇ for ZAMS masses between 9.0 and 11:5Mˇ.
With increasing mass and decreasing core degeneracy the location of carbon ignition
is moving towards the centre. At the end of the rather complicated carbon burning
phase an ONeMg core is left over. For the initial mass range for which this core is
degenerate, its mass is between 1.05 and 1:12Mˇ, again far from the Chandrasekhar
mass.
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Fig. 35.4 Temperature T (in K) and density % (in g cm�3) in the CO core of a 3Mˇ star after
central helium burning. The solid line gives the evolution of the centre with increasing core mass
Mc (inMˇ). The carbon flash starts at aboutMc D 1:39Mˇ when the energy production by carbon
burning ("C) exceeds the neutrino losses ("� ). Some lines of constant ratio "�="C are dotted. The
broken lines show the T stratification in the core for two consecutive stages; neutrino losses have
produced a maximum of the temperature outside the centre (After Paczyński 1971)

The just-described central evolution is the same for all stars that are able to
develop a degenerate CO core ofMc � 1:4Mˇ. The obvious condition for this is that
the stellar massM is larger than that limit. For PM D 0 this would include all stars in
the range 1:4Mˇ<M <9Mˇ, i.e. the intermediate-mass stars (M � 2:3 : : : 9Mˇ)
and the low-mass stars with M >1:4Mˇ. More precisely the stellar mass M must
be larger than 1:4Mˇ at the moment of ignition (which does not occur before
Mc � 1:4Mˇ). This can require that the initial stellar mass Mi (on the main
sequence) was much larger than 1:4Mˇ if M has been reduced in the meantime
by a strong mass loss.

Obviously there are two competing effects, the increase ofMc due to shell-source
burning and the simultaneous decrease of the stellar mass M due to mass loss.
Their changes in time are schematically shown in Fig. 35.5, and the outcome of
this race decides the final stage of the star. The two values (M and Mc/ reach their
goal at 1.4Mˇ simultaneously if the initial mass has the critical value Mi(min).
Stars with Mi>Mi(min) will ignite the CO core, since Mc can reach 1.4Mˇ.
For stars with initial masses Mi<Mi(min), the mass loss will win and Mc never
reaches 1.4Mˇ. Such stars will finally cool down to the white-dwarf state after
the shell source has died out near the surface (cf. Sect. 33.7). Unfortunately the
total loss of mass during the evolution is not well known. The various mass loss
formulae (Sect. 32.3) and the initial-final mass relation (Fig. 34.7) predict a total
mass loss of up to�M � 6 : : : 7Mˇ, which would mean a critical initial mass above
Mi(min) � 7Mˇ at least. Of course, if the mass loss were so large that even stars
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Fig. 35.5 For three different
initial masses Mi the solid
lines show schematically the
decrease of the stellar mass
M due to mass loss, while the
mass of their degenerate CO
cores (dashed line) increases
owing to helium-shell
burning. Carbon burning is
ignited when the core mass
reaches about 1.4Mˇ. This
never occurs for
Mi < Mi(min), since then the
surface reaches the core
before it can grow to 1.4 Mˇ

Table 35.1 The duration of burning stages (in years) in three models of
different mass, taken from Limongi and Chieffi (2006)

Burning: M D 15Mˇ W M D 40Mˇ W M D 120Mˇ W
H 1:31 � 107 4:88 � 106 2:80 � 106

He 9:27 � 105 3:82 � 105 2:96 � 105

C 3:25 � 103 1:86 � 102 3:62 � 101

Ne 6:67 � 10�1 1:34 � 10�1 6:56 � 10�2

O 3:59 � 100 1:59 � 10�1 2:57 � 10�2

Si 6:65 � 10�2 1:47 � 10�3 3:63 � 10�4

The beginning and end of each burning stage is defined as the times when
1 % of the fuel has been burnt, respectively when its abundance has dropped
to below 10�3 (Data courtesy M. Limongi)

with Mi � 10Mˇ were reduced to M <1:4Mˇ before carbon ignition, then all
intermediate stars (developing a degenerate CO core) would become white dwarfs.
In any case, there are drastic differences between the final stages (white dwarfs or
explosions) to be expected for stars in a narrow range of Mi near Mi(min). Current
models (Sect. 34.8 and Fig. 35.2) put this mass range between �9 and 11Mˇ. These
numbers are all depending on the composition.

It is clear that we have the same competition between PMc > 0 and PM < 0 in the
analogous problem of determining initial masses for which the degenerate helium
cores are ignited (at Mc � 0:48Mˇ). In this case the bifurcation of the evolution
concerns mainly the composition of the final white dwarfs (He or CO).

Finally, we have to consider the massive stars with M > 9 : : : 11Mˇ, in which
the CO core does not become degenerate during the contraction after central
helium burning. Therefore Tc rises sufficiently during this contraction to start the
(non-explosive) carbon burning. Here the neutrino losses can become very large,
carrying away most of the energy released by carbon burning. In the later burnings,
massive stars can have neutrino luminosities up to 106 times larger thanLI but these
stages are very short-lived: for example, silicon burning lasts just a few days (see
Table 35.1).
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These massive stars will go all the way through the nuclear burnings until Fe and
Ni are produced in their central core (Such a case is illustrated in the onion skin
model in Fig. 35.1.). After the core has become unstable and collapses, electron
captures by these nuclei transform the core into a neutron star, while the envelope is
blown away by a supernova explosion (see Chap. 36).



Chapter 36
Final Explosions and Collapse

We have seen that stars can evolve to the white dwarf stage through a sequence
of consecutive hydrostatic states if they develop a degenerate core and have final
masses less than the Chandrasekhar limit MCh. It is not well known, however, how
much mass the stars can have initially (on the main sequence) in order to end this
way. From what was discussed in Chap. 34, it seems that except for a very narrow
mass range at the upper end, all stars that develop degenerate cores end as white
dwarfs. The main uncertainty here is the total amount of mass lost by stellar winds.

Other stars certainly undergo explosions, ejecting a large part of their mass, if
not disrupting completely. In the case where a neutron star is left as a remnant the
core must have undergone a collapse, since it cannot reach the neutron-star stage
by a hydrostatic sequence. Collapse and explosions are connected with supernova
events, and although the theory and the numerical models are well developed and
far advanced, not all questions concerning the different mechanisms have been
answered, and not all different observed phenomena can be explained so far. The
singular event of SN 1987A and the ongoing large-scale supernovae searches, which
have returned hundreds of such objects throughout the universe, have led to a much
better understanding of stellar explosions, but have also raised new questions. In this
section we only discuss some basic effects which certainly play an important role in
late phases of more massive stars, and that will probably remain to be an important
part of full theories of supernovae.

Since we will not go into the details of the physics of collapse and explosion, and
neither into the interesting question of explosive nucleosynthesis in supernovae, we
refer the reader to the respective reviews on the subject, such as Hillebrandt and
Niemeyer (2000; on supernovae of type I), Smartt (2009; on core collapse super-
novae progenitors), Janka et al. (2007; on the theory of core collapse supernovae),
Heger et al. (2003; on the fate of massive stars), and others.

R. Kippenhahn et al., Stellar Structure and Evolution, Astronomy and Astrophysics
Library, DOI 10.1007/978-3-642-30304-3 36, © Springer-Verlag Berlin Heidelberg 2012
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36.1 The Evolution of the CO-Core

After central helium burning, the further evolution depends critically on the question
whether or not the CO-core becomes degenerate in the ensuing contraction phase.
Clearly this will depend on the mass of the core. Since its contraction is practically
independent of the envelope, the core can be considered as if it were a contracting
gaseous sphere with zero surface pressure, as discussed in Chap. 28.

We first estimate the critical core mass that separates the case where the
contraction leads to increasing temperatures from the case where degeneracy
prevents further heating. For this purpose we replace the equation of state by
an interpolation formula between different asymptotic behaviours. In the cores of
evolved stars the molecular weight per electron is �e � 2, while that per ion is
�0 � 12, and therefore the pressure of non-degenerate electrons (�1=�e) dominates
the ion pressure (�1=�0). This holds even more so if the electrons are degenerate.
For simplicity we here neglect radiation pressure, as well as the creation of electron–
positron pairs, which can also lead to partial degeneracy at very high temperatures
and low densities (see Sect. 36.3.5). We then approximate the equation of state by
the simple form

P � Pe D <
�e
%T CK�

�
%

�e

��
: (36.1)

In the second term the exponent � is not a constant, allowing for non-relativistic and
relativistic degeneracy. It varies from � D 5=3 for % � 106 g cm�3 to � D 4=3 for
% � 106 g cm�3, while K� varies from the constant in (15.23) to that in (15.26).

The equation of hydrostatic equilibrium (2.4) yields as a rough estimate for the
central values (which we denote by subscript 0):

P0 � GMc N%
Rc

D f GM2=3
c %

4=3
0 : (36.2)

Here we have used the fact that P0 is almost given by the weight of the core
material alone and N% D 3Mc=.4�R

3
c/ is assumed to be proportional to %0. The

dimensionless factor f , containing, for example, the ratio N%=%0, is kept constant in
this consideration. Using (36.1) for the centre and eliminating P0 from (36.2) yields

<
�e
T0 D f GM2=3

c %
1=3
0 �K�%

��1
0 ���

e : (36.3)

On the right-hand side, the first term dominates in the non-degenerate case, while
the two terms are about equal for high degeneracy.

For a given mass Mc; (36.3) gives an evolutionary track in the lg%0–lgT0 plane
in Fig. 36.1, similar to the tracks shown in Fig. 28.2. Starting with rather small %0
and � D 5=3, the central temperature T0 grows with %0 and has a maximum at
%0max, after which T0 decreases again until T0 D 0 is reached at a density of 8%0max.
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Fig. 36.1 Schematic
evolution of the central values
T0 (in K) and %0 (in g cm�3/

for different core masses. The
dot-dashed line corresponds
to the left-hand part of the
dot-dashed line in Figs. 28.1
and 28.2. Five evolutionary
tracks are plotted which
illustrate the different cases
discussed in the text: A and B
correspond to case 1. B�

illustrates case 2, where the
core gains mass after it has
become degenerate and
undergoes a carbon flash. The
curves C , D correspond to
case 3, while curve E
corresponds to case 4

The behaviour of these evolutionary tracks is the same as that discussed in Chap. 28,
if there M is replaced by Mc (The way we have made our estimate here, keeping
f constant during contraction, is equivalent to the assumption of homology there.).
For example, in the non-degenerate case [first term on the right of (36.3) dominant],
the slope of the tracks is 1/3 as indicated on the left-hand side of Fig. 36.1, and
the tracks for different Mc are shifted at the same values of %0 like T0 � M

2=3
c , in

analogy to Sect. 28.1.
With sufficiently growing central density, relativistic degeneracy becomes impor-

tant, and � ! 4=3;K� ! K4=3. If we now write � D 4=3C � (where � ! 0 for
%=�e > 10

7 g cm�3/, we can replace (36.3) by

<
�e
T0 D %

1=3
0

�
f GM2=3

c �K.4=3C�/��.4=3C�/
e %

�
0

�
: (36.4)

This shows that with increasing %0 the temperature T0 does not become zero, but
rises again � %1=3 if

Mc > Mcrit D
�
K4=3

f G

�3=2
��2

e : (36.5)

Obviously the critical value of Mc obtained in (36.5) is of the order of the
Chandrasekhar mass MCh as in (19.29) and (19.30) [Note that a comparison of
(36.1) with (19.3) shows thatK4=3 D K�

4=3
e .]. In fact ifMc D Mcrit as defined here,

then the core at zero temperature is fully relativistic, degenerate, and in hydrostatic
equilibrium, which requiresMc D MCh.

We can therefore say that during contraction of a core withMc . MCh the central
temperature reaches a maximum and afterwards decreases because of degeneracy,
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while for Mc & MCh, the temperature continues to increase, roughly proportionally
to %1=30 .

We consider next the maximum temperature an evolutionary track reaches for
Mc < Mcrit in the non-relativistic regime. We simply set � D 5=3;K� D K5=3 in
(36.3) and introduceMcrit from (36.5), obtaining

<T0 D K4=3

�
Mc

Mcrit

�2=3 �
%0

�e

�1=3
�K5=3

�
%0

�e

�2=3
: (36.6)

This gives a maximum temperature T0max for

%0max

�e
D 1

8

�
K4=3

K5=3

�3 �
Mc

Mcrit

�2
� 2:38 � 105g cm�3

�
Mc

Mcrit

�2
; (36.7)

with the value

T0max D 1

4<
K2
4=3

K5=3

�
Mc

Mcrit

�4=3
� 0:5 � 109K

�
Mc

Mcrit

�4=3
: (36.8)

(Note that K4=3 and K5=3 have different dimensions.) For cores with Mc . Mcrit,
therefore, T0 cannot exceed �0:5 � 109 K. This is in rough agreement with the
“summit” of the dotted line in Fig. 28.1.

The events in the following stages depend sensitively on details of the material
functions, the initial models, and the numerical calculations. These factors can
decide, for example, whether core collapse is followed by an explosion, whether a
remnant is left, etc. In view of the uncertainties involved and the many complications
which can occur, it is not surprising that the present picture is not too clear (see
Heger et al. 2003 for an overview of possibilities). Nevertheless we will tentatively
classify the different evolutionary scenarios according to the core mass Mc after
helium burning. As can be seen, for example, from (36.3), the tracks for lower
mass are below those for higher mass. We distinguish four cases, each of which
is represented by one or more schematic evolutionary tracks in Fig. 36.1.

Case 1. If Mc < Mcrit � MCh, and if the envelope is not massive enough (due
either to the original mass or to mass loss), so that Mc cannot approach MCh

during the shell burning phase, T0 first grows in the non-degenerate regime until
a maximum is reached. Then the core becomes degenerate, starts to cool, and the
star must become a white dwarf. This is most likely the fate for most intermediate
mass stars, which evolve as single stars (Chap. 34; Fig. 34.7). Only if a star is a
member of a binary system and accretes sufficient mass at certain rates carbon can
finally be ignited in a flash. A very popular scenario is the double-degenerate one, in
which a CO-WD and a He-WD in a binary system merge due to the loss of angular
momentum by gravitational radiation. It would explain how the CO core would
reachMCh and why the spectrum would be devoid of hydrogen lines (the definition
of type I supernovae). From the shell in which the flash occurs, a helium detonation
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wave (see Sect. 36.2.4) starts, moving both out- and inwards (This is in fact a
simplified one-dimensional picture; in reality the flash occurs at a certain location,
and the front travels in all directions and even around the star.). When it arrives near
the centre, carbon will be ignited and a second (carbon) detonation front moves
outwards, too. In this double-detonation model the star will finally be disrupted
(for a summary see, for instance, Hillebrandt and Niemeyer 2000). Alternatively, in
the single degenerate scenario, the CO-WD accretes matter from a non-degenerate
companion. This could be a main-sequence star or a giant, for example, on the RGB.
If the mass transfer rate is favourable, the accreted matter is burnt hydrostatically
and the core grows in mass up toMCh. Again, the envelope is hydrogen free and the
spectrum would classify the supernova as of type I. In this scenario the previous loss
of matter in the pre-WD evolution is effectively reversed. A third possibility is that
explosions in the accreted helium layers shock the CO-core sufficiently to trigger a
nuclear runaway, although the core has not reached the Chandrasekhar mass. These
are the Sub-Chandrasekhar models. In all three cases the explosion of the star is due
to a thermonuclear runaway resulting from the carbon flash. These are the type Ia
supernovae. We will discuss basic facts of the carbon flash briefly in Sect. 36.2.

Case 2. If initially Mc < Mcrit, but if the remaining envelope is sufficiently
massive, so that because of shell burning, Mc can grow to MCh, the core becomes
degenerate and cools after having reached a maximum temperature. But %0 increases
with Mc, and finally carbon burning begins (e.g. by pycnonuclear reactions;
compare with Sect. 35.2). It starts in a highly degenerate state and is therefore
explosive. This carbon flash can occur in stars that have started on the main sequence
in the range 4 . M=Mˇ < 8, if their mass loss has not been too strong. However, as
we have mentioned before, this seems to be unlikely, although it cannot be excluded
completely, for example, in the case of extremely metal-poor or metal-free stars
(so-called Population III or First Stars), where mass loss may be significantly lower
than in stars of solar metallicity (Chap. 9). Since the spectrum in such an event would
contain hydrogen lines, as is the definition for type II supernovae, but the explosion
mechanism is that of a thermonuclear runaway, typical for type Ia supernovae, such
events are called supernovae of type 1.5. Whether they exist remains unclear.

Case 3. If Mcrit < Mc . 40Mˇ, the evolutionary track misses the non-relativistic
region of degeneracy. The core heats up, reaching successively higher nuclear fusion
phases. In a small mass range above the minimum mass to start carbon burning (this
critical mass is usually refered to as Mup; see Fig. 34.10), electron captures by Mg,
Na, and Ne reduce the pressure and a central collapse ensues. This is the fate of
some of the super-AGB stars of Sect. 34.8, if the mass of the resulting NeO-core
is initially below 1:37Mˇ to avoid Ne ignition, but reaches this critical value due
to shell burning. This will be discussed further in Sect. 36.3.4. The corresponding
CO-core mass limit is of order 2�4Mˇ. ForMc & 4Mˇ, photodisintegration of Ne
and Mg nuclei brings �ad below 4=3 and triggers a collapse. Both types of collapse
may lead to neutron-star formation and to the ejection of the envelope, the latter
mechanism also to black holes as the stellar remnants. It is assumed to cause the
standard type II supernovae, and will be introduced in Sect. 36.3.
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Case 4. : If Mc & 40Mˇ, the cores also reach the carbon burning in a non-
degenerate state as in Case 3. This mass limit is, as always, metallicity dependent,
and corresponds to helium-core mass of � 65Mˇ and an initial mass of � 140Mˇ.
After carbon burning the evolutionary tracks in Fig. 36.1 cross the region of pair
creation, which also reduces �ad. If �ad < 4=3 in an appreciable fraction of
the core, say, within 40 % of its mass, then the core collapses adiabatically until
the temperature of oxygen burning is reached. This may stop the collapse and
make the star explode; if not, the collapse would lead into the region of instability
because of photodisintegration, and the events would be as in Case 3. We will
discuss this in Sect. 36.3.5. The remnants of stars in this mass range will be neutron
stars (for lower masses), black holes by fallback on the proto-neutron star, or black
holes by direct formation. Pair-instability supernovae, a subclass of type II core
collapse supernovae, leave no remnant at all.

36.2 Carbon Ignition in Degenerate Cores

Consider stars starting with masses in the range 4 . M=Mˇ . 8 and assume
that they have almost no mass loss. After helium burning, they will form a
CO-core that is degenerate, and in the subsequent evolution, Mc grows owing to
shell burning until it comes close to MCh. During this phase the central density
increases with increasingMc (similar to a sequence of white dwarfs with increasing
mass). The energy released in the core during this contraction is transported by
electron conduction in the direction of the centre, where the temperature is smaller
and neutrino losses (see Sect. 18.7) carry away the energy. The increase of the
central density or of the temperature at the place of its maximum finally ignites
carbon burning.

36.2.1 The Carbon Flash

The ignition of carbon in degenerate CO-cores of mass Mc � MCh has already
been discussed in Sect. 35.2. As described there, the ignition of carbon may occur
in the centre or in the shell of maximum temperature. The general properties of
the flash are the same in both cases. We discuss here the central ignition in the
case of strong degeneracy, but recall that most likely only stars above 8Mˇ will
reach carbon ignition and this will happen off-centre at very modest degeneracy.
The carbon flash under such circumstances is described in the literature about super-
AGB stars, for example, by Garcı́a-Berro and Iben (1994).

In Fig. 36.2 the lg %0-lg T0 plane is shown again with an evolutionary
path of the centre. The stability behaviour of the degenerate core depends
critically on the question whether the energy balance is dominated by neutrino
losses ("CC � "� < 0: stable) or by carbon burning ("CC � "� > 0: unstable).
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Fig. 36.2 Schematic evolution of the central region during and after the carbon flash (heavy). It
corresponds to the evolution of type B� in Fig. 36.1. The flash starts when the central density
%0 (in g cm�3/ or the central temperature T0 (in K) is so high that the neutrino losses do not
overcome the energy generation by carbon burning. The temperature then rises almost at constant
density until degeneracy is removed. The dot-dashed line labelled � D 1 indicates where the gas
pressure is twice the (degenerate) pressure at temperature zero; it roughly separates the regions of
degeneracy and non-degeneracy. The broken line labelled C, O gives the temperature reached if
all the energy released by carbon burning is used to increase the internal energy. The dotted line
labelled Fe/˛ D 1 shows the points for which statistical equilibrium gives equal abundances of
iron and helium

The borderline "CC � "� D 0 bends down at a few 109 g cm�3, since "cc

here increases mainly with increasing density (pycnonuclear reactions, see
Sect. 18.4). Numerical calculations indicate that CO-cores reach the critical
border "CC � "� D 0 between stability and instability at a density of 2 �
109 g cm�3.

The slightest increase in temperature now makes "CC � "� > 0. Because of
degeneracy the pressure does not increase and there is no consumption of energy
through expansion. Therefore the temperature rises even more: a violent flash
occurs. As in the case of the helium flash (see Sect. 33.4) the involved matter heats
up at constant density until degeneracy is removed. Then it expands.

36.2.2 Nuclear Statistical Equilibrium

How violent the carbon flash can become is seen from a simple estimate. In a
mixture of equal parts of C and O the carbon burning can release 2:5�1017 erg/g and
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the subsequent oxygen burning twice this amount. If all this energy is used to heat
the material, it can reach the temperatures indicated by the dashed line labelled C, O
in Fig. 36.2. This line is somewhat curved since the specific heat depends slightly on
the density. At these temperatures of nearly 1010 K the energy of the photons exceeds
the binding energy of the nuclei, which are thus disintegrated. Photodisintegration,
for example, of Ne nuclei

20Ne C � !16 O C ˛; (36.9)

was discussed in Sect. 18.5.3. The inverse reaction of (36.9) can also occur, and the
photon generated by this process can disintegrate another Ne nucleus. The processes
are very similar to ionization and recombination of atoms. In nuclear statistical
equilibrium (NSE) the abundances of O, Ne, and ˛ particles can be derived from
a set of equations similar to the Saha equation (14.11):

nOn˛

nNe
D 1

h3

�
2�mOm˛kT

mNe

�3=2
GOG˛

GNe
e�Q=kT ; (36.10)

where GO; G˛ , and GNe are the statistical weights, while Q is the difference of
binding energies

Q D .mO Cm˛ �mNe/c
2: (36.11)

In addition to (36.10) there are two other conditions, one of which relates the
particle numbers to the density, the other one describing the initial composition,
since (36.9) and its inverse cannot change nO � n˛ . Of course, one cannot consider
a single reaction only, but has to take into account all reactions that can take place
simultaneously. For example, ˛ particles generated by (36.9) can also be captured
by 12C or 20Ne (The problem is similar when ionization of different elements takes
place simultaneously. They are not independent of each other, since all of them
produce electrons which influence all recombination rates.).

If the temperatures are sufficiently high, many nuclei are disintegrated by photons
and their fragments react again. The abundances of the different elements are then
determined by a set of “Saha formulae” of the type (36.10). The nucleus 56

26Fe as
the most stable one plays a crucial role in this statistical equilibrium. It can be
disintegrated by photons into ˛ particles and neutrons:

� C56
26 Fe � 13˛ C 4n: (36.12)

In order to determine the ratio nFe=na we consider quite general reactions of the
type

� C .Z;A/ � .Z � 2;A � 4/C ˛; (36.13)

� C .Z;A/ � .Z;A � 1/C n: (36.14)
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We start with the nucleus .26; 56/ D 56Fe and consider 13 reactions of type (36.13)
and four of type (36.14). Then the abundance ratios are all given by equations like
(36.10), and they can be combined to

n13˛ n
4
n

nFe
D G13

˛ G
4
n

GFe

�
2�kT

h2

�24 �
m13
˛ m

4
n

mFe

�3=2
e�Q=kT ; (36.15)

with
Q D .13m˛ C 4mn �mFe/c

2: (36.16)

If one assumes that the numbers of protons to neutrons (independently of whether
they are free or in nuclei) have a ratio np=nn D 13=15, as it is in the nucleus 56Fe,
then

nn D 4

13
n˛: (36.17)

This, for instance, would be approximately the case in a mixture in which 56Fe is by
far the most abundant heavy nucleus and its disintegration yields almost all neutrons
and ˛ particles. Then the left-hand side of (36.15) can be replaced by

�
4

13

�4
n17˛
nFe

: (36.18)

Ignoring the binding energies, we can write the density as

% D .56nFe C 4n˛ C nn/mu; (36.19)

where mu is the atomic mass unit. For given values of %, T , and the ratio
nn=n˛ [corresponding to (36.17)] with (36.15), (36.18) and (36.19) we have two
equations for nFe and n˛:

Suppose again that the ratio of protons to neutrons per unit volume, normally
called NZ= NN , is 13/15. Then equilibrium demands that all matter goes into 56Fe
(the nucleus of the highest binding energy per nucleon) for temperatures that are
not too high, and into 4He for high temperatures (see Fig. 36.3a). However, if we
assume NZ= NN D 1, then for the former temperatures 5628Ni is the dominant nucleus,
since it has the highest binding energy per nucleon of all nuclei with Z D N . With
increasing temperature the equilibrium shifts from 56Ni to 54 Fe+2p and finally to 14
4He. For very high temperatures it may even shift to the basic constituents, protons
and neutrons (see Fig. 36.3b).

The value NZ= NN at the occurrence of photodisintegration depends on the weak
interaction processes (ˇ decays) during the nuclear history of the stellar matter.
In any case, in equilibrium at moderate temperatures, one expects nuclei of the
iron group, which with increasing temperature disintegrate to ˛ particles and at
temperatures around 1010 K, which can also be reached in exploding cores, even
to protons and neutrons. In this case, (36.12)–(36.19) would have to be written for
56Fe, n, and p.
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a b

Fig. 36.3 (a) In the temperature-density diagram (T in 109 K, % in g cm�3) the curve separates
the regions in which equilibrium demands matter to be in the form of 4He and 56Fe, respectively,
for the case of NZ= NN D 13=15. (b) The corresponding equilibrium regions for NZ= NN D 1

36.2.3 Hydrostatic and Convective Adjustment

Even during the rapid helium flash the star remains very nearly in hydrostatic
equilibrium, and convection can carry away all the released nuclear energy with-
out becoming appreciably superadiabatic. The situation is completely different
if unstable carbon burning proceeds in a degenerate core on a time-scale of
milliseconds.

Consider the events after the onset of the carbon flash in the centre. The rapid
rise of the central temperature is sufficient for immediately starting higher nuclear
reactions, such as oxygen burning, which release additional energy. In one single
runaway the central temperature rises so much that statistical equilibrium between
Fe and He is reached, and eventually degeneracy is removed (see Fig. 36.2). Then
the pressure increases and the central region starts to expand. This will occur
roughly on a timescale �", in which the central temperature and the internal energy
u rise. Since PT =T � "CC=u, we have

�" D cP T

"CC
: (36.20)

The other regions of the core react on the central expansion on the hydrostatic
timescale �hydr � .G N%/�1=2 [compare with (2.19)], where N% is the mean density
of the core. As long as 	 WD �"=�hydr � 1 the core follows the central expansion
quasi-hydrostatically. If, however, 	 � 1, then the layers above cannot react rapidly
enough, and a compression wave will move outwards with the speed of sound. If the
push by the suddenly expanding burning region is sufficiently strong, an outwards
travelling shock wave may develop.

Owing to the energy release in the flash, a central convective core will form,
which has two effects. Part of the surplus energy is carried away (reducing the
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intensity of the flash), and new nuclear fuel is brought to the region of carbon
burning (enhancing the flash). A characteristic timescale for convection is �conv �
`m=vs, where `m is the mixing length and vs the local velocity of sound. Indeed
turbulent elements will scarcely move faster than vs, since otherwise shock waves
would strongly damp the motion. If 
 WD �"=�conv � 1, convection is able to carry
away all the nuclear energy released. If, however, 
 � 1, then convection cannot
carry away the released energy.

The timescales �hydr and �conv are very short indeed. For the central parts of the
core with % > 108 g cm�3, one finds typically �hydr � 0:1 s, and �conv is of the
same order. However, for T D 2 : : : 3 � 109 K, the local timescale �" for the flash is
of the order of 10�6 s. Therefore 	 and 
 are both � 1. This means that, instead of
hydrostatic adjustment, a compression wave will start outwards and that “convective
blocking” prevents a rapid spread of released energy in the core. The changes caused
by the flash in one mass element propagate comparatively slowly to other parts.

These estimates clearly show that the carbon flash and the following explosion
can be treated accurately only when the full hydrodynamical equations are solved.
The important role of convection and the propagation of burning fronts necessitate
three-dimensional models. Such models are the current state of the art, but will not
be the subject of this book.

36.2.4 Combustion Fronts

The local nuclear timescale �" at the onset of the flash is rather short. If a flash is
started somewhere in a degenerate CO-core, the burning proceeds at such high rates
that the fuel in this mass element is used up almost instantaneously. To be more
precise, the consumption is completed locally before the layers above can adjust.
Only then is the unburnt material ahead heated to ignition (either by compression or
by energy transport, which may be by convection), and the flash proceeds outwards.
But the burning is always confined to a layer of (practically) zero thickness. We have
an outward-moving combustion front, which can be of two different types.

We have seen that a shock wave develops. Matter in front penetrates the
discontinuity with supersonic velocity and is compressed and heated. If this suffices
to ignite the fuel, then the combustion front coincides with the shock front moving
outwards supersonically. This is called a detonation front. It releases enough
energy to lead to a complete stellar explosion, but matter ahead of the blast wave
cannot expand and ignites under typical white-dwarf conditions. Temperatures and
densities are so high that NSE is reached and is peaking around Ni. This is in conflict
with the presence of intermediate-mass elements seen in the spectra of some type Ia
supernovae.

If the compression in the shock does not ignite the fuel, then the ignition
temperature is reached owing to energy transport (convection or conduction). This
gives a slower, subsonic motion for the burning front and contains a discontinuity
in which density and pressure drop. This is a deflagration front. Since it allows the
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nucleosynthesis to occur at lower density and pressure, NSE peaks at lower mass
numbers and intermediate-mass elements can be created. Whether such deflagration
models can unbind completely the white dwarf is unclear. Higher-dimensional
simulations seem to be more promising to achieve this.

Obviously the speed of a deflagration front is controlled by that of energy
transport. This in turn depends on the conductivity (thermal or convective) and
on the temperature difference between the deflagration front and the material
ahead. Numerical modelling thus needs hydrodynamical simulations of convection.
Simple mixing length theory (Chap. 7), which has been useful for hydrostatic stellar
evolution phases, certainly will not suffice to compute accurate models.

In both cases the deviations from hydrostatic equilibrium are mainly confined
to a thin shell across which the pressure is discontinuous and all nuclear energy is
released. The momentum of the matter approaching a detonation front superson-
ically is balanced by the higher pressure behind the front; the momentum of the
matter approaching a deflagration front subsonically is balanced by the recoil of the
matter moving away from it behind the front. The front in both cases is unstable to
spatial perturbations, the scale of which is well below any numerical resolution in
the simulations, and must be represented by a physical subscale model.

For an account of the theory of the two types of combustion fronts, see Courant
and Friedrichs (1976), Landau and Lifshitz (1987), and Hillebrandt and Niemeyer
(2000). As with normal shock waves, the theoretical results follow from the
conservation of mass, momentum, and energy of the matter going through the
discontinuity. For energy conservation, however, it also has to be taken into account
that energy is released at the discontinuity. This makes the two types of solutions
(detonation and deflagration waves) possible, while the theory of normal shock
waves allows only that solution in which the density of matter going through the
discontinuity increases.

In principle, detonation fronts as well as deflagration fronts can occur in stars.
Which of the two will develop depends on the details of the transport mechanism,
which determines the motion of a deflagration front and of the preceding shock.

In some cases the explosion may start out with a slow deflagration front, which
allows some expansion of the layers ahead of the front, but which switches at
some point into a detonation, when the front begins to progress supersonically.
These are the delayed detonation models, which combine the advantage of allowing
intermediate-mass elements to be created and deliver typical supernova energies,
which are of order 1051 erg.

The details of type Ia supernova explosions can be uncovered only by very
complicated and challenging numerical simulations that take into account both
hydrodynamics and nuclear processes, and should resolve scales ranging from that
of white dwarfs (� 1; 000 km) down to that of the burning flame of a few cm. Early
one-dimensional hydrodynamical calculations for detonation models were done by
Arnett (1969) and Ivanova et al. (1977). A classical deflagration model, still in one
dimension, is by Nomoto et al. (1976) and Nomoto (1984). State-of-the-art models
are mostly 3-dimensional; a summary and discussion can be found in the reviews
by Hillebrandt and Niemeyer (2000) and Roepke (2008).
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36.2.5 Carbon Burning in Accreting White Dwarfs

Rather similar phenomena to those described above for CO-cores of single stars
can occur in CO white dwarfs which are members of binary systems. They can
receive appreciable amounts of matter from their companions. The accreted matter
is compressed and heated, and its ignition can give rise to various phenomena.

For example, if helium is accreted with relatively low rates (about 10�8Mˇ/
year), a helium flash will be ignited in a shell of high density. The result can be
a double detonation wave: a helium detonation front running outwards and a carbon
detonation front going to the centre. As a result the white dwarf will be disrupted.

For higher accretion rates the new material can burn quietly near the surface,
thus simply increasing the mass of the CO white dwarf. When it approaches MCh,
the density in the inner parts becomes so large that carbon burning starts either
in the centre, or in the shell of maximum temperature. This results in a flash,
and a deflagration (or detonation) front starts, as discussed above for single stars.
The white dwarf will also be disrupted. Both possibilities correspond to Case 1 of
Sect. 36.1. It is this mechanism which is generally believed to cause the Type Ia
supernovae. Note that it has to be invoked, since the spectra of these supernovae
show no hydrogen, and because evolving single stars of M < 10Mˇ may lose so
much mass that their CO-core can never come close to MCh.

36.3 Collapse of Cores of Massive Stars

According to Fig. 36.1 one can expect that the cores of massive stars will not cool,
because of non-relativistic degeneracy, but will heat up during core contraction until
the next type of nuclear fuel is ignited. The core then is either non-degenerate (larger
core mass Mc/ or degenerate but to the upper right of the “summit” of the line
˛ D 3=4 in Fig. 28.1. In both cases the gravothermal heat capacity is negative, and
the burning is self-controlled. In the following we discuss stars with core masses in
the range Mch < Mc < 40Mˇ. The evolutionary paths of these stars will avoid the
region of ˛ < 3=4, where in Fig. 28.1 the arrows point downwards.

After going through several cycles of nuclear burning and contraction, the core
will heat up to silicon burning. Nuclear burning in several shell sources has produced
layers of different chemical composition, as shown in Fig. 36.4. Finally the central
region of the core reaches a temperature at which the abundances are determined
by nuclear statistical equilibrium. In this stage the core is in a peculiar state
in several respects. Since the electron gas dominates the pressure, and since at
temperatures of T9 � 10 the electrons are relativistic (kT � 1:7mec

2), the adiabatic
exponent �ad is close to 4/3. In the more massive stars photodisintegration of
heavy nuclei reduces �ad even more (like partial ionization). In addition general
relativistic effects increase the critical value of �ad above 4/3, and the core becomes
dynamically unstable. As a consequence core collapse sets in. For less massive stars
the relativistic electrons are degenerate with high Fermi energies. Then electron
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Fig. 36.4 The chemical composition in the interior of a highly evolved model of a population I
star with an initial mass of 25Mˇ, close to the end of hydrostatic nuclear burning. The mass at this
time is reduced to 16Mˇ due to mass loss. In the upper panel the mass concentrations of important
elements are plotted against the mass variablem. Below the abscissa, in the middle of the figure, the
approximate location of shell sources in different nuclear burning phases is indicated by the grey
rectangles. In the lower panel the run of temperature (lgT : scale at left axis) and density (lg % :
right axis) is given to identify typical burning conditions for these nuclear shells (data courtesy
R. Hirschi, published in Hirschi et al. 2004)

captures by heavy nuclei reduce the pressure and start the collapse. For this stage
we now discuss a simple solution.

36.3.1 Simple Collapse Solutions

Suppose we have a core at the onset of collapse, say, with central values
%0 D 1010 g cm�3; T0 � 1010 K. The electrons are relativistically degenerate. Then
the equation of state is polytropic and can be written as

P D K 0%4=3; (36.21)

whereK 0 D K4=3=�
4=3
e [compare with (15.26)]. Therefore the core can be described

by a polytrope of index 3. We have already discussed the collapse of such a
polytrope in Sect. 19.11. As we have seen there, the parameter � appearing in the
modified Emden equation (19.81) is a measure of the deviation from hydrostatic
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equilibrium, which corresponds to the value � D 0. Solutions with finite radius are
possible only for values 0 < � < �m D 6:544 � 10�3, where � D �m corresponds
to the strongest deviation from equilibrium. For � D �m no homologous collapse of
a polytrope of n D 3 is possible.

We now adapt the formalism of Sect. 19.11 for application to the collapse of
stellar cores. The solution of the spatial structure is given by the function w.z/;
which obeys (19.81). We denote the value of z at the surface of the collapsing core
by z3, so that w.z3/ D 0; for � D 0 one has z3 D 6:897. It increases with � and
reaches the maximum value 9.889 for � D �m. The limit � D �m is reached when
the surface of the core collapses with the acceleration of free fall.

If we apply (19.75) to the surface we have

z3 Ra D �4
3
�
.K 0/3=2p
�G

z3
a2
: (36.22)

If this is equal to the free-fall acceleration �GMc=.az3/2, then

� D �m D 3

4

r
�G

K 03
GMc

z33
: (36.23)

On the other hand, (19.67) and (19.81) give

%

%0
D w3 D � � 1

z2
d

d z

�
z2
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d z

�
; (36.24)

and therefore with r D az; Rc D az3, and

N% D 3

R3c

Z Rc

0

%r2dr; (36.25)

after some manipulation we find

N%
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D � �
�
3

z

�
dw

d z

��
zDz3

: (36.26)

If we apply this to the limit case � D �m in which dw=d z vanishes at the surface
(compare with Fig. 19.3), we find N%=%0 D �m.

The core may start out from the (marginally stable) equilibrium for which � D 0.
Here the actual acceleration at the surface is zero, since gravity and pressure gradient
cancel each other. But if the pressure is slightly decreased, the core will start to
collapse (� > 0). The numerical integration of (19.81) for different values of � in
the range 0 	 � 	 �m gives values for z3 and N%=%0 in the ranges 6:897 	 z3 	 9:889

and 0:01846 	 N%=%c 	 0:0654 (Goldreich and Weber 1980). If we determine the
masses for different collapsing polytropes, we can use the expression
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Fig. 36.5 Schematic picture of the velocity distribution in a collapsing stellar core obtained in
numerical calculations, and taken at two subsequent times t1 and t2. Note the two regimes: on the
left jvrj increases in the outward direction. It corresponds to a (roughly) homologously collapsing
part, while on the right jvrj decreases with m. This corresponds to the free-fall regime, where
velocities are supersonic. The run of the (negative) sound speed is indicated by the dashed lines,
and the location, where the infall becomes supersonic, by arrows. With time the mass of the “inner
core” (defined as the part left of the maximum infall velocity) is decreasing. Velocities are of the
order of 109 cm s�1 (after Müller 1997)

Mc 
 4�a3z33%0
3

N%
%0

D 4�z33
3

�
K 0

�G

�3=2 N%
%0
; (36.27)

which has been derived with the help of (19.67). Equation (36.27) for � D 0 gives
the Chandrasekhar mass MCh, as can be seen from (19.29), (19.30) and (36.26). In
fact all masses obtained for different values of � in the narrow interval 0 	 � 	 �m

are close to the Chandrasekhar mass, namelyMCh 	 Mc 	 1:0499MCh.
Only core masses in this small interval can collapse homologously. Now we

know that MCh � ��2
e . Electron captures during the collapse increase �e and

reduceMCh. Therefore the upper bound forMc for homologous collapse decreases.
If initially �e D �e0 andMCh D MCh0, then after some time not more than the mass

Mc D 1:0499

�
�e0

�e

�2
MCh0 � ��2

e (36.28)

can collapse homologously (Note that, strictly speaking, the whole formalism
should be repeated for a time-dependentK 0.). Numerical integrations in fact indicate
that during collapse the mass of the homologously collapsing part of the core
decreases with increasing �e as given by (36.28).

This simple collapse model has been generalized by Yahil and Lattimer (1982)
for values of the polytropic index in (36.21) between 6=5 < �ad < 4=3.
Figure 36.5 shows the infall velocity as a function of m as obtained from numerical
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computations, in agreement with the models by Goldreich and Weber, and Yahil
and Lattimer. The maximum separates the homologously collapsing inner core (left)
from the nearly free-falling outer part of the core (right). The outer core collapses
supersonically; the sound speed is exceeded at a location somewhat interior to the
maximum collapse velocity. During collapse the boundary between the two regimes
is not fixed but moves to smallerm values: mass from the inner core is released into
the free-fall regime. This corresponds to the decrease of MCh with increasing �e as
discussed above.

The collapse is extremely short-lived; it takes a time which is of the order
of the free-fall time. If the core starts with an initial density of 1010 g cm�3 one
obtains �ff � .G N%/�1=2 � 40 ms at the onset of collapse, while it is 0.4 ms for
N% D 1014 g cm�3.

36.3.2 The Reflection of the Infall

Because of the collapse, the density finally approaches that of neutron stars (nuclear
densities of the order 1014 g cm�3/. Then the equation of state becomes “stiff,” i.e.
the matter becomes almost incompressible. This terminates the collapse.

If the whole process were completely elastic, then the kinetic energy of the
collapsing matter would be sufficient to bring it back after reflection to the state
just before the collapse began. This energy can be estimated roughly from

E � GM2
c

�
1

Rn
� 1

Rwd

�
� GM2

c

Rn
� 3 � 1053erg; (36.29)

where Mc is the mass of the collapsing core, while Rn and Rwd are the typical radii
of a neutron star and of a white dwarf. We compare this with the energyEe necessary
to expel the envelope, which had no time to follow the core collapse,

Ee D
Z M

Mwd

Gm dm

r
� GM2

Rwd
� 3 � 1052erg (36.30)

forM D 10Mˇ. Realistic estimates bringEe down to 1050 erg, and therefore only a
small fraction of the energy involved in the collapse of the core is sufficient to blow
away the envelope. In predicting what happens after the bounce, one has to find out
what (small) fraction of the energy of the collapse can be transformed into kinetic
energy of outward motion. Remember that the energy estimated in (36.29) would
suffice only to bring back the whole collapse to its original position–and no energy
would be left for expelling the envelope. But if a remnant (neutron star) of massMn

remains in the condensed state, the energy of its collapse is available. The question
is how this can be used for accelerating the rest of the material outwards.

A possible mechanism would be a shock wave moving outwards. The remnant
is somewhat compressed by inertia beyond its equilibrium state and afterwards,
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acting like a spring, it expands, pushing back the infalling matter above. This
creates a pressure wave, steepening when it travels into regions of lower density.
The kinetic energy stored in such a wave may be sufficient to lift the envelope into
space. However, the following problem arises. One can imagine that the neutron star
formed has a mass of the order of the final Chandrasekhar mass MChF. The rest of
the collapsing matter still consists mainly of iron. When, after rebounce, this region
is passed by the shock wave, almost all of its energy is used up to disintegrate the
iron into free nucleons. Therefore only a small fraction of the initial kinetic energy
remains in the shock wave and is available for lifting the envelope.

In fact the major part of the energy estimated in (36.29) of order 1053 erg is
lost in the form of neutrinos (Sect. 36.3.3). Only 1 % of it–1051 erg–is actually
converted into kinetic energy, and only a few per cent of this is escaping from the
supernova in the form of light. Nevertheless, this tiny part of the collapse energy
makes supernovae the brightest stellar objects in the universe.

36.3.3 Effects of Neutrinos

Before collapse, neutrinos were created by the processes described in Sect. 18.7,
and their energy is of the order of the thermal energy of the electrons. During
collapse, neutrino production by neutronization becomes dominant. As soon as
the density approaches values of 1012 g cm�3, inverse ˇ decay becomes more
pronounced, and the equilibrium shifts to increasingly neutron-rich nuclei. During
this neutronization neutrinos are released. In connection with supernova SN 1987A,
neutrinos have been observed in underground neutrino detectors–manifest evidence
that core collapse is indeed connected with the supernova phenomenon. The typical
energy of the neutrinos released during collapse is of the order of the Fermi energy
of the (relativistic) electrons. Therefore when using the relation % D �enemu and
(15.11) and (15.15) one finds
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�1=3
: (36.31)

If heavy nuclei are present, the neutrinos interact predominantly through the so-
called “coherent” scattering (rather than scattering by free nucleons):

� C .Z;A/ ! � C .Z;A/: (36.32)

The cross section is of the order of

�� �
�
E�
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�2
A210�45cm2; (36.33)
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which with (36.31) gives

�� � A2
�
%

�e

�2=3
10�49cm2: (36.34)

This allows an estimate of the mean-free-path `� of neutrinos in the collapsing core.
If n D %=.Amu/ is the number density of nuclei, then with (36.34)

`� � 1

n��
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��5=3
1:7 � 1025cm: (36.35)

Can `� become comparable with the dimension of the collapsing core, say, 107

cm? With �e D 2;A � 100, we obtain from (36.35) `� D 107 cm for .%=�e/ D
3:6 � 109 g cm�3. We may bring (36.35) into a more convenient form by putting in
such typical values for �e, A, and % such that it yields a typical length

`� � 1

n��
D 200

�eA

�
2%

1010�e

��5=3
5:8 � 106 cm: (36.36)

Obviously we cannot simply assume that the neutrinos escape without interaction.
The more the density rises, the smaller `� , and the collapsing core becomes opaque
for neutrinos. Then they can only diffuse through the matter via many scattering
processes. For sufficiently high density the diffusion velocity becomes even smaller
than the velocity of the collapse. Calculations show that the neutrinos cannot escape
by diffusion within the free-fall time �ff of the core if % & 3 � 1011 g cm�3: the
neutrinos are then trapped.

In the schematic picture of the core structure (Fig. 36.6), the place where
the infall velocity of matter equals the velocity of outward neutrino diffusion is
indicated as the “neutrino trapping surface”. Below it the neutrinos are trapped;
above it they diffuse outwards until reaching the so-called “neutrinosphere”. This
provides the boundary of the opaque part of the core and is located one mean free
path `� beneath the surface. From here the neutrinos leave the core almost without
further interaction.

Detailed calculations have to deal with a radiation-hydro-problem, where one has
to solve the neutrino transport problem in a six-dimensional phase space, defined by
three spatial and three momentum coordinates, one of the latter being the neutrino
energy, for example. In particular one has to consider and calculate the detailed
distribution function of the neutrinos (rather than their average energy). This is
obvious since the cross section as given in (36.33) depends on the energy of the
neutrinos: those with low energy can escape more easily than those of high energy.
This problem, which is essentially that of solving the Boltzmann equation, requires
very extensive and challenging computations and has not been solved so far in all
aspects for realistic physical conditions. Another important aspect is the detailed
consideration of all neutrino interactions with matter, including neutrino oscillations
and cross sections for the different neutrino families. The neutrino transport is
essential for modelling type II supernova explosions as the neutrinos deposit part of
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Fig. 36.6 Schematic picture of a collapsing stellar core at bounce. The short arrows correspond
to the velocity field. At the sphere labelled core shock, the shock is formed. Inside this sphere the
matter is almost at rest. Above the shock there is a still collapsing shell in which neutrinos are
trapped. But on top there is a shell from which neutrinos can escape. One can define a neutrino
photosphere, a neutrinosphere, analogous to the photosphere in a stellar atmosphere

their energy below the neutrinosphere, possibly raising the energy to levels sufficient
to expel the envelope.

The congestion of the neutrinos, resulting from the opaqueness of the core,
influences the further neutronization. With increasing density the neutrinos become
degenerate with a high Fermi energy. Electron capture becomes less probable,
since the new neutrinos have to be raised to the top of the Fermi sea. Around a
density of 3�1012 g cm�3 the so-called ˇ-equilibrium is reached, where the reaction
pCe� $ nC�e proceeds in both directions. However, the neutrino capture reaction
is also subject to the requirement that the resulting electron has to have an energy
above the Fermi energy of the degenerate electron gas. In total, with increasing
density, ˇ-equilibrium shifts to the right-hand side. Since the neutrinos can no
longer escape, the number of leptons (electrons and neutrinos) stays constant. �ad

has increased to a value close to 4=3, which corresponds to relativistic degeneracy.
The collapse continues until % > 1014 g cm�3, the nuclear density. At such densities
the equation of state is very stiff, and �ad & 2 due to the repulsive nuclear forces
of the strong interaction. Therefore the collapse is stopped. Further neutronization
can proceed only as far as the neutrinos diffuse outwards. This enables further
electron captures on protons, lowering the proton-to-neutron ratio. Most of this takes
place in the neutronization shell between trapping surface and neutrino photosphere
(Fig. 36.6) where the density is several 1011 g cm�3. During this phase, which can
last a few to 10 s, the proto-neutron star evolves into a neutron star.

As in the case of thermonuclear supernova explosions caused by the carbon flash
detailed models are possible only by two- and three-dimensional hydrodynamical
simulations, taking into account nucleosynthesis and the problem of neutrino
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transport in full detail. Another major ingredient is the equation of state at nuclear
matter density, finite temperature, and for extremely neutron-rich matter. Such
computations are extremely demanding, require always the latest generation of
supercomputers, but are still from giving final answers concerning the details of
core collapse supernova explosions. Some of these simulations have resulted in
successfully exploding pre-SN models, other have failed or remained inconclusive.
We therefore refer the reader to some recent reviews about the subject, given by
Woosley and Janka (2005), Mezzacappa (2005), and Janka et al. (2007).

36.3.4 Electron-Capture Supernovae

While electron capture plays an important role in all core-collapse supernovae, it
is particularly crucial in the specific case of degenerate NeOMg cores reaching a
critical density of 4:5 � 109g cm�3, equivalent to a mass of 1:37Mˇ (Nomoto et al.
1984). These conditions are reached, according to the models by Nomoto and others,
within helium cores slightly less massive than 2:5Mˇ in stars of an initial mass of
about 9Mˇ or somewhat higher, i.e. the super-AGB stars of Sect. 34.8 (see also
Fig. 34.10).

The core collapse is initiated here by the capture of electrons on 24Mg and 20Ne,
since this is energetically preferred over keeping the electrons at high energy in
the Fermi distribution. This reduces pressure, which is mainly provided by the
degenerate electrons, and contraction sets in. During the ensuing collapse oxygen
burning starts, but the released nuclear energy is not sufficient to stop the collapse,
since the energy budget is dominated by the loss due to neutrinos emitted in
the electron-capture process. The nuclear burning proceeds to nuclear statistical
equilibrium, which, in the course of the collapse, first shifts to ˛-particles and
in the final phase to neutrons and protons. The result is a neutron star of low
mass (. 1:37Mˇ). According to numerical simulations (Kitaura et al. 2006) the
supernova explosion is driven by the neutrino heating mechanism, and comparably
small amounts of metals, in particular of O, C, and Ni (< 0:015Mˇ), are ejected.
The overall explosion energy is of order 1050 erg, and therefore much lower than in
type II supernovae from more massive stars. These results agree with properties of
the Crab supernova remnant and pulsar, and thus this historical supernova is believed
to be of the electron-capture type. It could therefore be evidence for a previous
super-AGB evolution. However, the absence of hydrogen in the Crab nebula points
to a previous binary star evolution.

36.3.5 Pair-Creation Instability

From Fig. 36.1 one can see that evolutionary tracks for cores of sufficient mass enter
a region on the left-hand side of the diagram where also �ad < 4=3 (Fowler and
Hoyle 1964). In this region many photons have an energy exceeding the rest-mass
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energy of two electrons, h� � 2mec
2. Therefore electron-positron pairs can be

spontaneously formed out of photons in the fields of nuclei. Admittedly the pairs
do annihilate, creating photons again, but there is always an equilibrium number of
pairs present. The mean energy of the photons h� � kT equals the rest energy of
the electron–positron pair only at a temperature of 1:2 � 1010 K, but even at 109 K
appreciable pair creation occurs because of the high-energy photons of the Planck
distribution.

For an account of the thermodynamic effects of pair creation, see, for example,
Weiss et al. (2004). In many respects pair creation can be considered in analogy
to ionization or dissociation (a photon being “ionized” or “dissociated” into a pair
e�; eC). Regarding the stability of massive cores, the crucial point is that the pair
creation reduces �ad, as incomplete ionization or photodisintegration does. Indeed,
if the gas is compressed, not all the energy is used to increase the temperature, but
part of it is used to create pairs. Other reductions of �ad are due to high radiation
pressure according to (13.7), (13.12) and (13.15) and to relativistic electrons. All
these effects bring �ad below the critical value 4=3 for dynamical instability.

The total number of electrons consists of those from pairs and those from normal
ionization of atoms. With increasing % the Fermi energy rises. This diminishes the
possibility for pair creation, since newly created electrons now need an energy
exceeding the Fermi energy. Correspondingly the instability region in Fig. 36.1 is
limited to the right at a density of 5 � 105 g cm�3.

The pairs created are not relativistic, having �ad D 5=3 (Note that a photon
with h� D mec

2 can only create a pair with zero kinetic energy!). For higher
temperatures there are so many pairs that they dominate and bring �ad of the
whole gas–radiation mixture slightly above 4=3, which limits the instability region
towards high temperatures. In summary, the three effects discussed in the preceding
paragraphs explain the island nature of the pair-creation instability in Fig. 36.1.

For the evolution of cores into the region of pair instability, radiation pressure
is important, and therefore one cannot use our simple formulae of Sect. 36.1.
Furthermore, for a core instability, it is not sufficient that the evolutionary track
of the star’s centre moves through the area with �ad < 4=3. Since in reality a mean
value of �ad over the whole core decides upon its dynamical stability (Sect. 40.1),
an appreciable fraction of the core mass must lie in that density–temperature range.
According to numerical results this happens to cores of masses of 40Mcrit and more,
where Mcrit is defined in (36.5). The corresponding main-sequence masses depend
on the uncertain mass loss, but a realistic guess seems to be that stars initially
with M > 80 � 100Mˇ later develop pair-unstable cores. This, however, assumes
that no appreciable mass is lost due to radiation-driven stellar winds during the
main-sequence phase. In addition, violent radial pulsations by the -mechanism
(Sects. 41.1 and 41.5) may lead to a significant mass reduction for stars with
M & 60Mˇ. Both effects depend on metallicity. Therefore for solar metallicity
models predict a maximum helium core mass of about 10Mˇ, while for metal-free
Pop. III stars, they may exceed the critical value for pair instability. It may be that
this kind of supernova explosions may be restricted to the very early universe.
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The final fate of stars this massive is rather uncertain. Numerical calculations
indicate that, in a collapsing core of this type, oxygen is ignited explosively and the
core runs into the (unstable) region of photodisintegration, which may cause a total
disruption of the star. There is also the possibility of violent pulsations caused by the
instability, which lead to explosive mass loss, but no total disruption. The star may
thus (for increasing main-sequence mass) end in a black hole after having expelled
large parts of its hydrogen/helium layers, be totally disrupted, or collapse directly
into a black hole. The situation and the different outcomes have been summarized
by Heger et al. (2003).

We also mention that rotation is playing a crucial role also for the final phases of
massive star evolution, although the basic effects as discussed in this chapter remain
the same. Details can be found in the textbook by Maeder (2009).

36.4 The Supernova-Gamma-Ray-Burst Connection

Gamma-ray bursts (GRBs) are short flashes of � -radiation (energies in the range of
100 keV), which reach us from all directions in the sky and cosmological distances.
They typically last for several ten seconds, but the total duration varies between
fractions of a second to minutes. Repetitive events were never reported. The burst
results from matter accelerated to highly relativistic speeds. The energy of this
collimated matter jet is converted into radiation by an as yet not fully understood
mechanism. The energy of the GRB is of the order of 1051 erg, which is the same
order of magnitude as the kinetical energy of a core collapse supernova.

GRBs were detected in the 1970s by the military Vela-satellite, and most
extensively investigated scientifically by the Batse detector on board of the Compton
Gamma Ray Observatory. The event frequency is a few per day. While the shortest
GRBs are thought to be the result of the merging of two neutron stars (or that
of a neutron star with a black hole), the longer lasting type (longer than � 2 s)
has been associated with the core collapse of massive stars, mainly due to the
association of GRBs with star-forming regions, and the coincidence, both in time
and place, with SNe of type Ib and Ic. These are core collapse supernovae, which
lack hydrogen in their spectra. For a review about this evidence, and more details
about the connection, see Woosley and Bloom (2006).

Why do a few massive stars create highly collimated jets of matter, being ejected
at more than 99.9 % of the speed of light, while the majority eject their envelopes
more or less as a spherical shell? The answer is believed to lie in an exceptionally
high rotation of the precursor’s core. For very massive stars (M > 30Mˇ), the
core collapses into a fast-rotating black hole and infalling matter assembles in an
accretion disk around it (the collapsar model). There are several mechanisms under
discussion, how the binding energy of the disk or the rotation energy of the black
hole can be converted into the collimated relativistic outflow. Alternatively, GRBs
may originate from highly magnetized (B � 1�1015 G), fast-rotating neutron stars
with rotation periods of milliseconds, thus rotating almost at breakup speed (the
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magnetar model). The rotation energy would be of order 1052 erg, and the spin-
down luminosity would be of the right order for a GRB.

The fact that hydrogen is absent in the spectra requires high mass loss rates as for
Wolf-Rayet stars, but these should not be so high as to reduce the mass too much.
Since mass loss scales somehow with metallicity, it is expected that GRBs should
be found mainly in low-metallicity regions, and occur more frequently in the early
epochs of the universe.

Although many details are still not understood, it seems to be evident that long-
duration GRBs are core collapse supernovae with very massive progenitors that have
extremely fast-rotating cores.



Part VIII
Compact Objects

Stellar evolution can lead to somewhat extreme final stages. We have seen in
Chaps. 33 and 35 that the evolution tends to produce central regions of very high
density. On the other hand it is known that stellar matter can be ejected (see
Chap. 34). The mechanisms are only partly (if at all) understood, but they do
exist according to observations (normal mass loss, planetary nebulae, explosions).
It may be that in certain cases the whole star explodes without any remnant left (see
Chap. 36). Often enough, however, only the widely expanded envelope is removed,
leaving the condensed core as a compact object. Relative to “normal stars” these
objects are characterized by small radii, high densities, and strong surface gravity.

There are three types of compact objects, distinguished by the “degree of
compactness”: white dwarfs (WD), neutron stars (NS), and black holes (BH).
Typical values for WD are R � 10�2Rˇ; % � 106 g cm�3, escape velocity
vE � 0:02c; their configuration is supported against the large gravity by the pressure
of highly degenerate electrons (instead of the “thermal pressure”, which dominates
in the case of normal stars). For NS one has typically R � 10 km, % � 1014 g cm�3,
vE � c=3; their pressure support is provided by densely packed, partially degenerate
neutrons. This is the dominant species of particles since normal nuclei do not exist
above a certain density. Indeed a NS represents very roughly a huge “nucleus” of
1057 baryons.

As a simple illustration, suppose that in both cases (WD and NS) ideal, non-
relativistic degenerate fermions (of mass me or mn/ provide the pressure balancing
the gravity. The stars then are polytropes of index n D 3=2. With a mass-radius
relation (19.28), where the constant of proportionality can be seen to be � K �
1=mfermion, we have R � 1=mfermion. The ratio of mn to me then provides the ratio
of typical radii for WD and NS of the same mass. The pressure–gravity balance by
degenerate neutrons can only be maintained up to limiting masses corresponding to
about 2 � 1057 fermions.

Clearly for objects with gravity fields like those in NS general relativity becomes
important. It will be the dominant feature for the last group of compact objects,
namely BH with R � 1 km and vE D c:
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The first WD was detected long before theoreticians were able to explain it,
whereas NS were predicted theoretically before they were, accidentally, discovered
in the sky. Today, also the existence of BH is proven beyond doubt.

The physics of compact objects is interesting and complex enough to fill special
textbooks (e.g., Shapiro and Teukolsky 1983). We refer to these for details and limit
ourselves to indicating a few main characteristics.



Chapter 37
White Dwarfs

It is characteristic for configurations involving degenerate matter that mechanical
and thermal properties are more or less decoupled from each other. Correspondingly
we will discuss these two aspects separately. When dealing with the mechanical
problem (including the P and % stratification, theM –R relation, etc.) one may even
go to the limit T ! 0. Of course, such cold matter cannot radiate at all and it is
more appropriate to denote these objects as “black dwarfs”. The thermal properties,
on the other hand, are responsible for the radiation and the further evolution of white
dwarfs. The evolution indeed leads from a white dwarf (WD) to a black dwarf, since
it is–roughly speaking–the consumption of fossil heat stored in the WD which we
see at present (Concerning the evolution to the white-dwarf stage see Chaps. 34–
36, and for a much deeper and more detailed review of properties of white dwarfs,
Althaus et al. 2010b).

37.1 Chandrasekhar’s Theory

This theory treats the mechanical structure of WD under the following assumptions.
The pressure is produced only by the ideal (non-interacting) degenerate electrons,
while the non-degenerate ions provide the mass. The electrons are supposed to be
fully degenerate, but they may have an arbitrary degree of relativity x D pF=mec;

which varies as %1=3. Therefore we no longer have a polytrope as we had in the
limiting cases x ! 0 and x ! 1. The equation of state can be written as

P D C1f .x/ ; % D C2x
3 I x D pF=mec ; (37.1)

according to (15.13) and (15.15), which also define the constants C1 and C2, while
(15.14) gives f .x/.

In order to describe hydrostatic stratification we start with Poisson’s equation
(19.2), in which we eliminate d˚=dr by (19.1) and substitute P and % from (37.1)
obtaining
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Differentiating the left-hand side of (15.12) with respect to x; one obtains an
expression for df .x/=dx which shows that
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with
z2 WD x2 C 1 : (37.4)

Therefore (37.2) becomes
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and as in Sect. 19.2 we replace r and z by dimensionless variables � and ':
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where zc is the central value of z, characterizing the central density. Then from (37.5)
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This is Chandrasekhar’s differential equation for the structure of WD. We write it in
the form

d2'

d�2
C 2

�

d'

d�
C
�
'2 � 1

z2c

�3=2
D 0 (37.8)

and see that it is very similar (differing only in the parenthesis) to the Emden
equation (19.10) for polytropes. In fact (37.8) becomes the Emden equation for
indices n D 3 and n D 3=2 if we go to the limits z ! 1 (i.e. x ! 1) and z ! 1

(i.e. x ! 0), respectively. The central conditions are now

� D 0 W ' D 1 ; ' 0 D 0 : (37.9)

Starting with these values, (37.8) can be integrated outwards for any given value
of zc. The density stratification is found if �e (which enters via C2) is also specified:

% D C2x
3 D C2.z

2 � 1/3=2 D C2z
3
c

�
'2 � 1

z2c

�3=2
: (37.10)
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Table 37.1 Numerical results of Chandrasekhar’s theory of white dwarfs

%c=�e �2eM �eR

1=z2c xc �1 .��2d'=d�/1 (g cm�3) (Mˇ) (km)

0 1 6.8968 2.0182 1 5.84 0
0.01 9.95 5.3571 1.9321 9:48 � 108 5.60 4.170
0.02 7 4.9857 1.8652 3:31 � 108 5.41 5.500
0.05 4.36 4.4601 1.7096 7:98 � 107 4.95 7.760
0.1 3 4.0690 1.5186 2:59� 107 4.40 10.000
0.2 2 3.7271 1.2430 7:70 � 106 3.60 13.000
0.3 1.53 3.5803 1.0337 3:43 � 106 2.99 16.000
0.5 1 3.5330 0.7070 9:63 � 105 2.04 19.500
0.8 0.5 4.0446 0.3091 1:21 � 105 0.89 28.200
1.0 0 1 0 0 0 1
Subscripts c and 1 refer to centre and surface, respectively (After Cox and Giuli 1968, vol. II,
Chap. 25)

The surface is reached at � D �1, where % becomes zero, i.e. after (37.1), (37.4) and
(37.6)

� D �1 W x1 D 0 ; z1 D 1 ; '1 D 1=zc : (37.11)

The value of R is
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r
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1
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�1 ; (37.12)

andM can be found if we replace r and % by (37.6) and (37.10):
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The integrand in the second equation (37.13) was simply replaced by the derivative
on the left-hand side of (37.7).

Table 37.1 gives the results of integrations for different values of zc from 1 to 1,
i.e. from xc D 1 (fully relativistic) to xc D 0 (non-relativistic), with the resulting
M –R relation being plotted in Fig. 37.1. As in the simple case of polytropes
(Sect. 19.6), we find an M –R relation with dR=dM < 0, but the exponent of M
is no longer constant as it is in (19.28). The stellar mass M cannot exceed the
Chandrasekhar limit MCh as given by (19.30),
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Fig. 37.1 Sketch of the classical mass–radius relation of white dwarfs according to
Chandrasekhar’s theory (assuming that the pressure is provided only by an ideal, degenerate
electron gas). The arrows indicate the direction into which a non-equilibrium configuration is
pushed if the gravitational force (“Gr.”) is larger or smaller than the pressure gradient (“Pr.”).
Corrections are necessary at both ends of the curve (dashed)

MCh D
�
2

�e

�2
� 1:459Mˇ ; (37.14)

since this limit case (zc ! 1) coincides with a polytropic structure of index n D 3.
These characteristics certainly call for a simple explanation, since they contradict

the everyday experience that spheres of given material (say iron) become larger with
increasing mass. This experience is not only obtained by handling small iron spheres
but also by measurements of planets.

Let us consider rough averages (taken over the whole star) of the basic equation
of hydrostatic equilibrium (10.2). Replacing there the absolute value of dP=dm by
P=M andm=r4 by M=R4, we obtain

P

M
� GM

4�R4
; (37.15)

where P is some average value. We replace it by the average density % � M=R3,
using a degenerate equation of state,

P � %� �
�
M

R3

��
: (37.16)

The pressure term fp, i.e. the left-hand side of (37.15), and the gravity term fg, on
the right-hand side, are then

fp � M��1

R3�
I fg � M

R4
: (37.17)
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Their ratio f must be unity for hydrostatic equilibrium:

f WD fg

fp
� M2��R3��4 D

�
M1=3R ; for � D 5=3

M2=3 ; for � D 4=3 :
(37.18)

These equations describe the mass–radius relation for white dwarfs in the limiting
cases of Chandrasekhar’s theory. Since the pressure of a fully degenerate, non-
relativistic gas with � D 5=3 also depends on ��5=3

e (15.23), so does fP. For He
and CO white dwarfs, �e D 2, but for 56Fe it is 2.15, and therefore the mass–radius
relation is shifted to smaller radii for the same mass, as the term �

5=3
e appears on the

right-hand side of (37.18). This shift is visible in Fig. 37.3.
Suppose we have a given stellar mass M < MCh and non-relativistic electrons

with � D 5=3. Then the star can easily find an equilibrium by adjusting R such that
f D 1. If we now slightly increase M , then f > 1 (gravity exceeds the pressure
force), and R must decrease in order to regain equilibrium (f D 1). This explains
the structure of the R–M relation (cf. Fig. 37.1).

However, if the electrons are relativistic (� D 4=3), then f is independent of
R. Equilibrium can be achieved only by adjusting M to a certain value MCh. If
M < MCh, then f < 1, i.e. the dominant pressure term makes the star expand. This
makes the electrons less relativistic and increases � above the critical value 4/3. For
M > MCh; f > 1, and the dominant gravity term makes the star contract; but this
does not help either, and the star must collapse without finding an equilibrium. So
MCh is quite obviously a mass limit for these equilibrium configurations. This mass
limit again depends on �e, with a power of 4=3 [cf. (15.26) and (19.30)].

37.2 The Corrected Mechanical Structure

The admirable lucidity of the theory of Sect. 37.1 is based completely on the
simplicity of the equation of state for an ideal, fully degenerate electron gas used
there [cf. (37.1)]. It certainly requires corrections near both ends of the mass
range. For cold (or nearly cold) configurations of M ! 0 we should get the
behaviour R ! 0; % � constant as for planets (or even smaller spheres) instead
of R ! 1; % ! 0 (as we have already explained above). At least there should
be the possibility for a smooth transition to the planets, which in this connection
can well be considered cold bodies. The corrections to be applied here are due to
the electrostatic interaction. Near the limiting mass, on the other hand, we have
encountered very high densities, with the simple theory yielding % ! 1 for
M ! MCh. In this domain we have to allow for effects of the weak interaction
(inverse ˇ decay) and the possibility of pycnonuclear reactions. Some influences on
the equation of state have already been indicated in Chaps. 4 and 5.
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37.2.1 Crystallization

Let us first treat the main effects of electrostatic interaction in a cold plasma with
nuclei of type .Z;A/ and electrons of density ne. We have seen in Sect. 16.4 that
matter in WD can be crystallized, and we will come back later to the condition for
this. Let us suppose that the ions form a regular lattice and the electrons are evenly
distributed. For the density encountered in WD the Wigner–Seitz approximation is
not too bad, and so we divide the lattice into neutral Wigner–Seitz spheres of radius
R0 D Z1=3rea0 (re = average separation of the electrons in units of the Bohr radius
a0). Each sphere contains one ion (point charge CZ in the centre) andZ electrons (a
uniformly distributed charge �Z/. In order to find the Coulomb energy ZEC of the
sphere we take concentric shells of radius y and charge �3Zey2dy=R03 and remove
them to infinity, thereby overcoming the potential difference Ze.1 � y3=R03/. An
integration over the whole sphere gives the energy per electron as

�EC D 9

10

Ze2

R0 D 9

10

Z2=3e2

rea0
� 2

Z

A1=3
%
1=3
6 keV ; (37.19)

with %6 D %=106 g cm�3. Even for T ! 0 the ions cannot sit at rest precisely
on their points in the lattice. Instead, the ions of mass m0 D Amu and density n0
oscillate around their positions with some ion plasma frequency !E (with !2E �
Z2e2n0=m0) such that the zero-point energy is ZEzp D 3„!E=2 per ion. With % D
n0Amu we have per electron

Ezp D 3

2

r
4�

3

„e
Amu

%1=2 � 0:6

A
%
1=2
6 keV : (37.20)

For 12C (Z D 6;A D 12) and % D 106 g cm�3, the energies are �EC � 5:2 keV
and Ezp � 0:05 keV � �EC. The ratio �EC=Ezp � ZA2=3%�1=6 varies only very
little with % and increases towards heavier elements.

Therefore cold configurations (“black dwarfs”) are crystallized. The ions form
a regular lattice which minimizes the energy; they perform low-energy oscillations
around their average positions, where they are kept by mutual repulsive forces.

The energy per electron is now

E D E0 C EC C Ezp � E0 C EC < E0 ; (37.21)

where E0 is the mean energy of an electron in an ideal Fermi gas. The influence of
EC on the pressure is seen from

P � � @E

@.1=n/
� � @E0

@.1=n/
� @EC

@.1=n/
< P0 ; (37.22)
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Table 37.2 Values of P=P0, where P includes the Coulomb interaction and P0 is for an ideal
Fermi gas

P=P0 P=P0 P=P0
x % � 2=�e (Z D 2) (Z D 6) (Z D 26)

0.05 2:44 � 102 0.760 0.564 �0.063
0.1 1:95 � 103 0.880 0.782 0.467
1 1:95 � 106 0.988 0.975 0.933

x is the relativity parameter; % is in g cm�3 (After Salpeter 1961)

where the derivatives are taken for constant entropy, and P0 is the pressure of
the ideal Fermi gas. The lowering of E and P due to EC < 0 comes from the
concentration of all positive charges into the nucleus, while the negative charges
are much more uniformly distributed. The average electron–electron distance is
thus larger than the average electron–nucleus distance, and the repulsion is smaller
than the attraction. A few calculated values of the ratio P=P0 for different Z and
relativity parameter x are given in Table 37.2. As expected the reduction of P
increases with the charge Z and with decreasing % (decreasing Fermi energy).
It will therefore be the dominant correction at small M , providing there the
described reduction of R. The above approximation breaks down, of course, when
it yields P . 0.

Apart from modifying the pressure, crystallization has an additional effect, which
changes the chemical structure and therefore the run of pressure and density, too.
This effect is chemical or phase separation and is due to the fact that different
elements cannot coexist in arbitrary amounts in the solid phase. After the previous
evolution most low- and intermediate-mass stars end as CO white dwarfs, with an
almost flat chemical profile in the centre (Fig. 37.2). When crystallization occurs,
the phase transition for the first (the lighter) element requires a lower abundance of
this element in the solid phase than in the liquid (or gas) phase. The excess amount
of this element (carbon in our example) will flow up to the liquid phase, above the
crystallization boundary, creating there a local density inversion. This is the case,
because even further away from the solid core there is the original abundance of
the lighter element, and since this is now lower than in the region just above the
crystallized core, the average molecular weight is higher. This induces convection,
redistributing the elements in the liquid phase. Of course, with the local changes
in the lighter element abundance connected is one in the abundance of the heavier
element (oxygen). This effect is now continuing with decreasing temperature and
a growing solid core (It can be understood in greater detail with the help of phase
diagrams, as done in the textbook by Salaris and Cassisi (2005, Chap. 7)). The result
is a modification of the chemical and therefore mechanical structure of the white
dwarf, and a rather smooth, monotonic run of element abundances, as can be seen
in Fig. 37.2, which shows the abundances for carbon and oxygen in a white dwarf
before and after crystallization.
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Fig. 37.2 The abundances of
carbon and oxygen within the
core of a white dwarf of
0:609Mˇ, which resulted
from a full evolutionary
calculation (Althaus et al.
2010a) of a star of initially
2Mˇ. The grey lines show
the chemical profile before
and the black ones after
crystallization and phase
separation have taken place
(plot courtesy L. Althaus and
A. Serenelli)

37.2.2 Pycnonuclear Reactions

In this and the following (Sect. 37.2.3) we will encounter two types of nuclear
reactions which occur at very high densities and which lead to a change of the
chemical composition without thermonuclear reactions. Though they are believed
to be quite irrelevant for most white dwarfs, except maybe for the densest and
coolest ones, they are of principal interest, as they may lead–in the extreme–to
a composition defined by nuclear equilibrium (Sect. 37.2.4). Such effects will be
important for neutron stars (Sect. 38).

For the very high densities occurring near the upper end of the mass range,
pycnonuclear reactions have to be considered (cf. Sect. 18.4). These were defined
as nuclear reactions which depend mainly on % (instead of T , as in the case of
thermonuclear reactions). They can occur even at T ! 0 as a consequence of
the small oscillations of the nuclei in the lattice with energy Ezp, combined with
the tunnel effect. Reactions set in rather abruptly at a certain density limit %pyc

and use up all fuel within a short time (say 105 years) once % & %pyc. The
limits %pyc for the different reactions are not well known, since the relevant cross
sections are very uncertain. The values of %pyc increase towards heavier elements;
the orders of magnitude are %pyc � 106, 109, and 1010 g cm�3 for burning of 1H,
4He, and 12C, respectively. Central densities of white dwarfs may reach values up
to % � 106 � 109g cm�3. However, hydrogen white dwarfs do not exist due to the
previous stellar evolution, and He and CO white dwarfs reach the critical densities
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for the respective burning by pycnonuclear reactions only in very extreme cases. In
general, therefore, the composition and structure of white dwarfs is not affected by
this kind of nuclear reactions.

37.2.3 Inverse ˇ Decays

Inverse ˇ decay also becomes important at high densities. Consider a nucleus
(Z � 1;A) which is ˇ-unstable and decays under normal conditions to the stable
nucleus .Z;A/C e� C N� (we always drop the subscript “e” for the neutrinos), the
decay energy being Ed . If .Z;A/ is surrounded by a degenerate electron gas with a
kinetic energy at the Fermi border

EF D mec
2Œ.1C x2/1=2 � 1� ; (37.23)

such that EF > Ed, then .Z;A/ becomes unstable against electron capture, i.e. we
have the inverse ˇ decay

.Z;A/C e� ! .Z � 1;A/C � : (37.24)

In general, we have to deal with the particularly stable even–even nuclei .Z;A/
and then Ed.Z � 1;A/ < Ed.Z;A/. If EF > Ed.Z;A/, then also EF >

Ed.Z � 1;A/; and the inverse ˇ decay proceeds further to .Z � 2;A/. The new
nuclei are now stabilized by the Fermi sea, i.e. they cannot eject an electron with
Ed.< EF/, since it would not find a free place in phase space. EF increases with %.
Therefore for each type of nucleus .Z;A/ there is a threshold %n of the density above
which neutronization occurs. For 1H and 4He (%n D 1:2�107 and 1:4�1011 g cm�3/
this is of no interest, since clearly %n � %pyc such that pycnonuclear burning would
set in before neutronization can occur. And even for the decay 12C ! 12B ! 12Be
one still has %n D 3:9 � 1010 g cm�3 > %pyc, but the order of critical densities is
reversed for heavy nuclei. The decay 56Fe !56 Mn !56Cr, for example, has a
threshold %n D 1:14 � 109 g cm�3 < %pyc. Although neither inverse ˇ decays nor
pycnonuclear reactions are important processes that might change a white dwarf’s
chemical composition, which is the result of the evolution of its stellar predecessor,
they demonstrate that for high densities, the outcome of the thermonuclear processes
occurring during a star’s life might be changed in its remnant and that the structure
might be determined by the density and the energy of the Fermi sea of degenerate
electrons.

37.2.4 Nuclear Equilibrium

In “normal” stars we were used to imposing the chemical composition as an
arbitrary free parameter. This was reasonable, since the usual transformation
of the elements by thermonuclear reactions takes a sufficiently long time, and
configurations with a momentary (non-equilibrium) composition are astronomically
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relevant. This may be different for very high densities, at which processes such as
pycnonuclear reactions or inverse ˇ decay can transform the nuclei in relatively
short timescales. The other extreme, then, is to impose only the baryon number
per volume and ask for the corresponding equilibrium composition. In reality the
approach to nuclear equilibrium may be too slow to be accomplished. But one
can imagine having reached it after an artificial acceleration by suitable catalysts,
leading to the expression “cold catalysed matter”. Because of their history, WD will
scarcely have reached that stage of equilibrium (they usually consist of 4He, or 12C
and 16O, instead of 56Fe, etc.). But in order to see the connection between different
types of objects, we briefly describe a few characteristics of equilibrium matter.

The equilibrium composition can be found by starting with a certain type of
nucleus .Z;A/ and varying Z and A until the minimum of energy is obtained. For
isolated nuclei the counteraction of attracting nuclear and repelling Coulomb forces
gives a maximum binding of the nucleons at 56Fe (cf. Sect. 18.1). Therefore 56Fe will
be the equilibrium composition for small % .<8�106 g cm�3/. With increasing % this
balance is shifted to heavier and neutron-enriched nuclei, since replacing a proton by
a neutron decreases the repulsive Coulomb force inside the nucleus; and the ˇ decay,
which would then result in isolated nuclei, is here prohibited by the filled Fermi
sea of the surrounding electrons. Another influence comes from the lattice energy
(37.19), which gives only a small correction to P at high %, but reduces the Coulomb
energy at the surface of the nucleus. The sequence of equilibrium nuclei is (the
maximum density in g cm�3 is shown in parenthesis): 56Fe.8�106/, 62Ni.2:8�108/,
64Ni.1:3 � 109/; : : : ;120Sr.3:6 � 1011/, 122Sr.3:8 � 1011/, 118Kr.4:4 � 1011/. For
% > 4 � 1011 g cm�3 it is energetically more favourable that further neutrons are
free rather than bound in the nucleus: the “neutron drip” sets in. The composition
consists of two phases: the lattice of nuclei (with sufficient electrons for neutrality)
plus free neutrons. Their number increases with %, and at % � 4 � 1012 g cm�3
their pressure Pn even exceeds Pe. At 2 � 1014 g cm�3, the nuclei are dissolved,
leaving a degenerate neutron gas with a small admixture of protons and electrons
(see Sect. 38.1). The P � % relation can be calculated, giving the equation of state
as shown in Fig. 16.2.

Once an equation of state is given, one can easily integrate the mechanical
equations outwards, starting from a variety of values for the central pressure which
leads to a pair of valuesM;R. TheM –R relations obtained in this way by Hamada
and Salpeter (1961) are plotted as solid curves in Fig. 37.3 for different compositions
(He, C, Mg, Fe, and equilibrium composition). For comparison the relations for an
ideal Fermi gas (Chandrasekhar’s theory) are plotted for �e D 2 (e.g. 4He, 12C,
24Mg) and �e D 2:15 (56Fe); in the latter case, the mass limit is already lowered
to MCh � 1:25Mˇ. Relative to these classical models there is a clear reduction
of R, particularly at small M , owing to the Coulomb interaction reducing P . This
effect increases with Z. The curve for 56Fe shows a maximum of R beyond which
it decreases for M ! 0. In fact such a maximum of R (�0:02; 0:05; 0:12ˇ for Fe,
He, H, respectively) occurs for all compositions at values ofM between a few 10�3
to 10�2Mˇ. In this regime the equation of state is not well known; it is certainly
completely dominated by Coulomb effects, and the inhomogeneous distribution of
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Fig. 37.3 R–M relation for white dwarfs. Dashed lines indicate solutions of Chandrasekhar’s
equation for non-interacting gases with �e D 2 .4He, 12C, 16O : : :) and �e D 2:15 .56Fe). The
other curves are for He, C, Mg, Fe, and equilibrium composition; they include interaction of the
nuclei (After Hamada and Salpeter 1961)

the electrons has to be considered. In any case, we find here the natural transition
between WD .dR=dM < 0/ and planets .dR=dM > 0) (Note that Jupiter with
R � 0:1Rˇ and M � 10�3Mˇ is not far from this border; in fact its radius is far
aboveRmax for He and close to that of H, so that it must consist essentially of H.).

Towards large M the curves for C, Mg, and Fe show kinks at the mass limit.
These are due to a phase transition in the centre, since %c reaches one of the limits
described above. For 12C we find here %c D %pyc, and pycnonuclear reactions then
transform 12C ! 24Mg, which by inverse ˇ decay becomes 24Ne. Models on the
lower branch beyond the kink consist of Ne cores and C envelopes. The curve for
24Mg reaches Mmax when %c D %n, and inverse ˇ decay gives central cores of
24Ne. For 56Fe we see the result of the inverse ˇ decay to 56Cr at Mmax and to 56Ti
at the following second kink (beyond which the models consist of 56Ti cores, 56Cr
shells, and 56Fe envelopes). The curve for equilibrium composition, which coincides
with 56Fe for % . 8 � 106 g cm�3, is below and to the left of all other curves;
it always has the largest average �e. At the maximum M.� 1:0Mˇ/ one finds
%c � 2 � 109 g cm�3, with 66Ni nuclei giving a relatively large �e. Towards the
end of the plotted equilibrium curve, 120Kr is reached and the first neutrons are
freed (From here follows the sequence of equilibrium configurations which leads
to neutron stars, see Chap. 38.). The whole curve appears fairly smooth, since the
change of the composition here proceeds in small steps via neighbouring nuclei,
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Fig. 37.4 R–M relation obtained from numerical white dwarf models. For comparison, the
relations by Hamada and Salpeter (1961) for white dwarfs consisting of pure He, C, or Fe are
repeated (black lines, indicated by “HS” following the element label). The numerical results were
obtained for white dwarfs with an effective temperature of 4,000–5,000 K. These are the shorter
grey lines with the same line style as the HS-curves. The computations were restricted to a narrow
mass range resulting from realistic previous stellar evolution models. The dashed black line with
the label “He .Teff D 2� 104/” is for a white dwarf with this effective temperature (data courtesy
L. Althaus, after Panei et al. 2000)

while the transit of a non-catalysed composition to equilibrium is first delayed by
large thresholds and then occurs in a big jump.

Concerning inhomogeneous models of WD with non-equilibrium composition,
we briefly mention the case of a low-mass envelope of light elements (particularly
1H) being placed on a WD of 4He or 12C and 16O. This may happen by mass
exchange in close binary systems. Aside from possible instabilities during the onset
of nuclear burning (which can lead to the ejection of a nova shell), there is a
strong influence on the equilibrium radius described by d lgR=d lgMH of the order
10 : : : 102. This means that the addition of a 1H envelope of only 1 % ofM increases
R by about 50 % and more. In fact the white dwarf will scarcely be recognizable as
such. Although WD originating purely from single star evolution will also have
envelopes of lighter elements, these are typically at least two orders of magnitude
less massive, and the radius increase is correspondingly less drastic.

The M–R relation by Hamada and Salpeter (1961) shown in Fig. 37.3 is in
fact a very good approximation for old white dwarfs with very cold (effective)
temperatures, as Fig. 37.4 demonstrates. Here we compare the Hamada and Salpter
relations with those obtained from full numerical models for white dwarfs with pure
He, C, or Fe cores, and He–He envelopes, except for the He-WDs, which have a
pure H envelope. The envelope masses range from 3 � 10�4Mˇ for the He-WDs
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to 10�2Mˇ for the others. Another He-WD sequence obtained from models with
a much higher Teff of 2 � 104 K demonstrates how white dwarfs initially have
much larger radii but approach the cold configurations during the cooling process.
Based on mass and radius determinations of observed objects, the existence of white
dwarfs with iron cores is sometimes claimed. So far, however, corrections to the
radius shifted all objects back to the CO- or He-WD sequence. Such objects would
indeed be a challenge to stellar evolution theory (cf. Chaps. 34 and 35).

Once L and Teff of a white dwarf have been determined accurately enough,
the Stefan-Boltzmann law (11.14) yields the radius. The mass–radius relation
then delivers the mass of the white dwarf. This is the basis for the initial–final
mass relation (Fig. 34.7). However, it depends on the assumption about the core
composition of the white dwarf. In most cases, one can safely assume a CO-WD, as
this is, at the present age of the universe, the most likely.

The connection with other types of configurations is seen in Fig. 38.3, which
gives the M –R relation for cold catalysed matter (equilibrium composition). When
going along the curve in the direction of increasing %c, one encounters extrema of
M (open circles) in which the stability properties change. An example is the point
at M D Mmax for the white-dwarf sequence, beyond which a branch of unstable
models follows (see the discussion of Sect. 38.2).

37.3 Thermal Properties and Evolution of White Dwarfs

In the very interior of a WD, the degenerate electrons provide a high thermal
conductivity. This, together with the small L, does not allow large temperature
gradients. The situation is different when going to the outermost layers. With
decreasing % the matter is less and less degenerate, and the dominant heat transfer
becomes that by radiation (or convection), which is much less effective. Therefore
we expect to find a non-degenerate outer layer in which T can drop appreciably and
which isolates the degenerate, isothermal interior from outer space.

We simplify matters by assuming a discontinuous transition from degeneracy to
non-degeneracy (ideal gas) at a certain point (subscript 0). For the envelope we use
the radiative solution (11.25) for a Kramers opacity (� D �0PT

�4:5/ and a zero
constant of integration:

T 8:5 D BP2 I B D 4:25
3�0

16�acG

L

M
: (37.25)

Replacing P by <%T=� and solving for % here, we have

% D B�1=2 �
<T

3:25: (37.26)
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The transition point is assumed to be where the degenerate electron pressure equals
the pressure of an ideal gas, i.e. according to (16.6)

%0 D C
�3=2
1 T

3=2
0 I C1 D 1:207 � 105 �

�
5=3
e

cgs : (37.27)

This density %0 is reached according to (37.26) at a temperature T D T0 given by

T 3:50 D B

C3
1

�<
�

�2
D #

L=Lˇ
M=Mˇ

; (37.28)

where all factors are comprised in # . For typical compositions and values of �0, one
has roughly

T0 � #2=7
�
L=Lˇ
M=Mˇ

�2=7
�
�
L=Lˇ
M=Mˇ

�2=7
5:9 � 107 K : (37.29)

This simple relation between L and T0 will turn out to be essential for deriving
the cooling time of a white dwarf, (37.42). For M D Mˇ and the range L=Lˇ D
10�4 : : : 10�2, (37.29) yields T � 4:2 : : : 16� 106 K, which is, by assumption, also
the temperature in the whole (isothermal) interior. Typical values for the density at
the transition point are then, according to (37.27), of the order of %0 � 103 g cm�3
(i.e. � %c/.

An idea of the radial extension R � r0 of the non-degenerate envelope is easily
obtained from (11.34). We neglect Teff..104 K) against T0 and get

R � r0

r0
� <T0
�r

R

GM
� 0:82

R=Rˇ
M=Mˇ

T0

107 K
: (37.30)

(The numerical factor is given for � D 4=3;r D 0:4:) The relative radial extension
of the non-degenerate envelope then is typically 1 % or less, i.e. a few 10 km, since
R � 10�2Rˇ and M � 1Mˇ. This means that the radius of a WD is well
approximated by the integrations which assume complete degeneracy throughout,
as long as Teff can indeed be neglected. As we saw in Fig. 37.4, WD models with
more massive envelopes and high temperatures might be up to 50 % larger than the
cold configurations.

The rather high internal temperatures of 106 	 	 	 107 K set a limit to the possible
hydrogen content in the interior. If hydrogen were present with a mass concentration
XH, we would expect hydrogen burning via the pp chain. For average values
T D 5 � 106 K, % = 106 g cm�3, (18.63) gives "pp � 5 � 104X2

H erg g�1 s�1, and
the luminosity for M D 1Mˇ would be

L=Lˇ � Mˇ
Lˇ

"pp � 2:5 � 104X2
H ; (37.31)
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such that the observed L 
 10�3Lˇ allows only XH . 2 � 10�4. Stability
considerations (Sect. 25.3.5) indeed rule out that the luminosity of normal WD is
generated by thermonuclear reactions, which was first pointed out by Mestel (1952).
A stable burning could only be expected in nearly cold configurations that produce
their extremely smallL (“black” or “brown” dwarfs) by pycnonuclear reactions near
T D 0.

If there are no thermonuclear reactions, then which reservoirs of energy are
involved when a normal WD loses energy by radiation? The means for obtaining
the answer are provided in Sect. 3.1. For a configuration in hydrostatic equilibrium
the virial theorem (3.9) requires � PEi C PEg D 0.

The potential energy in the gravitational field Eg.< 0/ is given by (3.3). The
total internal energy of the star Ei D Ee C Eion consists of the contributions from
electrons and ions. By � we mean an average of the quantity � 0, defined by the
relation

� 0u D 3
P

%
; (37.32)

where u is the internal energy per unit mass. For highly degenerate electrons, � 0
varies from � 0 D 2 (non-relativistic) to � 0 D 1 (relativistic case). For the ions,
� 0 D 2 if they are an ideal gas [cf. (3.5)]. If there is crystallization, the contributions
uC of Coulomb energy and up of lattice oscillations (phonons) have to be considered.
For the static Coulomb part we note that uC D neEC=%, with EC � %1=3 according
to (37.19). Then one finds from (37.22) that PC=% D uC=3, i.e. � 0 D 1. The situation
is more difficult with up, but this contributes relatively little.

Summing up all effects, the average over the whole WD will obviously be
somewhere in the range 1 < � < 2. As in “normal” stars we have a simple relation
between Ei and Eg; the absolute values of both being of the same order.

The total energy isW D EiCEg. The energy equation requiresL D � PW , which
together with the virial theorem [compare with (3.12)]

L D � PW D �� � 1

�
PEg D .� � 1/ PEi : (37.33)

Therefore L > 0 requires a contraction . PEg < 0/ and an increase of the internal
energy . PEi > 0/. So far, it is the same as with normal, non-degenerate stars. The
crucial question is how Ei is distributed between electrons (Ee) and ions (Eion).

We recall the situation for a normal star with both electrons and ions being non-
degenerate. Then there is equipartition with Eion � Ee � T , such that also Ei D
Eion C Ee � T I PEi > 0 means PT > 0. Thus the loss of energy (L > 0) leads to
a heating ( PT > 0). This was expressed in Sect. 25.3.4 by saying that the star has
negative gravothermal specific heat, c� < 0.

For demonstrating the behaviour of a WD, let us simply assume that the electrons
are non-relativistic degenerate and the ions form an ideal gas. Then � D 2 and
L D � PEg=2, i.e. the star must contract, releasing twice the energy lost by radiation.
Since –Eg � 1=R � %1=3, we have PEg=Eg D .1=3/ P%=% (Here % is some average
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value.). The compression, however, increases the Fermi energyEF of the electrons.
Their internal energy is Ee � EF � p2F � %2=3, such that PEe=Ee D .2=3/ P%=%. So
we have a simple relation between PEg and PEe:

PEe � 2
Ee

Eg

PEg D �Ee

Ei

PEg : (37.34)

Here Ei is introduced via the virial theorem in the form Eg D �2Ei.
If the WD is already cool, then Eion � Ee and Ei D Eion C Ee � Ee. This

means PEe � � PEg D 2L, and nearly as much energy as released by contraction is
used up by raising the Fermi energy of the electrons. With PEe � � PEg, the energy
balance L D � PEion � PEe � PEg becomes

L � � PEion � � PT : (37.35)

Therefore, the ions release about as much energy by cooling as the WD loses by
radiation. The contraction is then seen to be the consequence of the decreasing ion
pressure (even though Pion is only a small part of P ). In spite of the decreasing ion
energy, the whole internal energy rises, since PEion C PEe � L. This evolution tends
finally to a cold black dwarf; then the contraction has stopped and all of the internal
energy is in the form of Fermi energy.

Of course, the relations just derived should have somewhat different numerical
factors, since � is not exactly 2 (a certain degree of relativity in the central part, the
ion gas not being ideal, etc.). But the essence of the story remains the same.

The foregoing discussion opens the possibility of arriving at a very simple theory
of the cooling of WD. We start with the energy equation (4.48), setting there

"g D �cv PT C T

%2

�
@P

@T

�
v

P% ; (37.36)

which follows from the first equation (4.17). We now integrate (4.48) over the whole
star, taking not only "n D "� D 0, but also neglecting the compression term in
(37.36),

� L �
Z M

0

cv PT dm � cv PT0M ; (37.37)

where an isothermal interior is assumed with T D T0. If the ions are an ideal gas,
then

cion
v D 3

2

k

Amu
: (37.38)

For the specific heat of the degenerate electrons one can derive (Chandrasekhar
1939, p. 394)
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cel
v D �2k2

mec2
Z

Amu

p
1C x2

x2
T Œx D pF=mec�

� �2k

2

Z

Amu

kT

EF
; for x � 1 : (37.39)

The ratio (for x � 1)
cel
v

cion
v

D �2

3
Z
kT

EF
(37.40)

is small for small kT=EF and not too large Z. In the numerical examples below we
will take cv D cion

v . Then (37.37) describes L as given by the change of the internal
energy of the ions.

In (37.28) we eliminate L with (37.37) and obtain a differential equation for T
(where we drop the subscript 0 for the interior):

PT D � Lˇ
Mˇ

1

cv#
T 7=2 : (37.41)

This can be rewritten with (37.29) as � PL � L12=7, which together with R �
constant describes the motion in the HR diagram. Equation (37.41) is easily
integrated from t D 0 when the temperature was much larger than it is now, to
the present time t D 	 . The result gives the cooling time

	 D 2
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Mˇ
Lˇ

cv#T
�5=2 D 2

5
cv
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�
Mˇ
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#

�2=7
cv

�
M

L

�5=7
� 4:7 � 107years

A

�
M=Mˇ
L=Lˇ

�5=7
: (37.42)

Here we have used (37.28) and (37.29). For A D 4;M D Mˇ and L=Lˇ D 10�3
one has 	 � 109 years. Equation (37.42) is the result of Mestel’s model for the
evolution of white dwarfs (Mestel 1952). For CO-WDs, A � 14, and the cooling
time of a WD withL D 10�4Lˇ is estimated to be of the order of 2 Gyrs, indicating
already that some very cool WDs are remnants of the earliest phases of galactic
evolution. However, they are very dim, and difficult to observe except for the closest
ones. Note that the more massive a WD is, and the lighter its main elements (He,
CO, or ONe, depending on its initial mass and previous evolution), the longer will
be cooling time.

The specific heat cv is obviously very important. Larger values of cv give a slower
cooling ( PT � 1=cv/, i.e. a larger cooling time (	 � cv). The simplest assumption
would be cv D cion

v D 3k=.2Amu/, but this requires several corrections. For small
M (i.e. moderate %) and larger T and Z, one cannot neglect the contribution of the
electrons. From (37.40) we have cel

v � 0:25cion
v for T D 107 K, M D 0:5Mˇ and a

carbon–oxygen mixture.
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Fig. 37.5 Schematic
variation of the specific heat
per ion with the temperature
T in white-dwarf matter

For small T the ions dominate completely: cv D cion
v , but their specific heat is

influenced by crystallization. We indicate only a few aspects of the rather involved
theory for these processes (e.g. Mestel and Ruderman 1967; Shaviv and Kovetz
1976; Isern et al. 1997).

The properties of the ions depend critically on two dimensionless quantities, 
c

and T=�. The ratio 
c of Coulomb energy to kinetic energy of the ions is defined
in (16.25). For 
c � 102 a heated crystal will melt (or a cooling plasma will
crystallize), which determines the melting temperature Tm given in (16.26). For

c < 1 the thermal motion does not allow any correlation between the positions
of the ions, no lattice is possible, and the ions behave as a gas.

The other ratio, T=�, contains a characteristic temperature � which is essen-
tially the Debye temperature and is defined by

k� D „˝p ; ˝p D 2Ze

Amu
.�%/1=2 ; (37.43)

with˝p being the ion plasma frequency [cf. the zero-point energy (37.20) where we
used !E D ˝p=3]. This gives

� D he

kmu
p
�

Z

A
%1=2 � 7:8 � 103 K 	 Z

A
%1=2 (37.44)

(% in g cm�3/. k� is a characteristic energy of the lattice oscillations, which cannot
be excited for T=� < 1. For typical WD composed of C, O, or heavier elements,
one has � < Tm.

Figure 37.5 shows how the specific heat Cv per ion changes with T . Starting
at very large T (
c � 1), the ions form an ideal gas. Each degree of freedom
contributes kT=2 to the energy (i.e. k=2 to Cv/, and Cv D 3k=2. With decreasing
T one finds an increasing correlation of the ion positions owing to the growing
importance of Coulomb forces in the range 
c � 1 : : : 10. This gives additional
degrees of freedom, since energy can go into lattice oscillations, and Cv increases
above 3k=2, with the maximum of Cv D 3k being reached when the plasma
crystallizes at T D Tm. With further decreasing T gradually fewer oscillations are
excited, and the specific ion heat Cv even drops below 3k=2 around T D �. For
T ! 0 finally, Cv � T 3.
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Fig. 37.6 The cooling of a
CO white-dwarf model of
0:609Mˇ, calculated from a
full evolutionary sequence.
The evolution has three
dominant phases: initially,
shell hydrogen burning
(LCNO) is still important, after
which neutrino emission (L� )
is the dominant channel of
energy loss. At very large
ages thermal energies (Lg)
provide the white dwarf’s
luminosity (Lsur; thick black
line) in the phase of
crystallization. In this model
helium burning (LHe) never is
an important energy source
(Data courtesy L. Althaus)

These large variations of Cv (increase by a factor 2, then decrease to zero) of
course influence the cooling times [cf. (37.42)]. In addition there is the release of the
latent heat of about kT per ion when the material crystallizes, which delays cooling.
Additional energy is delivered by the phase separation (Sect. 37.2.1), which is due to
the (so far neglected) dependence of the specific entropy s on chemical composition
(4.7). Compared to the approximative Mestel cooling law (37.42), cooling times can
be longer by up to several 10 % by these effects, which are more important when
crystallization sets in at lower luminosity, because the delay is simply the extra
energy divided by the luminosity. This is the case for less massive WDs, because
they are less dense and reach the critical 
c � 170 only at lower T , thus lower L.

Further improvements in the theory of WD cooling result from a realistic and
more accurate treatment of the equation of state, and the transport of energy within
the degenerate interior and through the non-degenerate envelope by conduction,
radiation, and convection. Obviously, the mass of the envelope and its composition
have an influence on the cooling time. Both depend on the pre-WD evolution,
in particular, therefore, on the physics of mass loss and mixing on and after the
AGB phase. Generally, envelope masses between 10�4 and 0:01Mˇ are obtained
for the beginning of the WD cooling phase, but later, empirical evidence from the
seismology of pulsating WDs (Sect. 42.4), indicates envelope masses well below
these numbers, with an average around 10�7Mˇ. The less massive the envelope,
and the less hydrogen it contains, the more transparent it is for radiative losses,
allowing a faster cooling of the WD.

Convection in the envelope may eventually reach into the core, and thereby
the convergence of the temperature profile of the envelope to that of the outer
core boundary (Sect. 11.3.3) is lost (The solution (37.25) assumes purely radiative
transfer.). Instead the core depends on the conditions in the atmosphere, and
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Fig. 37.7 The cooling of a
CO white-dwarf model
during the crystallization
phase. The solid line shows
the cooling curve including
the release of latent heat, the
dotted one if the additional
effect of phase separation is
taken into account (data
courtesy L. Althaus)

the connection between core temperature and luminosity–or the cooling rate–
is modified (D’Antona and Mazzitelli 1989). Finally, the various sources and
sinks of energy–nuclear reactions, neutrino emission, gravothermal energy, and
crystallization–have to be included, which are important at various phases of the
WD cooling. We conclude this discussion with Fig. 37.6, which shows the cooling
function of a 0:61Mˇ CO white dwarf, resulting from a full evolutionary sequence,
starting on the main sequence with an initial mass of 2Mˇ and a metallicity of
Z D 0:01. The figure shows the various contributions of energy sources and sinks.

In the earliest phase, lasting only a few thousand years, the total photon lumi-
nosity L emerging from the surface is provided completely by hydrogen burning
from the CNO-cycles (pp-chains are at all times almost irrelevant). Gravothermal
energies (Lg) balance the loss by neutrinos (L�). Then, the hydrogen shell is
extinguishing rapidly, and the WD begins to cool and to get fainter. After a few
105 years neutrino losses become more important than photon emission for the
cooling, and the energy results almost completely from gravothermal energies, being
gained from the internal energy of the core. At t � 107 years, the neutrino sink fades
away, and the WD is now in the phase where the Mestel theory applies, and the
thermal energy of the ions is the only energy source. Crystallization and convection
in the envelope have not yet set it. This happens only after almost 109 years. This
final phase of cooling is the one shown in Fig. 37.7.

It is possible to connect the cooling times with the observed number of WD as
a function of L. Since 	 is steadily increasing with time, the evolution therefore
slowing down, one expects to observe an increasing number of white dwarfs for
fainter luminosities. The end of this luminosity function is reached when no star
had enough time to cool to an even cooler temperature, respectively reach an even
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Fig. 37.8 Luminosity function of white dwarfs obtained from 6,000 objects in the Sloan Digital
Sky Survey, data release 3 (Abazajian et al. 2005), including error bars of the star countings, which
are significant after the peak of the luminosity function, due to the extreme faintness of the objects.
The last few data points at and after the break of the luminosity function also depend somewhat on
the assumption about the interior carbon and oxygen abundances. The break at Mbol D 15:3, or
equivalently logL=Lˇ D �4:3, could correspond to an age of the coolest WDs of 8 Gyr, or be
a few Gyr higher (Kilic et al. 2010, and Salaris, private communication). Data for this figure were
taken from Harris et al. 2006; Fig. 7

lower luminosity. Then, the luminosity function (as the one in Fig. 37.8) should
show a cut-off, and the maximum age reached indicates the age of the oldest white
dwarfs and thus the oldest stars in the observed sample. With this method one could
first determine the age of the galactic disk in the solar neighbourhood (found to be
around 8 Gyr), and more recently that of old stellar clusters. The WD cooling curves
provide an alternative way to find out about the oldest objects in our galaxy.

As discussed above, such age determinations depend on the white dwarf models
used. In particular, and apart from the physics of cooling, it requires an assumption
about the internal chemical composition of the WD. In case of WDs originating
from single stars, it will be safe to assume a CO-WD with a He/H envelope. The
arguments for this assumption are that ONeMg-WDs are very rare–if they are the
result of single star evolution at all–because of the narrow mass range of super-AGB
stars (Sect. 34.8; Fig. 34.10), and that the main-sequence mass of stars that develop
into He-WDs by avoiding the core helium flash is so low (. 0:50Mˇ; Sect. 35.2 and
Fig. 35.2) that even the age of the universe of about 14 Gyr has not been long enough
to allow them to evolve off the main sequence (an estimate for the main-sequence
lifetime from (30.2) would give 75 Gyrs; a numerical model yields almost twice
this number). At the present time, the oldest globular clusters produce CO-WDs of
� 0:53Mˇ (Kalirai 2009). According to Liebert et al. (2005), however, about 10 %
of all white dwarfs in the solar neighbourhood have indeed a mass below 0:45Mˇ
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and therefore are very likely He-WDs. This empirical result could be an indication
for significant mass loss already on the red giant branch for stars with M & 0:8Mˇ
or for a previous binary star evolution. To decide about the nature of WDs one
therefore has to employ the mass–radius relation (Fig. 37.4), for which effective
temperature (from spectroscopy) and absolute brightness (i.e. distance) are needed.
But even for carbon–oxygen white dwarfs the ratio between these two elements will
be decisive for the cooling rate, in particular during the phase of crystallization. This
ratio depends, among other things, on the exact value of the 12C(˛; � )16O reaction
rate, which, as we have seen in Sect. 18.5.2, is uncertain by a factor of 2 and 3. This
is a beautiful example how microphysics (a nuclear reaction rate) is connected with
cosmological questions (the age of the oldest stars in the Milky Way).



Chapter 38
Neutron Stars

As early as 1934 Baade and Zwicky correctly predicted the birth of the strange
objects neutron stars in supernova explosions (Baade and Zwicky 1934). The first
models were calculated by Oppenheimer and Volkoff (1939), and the stage was
then left for the next 28 years to particle physicists who struggled with the problem
of matter at extreme densities (a struggle not yet finished). Radio astronomers
accidentally found the first pulsar in 1967; it was interpreted soon after as a rapidly
rotating neutron star (Gold 1968), emitting synchroton radiation in a narrow beacon
along the magnetic axis. In addition, neutron stars were identified as sources of
energetic X-ray emission, resulting from accretion in binary systems. By now, the
existence of neutron stars is well established. The number of detected pulsars in the
Galaxy already amounts to more than 1,800 (Lorimer 2008). These known neutron
stars constitute only a tiny fraction of a population as large as a few hundred million.
In some cases, their masses could be determined quite accurately (Fig. 38.2) because
they are members of binary systems or from relativistic effects in their extreme
gravitational potential. Everything is extreme with neutron stars, their interior state
(simulating a huge nucleus), the velocity of sound (not far from c/; their rotation
(frequencies 1 : : : 1; 000Hz), and their magnetic fields (from 109 to 1015 gauss).
One is far from really understanding them. So we content ourselves here with a
few remarks on the state of matter and the resulting models. For more detailed and
complete information about neutron stars, we recommend one of the many existing
textbooks on compact objects (e.g., Glendenning 1997; Camenzind 2007; Haensel
et al. 2007).

38.1 Cold Matter Beyond Neutron Drip

Neutron stars (NS) are born hot .T > 1010 K) in the collapse of a highly evolved
star (see Chap. 36). But the interior temperature drops rapidly because of neutrino
emission: after a day, temperatures of 109 K are reached; after 100 years, maybe
108 K. And this (kT � 10 keV) can be considered cold in view of the degenerate
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nearly relativistic neutrons .EF � 1; 000MeV). The equation of state is essentially
the same as for T � 0. We refer to the descriptions of high-density matter in
Sect. 37.2 and of the equation of state in Chap. 16.

With increasing density the rising Fermi energy of the electrons provides an
increasing neutronization by electron captures. The neutron-rich equilibrium nuclei
(such as 118Kr) begin to release free neutrons at %dr � 4:3 � 1011 g cm�3. This is
called the neutron drip. The matter consists of nuclei (usually arranged in a lattice)
plus sufficient electrons for charge neutrality, and free neutrons. Their number
nn increases with %, and so does their pressure Pn. While P � Pe � Pn still at
% D %dr; we have Pn D P=2 at % � 4 � 1012 g cm�3 (here the Coulomb lattice is
dissolving) and Pn > 0:8P for % & 1:5 � 1013 g cm�3; and finally Pn � P: The
neutrons are increasingly degenerate, but still non-relativistic, as their Fermi energy
is much smaller than their rest-mass energy. Note that all characteristic densities
quoted here and in the following depend in general on the model assumed for the
particles and their interaction. The higher the values of %, the more uncertain are the
details (see below).

With progressing neutron drip the number of nuclei is diminished by fusion.
The nuclei more or less touch each other at the nuclear density of %nuc � 2:7 �
1014 g cm�3, and hence they merge and dissolve, leaving a degenerate gas (or
liquid) of neutrons plus a small admixture of e� and p: The concentrations of these
particles can be calculated as an equilibrium between back and forth exchanges in
the reaction n • p C e� (The neutrinos leave the system immediately and can
be left out of the considerations.). The conditions are that the Fermi energies fulfil
En

F D E
p
F C Ee

F, and that ne D np for neutrality. This gives that np is about 1 % (or
less) of nn for a wide range of % up to %nuc: At % � 6� 1015 g cm�3 the neutrons are
relativistically degenerate. With increasing relativity of the neutrons the fraction of
protons raises slowly, until at an infinite relativity parameter one finds the limiting
ratio nn W np W ne D 8 W 1 W 1. When % exceeds 1015 g cm�3, the Fermi energy of the
neutrons,EF D Œ.pFc/

2 C .mnc
2/2�1=2, will gradually exceed the rest masses of the

hyperons of lowest mass (such as �;˙;�; : : :). These particles will then appear,
i.e. a “hyperonization” begins. Finally even free quarks can occur. Obviously, at
these densities, nuclear forces, the interaction between elementary particles, and
the masses of hadron states are determining the exact composition of neutron star
matter. Astrophysics meets quantum chromodynamics!

We now come to the equation of state, in particular the dependence of P on %.
For % up to %drip, the pressure is dominated by the relativistic, degenerate electrons,
and P � Pe � %4=3 [cf. (15.26)].

The onset of the neutron drip (% D %drip) has severe consequences for the
equation of state. An increase d% mainly increases nn at the expense of ne (which
yields the pressure), such that the increment dP is small (see Fig. 16.2). Therefore
the gas becomes more compressible, which is described as a “softening” of the
equation of state (in the opposite case one speaks of “stiffening”). In other terms the
adiabatic index �ad D .d lnP=d ln%/ad drops appreciably below the critical value 4/3
(cf. Sect. 25.3.2), and only when Pn contributes sufficiently to P will �ad again rise
above 4/3 at % � 7 � 1012 g cm�3.
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When the neutron pressure Pn dominates one may tentatively consider the
approximation that the gas consists of ideal (non-interacting), fully degenerate
neutrons. These are fermions like the electrons, and they obey the same statistics, so
that the same relations hold as derived in Sect. 15.2, if there me is replaced by mn

and �e by 1 (since we now have one nucleon per fermion). Instead of (15.23) and
(15.26) we can write

Pn D K� 0%
� 0

0 (38.1)

with the non-relativistic and relativistic limit cases (for %0 � 6 � 1015 and
%0 � 6 � 1015 g cm�3 respectively)

� 0 D 5

3
; K5=3 D 1

20

�
3

�

�2=3
h2

m
8=3
n

;

� 0 D 4

3
; K4=3 D 1
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�
3

�

�1=3
hc

m
4=3
n

; (38.2)

with mu � mn. In (38.1) we have used the rest-mass density %0 D nnmn: For
relativistic configurations instead of %0 one has to use the total mass-energy density
% D %0 C u=c2. This distinction was not necessary for the electron gas, where %0
(coming mainly from the non-degenerate nucleons) was always large compared with
the energy density u=c2 coming from the degenerate electron gas. Now both %0 and
u=c2 are provided by the degenerate neutrons. For non-relativistic neutrons, %0 �
u=c2 and % � %0; for relativistic neutrons, %0 � u=c2 and % � u=c2: For relativistic
particles, however, we know that P D u=3, i.e. P D %c2=3. So we can write

Pn � %�;

� D 5=3 .non � relativistic/;

� D 1 .relativistic/: (38.3)

The distinction between % and %0 will be seen to be important for NS models. The
relation P D %c2=3 also yields the velocity of sound directly as v2s D .dP=d%/ad D
c2=3, i.e. vs D 0:577c.

Of course, with the densities considered here, the interaction between nucleons
is far from being negligible. It dominates the behaviour long before the limit
6 � 1015 g cm�3, where pF D mnc; is reached. In order to calculate its influence
on the equation of state, one faces two problems. The first is the determination of
a reasonable potential. In the absence of a rigorous theory and of experiments at
such high densities, one has to use a model of the interacting particles that meets
the results of low-energy scattering, the properties of saturation of nuclear forces,
etc. It is not surprising that such models yield large uncertainties when extrapolated
and applied to the densities found in NS. The qualitative influence of some effects
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on the equation of state is quite obvious. For example, the interaction between two
nucleons depends (aside from spin and isospin properties) on their distance. When
approaching each other they first feel an attraction, which turns to repulsion below a
critical distance (in the extreme: at an inner hard core). Attraction (dominant at not
too high %) reduces P and gives a softer equation of state. Repulsion (dominant at
very high % and small average particle distances) increases P and thus stiffens the
equation of state. Obviously details of the potential can shift the border appreciably
between these two regimes.

Other uncertainties are connected with the appearance of new particles when %
increases. For example, if hyperons of some type occur in sufficient number, they
contribute to %; but scarcely to P; since their creation lowers the Fermi sea of the
neutrons. Therefore “hyperonization” makes the gas more compressible. At ultra-
high densities (say � 10%nuc) so many new resonances appear that, in the extreme,
attempts have been made to describe their number in a certain energy range only
by statistics (which leads, e.g., to the rather soft Hagedorn equation of state). But
if the nucleons almost touch each other, one might have to consider something like
quark interaction. The question was even discussed whether this might lead to quark
matter and possibly to quark stars.1 Finally, in case that the absolute ground state
of strong interactions is that of quark matter in a deconfined state, in which up,
down, and strange quarks are present in about equal number, neutron stars will
consist of this so-called strange matter and would be strange stars (For a discussion
of quark and strange stars, see, e.g., the corresponding chapters in the book by
Glendenning.).

As early as % . 2%nuc the possibility of the reaction n ! p C �� (if En �
EpCE�� ) gives the possibility of having a Bose–Einstein condensate of the cold��
bosons in momentum space with zero momentum, i.e. no contribution to P but to %.

The second quite general problem for determining the equation of state is that,
even if the potential were known exactly, one would not know how to solve
convincingly the many-body problem. Several attempts use different assumptions
and yield different results.

To resume, we must stress that the equation of state is highly uncertain for at least
two independent reasons (concerning the potential and the many-body problem), but
there are still more open questions concerning possible effects of superfluidity and
superconductivity, which might influence the evolution of neutron stars, in particular
their rotation and magnetic fields. In fact particle physics cannot yet decide which
of the available equations of state is correct, but the softest ones now seem to be
ruled out by observation of neutron stars (see below). In Fig. 16.2 just one of them
is plotted, which should resemble the general properties, but will not be exact in the
details.

1The full beauty of this term can be savoured only in German, where the term “quark” means either
a popular, soft white cheese or, in slang, complete nonsense.
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38.2 Models of Neutron Stars

For a given equation of state of the form P D P.%/ it is easy to obtain the corre-
sponding hydrostatic models of NS. One has only to integrate the relativistic equa-
tion of hydrostatic equilibrium (2.31) (the Tolman–Oppenheimer–Volkoff equation)
together with (2.30), starting at r D 0 with a chosen central density %c: Since the
equation of state is independent of T , these two equations suffice for obtaining the
mechanical structure. This is seen after replacing P by % in (2.31), so that there are
two equations for the variables % andm:When the integration comes to % D P D 0,
the surface is reached, i.e. we have found R D r and M D m.R/ (We do not
have to worry about the obvious failure of the equation of state for P ! 0. The
transition region to the non-degenerate atmosphere, and even the whole atmosphere,
are negligibly thin so that the error made is small.).

Repeating this integration for a variety of starting values %c, one can produce a
sequence of models for the chosen equation of state. They give, in particular, the
relations M D M.%c/, R D R.%c), and by elimination of %c also R D R.M/

(cf. Fig. 38.1).
The resulting relations M.%c/ and R.M/ change considerably if we replace the

equation of state by another one, as can be seen in Fig. 38.1 for M.R/, where the
results are plotted for several equations of state. The persisting common feature is
that all relations M.%c/ show a minimum and a maximum of M; although at quite
different values. One can easily understand the qualitative changes which occur
when a soft equation of state is replaced by a stiffer one. The matter is then less
compressible; for given M one expects a larger R and a smaller %c. For given %c

one can put more mass on top until reaching the surface with % D 0. This lowers
the gravity inside the model, and Mmax is higher. A particularly soft equation of
state is that for the ideal degenerate neutron gas in (38.3), since the repulsive forces
at small particle distances are completely neglected. Correspondingly Oppenheimer
and Volkoff (1939) obtained for this equation of state a maximum mass of only
Mmax � 0:72Mˇ. Normally the maxima range roughly between 1Mˇ and 3Mˇ,
but Fig. 38.1 also demonstrates that a particularly stiff equation of state, obtained
by including interactions into the Oppenheimer–Volkoff equation, may lead to
maximum masses above 3Mˇ. We have stressed in Sect. 38.1 that particle physics
cannot yet supply the correct equation of state. All the more interesting are objects
like the binary pulsar PSR B1913+16 (also called the Hulse–Taylor pulsar), for
which the masses could be determined very accurately when details of the orbital
motion were interpreted as general relativistic effects.2 The result for the NS isM D
1:442Mˇ with a vanishing small uncertainty, which rules out all equations of state

2These effects include a shrinking of the orbit–and therefore a decrease of the orbital period (of
the order of 60 ms)–due to the loss of gravitational waves. The observations agree perfectly with
the predictions of Einstein’s theory of general relativity and are considered as indirect proof for the
existence of gravitational waves. J.H. Taylor and R. Hulse were awarded with the Nobel Prize for
this in 1993.
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Fig. 38.1 The relation M against R of neutron-star models calculated using seven different
equations of state. The maximum mass is indicated in each case by the solid dot. Two extreme
assumptions are specifically indicated: a non-interacting neutron gas (Oppenheimer and Volkoff
1939), which leads to an extremely soft equation of state and a very low maximum mass, and one
where interactions are included and which leads to a maximum neutron star mass above 3Mˇ

(After Fig. 10.3 in Weber et al. 2009, where also details about the other five equations of state can
be found)

so soft that their Mmax is below 1:44Mˇ. Very recently, another binary millisecond
pulsar–J1614-2230–was analysed by Demorest et al. (2010), who determine a pulsar
mass of 1:97˙0:04Mˇ, using the so-called Shapiro delay of the pulsar signal, which
is caused by the fact that light signals do not travel a straight line, but follow null-
geodesics which are bent, and therefore longer, by the gravitational potential. This
result rules out at least two more equations of state of Fig. 38.1, among them one for
“strange stars” (in the figure, this corresponds to the left-most line). Here seems to
be one of the cases where astrophysical measurements set a discriminating limit to
particle physics. A collection of accurately determined neutron-star masses is given
in Fig. 38.2. They were obtained by different methods, on which we do not comment
further, but refer to the respective textbooks.

The maximum mass for NS is very important, not only in connection with
evolutionary considerations, but also in the attempt to identify compact objects with
M > Mmax as black holes. If our ignorance of the equation of state does not yet
allow the determination of Mmax to better than the interval 2 : : : 3Mˇ, we should at
least understand that such a maximum mass (well below 5Mˇ) must exist.

In order to make this plausible, we neglect effects of general relativity, i.e.
consider the usual equation of hydrostatic equilibrium but keep those of special
relativity as allowed for in (38.3). Let us consider some averages of P and % over the
whole star. As in (37.15) the normal hydrostatic equation then yields the estimate
P � M2=R4: Here we eliminate R by % � M=R3 and obtain P � M2=3%4=3,
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Fig. 38.2 An overview of empirically determined masses and their errors of neutron stars
(identifier to the right of the data point). Except for the last object, J1614-2230 (Demorest et al.
2010), the data are taken from Fig. 6.31 in Camenzind (2007). The vertical line corresponds to the
generic mass of 1:4Mˇ

introduce % � P1=� from the equation of state (38.3), and then solve forM and find

M � %3.��4=3/=2: (38.4)

In the non-relativistic limit, � D 5=3, giving M � %1=2 and dM=d% > 0. The
extreme relativistic case requires � D 1, which gives M � %�1=2 and dM=d% < 0.
Somewhere on the border between the two regimes we expect dM=d% D 0, i.e.
the maximum mass(The average % treated here will be a sufficient measure for
%c too.). Therefore the maximum of M must occur when the neutrons start to
become relativistic and the energy density u=c2 begins to overtake the rest-mass
density %0. Only by neglecting u=c2 in % [taking (38.1) instead of (38.3)] could
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Fig. 38.3 Schematic
mass–radius relation .R in
km) for configurations of cold
catalysed matter, from the
planetary regime to
ultra-dense neutron stars.
Some values of %c (in
g cm�3/ are indicated along
the curve. At the extrema of
M (open circles) the stability
problem has a zero
eigenvalue. Solid branches
are stable, dashed branches
are unstable. The grey,
vertical arrow indicates the
collapse of a white dwarf
exceeding the maximum
stable mass to a neutron star

we obtain the Chandrasekhar mass of MCh D 5:73Mˇ as the mass limit for
an infinite relativity parameter (� 0 D 4=3). Clearly, therefore, Mmax < MCh. The
here neglected influence of general relativity [i.e. the description of hydrostatic
equilibrium by the TOV equation equation (2.31)] tends to decrease Mmax even
more (see below).

Closely connected with the extrema of M are the stability properties. The
relation M D M.%c/ can be considered to represent a sequence of equilibrium
models with the parameter %c. Figure 38.3 shows a schematic overview of the
resulting M � R relation for cold catalysed matter from the regime of planets to
that of ultra-dense NS. Starting from planets, %c increases monotonically along the
curve (compare with typical values of %c indicated in Fig. 38.3). There are extrema
of R which may be interesting in other connections but are not important for the
sequence M.%c). However, one also encounters extrema of M (open circles). The
most important are Mmin and Mmax for NS, as well as the maximum M for white
dwarfs. These are critical points at which a detailed stability analysis shows that the
stability of the equilibrium models changes. The stable parts of the curve are those
with dM=d%c > 0, i.e. the branch of NS with Mmin < M < Mmax (and the white-
dwarf and planetary branch with M < maximum mass for white dwarfs). When
further increasing %c beyond the point at whichM D Mmax there follows an infinite
number of maxima and minima of M . Correspondingly the curve R D R.M/

spirals into a limiting point, which is reached for %c ! 1. All of these branches
are in fact unstable. The stability analysis can also be made for general relativistic
configurations. In the Newtonian limit one has the well-known result that an average
of the exponent �ad of �cr D 4=3 is equivalent to marginal stability (see Sect. 25.3.2),
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and in addition it can be shown (see Shapiro and Teukolsky 1983) that small effects
of general relativity (GM=Rc2 � 1) change the critical value from 4/3 to

�cr D 4

3
C�

GM

Rc2
; (38.5)

where � is a positive quantity of the order of unity. Therefore general relativity
increases �cr; making the star more unstable, since stability requires N�ad > �cr. For
M D 1Mˇ, R D 10 km the correction term in (38.5) is about 0.15, i.e. far from
being negligible. �cr can be raised well above 5/3 (even above 2 for certain models
nearMmax/ such that all but the stiffest equations of state would give instability. This
increase of �cr is an important factor in determining the value ofMmax (together with
the lowering of N�ad).

A very stiff equation of state, for example, gives Mmax D 2:7Mˇ, with
R D 13:5 km and %c D 1:5 � 1015 g cm�3, while a softer one yields Mmax D 2Mˇ,
with R D 9 km and %c D 3:3� 1015 g cm�3. At present there is no equation of state
that can be considered realistic and that would give Mmax well above 3Mˇ. This
includes calculations that take into account general relativity.

The model is also marginally stable at the minimum massMmin, where the curve
in Fig. 38.3 begins leading to the white dwarfs. This instability is essentially caused
by the lowering of � 0 in connection with the neutron drip (see Sect. 38.1). We
have seen that the release of free neutrons from nuclei results in � 0 . 4=3 in the
range % � 4 � 1011 : : : 7 � 1012 g cm�3. Typical models for the minimum mass of
stable neutron stars give Mmin � 0:09Mˇ, R � 160 km, %c � 1:5 � 1014 g cm�3.
The average density is, of course, much smaller .�1010 g cm�3/, and the averaged
�ad becomes just equal to �cr (which is here close to 4/3).

Let us dwell briefly on the meaning of the mass values quoted for NS. The stellar
mass M is here always the “gravitational mass”, which is the value measurable for
an outside observer [cf. the comments in Sect. 2.6 after (2.29)].M differs from the
proper mass M0 D Nm0, given by the total numberN of nucleons with a rest mass
m0, since in relativity, the total binding energy W of the configuration appears as a
mass �M D W=c2; such that

M D M0 C W

c2
D M0 C�M: (38.6)

In the Newtonian limit (for weak fields) we were used to identifying particularly
the internal energy Ei (from motion and interaction of particles) and the poten-
tial energy Eg in the gravitational field. Then for a static, stable configuration,
W D Ei C Eg < 0, since Eg < 0 and �Eg > Ei (In the Newtonian limit Eg

and Ei were related by the virial theorem, cf. Chap. 3.). Correspondingly we may
now say that the mass of a NS is increased by the internal energy and decreased by
the (negative) potential energy, and the latter term wins. ThereforeW < 0, and we
have a mass defect �M < 0. Depending on the precise model, j�M j can go up
to 10 : : : 25% of M near Mmax. Formally M is given as an integral over 4�r2%dr ,
where % is the total mass-energy density (%0 C u=c2/ and 4�r2dr is not the volume
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element. This is rather given by dV D 4�r2 e	=2dr with e	=2 being a component of
the metric tensor (cf. Sect. 2.6). Then simply

�M 	 M �M0 D
Z R

0

.4�r2%dr � %0dV /

D
Z R

0

4�r2%

�
1 � e	=2

%0

%

�
dr: (38.7)

Here %0=% < 1, but e	=2 > 1, and the product of both is >1, such that �M < 0.
So if we find an NS with mass M , we know that it started off as a more massive
configuration. The mass defect j�M j was radiated away in the course of evolution
by photons, neutrinos, or gravitational radiation. In that sense the original Kelvin–
Helmholtz hypothesis that contraction supplies the radiated energy has turned out to
be correct. The mass defect reaches a maximum at M D Mmax and then decreases
again towards models with still larger %c:

The maximum mass for NS is scarcely influenced by rotation. Except for the
very few most rapidly spinning pulsars, centrifugal forces play practically no role
in NS, since the overwhelming gravitational forces dominate completely. This is at
least true for rigidly rotating NS stars. However, differential rotation may stabilize
neutron stars and will lead to higher maximum masses. In the case of simple
polytrope models, differential rotation can raiseMmax by up to 50 % (see Baumgarte
and Shapiro 2010, Chap. 14).

Now we turn to describe the stratification of matter inside an NS model. At
the very outer part there must be an atmosphere of “normal” non-degenerate
matter. Going inwards, we come to gradually larger densities and encounter all
characteristic changes of high-density matter as described in Sect. 38.1.

The atmosphere of an NS is very hot and incredibly compressed. Typical
temperatures are of the order of 106 K (see below). The extension is very small
owing to the high surface gravity g0 � 1:3 � 1014 cm s�2 (For comparison,
g0 D 2:7 � 104 cm s�2 for the Sun and � 108 cm s�2 for white dwarfs.). This
gives a pressure scale height of the order of 1 cm only. In the surface layers (say
% . 106 g cm�3/ the behaviour of the matter is still influenced by the temperature
and also by strong magnetic fields.

Not far below the surface, the densities will be in and above the range typical for
the interior of white dwarfs (&106 g cm�3/. As an example we discuss the model
for an NS of M D 1:4Mˇ (see Fig. 38.4), calculated by using an equation of
state of moderate stiffness which gives Mmax � 2Mˇ. The radius of the 1:4Mˇ
model is 10.6 km. Although there are newer models, the present one is still a good
representation of the typical structure of neutron stars.

Below the surface there is a solid crust .106 . % . 2:4 � 1014 g cm�3/ of
thickness �r � 0:9 km. The matter in the crust contains nuclei, which are mainly
Fe near the surface (cf. the equilibrium composition as a function of % described
in Sect. 37.2). These nuclei will form a lattice, thus minimizing the energy of
Coulomb interaction as in crystallized white dwarfs. The outer crust consists only of
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Fig. 38.4 Illustration of the interior structure of a neutron-star model with M D 1:4Mˇ calcu-
lated with an equation of state similar to the intermediate ones in Fig. 38.1. A few characteristic
values of the density (in g cm�3/ are indicated along the upper radius (After Pines 1980)

these nuclei plus a relativistically degenerate electron gas, though this changes over
a depth of �r � 0:3 km to where the neutron drip density %dr � 4 � 1011 g cm�3
is reached. In the subsequent inner crust (4 � 1011 . % . 2 � 1014 g cm�3/, a
liquid of free neutrons exists in addition to the nuclei (still arranged in a lattice,
and becoming increasingly neutron-rich) and the electrons. With decreasing r the
free neutrons become more and more abundant at the expense of the nuclei, and the
lattice disappears with the nuclei, until all nuclei are dissolved into homogeneous,
neutron-rich nuclear matter at % D %nuc � 2:4 � 1014 g cm�3, which therefore
defines the lower boundary of the solid crust, at a depth of 0.9 km. The equation of
state throughout the crust is relatively well known; this is the reason why our aged
neutron-star model is still valid.

Below the crust there is the interior neutron liquid .% & 2:4 � 1014 g cm�3/
consisting mainly of neutrons in equilibrium with a few protons, electrons, and
muons. All constituents are strongly degenerate and the hadrons are interacting by
nuclear forces. The neutrons will be superfluid, the protons superconductive. The
equation of state begins not to be well-known in this density regime, and from here
on the structure and composition of the inner core depends on the equation of state
used.

It is unclear whether there is finally a central solid core in which the neutrons
form a solid owing to their repulsive forces at small particle distances. The central
density of our model is %c � 1:3 � 1015 g cm�3. The inner core may also consist of
baryon condensates (��, K�), of a mixture hyperons and baryon resonances (˙ ,
�, 
 , �), or deconfined quark matter. We refer the reader to Fig. 10.1 in Weber
et al. (2009) for a graphical representation of various possibilities. In that figure, our
model would be one of the traditional neutron stars.

The superfluidity of the neutron and proton liquids and the solid parts (crust
and possible core) play a role in the attempts to explain the observed “glitches”
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of pulsars. These are sudden spin-ups, interrupting from time to time the normal,
regular spin-down (decrease of the rotation frequency ˝). There is a hypothesis
according to which a glitch is due originally to a “starquake”, decreasing suddenly
the moment of inertia Ic of the crust. Conservation of angular momentum requires
a corresponding increase of˝ . The relaxation to the normal state depends critically
on the coupling of the rotating crust and the rotating interior liquid (and possible
solid core). The charged components could be coupled magnetically, while the
superfluid matter may couple via vortices. This coupling is the basis of another
model of the glitches: the superfluid neutron liquid in the interior and in the inner
crust is considered to rotate with an angular velocity slightly different from that
of the lattice of nuclei in the crust. The coupling is provided by vortices in the
liquid and is thought to break down suddenly when the crust has been decelerated
sufficiently by the pulsar mechanism on the outside. The vortices can contain an
appreciable fraction of the star’s angular momentum, and their distortion induces
immediate changes of the observed rotation.

The thermal properties (except for the earliest stages) in principle follow once
the mechanical models are given. One can then calculate the thermal conductivity,
which, together with a given outward flux of energy, determines the T gradient
at any point. It turns out that like white dwarfs (Sect. 37.3) the NS have a nearly
isothermal interior because of the high thermal conductivity. Only in the outermost
layers does T drop, by typically a factor of 102, to the surface temperature.
Particularly in the first, hot phases, the cooling will be very rapid because of strong
neutrino losses.

In this chapter we have completely ignored the strong magnetic fields of neutron
stars. While they are of only minor importance for the structure and the maximum
mass, they are crucial for many phenomena which allow the observation of neutron
stars. Most notably this is the pulsar phenomenon, which is due to the emission
of synchrotron radiation along the axis of the magnetic dipole, being inclined with
respect to the rotation axis. The typical field strength of pulsar magnetic fields are
of order 1011–1013 G. Some NS possess even stronger magnetic fields, up to 1015 G,
which is the highest known level in the universe. They are called magnetars and are
the source for the soft gamma repeaters (Thompson and Duncan 1995), a class of
gamma-ray bursts that exceed the Eddington luminosity by far, but are characterized
by a comparably soft gamma spectrum. In a magnetar, the decaying magnetic field
is the source of free energy (rather than rotation, as in pulsars). As we said at the
beginning, everything is extreme in neutron stars.



Chapter 39
Black Holes

Black holes (BH) represent the ultimate degree of compactness to which a stellar
configuration can evolve. Having already called the neutron star a strange object,
one cannot help labelling BH as weird. From the many fascinating aspects that are
accessible via the full mathematical procedure (cf. Misner et al. 1973; Shapiro and
Teukolsky 1983; Chandrasekhar 1983) we will indicate only a few points, showing
that this is really a final stage of evolution, not just another late phase. We limit the
description to non-rotating BH without charge.

The theoretical description to be applied is that of general relativity (see, e.g.,
Landau and Lifshitz 1976, vol. 2). We consider the gravitational field surrounding
a very condensed mass concentration M with spherical symmetry. The vacuum
solution of Einstein’s field equations (2.24) for this case was found as early as
1916 by K. Schwarzschild. It gives the line element ds, i.e. the distance between
neighbouring events in 4-dimensional space–time as

ds2 D gij dx
idxj

D
�
1 � rs

r

�
c2dt2 �

�
1 � rs

r

��1
dr2 � r2d#2 � r2 sin2 #d'2

D
�
1 � rs

r

�
c2dt2 � d�2 ; (39.1)

where one has to sum from 0 to 3 over the indices i and j , and where the usual
spherical coordinates r; #; ' are taken as the spatial coordinates x1; x2; x3, and
x0 D ct . The critical parameter rs in (39.1) is the Schwarzschild radius

rs D 2GM

c2
; (39.2)

which has the value rs D 2:95 km for M D Mˇ: The second component of the
metric tensor gij , .1 � rs=r/

�1, becomes singular at r D rs; but one can show that
this is a non-physical singularity disappearing when other suitable coordinates are
used.
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The proper time � , as measured by an observer carrying a standard clock, is
related to the line element ds along his world line by

d� D 1

c
ds : (39.3)

For a stationary observer .dr D d# D d' D 0/ at infinity .r ! 1/ the proper
time �1 coincides with t according to (39.1). Consider two stationary observers,
one at r; #; ' and the other at infinity. Their proper times � and �1 are related to
each other by

d�

d�1
D
�
1 � rs

r

�1=2
: (39.4)

Suppose that the first of them operates a light source emitting signals at regular
intervals d� , for example, an atom emitting with the frequency �0 D 1=d� . The
other one receives the signals and measures the intervals in his own proper time as
d�1, i.e. he measures another frequency � D 1=d�1. The resulting red shift due to
the gravitational field is therefore

z � �0 � �

�
D �0

�
� 1 D d�1

d�
� 1 D

�
1 � rs

r

��1=2 � 1 ; (39.5)

which gives z ! 1 for r ! rs.
The metric components in (39.1) show that the 4-dimensional space–time

.x0; : : : ; x3/ is curved, and this holds also for the 3-dimensional space (x1; x2; x3/.
At the surface of a mass configuration of mass M and radius R, the Gaussian
curvatureK of position space can be written as

K D � GM

c2R3
D �1

2

rs

R

1

R2
: (39.6)

This is usually very small compared with the curvature R�2 of the 2-dimensional
surface. For example, �K � 2�10�6R�2 at the surface of the Sun. But one already
has �K � 0:15R�2 for a neutron star, and the two curvatures are comparable at the
surface of a BH with R D rs.

Consider a test particle small enough for the gravitational field not to be disturbed
which moves freely in the field from point A to B . Its world line in 4-dimensional
space–time is then a geodesic, i.e. the length sAB is an extremum. This is to say, any
infinitesimal variation does not change the length:

ısAB � ı

Z B

A

ds D 0 (39.7)

If the test particle moves locally with a velocity v over a spatial distance d� , then
the proper time interval d� will be the smaller, the larger v. It becomes [cf. (39.1)]

d� D ds D 0; for v D c ; (39.8)
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Fig. 39.1 Illustration of light
cones at different distances r
from the central singularity,
inside and outside the
Schwarzschild radius rs

i.e. for photons or other particles of zero rest mass: they move along null geodesics.
For material particles the requirement v < c of special relativity (which is locally
valid) means d�2 and ds2 > 0. Such separations are called time-like. World lines of
material particles must be time-like. Separations with ds2 < 0 (or d�2 < 0) would
require v > c; they are called space-like. For example, the distance between two
simultaneous events (dt D 0) is space-like.

The null geodesies (ds2 D 0), giving the propagation of photons, describe
hypercones in space–time which are called light cones. In order to also see their
properties near r D rs, we introduce a new time coordinate Nt given by

Nt D t C rs

c
ln

ˇ̌̌
ˇ rrs

� 1
ˇ̌̌
ˇ ; (39.9)

which transforms (39.1) to

ds2 D
�
1 � rs

r

�
c2d Nt2 � 2

rs

r
c dr d Nt

�
�
1C rs

r

�
dr2 � r2d#2 � r2 sin2 #d'2 ; (39.10)

which is non-singular at r D rs. We consider only the radial boundaries of the light
cones, i.e. the path of radially (d# D d' D 0) emitted photons. Then (39.10) yields
for ds2 D 0, after division by c2dr2, the quadratic equation

�
1 � rs

r

��d Nt
dr

�2
� 2rs

cr

d Nt
dr

� 1

c2

�
1C rs

r

�
D 0 ; (39.11)

which has the solutions
�
d Nt
dr

�
1

D �1
c
;

�
d Nt
dr

�
2

D 1

c

1C rs=r

1 � rs=r
(39.12)

These derivatives are inclinations of the two radial boundaries of the light cone in
an r� Nt plane (see Fig. 39.1). The first always corresponds to an inward motion with
the same velocity c. The second derivative changes sign at r D rs, being positive
for r > rs, where photons can be emitted outwards (dr > 0). With decreasing
r , (d Nt=dr/2 becomes larger so that the light cone narrows and its axis turns to the
left in Fig. 39.1. At r D rs the light cone is such that no photon can be emitted to the
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outside (dr > 0). This is the reason for calling a configuration with R D rs a “black
hole”, and for speaking of the Schwarzschild radius rs as the radius of a BH of mass
M . For r < rs both solutions (39.12) are negative and the whole light cone is turned
inwards. Therefore inside rs all radiation (together with all material particles, which
can move only inside the light cone) is drawn inexorably towards the centre. This
means also that no static solution (dr D d# D d' D 0) is possible inside rs, since
it would require a motion vertically upwards in Fig. 39.1, i.e. outside the light cone.

In order to describe the motion of a material particle, we consider all variables
to depend on the parameter � , the proper time, varying monotonically along the
world line: d� D ds=c. Dots denote derivatives with respect to � . For example,
Px˛ D dx˛=d� is the ˛ component of a 4-velocity. Introducing dx˛ D Px˛d� into
(39.1) gives the useful identity

c2 D gij Pxixj D c2
�
1 � rs

r

�
Pt2

�
�
1 � rs

r

��1 Pr2 � r2. P#2 C sin2# P'2/ : (39.13)

The condition that the world line be a geodesic means that the variation ıs D ı� D
0, which yields the Euler–Lagrange equations

d

d�

�
@L

@ Px˛
�

� @L

@x˛
D 0 ; (39.14)

with the Lagrangian L given by

2cL D Œgij Pxixj �1=2

D
�
c2
�
1 � rs

r

�
Pt2 �

�
1 � rs

r

��1 Pr2 � r2
� P#2 C sin2# P'2

��1=2
: (39.15)

From (39.13) and (39.15) follows the valueL D 1=2. For x0 D ct , (39.14) becomes
simply

d

d�

h�
1 � rs

r

�
Pt
i

D 0 ;
�
1 � rs

r

�
Pt D constant � A : (39.16)

We confine ourselves to the discussion of a radial infall ( P# D P' D 0) starting at
� D 0 with zero velocity at the distance r0. Instead of also deriving the equation of
motion for x1 D r from (39.14), we simply introduce the second equation (39.16)
into (39.13) and solve it for Pr :

Pr D c
h
A2 � 1C rs

r

i1=2
: (39.17)
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For our purposes we set A2 � 1 D �rs=r0. According to (39.17) this means that the
particle starts with zero velocity at r D r0. The integration of (39.17) then yields

� D 1

2

r0

c

r
r0

rs
.sin �C �/ ; (39.18)

with the parameter � D arccos .2r=r0 � 1/, as can be verified by differentiation.
This function � D �.r/ is shown in Fig. 39.2 for r0 D 5rs. Again, nothing special
happens in the proper time when the particle reaches r D rs. The total proper time
for reaching r D 0 is

�0 D �

2

rs

c

�
r0

rs

�3=2
: (39.19)

For r0 D 10 rs and 5 rs we have �0 D 49:67 rs=c and 17:56 rs=c, respectively. These
are very short times indeed, since for M D Mˇ the characteristic time is only
rs=c D 9:84 � 10�6 s.

The motion in terms of the coordinate time t of an observer at infinity is
quite different. The relation between t and � is given by (39.16) as d�=dt D
.1 � rs=r/=A, which goes to zero when r ! rs. By this relation and (39.17) one
obtains a differential equation for t.r/, which is integrated to give

t

rs=c
D ln

ˇ̌
ˇ̌� C tg �=2

� � tg �=2

ˇ̌
ˇ̌C �

�
�C r0

2rs
.�C sin �/

�
; (39.20)

with � as in (39.18) and � D .r0=rs � 1/1=2. The curve t D t.r/ is also shown in
Fig. 39.2 for r0 D 5rs. The fact that the observer sees the � clock of the particle
slowing down completely for r ! rs has the result that t D t.r/ approaches r D rs

only asymptotically for t ! 1. Events inside r D rs are completely shielded for
the distant observer by the coordinate singularity at the Schwarzschild radius acting
as an “event horizon”.

These few considerations may suffice to illustrate some important properties of
configurations which collapse into a BH [Note that the Schwarzschild metric (39.1)
is a vacuum solution, which is not valid inside the mass configuration, but holds
from the surface outwards.].

As observed from the infalling surface (proper time �) the collapse proceeds
fairly rapidly and in particular quite smoothly through the Schwarzschild radius
r D rs. Once the surface is inside rs a static configuration is no longer possible, and
the final collapse into the central singularity within a very short time is unavoidable.
This is shown by the fact that material particles have world lines only inside the
local light cone, and this is open only towards r D 0 (even radiation falls to r D 0).
Note that it would not help to invoke an extreme pressure exerted by unknown
physical effects, since the pressure would also contribute to the gravitating energy.
The singularity at r D 0 is an essential one (as opposed to the mere coordinate
singularity at r D rs) with infinite gravity, though the physical conditions there are
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Fig. 39.2 The radial infall
into a black hole for a test
particle starting at a distance
5rs with zero velocity. The
motion is shown in terms of
the particle’s proper time � ,
and in terms of the coordinate
time t of an observer at
infinity

not yet clear. Quantum effects should be included and one can speculate whether
they might remove the singularity.

The collapse of a star will present itself quite differently for an astronomer who
is (we hope) very far away. In his coordinate time t he will see that the collapse
of the stellar surface slows down more and more, the closer it comes to rs. In fact
he will find that this critical point is not reached within finite time t ; for him the
collapsing surface seems to become stationary there. Of course, the approach of the
surface to rs strongly affects the light received by the distant observer. He receives
photons in ever increasing intervals and with ever decreasing energy, due to the red
shift z ! 1 according to (39.5). Thus the collapsing star will finally “go out” for
the distant observer. Only a strong gravitational field is left.

It should be mentioned that aside from the Schwarzschild solution for non-
rotating, uncharged BH, there exist solutions which describe a rotating BH (Kerr
metric) and a charged BH (Newman metric), the combination of these covering the
full generality of possible properties of a BH: it is fully defined by mass, angular
momentum, and charge. This surprising scantiness of properties left after the final
collapse was summarized by Wheeler: “a black hole has no hair”.

From the foregoing it is clear that black holes cannot be observed directly. How-
ever, they can be detected through their enormous influence on their surroundings.
For a long time, however, BHs remained a theoretical possibility without proof
of their reality. This has changed during the last few decades, and by now, their
existence in two completely different mass ranges has been confirmed.

The first type of BHs are of galactic scale, sit in the centre of many galaxies,
and have masses of 106 . MBH=Mˇ . 1010. They truly deserve the name
supermassive black holes. They are detected by the analysis of the dynamics of stars
in their vicinity. The overall rotation velocity (e.g. in the disks of spiral galaxies),
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or the velocity dispersion (in elliptical galaxies) allows to determine the total mass
interior to the galactocentric radius at which it is measured. With increasing spatial
resolution of the telescopes, most notably the Hubble Space Telescope, the central
mass could be restricted to smaller and smaller central regions, until finally only a
supermassive black hole could explain the dynamics. The determined masses agree
well with the estimates for the mass of the central engine in quasars and other active
galaxies, needed to power the energetic of these objects.

A particularly convincing case is the Seyfert galaxy NGC 4258, where
microwave emission from gas orbiting the centre has been observed. For such
long wavelengths the resolution is even higher and it was found that the maser
clouds orbit a central mass of forty million solar masses on orbits of only half a
light year! Note that the Schwarzschild radius of such a BH is 1:2� 1013 cm, which
is still only 10�5 of that distance. Nevertheless, no stellar cluster with that mass
could be accommodated in this volume.

Our own Milky Way is hosting a supermassive BH as well (Genzel et al. 2010).
From near-infrared observations of its centre, it was found that the radio source
Sgr A? coincides with a supermassive BH of about 3.6 million Mˇ. The proof
was brought about from accurate determinations of the position and movement of
a cluster of about 20 stars over a decade and longer (Eckart and Genzel 1996). As
before, the stars orbit with velocities of several hundred km/s around a mass of that
size which is occupying a volume with a radius smaller than 0.001 pc, and this
extremely high mass concentration can only be explained with a black hole.

The origin and growth of supermassive BHs is not understood, but we have good
models for the creation of the so-called stellar black holes. Their masses are in the
range 2:5 . MBH . 50, and they are thought to have been created either directly in
core collapse supernova explosions (see Chap. 36, and Fig. 34.10), or by the merging
of binary neutron stars. They have been detected by using the fact that in binary
systems mass from a companion may flow onto the black hole, and in doing so,
accumulates in an accretion disk because of the conservation of angular momentum.
Due to the extremely deep gravitational potential well around the BH, the energy of
the infalling material is so high that any dissipative process in the disk releases
X-ray photons. X-ray binary systems are therefore the ideal place to look for proof
of stellar BHs. The method is rather straightforward: one measures the orbital period
˘ , and the maximum line-of-sight velocityKcomp D v sin i of the visible companion
using the Doppler effect. The inclination angle is not known, but can be estimated
from other information or treated with a probability approach. These two quantities
are used to compute the so-called mass function

f .MBH; i / D K3
comp˘

2�G
D MBH sin3 i

.1CMBH=Mcomp/2
; (39.21)

whereMcomp is the mass of the companion, which has to be estimated or determined
using other quantities, such as the spectral type. While there are obviously a number
of uncertainties in the determination of MBH from (39.21), there are enough X-ray



516 39 Black Holes

Table 39.1 Some stellar black holes (as of 2008) in X-ray binaries

Object ˘ Spect.cl. Kcomp i MBH Mcomp

V1487 Aql 33:5 K–M III 140 70 10� 18 1:0� 1:4

V1334 Aql 13:08211 A3–7 I 58:2 4:3˙ 0:8 12:3˙ 3:3

V404 Cyg 6:4714 K0 III–V 208:5 6:08 10:06� 13:38 0:5� 0:8

Cyg X–1 5:59983 O9.7 Iab 74:9 0:244 14:8˙ 1:0 12� 27

LMC X–1 3:90917 O9–7 III 71:61 10:91˙ 1:54 31:79˙ 3:67

LS 5039 3:9060 ON6.5 V 25:2 0:0053 2:7� 5:0 20:0� 26:3

M33 X–7 3:453014 O7-8 III 108:9 0:777 15:65˙ 1:45 70:0˙ 6:9

V4641 Sgr 2:81730 B9 III 220:5 3:13 6:82� 7:42 2:92� 3:26

V1033 Sco 2:6219 F6 IV 215:5 2:73 6:03� 6:57 2:25� 2:75

BW Cir 2:54448 G0–5 III 279 7:34 > 7:83.50/ > 1:02.6/

LMC X–3 1:70479 B5 V 256:7 2:29 9:5� 13:6 3:0� 8:3

V381 Nor 1:5435 G8 IV–K3 II 349 6:86 8:36� 10:76 < 0:9

IC 10 X–1 1:455 WR 370 7:64 > 32:7˙ 2:6 35

IL Lup 1:116407 A2 V 129 0:25 8:45� 10:39 2:3� 3:2

V2107 Oph 0:521 K5 V 448 4:86 6:64� 8:30 > 0:3

GU Mus 0:432606 K3–4 V 408 3:01 6:47� 8:18 0:7� 1:7

V406 Vul 0:382 G5 570 7:4 7:6� 12:0

QZ Vul 0:344092 K3–6 V 519:9 5:01 7:15� 7:78 0:25� 0:41

V616 Mon 0:323016 K4 V 433 2:72 8:70� 12:86 0:48� 0:97

MM Vel 0:285206 K7–M0 V 475:4 3:17 3:64� 4:74 0:45� 0:75

V518 Per 0:212160 M4–5 V 378 1:19 3:66� 4:97 0:28� 1:55

KV UMa 0:169930 K7 V–M0 V 701 6:1 6:48� 7:19 0:22� 0:32

The orbital period˘ is in days, the maximumg line-of-sight velocityKcomp in km/s, the inclination
angle i in degrees, and masses in solar units
“Spect.Cl.” is the spectral class of the companion, Mcomp its mass
Errors in Kcomp and i have been omitted, but enter into MBH (collection courtesy of H. Ritter)

binary systems to allow a quite reliable analysis in some cases. The final argument
why these central masses must be BHs is that it must be a compact object (in contrast
to an ordinary star which should be visible) and that its mass is beyond the maximum
allowed mass for a neutron star (Fig. 38.1). In addition, from the energy of the X-ray
emission, and from the timescale of its variation one can deduce the geometric scale
of the hot accretion disk. This puts further constraints on possible objects. Up to
now, more than 20 BH masses have been determined (Table 39.1).

There are indications for intermediate-mass black holes (50 . MBH=Mˇ .
105), but both their existence and their origin are still a matter of discussion. They
may be created either by the merging of stellar black holes, or by the collision of
massive stars in massive stellar clusters. They have been postulated to explain ultra-
luminous X-ray sources. For further reading on BHs and the related physics we refer
to the textbook by Camenzind (2007).



Part IX
Pulsating Stars

Throughout this book we have repeatedly considered the stability of stellar layers.
A very important aspect of stellar stability is the occurrence of pulsations. Since
their periods are determined by the dynamical timescale they are much easier
to observe than evolutionary changes of stars, and the periods are very often
determined with high precision. Since the recognition that the brightness of Mira
(o Cet) and other stars is not constant, but varying (semi-)regularly, the interest
in stellar pulsations has constantly grown, because it was realized that we can
learn about the stellar interior and about the speed of stellar evolution from these
pulsations. It has culminated in the field of helioseismology, and more recently in
its generalization, asteroseismology.

In the following chapters we discuss only briefly the basic concepts of the
theory of stellar pulsations, which is essentially the problem of solving equations
that describe perturbations of a star from its hydrostatic equilibrium on dynamical
timescales. The whole field has become so extended and specialised that it requires a
separate textbook. We recommend the classical books by Unno et al. (1979) and Cox
(1980), but in particular the very recent one by Aerts et al. (2010).



Chapter 40
Adiabatic Spherical Pulsations

40.1 The Eigenvalue Problem

The functions P0.m/; r0.m/; and %0.m/ are supposed to belong to a solution of the
stellar-structure equations (10.1)–(10.4) for the case of complete equilibrium. Let
us assume that we perturb the hydrostatic equilibrium, say by compressing the star
slightly and releasing it again suddenly. It will expand and owing to inertia overshoot
the equilibrium state: the star starts to oscillate. The analogy to the oscillating piston
model (see Sect. 6.6) is obvious. More precisely we assume the initial displacement
of the mass elements to be only radially directed .d# D d' D 0/ and of constant
absolute value on concentric spheres. This leads to purely radial oscillations (or
radial pulsations) during which the star remains spherically symmetric all time. For
the perturbed variables at time t we write

P.m; t/ D P0.m/C P1.m; t/ D P0.m/
�
1C p.m/eiwt� ;

r.m; t/ D r0.m/C r1.m; t/ D r0.m/
�
1C x.m/eiwt� ;

%.m; t/ D %0.m/C %1.m; t/ D %0.m/
�
1C d.m/eiwt � ; (40.1)

where the subscript 1 indicates the perturbations for which we have made a
separation ansatz with an exponential time dependence [as in (25.17)]. The relative
perturbations p; x; d are assumed to be � 1.

We now insert these expressions into the equation of motion (10.2), linearize, and
use the fact thatP0; r0 obey the hydrostatic equation (10.2). Then with g0 D Gm=r20
we obtain

@

@m
.P0p/ D .4g0 C r0!

2/
x

4�r20
: (40.2)
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Using (10.2) again for @P0=@m and the relation

@

@r0
D 4�r20%0

@

@m
; (40.3)

we find
P0

%0

@p

@r0
D !2r0x C g0.p C 4x/ : (40.4)

Quite similarly (40.1) introduced into (10.1) yields with (40.3)

r0
@x

@r0
D �3x � d : (40.5)

Note that the transformation (40.3) does not mean that we go back to an Eulerian
description. The partial derivative @=@t describes time variations at constant r0. But
since r0 D r0.m/ is given by the equilibrium solution, @=@t also refers to a fixed
value of m:

We know already that perturbations of hydrostatic equilibrium proceed on a
timescale �hydr � �adj. We therefore assume here that the oscillations are adiabatic,
which means that

p D �add : (40.6)

This shows again the advantage of using Lagrangian variables: the adiabatic
condition has the simple form (40.6) only if p and d are considered functions of
m [or of r0 D r0.m/] and therefore give the variations in the co-moving frame. For
the sake of simplicity we now assume that �ad is constant in space and time. From
(40.5) and (40.6) we obtain by differentiation with respect to r0

@x

@r0
C r0

@2x

@r20
D �3 @x

@r0
� 1

�ad

@p

@r0
: (40.7)

Eliminating @p=@r0; p, and d from (40.4)–(40.7) gives

x00 C
�
4

r0
� %0g0

P0

�
x0 C %0

�adP0

�
!2 C .4 � 3�ad/

g0

r0

�
x D 0 ; (40.8)

where a prime denotes a derivative with respect to r0.
This second-order differential equation describes the relative amplitude x.r0/ as

function of depth for an adiabatic oscillation of frequency !. In addition one has to
fulfil boundary conditions, one at the centre and one at the surface. At the centre the
coefficient of x0 in (40.8) is singular, while the coefficient of x remains regular since
g0 � m=r20 � r0. Because one has to demand that x is regular there, this gives the
central boundary condition x0 D 0.
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With a simple expansion into powers of r0 of the form x D a0 C a1r0 C
a2r

2
0C . . . , one finds that the regular solution starts from the centre outwards with

a1 D 0 and

a2 D � 1

10

%c

�adPc

�
!2 C .4 � 3�ad/

4�

3
G%c

�
a0 ; (40.9)

where the subscript c indicates central values of the unperturbed solution.
For the surface the simple condition P1 � p P0 D 0 is often used. However, one

can find a slightly more realistic boundary condition. We simplify the atmosphere
by assuming its massma to be comprised in a thin layer at r D R.t/, which follows
the changingR during the oscillations and provides the outer boundary condition at
each moment by its weight. We neglect, however, its inertia. Then at the bottom of
the “atmosphere” we have

4�R2P � GmaM

R2
D 0 ; (40.10)

and in the equilibrium state we have

4�R20P0 D GmaM

R20
: (40.11)

Using this and (40.1), we find from (40.10) that after linearization

p C 4x D 0 : (40.12)

We can rewrite this condition in terms of x and x0. If we replace p in (40.12) by
(40.6) and then d by (40.5), the outer boundary condition at r0 D R0 becomes

�adR0x
0 � .4 � 3�ad/x D 0: (40.13)

The interior boundary condition at r0 D 0 was

x0 D 0 (40.14)

If we multiply the differential equation (40.8) by r40P0, we can write it in the
form

.r40P0x
0/0 C r40%0

�ad

�
!2 C .4� 3�ad/

g0

r0

�
x D 0 : (40.15)

Together with the (linear, homogeneous) boundary conditions (40.13) and (40.14)
this defines a classical Sturm–Liouville problem with all its consequences.
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From the theory of eigenvalue problems of the Sturm–Liouville type, a series of
theorems immediately follows that we shall here list without proofs (which can be
found in standard textbooks):

1. There is an infinite number of eigenvalues !2n.
2. The !2n are real and can be placed in the order !20 < !

2
1 < : : :, with !2n ! 1 for

n ! 1.
3. The eigenfunction x0 of the lowest eigenvalue !0 has no node in the interval
0 < r0 < R0(“fundamental”). For n > 0, the eigenfunction xn has n nodes in the
above interval (“nth overtone”).

4. The normalized eigenfunctions xn are complete and obey the orthogonality
relation Z R0

0

r40 %0 xm xndr0 D ımn ; (40.16)

where ımn is the Kronecker symbol.
The eigenfunctions permit the investigation of the evolution in time of any

arbitrary initial perturbation described by xm D xm.r0/; Pxm D Pxm.r0/ at t D 0.
Indeed if one writes down the expansion of the initial perturbations in terms of the
eigenfunctions,

xm.r0/ D
1X
nD0

cnxn.r0/ ; Pxm.r0/ D
1X
nD0

dnxn.r0/ ; (40.17)

where the cn; dn are real, then

x.r0; t/ D Re

" 1X
nD0
.aneiwnt C bne�iwnt /xn.r0/

#
;

Px.r0; t/ D Re

" 1X
nD0

iwn.aneiwnt � bne�iwnt /xn.r0/

#
(40.18)

with complex coefficients an; bn; fulfil the time-dependent equation of motion
(40.15) with the initial conditions (40.17) at t D 0 if an, bn satisfy

an C bn D cn ; ReŒiwn.an � bn/� D dn: (40.19)

Now we come to the question of stability. Since the perturbations are assumed to
be adiabatic, it is dynamical stability we are asking for. We have seen that !2n is real,
so that if !2n > 0, then ˙!n is real, and the perturbations according to (40.1) are
purely oscillatory (with constant amplitude): the equilibrium is dynamically stable.
If !2n < 0 then ˙!n is purely imaginary, say ˙!n D ˙i� with real �. The general
time-dependent solution for this model is a sum of expressions of the form

Axne��t C Bxne�t ; (40.20)
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where A;B are complex constants. Hence at least one of the two terms describes an
amplitude growing exponentially in time. This term will necessarily show up in the
expansion (40.18) of an arbitrary perturbation and dominate after sufficient time:
the equilibrium is dynamically unstable.

The two regimes are separated by the case of marginal stability with !20 D 0,
which according to earlier considerations (Sect. 25.3.2) is expected to occur for
�ad D 4=3. We now show that this in fact follows from the rather general formalism
used here. For simplicity let us assume that P0 ! 0 at the outer boundary.

Integration of (40.15) over the whole star for the fundamental mode (n D 0)
gives

�
r40P0x

0
0

�R0
0

C !20
�ad

Z R0

0

r40%0x0dr0

C 4 � 3�ad

�ad

Z R0

0

r30%0g0x0dr0 D 0 : (40.21)

The boundary term on the left vanishes and we find

!20 D .3�ad � 4/
R R0
0 r30 %0g0x0dr0R R0
0 r40 %0g0x0dr0

: (40.22)

Since x0, as eigenfunction of the fundamental, does not change sign in the interval,
we have sign !20 D sign.3�ad � 4/. Therefore �ad > 4=3 gives !20 > 0, and the
equilibrium is dynamically stable, because all !2n > !02 for n > 0 (see above). If
�ad < 4=3, then for the fundamental (and possibly for a finite number of overtones),
!2n < 0, and the equilibrium is dynamically unstable.

Here we have assumed that �ad is constant throughout the stellar model, though
the main result is unchanged if �ad varies; in order to guarantee dynamical stability,
then, a mean value of �ad has to be > 4=3.

Of course, we could have carried through the whole procedure using m as
independent variable instead of r0. Then (40.4) and (40.5) would have had to be
replaced by the equivalent equations (25.19) and (25.20).

40.2 The Homogeneous Sphere

To illustrate the procedure of Sect. 40.1 we apply it to the simplest, but very
instructive, case of a gaseous sphere of constant density, where we have an easy
analytical access to the eigenvalues and eigenfunctions.
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If % is constant in space, then

r0 D
�
3m

4�%0

�1=3
; g0 D Gm

r20
D 4�

3
Gr0%0 ; (40.23)

and from integration of the equation of hydrostatic equilibrium (2.3) we find

P0.r0/ D 2�

3
G%20

�
R20 � r20

	
; (40.24)

where R0 is the surface radius in hydrostatic equilibrium.
If we introduce the dimensionless variable � D r0=R0 and define

QA WD 3!2

2�G%0�ad
C 2.4� 3�ad/

�ad
; (40.25)

then instead of (40.8) we can write

d2x

d�2
C
�
4

�
� 2�

1 � �2

�
dx

d�
C

QA
1 � �2

x D 0 : (40.26)

This differential equation has singularities at the centre and at the surface and we
look for solutions which are regular at both ends.

The simplest such solution of (40.26) is obvious: x D x0 D constant is an
eigenfunction for QA D 0. The corresponding eigenfrequency follows from (40.25):

!20 D 4�

3
G%0.3�ad � 4/ : (40.27)

This represents the fundamental, since the eigenfunction x D constant has no node.
The expression (40.27) for the eigenvalue follows immediately from (40.22) for
x0 D constant, %0 D constant. Note that (40.27) shows the famous period–density
relation for pulsating stars: !20=%0 D constant.

For the overtones we try polynomials in r0. Indeed if for the first overtone we
take x D 1 C b�2 with constant b, then (40.26) can be solved with b D �7=5 and
QA D 14. The corresponding eigenvalue is obtained from (40.25), (40.27) and we

have

!21 D !20

�
1C 7�ad

3�ad � 4

�
I x1 D 1 � 7

5
�2 : (40.28)

The eigenfunction has one node at � D .5=7/1=2, i.e. at r0 D 0:845R0. For
�ad D 5=3 the ratio of the frequencies of first overtone and fundamental is
!1=!0 D 3:56.

One can now try higher polynomials with free coefficients in order to find the
higher overtones. But we leave this to the reader, the first three eigenfunctions being
illustrated in Fig. 40.1.
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Fig. 40.1 The first three
eigenfunctions for radial
adiabatic pulsations of the
homogeneous sphere

40.3 Pulsating Polytropes

Let us now investigate the (spherically symmetric) radial oscillations of polytropic
models of index n as discussed in Chap. 19. We therefore express the quantities of
the unperturbed model which appear in the coefficients of (40.8),

r0 ; %0g0=P0 ; %0=P0 ; %0g0=.P0r0/ ;

by the Lane–Emden function w.z/ and by its dimensionless argument z. From (19.9)
we have

g0 D @˚0

@r0
D A˚c

dw

d z
I A2 D 4�G

Œ.nC 1/K�n
.�˚c/

n�1 ; (40.29)

while (19.7) yields

%0 D
� �˚cw
.nC 1/K

�n
; (40.30)

the subscript c denoting central values in the unperturbed model. If we use the
polytropic relation (19.3), we find

%0

P0
D 1

K
%�1=n D �nC 1

˚cw
; (40.31)
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and we then have
g0%0

P0
D �AnC 1

w

dw

d z
(40.32)

and
g0

r0
D ˚cA

2

z

dw

d z
: (40.33)

If we replace r0 by z D Ar0, the oscillation equation (40.8) becomes

d2x

d z2
C
�
4

z
C nC 1

w

dw

d z

�
dx

d z

C
�
˝2 � .4 � 3�ad/.nC 1/

�ad

1

z

dw

d z

�
x

w
D 0 : (40.34)

Equation (40.34) is singular at the centre (z D 0) and at the surface (w D 0). ˝ is a
dimensionless frequency:

˝2 D nC 1

�ad.�˚c/A2
!2 (40.35)

In (40.34) only �ad, the polytropic index n, and the Lane–Emden function for
this index appear. Therefore the dimensionless eigenvalue˝2 obtained from (40.34)
depends only on n and �ad, but not on other properties of the polytropic model, say
M or R. The relation (40.35) between˝ and ! can be expressed differently. Using
(40.30) for the centre .w D 1/ and (40.29) we have

!2 D �ad.�˚c/A
2

nC 1
˝2 D 4�G�ad%c

nC 1
˝2 : (40.36)

Since for a given n the central density %c and the mean density N% of the whole
unperturbed model differ only by a constant factor, one finds from (40.36) w2 D
constant � N%, or with the period˘ D 2�=!

˘
p N% D

�
.nC 1/�

�adG˝2

� N%
%c

�
n

�1=2
: (40.37)

For a given mode, say the fundamental, the right-hand side depends only on the
polytropic index n and on �ad. This is the famous period–density relation. It is also
approximately fulfilled for more realistic stellar models.

If one assumes for a ı Cephei star that M D 7Mˇ and R D 80Rˇ, its mean
density is � 2 � 10�5 g cm�3. If the period is 11d, then ˘. N%/1=2 � 0:049 (˘ in
days, N% in g cm�3). This constant gives a period of about 220 days for a supergiant
with N% D 5�10�8 g cm�3, while for a white dwarf (with N% � 106 g cm�3), it gives a
period of 4 s. Indeed the supergiant period is of the order of those observed for Mira
stars, while very short periods are observed for white dwarfs.

The dimensionless equation (40.34) depends on n and �ad, where the polytropic
index n is a measure of the density concentration, say of %c= N%, while �ad is a measure
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of the stiffness of the configuration. If �ad D 4=3, then ˝ D 0 is an eigenvalue
and x D constant the corresponding eigenfunction, as can be seen from (40.34);
the model is then marginally stable and after compression does not go back to its
original size. The larger the �ad, the better the stability, since the compressed model
will expand more violently after being released. This can be understood with the
help of the considerations in Sect. 25.3.2.

Numerical solutions of the eigenvalue problem show how variations in n and
�ad modify the solutions. Because of the singularities of (40.34) at both ends of
the interval 0 < z < zn .zn is the value of z for which the Lane–Emden function
of index n vanishes) the numerical solution is not straightforward. The simplest
way is to choose a trial value ˝ D ˝� and to start two integrations with power
series regular at z D 0 and at z D zn. The outward and inward integrations are
continued to a common point somewhere, say at z� D zn=2. There the two solutions
will have neither the same value x.z�/ nor the same derivative .dx=d z/�. Since
the differential equation is linear and homogeneous, we can multiply one of the
solutions by a constant factor such that both get the same value at z�. But then they
probably still disagree in .dx=d z/�. Agreement in the derivatives can be achieved by
gradually improving˝ , carrying out new integrations, and so on. By such iterations
a solution for the whole interval can be obtained.

Whether by such a procedure one arrives at the fundamental or at an overtone
depends in general on the trial˝�. If it is near the fundamental, we will end up with
the fundamental eigenvalue and eigenfunction. In any case the number of nodes will
reveal which mode has been found.

Since (40.34) is linear and homogeneous, the solution may be multiplied by an
arbitrary constant factor, in which way we can normalize the solution such that at the
surface x.zn/ D 1. For the polytrope n D 3 the eigenfunctions of different modes
for �ad D 5=3 are shown in Fig. 40.2 and the eigenfunction of the fundamental for
different values of �ad is displayed in Fig. 40.3.

The variation of �ad is indeed important. To see this, we assume an ideal
monatomic gas with radiation pressure as discussed in Chap. 13. From (13.7),
(13.12) and (13.15) we find after some algebra that

�ad D 1

˛ � ırad
D 32� 24ˇ � 3ˇ2

24 � 21ˇ
: (40.38)

For the limit cases ˇ D 1 .Prad D 0/ and ˇ D 0 .Pgas D 0/ the adiabatic exponent
�ad takes the values 5=3 and 4=3, respectively. We see that our assumption �ad D
constant throughout the model holds only as long as ˇ D constant. Fortunately this
is the case for the polytrope n D 3, since 1 � ˇ � T 4=P and T � !;P � !nC1.
In (40.34) the radiation pressure only appears in the quantity

' WD �4 � 3�ad

�ad
D 3 � 4

�ad
: (40.39)

For vanishing and dominating radiation pressure, ' takes the values 0.6 and 0,
respectively.
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Fig. 40.2 Eigenfunctions for
radial adiabatic pulsations of
the polytrope n D 3 for
' D 0:6 (After
Schwarzschild 1941)

Fig. 40.3 The fundamental
eigenfunction for radial
adiabatic pulsations of the
polytrope n D 3 for different
values of '. Radiation
pressure diminishes the ratio
of the amplitude at the surface
to that of the centre. If the
radiation pressure dominates
the gas pressure completely
(' D 0) the relative
amplitude x is constant

Fundamental and overtone solutions of (40.34) for n D 3 and for different values
of ' have been found numerically by Schwarzschild (1941). For ' D 0:6 (�ad D
5=3) the (dimensionless) eigenfrequency for the fundamental and the first overtones
are ˝2

0 D 0:1367, ˝2
1 D 0:2509, ˝2

2 D 0:4209, ˝2
3 D 0:6420, ˝2

4 D 0:9117. The
corresponding eigenfunctions are shown in Fig. 40.2.

The influence of ˇ on the fundamental eigenfunction can be seen in Fig. 40.3.
With increasing radiation pressure (' decreasing) the relative amplitude x drops
less and less steeply from the surface to the centre. The ratio xsurface=xcentre is 22.4
for ' D 0:6 and 9.1 for ' D 0:4. In the limit ' ! 0 (pure radiation pressure)
x even becomes constant. Indeed, for �ad D 4=3 and for the eigenvalue ˝ D 0,
x D constant is a solution as we know already.



Chapter 41
Non-adiabatic Spherical Pulsations

When a star oscillates, its mass elements will generally not change their properties
adiabatically. The outward-going heat flow, as well as the nuclear energy production,
is modulated by the rhythm of the pulsation, and both effects cause deviations from
adiabaticity. However, since the pulsation takes place on the hydrostatic timescale,
which is short compared to �KH, the deviations from adiabaticity should be small in
most parts of the stellar interior. In order to demonstrate the main effects of the non-
adiabatic terms on the equation of motion, we discuss them at first for the simple
piston model.

41.1 Vibrational Instability of the Piston Model

We go back to the description of Sect. 25.2.2. Equation (25.14) gives three eigen-
values � for non-adiabatic oscillations of the piston model. The adiabatic period
� D ˙�ad D ˙i!ad (with !2ad > 0) would be obtained for eP D eT D 0. For
small non-adiabatic terms eP and eT we now write � D �r ˙ �ad as in (25.15) and
assume that the real part is small, j�rj � !ad. Then, neglecting terms of the order
�3r ; �

2
r ; eP �r; eT �r and introducing �ad instead of 5/3, we find from (25.14) that

h0u0
g0

�
3�2ad�r ˙ �3ad

� � h0

g0
.eP C eT /�

2
ad C �adu0.�r ˙ �ad/� eT D 0: (41.1)

Since �ad has to obey the adiabatic equation [cf. (25.15)]

h0

g0
�2ad C �ad D 0; (41.2)
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(41.1) becomes
2u0�r D radeT C eP ; (41.3)

where we have introduced rad WD .�ad � 1/=�ad.
We now assume "0 D �0 D 0, then eP D 0, eT D ��T0=m� [see (25.13)], and

we find that

2u0�r D �rad
�T0

m� : (41.4)

Therefore, since rad > 0, one has �r < 0, meaning that the oscillation is damped.
During each cycle heat leaves and enters the gas in the container by way of the leak,
kinetic energy of the piston is lost and added to the surroundings as heat.

Similarly in a star the flow of heat modulated by the oscillation can damp the
motion. Since the deviation from adiabaticity is more pronounced in the outer
regions, the damping time is determined by the Kelvin–Helmholtz timescale of
the outer layers. In his classic book, Eddington (1926) estimated that the damping
time of ı Cephei stars would be of the order of 8,000 years and concluded that there
must exist a mechanism which maintains their pulsations. He actually discussed two
possible mechanisms which can be easily demonstrated with the piston model.

The first is called the � mechanism, since here it is the modulated absorption of
radiation which can yield vibrational instability.

If for the sake of simplicity we assume that � D "0 D 0, then according to
(25.13) one has eP D �0F �P ; eT D �0F �T , and therefore (41.3) becomes

2u0�r D �0F.rad�T C �P /: (41.5)

The model is vibrationally unstable .�r > 0/ if (rad�T C �P / > 0. This means that
the instability occurs if during adiabatic compression .d lnP > 0/ the absorption
coefficient increases: d ln � D .rad�T C �P /d ln P > 0. Then in the compressed
state more energy is absorbed than in equilibrium and the ensuing expansion
is slightly enhanced. For analogous reasons the state of maximum expansion is
followed by an enhanced compression.

In stars the outgoing radiative flux can similarly cause an instability if the stellar
opacity increases/decreases during the phase of contraction/expansion. As we shall
see (Sect. 41.4), this is the mechanism which indeed drives the ı Cephei stars.

In the so-called "mechanism the possible cause for an instability is the modulated
nuclear energy generation. In order to discuss a simple case, we assume � D �0 D 0

and find from (41.3) with (25.13) that

2u0�r D "0.rad"T C "P /: (41.6)

This model is vibrationally unstable for any nuclear burning ("0 > 0), since all terms
on the right-hand side are > 0. For example, the CNO cycle has typically "T & 10,
"P D 1 while rad � 0:4.

In the two cases discussed above, the piston model in a certain sense mim-
ics the stability behaviour of different layers in a star. Since �KH � 1=!ad, the
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non-adiabatic effects in a pulsating star are small, and as in the piston model one
can expect that the oscillations are almost adiabatic, as described in Chap. 40. But
the non-adiabatic effects will cause a small deviation of the eigenfrequency from the
adiabatic value. Indeed, since the temperature variations are different in different
regions of the star, these regions exchange an additional heat which–like the heat
flow through the leak–causes a damping (radiative damping). A destabilizing effect
on the star is caused by those regions where the opacity increases during contraction
(� mechanism) as well as those with a nuclear burning where " increases during
contraction (" mechanism).

41.2 The Quasi-adiabatic Approximation

In order to determine the vibrational stability behaviour of a star, one has to solve the
four ordinary differential equations (25.19)–(25.22) for the perturbations p, x, �, #
together with homogeneous boundary conditions at the centre and at the surface. In
addition to the “mechanical” boundary conditions (40.13) and (40.14) one has at the
centre

l0� D 0 at m D 0: (41.7)

As a rough outer boundary condition one can assume that at the surface the relation
L D 4�R2�T 4 holds throughout the oscillation period, yielding

l D 2x C 4#: (41.8)

This relation is not exactly true, since the photosphere (where T D Teff) does not
always belong to the same mass shell during the oscillation. With a more detailed
theory of the behaviour of the atmosphere during the oscillations one can replace
(41.8) by another, but also linear and homogeneous, outer boundary condition.

The homogeneous linear equations (25.19)–(25.22) and boundary conditions
(40.13), (40.14) and (41.7), (41.8) define an eigenvalue problem for the eigen-
value !.

Here we will restrict ourselves to a simplified treatment, the quasi-adiabatic
approximation. For the given unperturbed equilibrium model we first solve the
adiabatic problem described in Chap. 40, thereby obtaining a set of adiabatic
eigenvalues !.n/ad with the eigenfunctions p.n/ad ; x

.n/

ad ; #
.n/

ad D radp
.n/

ad , where the
upper index n labels the different eigenvalues. In the following we will drop n,
though keeping in mind that the procedure described here and in Sect. 41.3 can be
carried out for each of the adiabatic eigenvalues. Of course, the real oscillations
will not proceed exactly adiabatically, which, for example, is shown in luminosity
perturbations. To determine an approximation to the relative luminosity perturbation
� we differentiate #ad with respect to m and find from (25.22)

� D P0

radP
0
0

# 0
ad C 4xad � �Ppad C .4 � �T /#ad: (41.9)
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In this quasi-adiabatic approximation, therefore, the non-adiabatic effects
determining � are calculated from adiabatic eigenfunctions. The correct procedure
would require the use of non-adiabatic eigenfunctions on the right-hand side of
(41.9), while in a strictly adiabatic case we would expect � D �ad D 0. One can use
the non-adiabatic variation � of the local luminosity in order to estimate the change
of ! due to non-adiabatic effects.

For this, one assumes the star to be forced into a periodic oscillation. If non-
adiabatic processes are taken into account, periodicity can only be maintained if,
during each cycle, energy is added to or removed from the whole star. If energy has
to be added to maintain a periodic oscillation, the star is damped; if energy has to be
removed, it is excited. In order to determine the energy necessary for maintaining a
periodic pulsation one defines the energy integral.

41.3 The Energy Integral

Suppose we want to make a star undergo periodic radial pulsations. If it is
vibrationally unstable, then during each cycle a certain amount W of energy has to
be taken out to maintain periodicity. If the star is vibrationally stable, the energy
�W has to be fed into the star during each period to avoid a damping of the
amplitude. In both cases W is the energy to be taken out to overcome excitation
or damping. Therefore, if the star is left alone, W >0 gives amplitudes increasing
in time (excitation) while for W < 0 the oscillation is damped.

To determineW we consider a shell of mass dm which gains the energy dq=dt
per units of mass and time. The energy gained per unit mass per cycle is the integral
of (dq=dt/dt taken over one cycle. Therefore the energy

dW D dm

I
dq

dt
dt (41.10)

has to be taken out of the mass shell to maintain periodicity. If we replace dq=dt by

dq

dt
D �cos!t

d.l0�/

dm
; (41.11)

and if we integrate over all mass shells, we have

W D �
Z M

0

dm

I
cos !t

d.l0�/

dm
dt: (41.12)

It is obvious that this integral vanishes: in the linear approximation there is neither
damping nor excitation.
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However, owing to a trick invented by Eddington it is still possible to determine
the second-order quantity W with the help of solutions of the first-order theory.
Since in the adiabatic case the eigenvalues are real, the time dependence of x, p, # ,
and according to (41.9) that of �, can be expressed by the factor cos !t .

We first prove that

I
dq

dt
dt D

I
#
dq

dt
cos !t dt; (41.13)

up to second order. Indeed, since the specific entropy s is a state variable, the integral
of ds over one cycle vanishes exactly. We now write ds D dq=T . Since we use only
solutions of the adiabatic case, we can consider the variation of T as real and can
write T D T0.1 C #ad cos !t), which is correct in the first order. With the (real)
adiabatic solutions xad , pad, and #ad according to (41.9), � also is real, and therefore
dq=dt is real, too, as can be seen from (41.12). Therefore

0 D
I
ds

dt
dt D

I
1

T0
.1 � #ad cos !t/

dq

dt
dt

D 1

T0

I
dq

dt
� 1

T0

I
#ad cos !t

dq

dt
dt: (41.14)

This equation is exact in the second order. It therefore proves (41.13). Should the
integral on the left of (41.13) vanish in the first order, its value in the second order is
given by the integral on the right of (41.13), which does not vanish. We can therefore
write from (41.10) by using (41.11)

W D
Z M

0

dm
I
#ad cos !t

dq

dt
dt D �

Z M

0

dm

I
#ad

d.l0�/

dm
cos2 !t dt

D �
Z M

0

dm
I �

#ad�
dl0

dm
C l0#ad

d�

dm

�
cos2 !t dt: (41.15)

The time dependence of the real part is cos2 !t , which integrated over 2� gives
�=!. With dl0=dm D "0 we therefore obtain

W D ��
!

�Z M

0

#ad�"0 dmC
Z M

0

l0#ad
d�

dm
dm

�
: (41.16)

In fact we see that only second-order terms (� #ad� and � #add�=dm) appear in
the expression forW . We can now solve the adiabatic equations, insert the resulting
#ad, differentiate � given in (41.9), and determineW from (41.16).
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41.3.1 The � Mechanism

We consider here regions of the star in which no energy generation takes place
("0 D 0) and therefore in which l0 D constant. Since the adiabatic equations for the
determination of x, p, # are linear and homogeneous, the solutions are determined
only up to a common factor. We choose it here such that xad D 1 at the surface.
We further choose the initial point of time such that the maximal expansion of the
surface is at t D 0. Then the first equation of (25.17) can be written r D r0.1C xad

cos !t), and for x > 0 (expansion) the variations #ad and pad are certainly < 0

there. Since, for the fundamental, #ad.< 0/ does not change sign throughout the
star, one can immediately see from (41.16) that a region where � increases outwards
(d�=dm > 0) gives a positive contribution to W : such a region has an excitational
effect on the oscillation, while regions with d�=dm < 0 have a damping influence.
The last two terms on the right of (41.9) together with #ad D radpad can be
written as

4radpad � .�P C rad�T /pad: (41.17)

Note that the term in parenthesis is identical with a term we encountered in (41.5)
for the piston model. If for the sake of simplicity we assume �P , �T , rad to be
constant and observe that, for the fundamental, pad < 0 increases inwards, then
for �P C rad�T > 0 the term �.�P C rad�T /pad > 0 gives a contribution
that helps to increase � in an inward direction. This has a stabilizing effect. The
term 4radpad < 0 in (41.17) decreases with pad in an outward direction and has a
damping effect independently of �. This damping corresponds to the effect of the
leak in the piston model.

The � mechanism is responsible for several groups of variable stars. Before we
discuss its effect on real stars we shall first deal with the other mechanism that can
maintain stellar pulsations.

41.3.2 The " Mechanism

The terms in the energy integral discussed in Sect. 41.3.1 appear everywhere in a
star where radiative energy transport occurs. However, there, we have excluded
nuclear energy generation, which can also be modulated by the oscillations. To
investigate its influence we now concentrate on the terms which come from ".
If we put l0.d�/=dm equal to the perturbation of the energy generation rate
" W "0."Ppad C "T #ad/ D "0."P C rad"T /pad, we find from (41.16) that

W" D ��
!

�Z M

0

#ad�"0dmC
Z M

0

#ad"0."P C rad"T /pad dm

�

D ��
!

Z M

0

#adŒ�C ."P C rad"T /pad	"0 dm: (41.18)
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Here we again find the excitation mechanism working if "P C rad"T > 0, which
is already known to us from the piston model of Sect. 41.1. All terms in the integral
(41.18) contribute to the energy integral only in the very interior, where "0 ¤ 0.
Since the amplitudes of the eigenfunctions there are normally small compared to
their values in the outer regions, one often ignores the contribution of the energy
generation and instead of W computesW� D W �W" � W . We come back to the
case where W" becomes important in Sect. 41.5.

41.4 Stars Driven by the � Mechanism: The Instability Strip

If one has determined the adiabatic amplitudes for a given stellar model, one can
derive � from (41.9) and evaluate W according to (41.16). We shall first describe
the influence of different layers.

In the outer layers, where deviations from adiabaticity are biggest, the �

mechanism and the damping term 4radpad in (41.17) become important and the
sign of .�P C rad�T / determines whether the � mechanism acts to damp or to
excite. To illustrate this it is useful not only to plot on a lg P –1g T diagram
lines of constant opacity but also to indicate at each point the slope given by
rad D .d lgT=d lgP/ad as in Fig. 41.1. The � mechanism provides excitation if one
comes to higher opacities when going along the slope towards higher pressure. For
a monatomic gas one has rad D 0:4: However, ionization reduces rad appreciably
(see Fig. 14.1b), which according to Fig. 41.1 favours instability. This is easily seen
for a simple Kramers opacity with �P D 1 and �T D �4:5: then the decisive term
(�P C rad�T ) is �0:8 for rad D 0:4, while it is � 0 for rad � 0:222.

In the near-surface layers of a star with an effective temperature of about 5,000 K,
there are two regions where ionization, together with a suitable form of the function
� D �(P , T ), acts in the direction of instability. The outer one is quite close
to the surface, where hydrogen is partially ionized, followed immediately by the
first ionization of helium (see Fig. 14.1, which is plotted for the Sun). Below this
ionization zone, rad goes back to its standard value of 0.4. But still deeper another
region of excitation occurs caused by the second ionization of helium. This turns
out to be the region which contributes most to instability. In still deeper layers
the � mechanism has a damping effect, but their influence is very small, since the
oscillations become more adiabatic the deeper one penetrates into the star. For an
estimate of the right depth of the Hell ionization zone, see Cox (1967) and Sect. 27.7
of Cox and Giuli (1968).

In Fig. 41.2 the exciting and damping regions of the outer layers of a ı Cephei
star of 7Mˇ are shown. For a star right in the middle of the Cepheid strip the “local”
energy integral

w.m/ D �
Z M

m

dm

I
cos !t

d l0�

dm
dt (41.19)



536 41 Non-adiabatic Spherical Pulsations

Fig. 41.1 Lines of constant opacity � in the lgP –lgT plane (all values in cgs). Four arrows are
shown that indicate the direction in which a mass element moves during adiabatic compression.
For the arrows labelled a, b, and d , the direction is given by rad D 0:4. In case a the arrow
points in the direction of increasing �, i.e. the � mechanism has a “driving” effect on pulsations. In
cases b and d the arrows point in the direction of decreasing �, indicating a “damping” (or almost
neutral) effect on pulsation. In case c the direction of the arrow is different from that of the other
ones, since rad is here reduced by the second ionization of helium. Because of this reduction, the
arrow points in the direction of increasing �, and this ionization region can contribute considerably
to the excitation of pulsations in Cepheids

is plotted as a function of depth in Fig. 41.3, where lg P has been used as a
measure of the depth. There one can see which regions excite the oscillations
(dw=d lgP > 0) and which have a damping effect (dw=d lg P < 0). According
to (41.12) !.0/ D W .

In order that excitation wins over damping it is necessary that the zones of
ionization, which provide the excitation, contain a sufficient part of the mass of
the star. This means that these zones have to be situated at suitable depths, and since
ionization is mainly a function of temperature, we can conclude that it is essentially
a question of the surface temperature that decides whether a star is vibrationally
stable or unstable via the � mechanism.

Let us compare stellar models of the same mass (say in the range 5–10Mˇ),
of roughly the same luminosity, and consider values for the effective temperature
which range from the main sequence to the Hayashi line. At the main sequence and
in some range to the right of it, the outer layers of the stars are too hot: hydrogen is
fully ionized far up into the atmosphere, and even the second ionization of helium is
almost complete up to the photosphere. Therefore the � mechanism due to ionization
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Fig. 41.2 An opacity surface (“� mountain”) for the outer layers of a star as in Fig. 17.6. But
this time the dependence with respect to P (in dyn cm�2/ and T (in K) is shown. The dotted line
corresponds to the stratification inside a Cepheid of 7Mˇ. The white areas of the “mountain”
indicate regions which excite the pulsation and the black ones those which damp it. The excitation
in the region of lg T � 4:6 is due to the second ionization of helium

Fig. 41.3 The “local” energy integral w.m/ (in arbitrary units) as defined in (41.19) for a star
of 7Mˇ and Teff D 5; 300K as a function of the unperturbed pressure P0 (in dyn cm�2). w.m/
increases in regions which excite the pulsation, and falls in those regions which damp the pulsation
(After Baker and Kippenhahn 1965)

as discussed in Sect. 41.3.1 does not provide much excitation. The main contribution
to W comes from the layers which are in the region of the lgP –lg T plane of
Fig. 41.1 where the � mechanism has a damping effect. Therefore the pulsation of
such hot stars is damped. But the smaller the effective temperature, i.e. the further
to the right in the HR diagram, the deeper inwards are the zones of partial ionization
of H and He. Then a higher percentage of the stellar matter lies in the regions of
excitation shown in Fig. 41.2. At effective temperatures below about 6,300 K, the
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ionization zones are located such that their excitation overcomes the damping of
the other layers: such stars start to pulsate with increasing amplitude. This critical
temperature, which decreases slightly with increasing luminosity, defines the left
(“blue”) border of an instability region in which W > 0. This border coincides
roughly with the left border of the strip in which the observed Cepheids are
located.

When considering models with still lower effective temperatures, one has to keep
in mind that (41.9) only holds in radiative regions. To determine the influence of
convective layers a theory of time-dependent convection is necessary. In particular
such a theory should tell us whether in a given convective layer the energy transport
is less or more efficient when the star is compressed. Since at present no reliable
time-dependent theory for convection is available, one has to realize that the energy
integralW � W� becomes unreliable if convection becomes important in the layers
where the � mechanism would be effective. Consequently predictions of the right
(“red”) border of the instability strip are not reliable.

Nevertheless, attempts have been made to determine the influence of convection,
by using some formulations of time-dependent mixing-length theory. For example,
Bono et al. (1999) computed non-adiabatic, non-linear pulsations of classical
Cepheid models, using the treatment of time-dependent convection described in
an earlier paper (Bono and Stellingwerf 1994) about RR Lyrae stars. They could
indeed determine a more realistic red edge of the instability strip than the one found
when only the radiative energy transport is considered. While for these classical
radial pulsators convection has a damping effect, convection can also contribute to
the excitation. This is in particular true for white dwarf pulsators, where convective
time scales can be much shorter than that of pulsation (see Dupret et al. 2008, and
Aerts et al. 2010, Sect. 3.7.3, for more on this subject).

In any case it is well established that there is an instability strip with a probable
width of a few 102 K, not too far from, and roughly parallel to, the Hayashi
line, extending through almost all of the HR diagram (cf. Figs. 31.4 and 33.11).
All stellar models evolving into this strip will become vibrationally unstable via
the � mechanism and start to pulsate. In order to predict that we can observe a
corresponding pulsating star, the passage through the strip has to be slow enough.

This is fulfilled for models of typically 5 : : : 10Mˇ, which during the phase
of helium burning loop away from and back to the Hayashi line, thereby passing
through the instability strip at least twice. These passages, in which models represent
the classical Cepheids, are discussed in detail in Sect. 31.3. Depending on M , the
passages occur at quite different luminosities: the largerM , the higherL. Using the
adiabatic approximation one can easily determine the periods of the fundamental
for models of very different L inside the instability strip. In this way one obtains
a theoretical period–luminosity relation that is in satisfying agreement with the
observed one. It is interesting to note that the passages through the instability strip
do not follow lines of R D constant. Since the radius and therefore the mean
density changes, the period–density relations predict a certain amount of change
(in both directions) of the period of a Cepheid. This period change, of the order of
seconds per year, has been determined from long-term monitoring of Cepheids and
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is in reasonable agreement with theoretical predictions (e.g. Pietrukowicz 2001, and
references therein).

Of much smaller mass are the helium-burning stars located on the horizontal
branches of the HR diagrams of globular clusters. Where these branches intersect the
downward continuation of the instability strip, at an effective temperature between
6,000 and 7,500 K, one finds the RR Lyrae stars (Sect. 33.7). Like the classical
Cepheids these are pulsating stars driven by the � mechanism. For a monograph
see Smith (1995).

Even further down in the HR diagram, in the region of the main sequence, the
instability strip is marked by another group of observed pulsating stars, the so-called
ı Scuti stars or dwarf Cepheids.

Above the location of the RR Lyrae stars in the HR diagram of globular
clusters one sometimes finds stars which lie in the instability strip and are therefore
pulsating: the BL Herculis and W Virginis stars (see footnote on page 414).
In contrast to the classical Cepheids, which belong to population I, these stars are
of population II (and are called Type II Cepheids). It is not surprising that they
do not obey the same period–luminosity relation as Cepheids. According to the
evolutionary considerations of Sect. 33.7 they are low-mass stars in an evolutionary
stage later than that of the horizontal branch. They obviously have lower masses than
the Cepheids, which have travelled more or less horizontally from the main sequence
into the instability strip. Let us assume that at the same point inside the instability
strip there are two stars, a population I star of, say, 7Mˇ and a population II star
of, say, 0:8Mˇ. The � mechanism will make both of them pulsate. Being at the
same point in the HR diagram, the two stars have the same radii. Therefore the
population II star has the lower mean density and according to the period–density
relation a longer period than the population I star, although their luminosities are
the same. Since the luminosity increases with the period, it follows that pulsating
population I stars have a higher luminosity than pulsating population II stars of the
same period. In the history of astronomy the clarification of this difference between
the two period–luminosity relations caused the revision of the cosmic distance scale
by W. Baade in 1944. This increase of the cosmic distance scale amounted to no
less than a factor of 2, which caused the comment “The Lord made the universe–but
Baade doubled it”.

Up to now we have based our considerations on a linear quasi-adiabatic
approximation. In the linear theory the amplitude of the solution is not determined
and the time dependence is given by almost sinusoidal oscillations with amplitudes
growing or decreasing very slowly in time. In reality a vibrationally unstable star
would start to oscillate with increasing amplitudes until the oscillations had grown
so much that they could not be described by a linear theory any more. Once the
non-linear terms in the equations have become important, they have the effect of
limiting the increase of amplitudes and causing a time dependence of the solutions
which differs considerably from sinusoidal behaviour. Indeed the light curves of
most of the observed pulsating stars have constant amplitude and are far from being
sinusoidal.
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Attempts have been made to reproduce the observed light curves of Cepheids
by solving the non-linear equations numerically with varied parameters. A special
goal was to determine the masses of Cepheids by comparing their observed light
curves with computed ones (see Christy 1975; Bono et al. 2000, and related work).
Such comparisons seem to indicate lower masses for Cepheids than expected from
evolution theory, but as we have seen in Sect. 31.3, overshooting and/or mass loss
help to solve this problem.

Besides the linearization of the equations, we have additionally simplified the
problem of pulsations by applying the quasi-adiabatic approximation. With some
more effort, however, one can also solve the full set of linear non-adiabatic
equations. These four equations demand four linear boundary conditions. If they are
properly chosen, one obtains one complex eigenvalue!. Since the time dependence
is given by exp(i!t), the imaginary part !I of ! determines vibrational stability.
The energy integral (41.12), computed with the function � obtained from (41.9),
is connected to !I when one is close to the adiabatic case (Baker and Kippenhahn
1962). In most cases the quasi-adiabatic approximation seems to be sufficient. If,
however, pure helium stars cross the instability strip, the oscillations are far from
being adiabatic, and therefore the quasi-adiabatic approximation becomes very
unreliable. This can become important, for instance, if the oscillations of stars of
the type R Coronae Borealis are being investigated (Weiss 1987).

As the �-mechanism depends on the detailed shape of the “opacity mountain”,
it is important to have accurate opacity data. Norman Simon in 1982 wrote a paper
entitled A plea for reaexamining heavy element opacities in stars (Simon 1982),
in which he showed that an increase in opacities by a factor of 2 and 3 in the
temperature region between 105 and 2 	 106 K would solve two long-standing
problems: the mismatch between predicted and observed period ratios for the
fundamental and first overtone pulsations of classical Cepheids (so-called “double
mode Cepheids”), and that between second overtone and fundamental for the “bump
Cepheids”. He suggested that the opacities of metals were underestimated in the
then existing opacity tables. As a consequence new Rosseland mean opacities were
computed (which we discussed in Sect. 17.8), and indeed the problem was solved
(Moskalik et al. 1992)! Additionally, the long-sought excitation mechanism for
the so-called ˇ Cepheids (pulsating main-sequence stars of 7–10Mˇ and spectral
type B) was found (Moskalik and Dziembowski 1992; Kiriakidis et al. 1992): as the
reason the bump around lgT � 5:3 (see Fig. 17.6) was identified, which is due to
absorption of photons by abundant metals such as C, N, Ne, and Fe. This “metal”
or “iron bump” was missing in earlier opacity tables. The new opacities, required in
order to understand stellar pulsations, had far-reaching consequences: they helped
to compute very accurate solar models as well as improved isochrones for globular
clusters.
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41.5 Stars Driven by the " Mechanism

In most stars the " mechanism discussed in Sects. 41.1 and 41.3.2 cannot overcome
the damping, the reason being that it only works in the central regions of the stars
where nuclear energy is released. But there the amplitudes of the oscillations are
usually very small compared to the amplitudes in the near-surface regions, which–
if the star is not in the instability strip–damp the oscillations by way of the �
mechanism.

Figure 40.3 shows that for polytropes for which the radiation pressure can
be neglected, the amplitude ratio xcentre=xsurface is small, while it increases with
decreasing ' until the ratio becomes 1 for ' D 0 (negligible gas pressure). Since
the integrand of the energy integral is quadratic in the amplitudes of the oscillations,
we can expect that the " mechanism becomes more important the larger the fraction
of the radiation pressure.

This is of importance at the upper end of the hydrogen main sequence
(Sect. 22.4), because for such stars, the ratio of radiation pressure to gas pressure
strongly increases with M . Numerical calculations with realistic stellar models
instead of polytropes indicate that the " mechanism makes the main-sequence
stars pulsate if their mass exceeds a critical value of about 60Mˇ (Schwarzschild
and Härm 1959); this value depends on the chemical composition. Baraffe et al.
(2001) found that metal-free (Pop. III) stars may even be as massive as a few
hundred Mˇ without losing substantial amounts of material during their main-
sequence lifetime. The reason is that these stars burn hydrogen at much higher
central temperatures, where the H-burning reactions have a lower dependency on
temperature (see Fig. 18.8), a fact which reduces "P C rad"T and thus stabilizes the
star.

Why, then, do we not see pulsating stars in the extension of the main sequence
towards higher luminosities? Non-linear pulsation calculations (Appenzeller 1970;
Ziebarth 1970) indicate that the amplitudes would grow until, with each cycle, a thin
mass shell is thrown into space. This would continue until the total mass is reduced
to the critical mass of, say, 60Mˇ. Then the pulsation would stop. However, the
growth rates of the pulsations are probably longer than the main-sequence lifetime.
It is therefore unclear whether the "-mechanism really sets an upper limit to the
mass range on the main sequence.

Similarly the onset of a vibrational instability due to the " mechanism may also
limit the helium main sequence towards largeM (see Sect. 23.1). The critical upper
mass for helium stars depends on the content of heavier elements and may lie
between 7 and 8Mˇ (Boury and Ledoux 1965).



Chapter 42
Non-radial Stellar Oscillations

We use spherical coordinates r; #; ' and describe the velocity of a mass element
by a vector v having the components vr ; v# ; v' . For the radial pulsations treated
in the foregoing sections, the velocity has only one non-vanishing component, vr ;
which depends only on r . This is so specialized a motion that one might wonder
why a star should prefer to oscillate this way at all. In fact it is easier to imagine the
occurrence of perturbations that are not spherically symmetric, for example, those
connected with turbulent motions or local temperature fluctuations. They can lead
to non-radial oscillations, i.e. oscillatory motions having in general non-vanishing
components vr ; v# ; v' , all of which can depend on r; # , and '. It is obvious that the
treatment of the more general non-radial oscillations is much more involved than
that of the radial case, but they certainly play a role in observed phenomena (see
Sect. 42.4). We will limit ourselves to indicating a few properties of the simplest
case: small (linear), adiabatic, poloidal-mode oscillations. A detailed monograph
about this subject, which is the basis of the field of asteroseismology, was written
by Aerts et al. (2010).

42.1 Perturbations of the Equilibrium Model

The unperturbed model (subscript 0) is assumed to be spherically symmetric, in
hydrostatic equilibrium (%0r˚0 C rP0 D 0) and at rest (velocity v0 D 0). We now
consider perturbations which shift the mass elements over very small distances. For
any mass element at r; #; ', the displacement relative to its equilibrium position is
described by the vector � with the components �r ; �# ; �' , which, in general, depend
on r; #; '; t . Owing to this displacement, such variables as pressure, density, or
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gravitational potential will change. This can be described either in a Lagrangian
form (changes inside the displaced element) denoted by

P D P0 CDP; % D %0 CD%; ˚ D ˚0 CD˚; v D d�=dt (42.1)

or as Eulerian perturbations (local changes), which we write as

P D P0 C P 0; % D %0 C %0; ˚ D ˚0 C˚ 0; v D @�=@t (42.2)

and which are preferred in the following. The linearized connection between the two
types of perturbations of any quantity q is

Dq D q0 C � � rq0 D q0 C �r
@q0

@r
: (42.3)

(The last equality holds since rq0 is a purely radial vector.) Together with �, all
perturbations are functions of r; #; '; and t:We have to perturb the Poisson equation
and the equations of motion and continuity.

The acceleration due to gravity,

g D �r˚; (42.4)

and its perturbations Dg or g0 are given by the potential ˚ . Poisson’s equation
(2.23), together with (42.2), yields after linearization

r2˚ 0 D 4�G%0: (42.5)

The equation of motion for the moving mass element is

%
dv

dt
D %g � rP: (42.6)

With (42.1) this gives the linearized equation

%0
d2�

dt2
D g0D%C %0Dg � r.DP/; (42.7)

where the forces on the right-hand side are measured relative to equilibrium. From
(42.7) and (42.3), the Eulerian equation of motion follows:

%0
@2�

@t2
D �%0r˚ 0 � %0r˚0 � rP 0: (42.8)

On the right-hand side of this expression, the restoring force is represented by
three terms, the last of which is due to pressure variations, while the others are
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gravitational terms. The first stems from the changed gravitational acceleration and
is usually small compared with the second, which is essentially a buoyancy term.

The equation of continuity, @%=@t C r.%v/ D 0, after insertion of (42.1) and
linearization, takes the form

D%C %0r � � D 0; (42.9)

which together with (42.3) is transformed to

%0 C � � r%0 C %0r � � D 0: (42.10)

We do not have to consider the equations of energy and energy transfer, since we
assume the changes to be adiabatic. The condition for adiabaticity in Lagrangian
form is simply [cf. (40.6)]

DP

P0
D �ad

D%

%0
; (42.11)

which is transformed by (42.3) to the Eulerian condition

P 0 C � � rP0 D P0

%0
�ad.%

0 C � � r%0/: (42.12)

We shall see below that the equations derived for the perturbations constitute a
fourth-order system. So we need in addition four boundary conditions.

At the surface, we require continuity of the Lagrangian variation of r˚ through
the surface, and a vanishing pressure perturbation,DP D 0, such that no forces are
transmitted to the outside. These outer boundary conditions are then written as

�
@˚ 0

@r
C � � r˚0

�
in

D
�
@˚ 0

@r
C � � r˚0

�
out
; P 0 C � � rP0 D 0: (42.13)

At the centre, the perturbations are required to be regular, which also yields two
boundary conditions, say,

P 0 D 0; ˚ 0 D 0: (42.14)

42.2 Normal Modes and Dimensionless Variables

The perturbations are to be determined from (42.5), (42.8), (42.10) and (42.12)–
(42.14). Aside from the perturbations �; ˚ 0; P 0; %0, these equations contain only
quantities of the unperturbed equilibrium model, for which we now drop the
subscript 0.
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Fig. 42.1 Node lines of some spherical harmonics Y ml . Corresponding oscillations would show,
for example, outward motion in the shaded areas and inward motion in the other parts of the sphere

We specify the perturbations q.r; #; '; t) in the usual way, assuming that all of
them depend on the variables as factorized in the following separation ansatz:

q.r; #; '; t/ D Qq.r/Y ml .#; '/ei!t : (42.15)

The perturbations are supposed to vary on all concentric spheres like the well-known
spherical harmonics Y ml .#; ') of degree l and order m (see, for instance, Korn and
Korn 1968). In time they vary periodically with frequency !. The dependence on r
is comprised in the function Qq.r/: The Y ml are solutions of

@2Y ml
@#2

C ctg#
@Y ml
@#

C 1

sin2 #

@2Y ml
@'2

C l.l C 1/Y ml D 0; (42.16)

and can be written as

Y ml D K.l;m/Pm
l .cos#/ cos m'; (42.17)

where K is a coefficient depending on l and m, and Pm
l .x/ are the associated

Legendre functions. Degree and order are specified by choosing the integers

l > 0; m D �l; : : : ;Cl: (42.18)

A change of l; m changes the angular variation on concentric spheres. A few
examples are illustrated in Fig. 42.1. Generally speaking, the larger l , the more
node lines (Y D 0) are present, and the smaller are the enclosed areas in which
the matter moves in the same radial direction (e.g. outwards). For example, l D 2

is a quadrupole oscillation, l D 1 a dipole oscillation, and l D 0 the special case of
the earlier discussed radial pulsations.

We shall discuss here only perturbations of the form (42.15). The resulting
oscillations of that form are called poloidal modes. It should be mentioned that there
exists the additional class of toroidal modes, which do not have the form (42.15);
they are independent of time and have purely transverse displacements (without
radial components).
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In order to get an overview of the problem, it is convenient to introduce
dimensionless variables, for example,

�1 D 1

r
�r I �2 D 1

gr

�
P 0

%
C ˚ 0

�
I �3 D 1

gr
˚ 0 I �4 D 1

g

@˚ 0

@r
: (42.19)

Since they are proportional to P 0; %0; ˚ 0, we have according to (42.15)

�j D Q�j .r/Y ml .#; '/ei!t ; j D 1; 2; 3; 4: (42.20)

The density perturbation, which does not appear in (42.19), will always be replaced
by terms in P 0 (and then in �2 � �3) via (42.12).

The equation of motion (42.8), together with (42.19), becomes after some
algebra:

� !2

g
� D ŒW.�1 � �2 C �3/C .1 � U /�2�er � rr�2; (42.21)

where er is a unit vector in the r direction. The dimensionless quantities

U WD r

m

@m

@r
D 4�r3%

m
;

V WD � r

P

@P

@r
D g%r

P
; (42.22)

W WD r

%

@%

@r
� r

P�ad

@P

@r

are to be taken from the equilibrium model. Equation (42.21) is easily verified. Its
radial component will be treated later, while the tangential components

!2

g
�# D @�2

@#
;

!2

g
�' D 1

sin#

@�2

@'
(42.23)

are used immediately in the equation of continuity. But first we replace ! by a
dimensionless frequency � , setting

!2r

g
D C�2; C D

� r
R

�3 M
m
; �2 D !2

R3

GM
: (42.24)

This frequency is scaled by a time of the order of the hydrostatic adjustment time or
of the period of the radial fundamental.

When transforming the equation of continuity (42.10), we evaluate the term r ��
by using (42.23), introduce (42.20), and eliminate all derivatives of Y ml with respect
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to # and ' with the help of (42.16). Then all terms are proportional to Y ml exp(i!t),
which can thus be dropped. One finally obtains

r
@ Q�1
@r

D
�
3 � V

�ad

�
Q�1 C

�
l.l C 1/

C�2
C V

�ad

�
Q�2 � V

�ad
Q�3: (42.25)

Similarly one finds from the radial component of the equation of motion (42.21)

r
@ Q�2
@r

D .W C C�2/ Q�1 C .1 � U �W / Q�2 CW Q�3: (42.26)

The next equation is simply obtained by differentiating the definition of �3 in (42.19)
with respect to r , which gives

r
@ Q�3
@r

D .1 � U / Q�3 C Q�4: (42.27)

In the Poisson equation (42.5), after elimination of %0 by (42.12), we introduce
(42.19) and again use (42.16), arriving at

r
@ Q�4
@r

D �UW Q�1 C UV

�ad
Q�2 C

�
l.l C 1/� UV

�ad

�
Q�3 � U Q�4: (42.28)

With (42.25)–(42.28) we have obtained four ordinary, linear differential equa-
tions with real coefficients (given by the equilibrium model) for the four dimen-
sionless variables Q�1 : : : ; Q�4. In addition there are four algebraic equations arising
from the boundary conditions. This constitutes an eigenvalue problem with the
eigenvalue �2.

Note that it is the assumption of adiabaticity which has reduced the problem to
4th order in the spatial variables. For the full non-adiabatic case one additionally
has to consider the perturbations of the temperature and of the energy-flux vector.
The perturbed energy equation contains first derivatives with respect to time, which
according to (42.15) give terms multiplied by i!. Therefore the equations become
complex and the non-adiabatic problem is of order 12 in real variables. On the other
hand, for l D 0, one obtains the adiabatic radial oscillations, for which the problem
is reduced to second order.

42.3 The Eigenspectra

For adiabatic non-radial oscillations we have obtained an eigenvalue problem of
4th order in the spatial variables and non-linear in the eigenvalue !2 (or the
dimensionless �2). The problem can be shown to be self-adjoint, so that the



42.3 The Eigenspectra 549

eigenfunctions are orthogonal to one another. They have been found to form a
complete set if complemented by the toroidal modes.

The eigenvalues obey an extremal principle. The self-adjointness assures that all
eigenvalues are real. This means that the motion is either purely periodic (!2 > 0,
! real: dynamical stability) or purely aperiodic (!2 < 0, ! imaginary: dynamical
instability).

Neither the equations (42.25)–(42.28) nor the boundary conditions contain
explicitly the orderm of the spherical harmonics. Therefore to each eigenvalue of a
given l correspond 2l C 1 solutions (for the different m values �l; : : : 0; : : : ;Cl).
This degeneracy can be removed, for example, by centrifugal or tidal forces.

The general discussion is very much complicated by the fact that the eigenvalue
� D �2 appears non-linearly in the set (42.25)–(42.28). In order to see the typical
properties of the eigenspectra, we use an approximation introduced by Cowling,
assuming that the perturbation of the gravitational potential can be neglected. We
then do not need (42.27), (42.28) and are left with a second-order problem. This
approximation becomes the better, the more the oscillation is limited to the outer
layers (e.g. high overtones of acoustic modes with sufficiently large l). The second-
order problem still contains terms proportional to �2 [from (42.26)] and terms
proportional to 1=�2 [from (42.25)]. In order to simplify this we consider two
asymptotic cases (�2 ! 1 and �2 ! 0), in both of which the problem becomes of
the classical Sturm–Liouville type.

For large �2 we neglect the terms proportional to 1=�2. The only coefficient
containing � then is �2=c2s , with the velocity of sound given by c2s D �adP=%. This
problem has an infinite series of discrete eigenvalues�k D �2k , with an accumulation
point at infinity. Such oscillations are produced by acoustic waves propagating with
cs. They are dominated by pressure variations and are therefore called p modes. For
sufficiently simple stellar models, they are easily ordered as p1; p2; : : : ; pk where k
is the number of nodes of their eigenfunction �r between centre and surface. They
are analogous to the radial oscillations (l D 0), except for the dynamical stability:
while the radial fundamental is unstable for �ad < 4=3, the p modes are all stable
under reasonable conditions.

For small �2 we neglect the terms proportional to �2. The only coefficient
containing � is now !2adl.l C 1/=.�2r2/, where !ad is the Brunt–Väisälä frequency
as introduced in Sect. 6.2. This problem has an infinite series of eigenvalues
�k D 1=�2k , with an accumulation point at � D 1, i.e. at �2 D 0. The motions are
dominated by gravitational forces and are therefore called g modes (again ordered
as g1; g2; : : : ; gk according to the number k of nodes).

The stability of the g modes depends essentially on W , defined in (42.23).
This quantity is connected with the problem of convective stability discussed in
Chap. 6. One can easily verify from (6.18) that the Brunt–Väisälä frequency of an
adiabatically oscillating mass element is given by

!2ad D �grW: (42.29)
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Fig. 42.2 Propagation
diagram for oscillations with
degree l D 2 in a polytropic
star with index n D 3. The
square of the dimensionless
frequency � is plotted against
the distance from the centre.
Propagation of acoustic and
gravity waves is possible in
the shaded regions A and G,
respectively. For the lowest
modes the eigenvalues
(broken lines) and the
positions of the nodes of the
eigenfunction �r (dots) are
indicated (After Smeyers
1984)

And rW > 0 is just the criterion (6.4) for convective instability against adiabatically
displaced elements. If in the whole star W < 0 (convective stability everywhere),
then all g modes are stable (�2 > 0; � real). Such modes are also called gC
modes and are produced by propagating gravity waves. If the star contains a
region where W > 0 (convective instability), then unstable g� modes also exist
.�2 < 0, � imaginary). So we see that convective stability (instability) coincides
with dynamical stability (instability) of non-radial g modes; the onset of convection
appears as the manifestation of unstable g modes.

The non-linearity in � D �2 of the full set (42.25)–(42.28) implies that the eigen-
spectrum of stars is a combination of the above-described partial spectra: it contains
high-frequency p modes as well as low-frequency g modes, which can be split up
into the stable gC and the unstable g�. Between the p and g modes of relatively
simple stars there is another one, called the f mode, since it has no node between
centre and surface (like the radial fundamental).

As mentioned above, the stable modes are produced by propagating waves. From
the appropriate dispersion relations with horizontal wave numbers Œl.l C 1/�1=2=r

one finds that for propagating acoustic waves ! � !0 WD 1
2
cs.d ln%=dr/, and for

propagating gravity waves ! � !ad, where at any place !0 > !ad. These conditions
define two main regions (G and A) of propagation inside a star: one in the deep
interior for gravity waves the other in the envelope for acoustic waves (see Fig. 42.2).
These regions act like cavities or resonators, inside which modes can be “trapped”.
At certain frequencies (the eigenvalues), the propagating waves produce standing
waves by reflections at the borders such that they come back in phase with
themselves. The simple polytropic model demonstrated in Fig. 42.2 is typical for
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Fig. 42.3 In this scheme the dots indicate the eigenvalues �2 (plotted as abscissa) for a few modes
of non-radial adiabatic oscillations with different orders l of the spherical harmonics (plotted as
ordinate). Eigenvalues for the same type of mode are connected by a solid line. Dot-dashed lines
give the connexion to the corresponding radial modes with l D 0 (p1 to the radial fundamental,
p2 to the first radial overtone, etc.). For l D 1 the f mode has �2 D 0 (no oscillatory motion, see
text)

the situation with homogeneous main-sequence stars. When during the evolution the
central concentration of the model increases and a chemical inhomogeneity is built
up, the maximum of the G region near the core increases far above the minimum
of the A region in the envelope. Then the g1 mode can move above the p1 mode,
etc. When they are close to each other, resonance effects provide that they exchange
their properties and avoid an exact coincidence of the eigenvalues (avoided level
crossing, as known, say, from quantum mechanics). So the eigenspectra can be
rather involved, particularly for evolved stars.

Figure 42.3 illustrates the eigenspectra for different values of l (degree of the
spherical harmonics) for the case of a rather simple star. The radial oscillations are
found at l D 0. For dipole oscillations (l D 1) the f mode must have � D 0, since
otherwise it would result in an oscillatory motion of the centre of gravity, which
is not possible without external forces. However, oscillations having nodes outside
the centre are possible for l D 1, since then, for example, the core always moves
in the opposite direction to the envelope such that the centre of gravity remains at
rest. For higher l values the eigenspectra are generally shifted to higher frequencies.
The connection between the different p modes and the radial modes as shown in the
figure is based on physical considerations, as well as on solutions of (42.25)–(42.28)
for continuously varying l (where of course only those for integer l have a physical
meaning).
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42.4 Stars Showing Non-radial Oscillations

When applying the above-described formalism to models of real stars, a basic
question is whether such oscillations in fact proceed adiabatically. Strictly speaking,
one would have to test the model for its vibrational stability and look for the
imaginary part of ! derived in a full non-adiabatic treatment. This is, however, so
cumbersome that one usually confines oneself to a quasi-adiabatic approximation,
similar to that described for the radial case in Chap. 41: the adiabatically calculated
eigenfunctions are used to determine an “energy integral”, describing the growth or
damping rate of the amplitude.

There is a variety of stars and stellar types that are known or suspected to undergo
non-radial oscillations. We shall briefly mention a few of them.

The best established group of non-radial oscillators are certain white dwarfs (cf.
Van Horn 1984), among them the ZZ Ceti variables, which are of type DA. They
exhibit periods typically between a few 102 and 103 s, often split up into close
pairs. These periods are certainly too long for radial oscillations of white dwarfs,
but can well be explained by gC modes. Rotation of the white dwarf splits them
up into oscillations with different order m. The corresponding gravity waves are
“trapped” in a superficial hydrogen layer which, according to its thickness, acts as a
resonator for certain modes. They are excited by the 	 mechanism in zones of partial
ionization. Other groups of oscillating white dwarfs, of type DB and very hot ones,
have also been found.

The ˇ Cephei stars, which are situated somewhat above the upper main-
sequence, are both radial and non-radial oscillators. Some of them also seem to show
the effect of rotational mode splitting. We already mentioned them in Sect. 41.4.
Non-radial oscillations are also found among the ı Scuti stars and some types of
supergiants.

The most prominent example of observed non-radial oscillations is our Sun
(compare the early work by Christensen-Dalsgaard 1984; Deubner and Gough
1984). Detailed spectral investigations of the solar surface have shown that, again
and again, areas roughly 105 km across start oscillating in phase for some time.
These oscillations are excited by the ongoing convective motions in the solar
envelope, and although they are damped, they are constantly reappearing. Their
lifetime is of order a few months. The first detected and best-known oscillations
have periods around 5 min. They represent standing acoustic waves trapped mainly
in a region from somewhere below the photosphere down into the upper convective
zone. Power spectra with ! plotted against the horizontal wave number show clearly
that the phenomena contain mode oscillations with very many modes (many degrees
l and radial orders k).

Meanwhile, thanks to constant monitoring of the solar surface by global net-
works of solar telescopes, continuous observations from the south pole during
the antarctic summer, and from space, have allowed to identify tens of thousand
different modes, with l being as high as 1,500. Rotational splitting due to rotation,
i.e. different m-modes, has been detected as well as possibly some g-modes.
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These and low-degree p-modes have allowed a detailed analysis of the solar
interior (known as helioseismology), of solar rotation, and more recently even
local helioseismology where subsurface motions in the convective envelope are
measured. Helioseismology has provided us with a detailed view into the solar
interior. In Sect. 29.4, we already presented those results of helioseismology of
relevance for the comparison with hydrostatic, spherically symmetric solar models.
But the richness of helioseismology extends far beyond this. We are already learning
about convective motions, magnetic fields, active regions, and more, thanks to the
analysis of non-radial oscillations.

In the future asteroseismology will allow similar views into the interior of other
stars. Non-radial oscillations have already been found in many main-sequence stars
(of which we mentioned a few classical classes above), but also in evolved stars,
even in red giants. Asteroseismology will offer a unique opportunity to test stellar
evolution theory.



Part X
Stellar Rotation

Rotation may influence the evolution of stars in two major aspects: it may, if
sufficiently fast, affect the internal structure through an effective reduction of
the gravitational pull towards the center. As a result, pressure and temperature
will be different throughout the star. Second, it leads to additional mass flows,
which may transport material between regions of stars that otherwise would not
be connected. In particular the latter effect leads to observable modification of the
surface composition of stars. This has led to a strong interest in rotation in stars.
So far, full three-dimensional models of rotating stars are not available, but one-
dimensional, simplified models do exist and seem to result in quite realistic models.

As in the case of stellar pulsations, the following chapters about rotating stars
provide only the basic concepts and some idealized cases. Maeder (2009) has written
a full textbook on all aspects of rotating stars, which reflects the large progress made
in this field, and covers the present sophisticated modelling.



Chapter 43
The Mechanics of Rotating Stellar Models

The theory of rotating bodies with constant densities (liquid bodies) has been
investigated thoroughly by McLaurin, Jacobi, Poincaré, and Karl Schwarzschild.
We first start with a summary of their results without deriving them.

Most of the results have been obtained for solid-body rotation, i.e. for constant
angular velocity ! of the self-gravitating liquid body. In this case the centrifugal
acceleration c has a potential, say c D �rV with V D �s2!2=2; where s is the
distance from the axis of rotation. If ˚ is the gravitational potential, then according
to the hydrostatic equation, the total potential � WD ˚ C V must be constant on the
surface. The main difficulty in determining the surface of a rotating liquid body lies
with the gravitational potential, which in turn depends on the form of the surface.

43.1 Uniformly Rotating Liquid Bodies

For sufficiently slow rotation with constant angular velocity, the rotating liquid
bodies are spheroids (i.e. axisymmetric ellipsoids) called McLaurin spheroids.

In order to examine the behaviour of rotating liquid masses, we define their
gravitational energyEg

Eg WD 1

2

Z
%˚ dV ; (43.1)

where ˚ is the gravitational potential vanishing at infinity and dV is the volume
element. The expression (43.1) is the generalization for non-spherical bodies of the
definition (3.3).

Indeed in the spherical case with

d˚

dr
D Gm

r2
; (43.2)

we have from (3.3)
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in agreement with the definition (43.1) for the more general (non-spherical) case.
The kinetic energy

T WD 1

2

Z
v2 dm (43.4)

is supposed to contain only the energy due to the macroscopic rotational motion,
but not that due to the thermal motion of the molecules. Let us further define the
dimensionless quantity

� WD !2

2�G%
: (43.5)

It is of the order of the ratio of centrifugal acceleration to gravity at the equator and
is a measure of the “strength” of rotation.

We now describe some results on the equilibrium configurations and their
stability. The derivations and some details of the configurations can be found in
the classic book by Jeans (1928) and in that of Lyttleton (1953).

The shape of McLaurin spheroids is described by the eccentricity e of the
meridional cross section,

e2 D a2 � c2
a2

; (43.6)

where a, c are the major and the minor half axes of the meridional cross section.
A sequence of increasing e leads from the sphere (e D 0) to the plane parallel layer
(e D 1), and one can label each of these configurations by its value of �. But the
correspondence between e and � is not unique. For each value of � < 0:2247 there
exist two configurations with different values of e: For example, in the limit case
of zero rotation with � D 0, the sphere as well as the infinite plane parallel layer
are two possible equilibria, the latter of which obviously is not stable. Along the
series of increasing eccentricity e; neither � nor T is monotonic, but one can show
that the angular momentum and Eg vary monotonically. Furthermore, ! does not
vary monotonically with the total angular momentum: if we start with a liquid self-
gravitating sphere (e D 0) and feed in angular momentum, the angular velocity,
and with it the eccentricity, increases. But once the eccentricity exceeds the value of
0.9299, the angular velocity decreases again, even with further increasing angular
momentum. The reason for this is that the momentum of inertia increases faster than
the angular momentum, and therefore ! must decrease again.

But long before this, namely at e D 0:8127 or at � D 0:1868, the McLaurin
spheroids become unstable. At this point the sequence of configurations shows a
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Fig. 43.1 Sequences of the McLaurin and Jacobian equilibrium configurations of a rotating
incompressible fluid. In this schematic representation, each configuration is characterized by its
angular momentum and its value of .a�b/=c, where a, b, c are the three axes of an ellipsoid. Solid
lines indicate dynamically and secularly stable configurations, broken lines secularly unstable,
and dotted lines dynamically unstable models. The branches of pear-shaped configurations are
also indicated, although they cannot be plotted in a diagram with that ordinate. For more details
see Ledoux (1958)

bifurcation (Fig. 43.1): another branch of stable models occurs which have a quite
different shape. They are triaxial ellipsoids, the so-called Jacobi ellipsoids. Beyond
the point of bifurcation, a McLaurin spheroid is unstable, the Jacobi ellipsoid of
the same mass and angular momentum having a lower total (macroscopic kinetic
plus gravitational) energy. Therefore, if there is a mechanism like friction which
can use up macroscopic energy and transform it into heat, the spheroids become
ellipsoids. The transition takes place on the timescale of friction as defined in
Chap. 45. In analogy to the case of a blob of excess molecular weight (see Sect. 6.5)
in hydrostatic equilibrium with its surroundings, the motion is controlled by a
dissipative process (there heat flow, here friction). One therefore calls the instability
of the McLaurin spheroids also secular. Instead of the oblateness, one often uses
the ratio � WD T=jEgj, which reaches the value 0.1376 at the point of bifurcation.
Stability analysis shows that if � exceeds another critical value (of about 0.16), the
triaxial ellipsoids also become unstable and then assume a pear-shaped form (see
Fig. 43.1).

It should be noted that here we have interpreted sequences of varying dimension-
less parameters e, �, � as sequences of models with increasing angular momentum,
while mass and density were assumed to be constant. Models with the same
dimensionless parameters can also be obtained by a sequence of increasing density,
while mass and angular momentum are kept constant. In this way one can conclude
from the foregoing discussion that a freely rotating body (mass and angular
momentum constant) that contracts (density increasing) can start with slow rotation
as a McLaurin spheroid, and can then become triaxial and finally pear-shaped.
Indeed, before the Jacobi ellipsoids become long cigars they become dynamically
unstable. An ensuing fission may then split the body in two.
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However, one cannot use this scenario to explain the existence of binary stars,
since in stars the density increases towards the centre. Then solid-body rotation
has different consequences, as we will see in Sect. 43.2. Numerical calculations,
though, do show that rotating stars also become unstable against non-axisymmetric
perturbations when T=jEgj comes close to 0.14.

43.2 The Roche Model

Since the liquid-body approximation .% D constant) is extremely bad for stars, one
can go to the other extreme in which practically all gravitating mass is in the centre.
In Roche’s approximation one assumes that the gravitational potential˚ is the same
as if the total mass of the star were concentrated at the centre. Then ˚ is spherically
symmetric:

˚ D �GM
r :

(43.7)

For solid-body rotation, the centrifugal acceleration can again be derived from the
potential

V D �1
2
s2!2 ; (43.8)

where s is the distance from the axis of rotation. If z is the distance from the
equatorial plane, then r2 D s2 C z2, and the total potential is

� D ˚ C V D � GM

.s2 C z2/1=2
� 1

2
s2!2 : (43.9)

The acceleration �r� in the co-rotating frame is the sum of gravitational and
centrifugal accelerations. A set of surfaces � D constant is plotted in Fig. 43.2.
The advantage of the Roche approximation is that the gravitational field is given
independently of the rotation. Eccentricity does not affect gravity. In order to
investigate the rotating Roche configurations, we consider the surfaces of constant
total potential � :

GM

.s2 C z2/1=2
C !2s2

2
D constant D GM

rp
; (43.10)

where rp, the polar radius, is the distance from the centre to the point where the
surface intersects the axis of rotation (i.e. the value of z for s = 0). With the
abbreviations

a D 1

rp
; b D !2

2GM
; (43.11)

we find for the equipotential surfaces
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Fig. 43.2 The lines of
constant total potential � for
the Roche model in the
meridional plane. They are
labelled by their values of
rp=scr. The coordinates are
� D s=scr , � D z=scr . The
shaded area is inside the
critical surface

z2 D 1

.a � bs2/2
� s2 : (43.12)

In the equatorial plane z D 0, at the circle s D scr with

s3cr D GM

!2
; (43.13)

the gradient of � vanishes. The corresponding critical surface intersects the axis of
rotation at z D ˙2=3scr and separates closed surfaces from those going to infinity
(Fig. 43.2). In the equatorial plane z D 0, gravity dominates inside the critical circle,
while outside, the centrifugal acceleration dominates. Both compensate each other
exactly at the critical circle. Numerical integration for the volume inside the critical
surface gives

Vcr D 0:1804 � 4� s3cr : (43.14)

Let us now assume that a stellar model just fills its critical volume: N% D M=Vcr.
We redefine the dimensionless quantity � by

� WD !2

2�G N% ; (43.15)

which is of the order of centrifugal acceleration over gravity at the equator. The
model fills its critical volume if � D �cr D 0:36075, as can be obtained from the
condition of the balance of centrifugal and gravitational acceleration together with
(43.14) and (43.15). Rotating models which do not fill their critical volume have
� < �cr.

In order to see the rotational behaviour of the Roche model, let us start with very
slow rotation so that the stellar surface lies safely within the critical equipotential.
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If we speed up the rotation, the volume of the model star will grow, since
centrifugal forces “lift” the matter and therefore reduce the effective gravity. We first
ignore this effect, assuming that the stellar volume remains unchanged (in spite of
the speed-up). Then with increasing !, according to (43.13) and (43.14), the critical
surface will shrink and come closer to the surface of the model. Consequently the
model surface becomes more and more oblate until it coincides with the critical
surface. In reality the stellar volume will grow as the angular velocity speeds up and
the model will reach its critical stage even earlier.

A critically rotating star cannot hold the matter at the equator. What happens
if then the angular velocity increases even more? From a first glance at Fig. 43.2
one might expect that the matter can easily escape along equipotential surfaces into
infinity. However, one has to keep in mind that the equipotentials plotted there only
hold for solid-body rotation. If matter leaving the star at the equator were to be
forced, say, by magnetic fields, to co-rotate, it would indeed be swept into space.
But if there is no such mechanism, the matter would have to conserve its angular
momentum and remain in the neighbourhood of the star. If ! D constant, the
centrifugal acceleration (� s) dominates over gravity (� s�2/ for large values of
s. But in the case of constant specific angular momentum .! � s�2/, the centrifugal
acceleration .!2s � s�3/ drops more steeply with s than gravity.

We have here considered the case of a star with increasing angular velocity
and constant (or increasing) volume. A more realistic case would be that a slowly
rotating star contracts. If then its radius decreases, the angular velocity increases
like R�2 while its critical surface shrinks proportionally to scr � !�2=3 � R4=3.
The critical surface therefore shrinks faster than the star, which will become more
and more oblate until its surface is critical. Then the centrifugal force balances the
gravitational one at the equator. With further shrinking, the star loses mass, which
is left behind as a rotating disk in the equatorial plane. This is similar to Laplace’s
scenario of the pre-planetary nebula.

43.3 Slowly Rotating Polytropes

In a homogeneous gaseous sphere there is no density concentration towards the
centre, while for the Roche model, the assumed density concentration is too extreme
compared to that of real stars. Polytropes approximate real stars better, at least with
respect to their density distribution. For slowly rotating polytropes (small values of
�), equilibrium solutions have been found by solving ordinary differential equations
for solid-body rotation.

As in the case of the non-rotating polytropes (see Chap. 19), one has to solve
the Poisson equation for the gravitational potential. But since the centrifugal
acceleration according to (43.8) can be derived from the potential V , we combine
˚ and V to obtain the total potential � as in (43.9). Then instead of (19.7), we have
in the co-rotating frame
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% D
� ��
.nC 1/K

�n
; (43.16)

and since �˚ D 4�G%;�V D �2!2, we find

�� D 4�G% � 2!2 ; (43.17)

and with (43.16)

�� D 4�G

� ��
.nC 1/K

�n
� 2!2 : (43.18)

If we now replace r in the Laplace operator by the dimensionless variable y D Ar ,
where A is defined as in (19.9), we obtain for ! W ˚=˚c with the help of (43.16)

�y! D !n � !2

2�G%c
; (43.19)

with �y D A2�, where � is the Laplace operator. In spherical coordinates, for the
case of axial symmetry,

�y � 1
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��
: (43.20)

The last term on the right-hand side of (43.19) is a measure of the strength of
rotation. We therefore now define for polytropes

� WD !2

2�G%c
; (43.21)

and we can write (43.19) in the form

�y! D !n � � : (43.22)

This partial differential equation corresponds to the Emden equation (19.10), which
indeed is obtained for! ! 0. Equation (43.22) holds in the interior of the polytrope,
while outside, the solution has to obey the Laplace equation, which here is �y! D
0, and has to be regular at infinity. For � � 1 one can approximate the solution
!.y; #/ by an expansion in Legendre polynomials Li.#/ with even i W

! D !0.y/C �!1.y/C �!2.y/L2.cos#/C : : : ; (43.23)

where !0.y/ is the solution of the Lane–Emden equation. The perturbation of first
order in � is split into a spherically symmetric term and a non-spherical one, which
vanishes if averaged over a sphere. The terms of higher order in � are not explicitly
written down. If the expansion (43.23) is introduced into (43.22), then the terms
of the same dependence on # and of the same order in � give ordinary differential
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equations in y. Similarly the Laplace equation for the outside can be reduced to a
set of ordinary differential equations by the expansion (43.23).

Numerical calculations by Chandrasekhar (1933) show that the oblateness of the
surface defined by .requ � rpole/=requ is 3.75�, 5.79�, 9.82�, 41.81�, 468.07� for
the polytropes of index n D 1, 1.5, 2, 3, 4, respectively.



Chapter 44
The Thermodynamics of Rotating
Stellar Models

The theory of the structure of rotating stars becomes relatively simple if the
centrifugal acceleration can be derived from a potential V :

!2ses D �rV; (44.1)

where es is a unit vector perpendicular to the axis of rotation (pointing outwards)
and s is the distance from this axis. One can easily see that a sufficient and necessary
condition for the existence of such a potential is that in the system of cylindrical
coordinates s; '; z, the angular velocity depends on s only: @!=@z D @!=@' D 0,
i.e. ! is constant on cylinders. We call such an angular-velocity distribution (to
which the case of solid-body rotation also belongs) conservative.

44.1 Conservative Rotation

In this case the potential V is

V D �
Z s

0

!2s ds: (44.2)

We again combine gravitational and centrifugal potentials to form the total potential

� WD ˚ C V: (44.3)

If we now include centrifugal acceleration in the equation of hydrostatic equilibrium
[compare with (2.20)], we obtain

rP D �%r�: (44.4)
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Equation (44.4) indicates that the vectors rP and �r� are parallel. In other words,
the equipotential surfaces � = constant coincide with the surfaces of constant
pressure, which means that the pressure is a function of � W P D P.�/. It then
follows that % D �dP=d� is also a function of � only. If we now have an ideal
gas, then T=� D P=.%</ is a function of � . In a chemically homogeneous star,
therefore, T D T .�/, i.e. the temperature is constant on equipotential surfaces.

Since not T but T=� is constant on equipotentials, the temperature varies pro-
portionally to � on these surfaces if the chemical composition is not homogeneous.
We have already encountered this case in Sect. 6.5, where we dealt with a blob of
material with a higher molecular weight than that in the surroundings. In the blob
the temperature was higher.

Note that this is a consequence of hydrostatic equilibrium: even small deviations
from hydrostatic equilibrium can cause considerable temperature variations on
equipotential surfaces, which can be seen in the case with negligible rotation. Then
from (44.4) one can conclude that P; %; and T=� are constant on the equipotential
surfaces of the gravitational field, say, of the earth. We know that if we light a
match, the air on the horizontal equipotential planes intersecting the flame will not
have the high temperature of the fire. The reason is that with the flame a circulation
system is set up. With this motion, inertia terms disturb the equation of hydrostatic
equilibrium. Although they cause only small perturbations, the inertia terms are
sufficient to allow lower temperatures outside the flame.

In the following we discuss only the case of strict hydrostatic equilibrium for
a chemically homogeneous ideal gas and therefore have P D P.�/; % D %.�/,
T D T .�/.

Note that the coincidence of P and % surfaces only holds if the rotation is
conservative. Otherwise they are inclined to each other (see Sect. 45.2).

44.2 Von Zeipel’s Theorem

We now investigate radiative energy transport in a homogeneous, hydrostatic star
with conservative rotation. The equation for radiative transport (5.8) in vector form

F D �4ac
3�%

T 3rT; (44.5)

where F is the vector of the radiative energy flux. With T D T .�/ and with �r�
D geff, the effective gravitational acceleration consisting of gravitational and
centrifugal acceleration, one finds

F D �4ac
3�%

T 3
dT

d�
geff D �k.�/geff; (44.6)
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since also �.%; T / D �.�/. In the non-rotating case this equation is equivalent to
(5.9). We now look for the equation of energy conservation and restrict ourselves
to stationary states with complete equilibrium. Then, instead of (4.43), we have
from (44.6)

r � F D � dk

d�
.r�/2 � k.�/��

D � dk

d�
.r�/2 � k.�/

�
4�G% � 1

s

d.s2!2/

ds

�
D "%; (44.7)

where we have made use of�˚ D 4�G% and of (44.2) (� is the Laplace operator.).
One can easily see that this equation cannot be fulfilled. We consider a chemically
homogeneous star; then P; %; and T are constant on the equipotential surfaces � D
constant. Therefore the terms "% as well as 4�G%k.�/ are constant on equipotential
surfaces, but in general the remaining two terms on the left are not, and they do not
cancel each other. This can be easily seen in the case of solid-body rotation, for
which .s�1/d.s2w2/=ds is a constant, while .r�/2 always varies on equipotential
surfaces, the effective gravity at the equator being smaller than at the poles.

The fact that radiative transport and the simple equation of energy conservation
cannot be fulfilled simultaneously was first pointed out by Von Zeipel (1924) and
is known as von Zeipel’s theorem. The solution of the problem was independently
found by Eddington (1925) and Vogt (1925).

44.3 Meridional Circulation

What is to be expected if (44.7) cannot be fulfilled? Then there must be regions in the
star which would cool off, since radiation carries more energy out of a mass element
than is generated by thermonuclear reactions. In other regions the mass elements
would heat up. But cooling and heating cause buoyancy forces, and meridional
motions occur in addition to rotation. In order to maintain a stationary state as
assumed, one has to demand that meridional motions contribute to the energy
transport. They carry away energy from regions where radiation cannot transport
all the energy generated and they bring energy to regions which otherwise would
cool off.

In order to derive the velocity field of the circulation, we write the first law of
thermodynamics in the co-moving frame:

r � F D "%� %T
d�

dt
: (44.8)
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We here denote the specific entropy by � (instead of s) to avoid confusion with the
distance from the axis. With d� D dq=T , and with (4.18), one has

T
d�

dt
D cP

dT

dt
� ı

%

dP

dt
: (44.9)

If we replace the derivatives in the co-moving frame by those in a coordinate system
at rest with respect to the stellar centre, i.e. d=dt D @=@t C v � r , we find

r � F D "% � cP %@T
@t

C ı
@P

@t
� vŒcP %rT � ırP �; (44.10)

and for thermal equilibrium

r � F D "% � cP %T v

�
1

T
rT � ı

cP %T
rP

�
: (44.11)

With rT D r�.dT=d�/ and rP D r�.dP=d�/, the usual abbreviation
r D d lnT=d lnP , and (4.21), we can write

r � F D "%� cP %T

P
.r � rad/.v � rP/: (44.12)

The components of the meridional velocity field have to fulfil this equation together
with the continuity equation, which in the stationary case becomes r � .%v/ D 0.

We can simplify (44.12) if we assume 	, as defined in (43.5), to be small and
ignore higher-order terms in 	. Since v is of first order in 	, the last term in (44.12)
can be replaced by ŒcP %T .r � rad/=P �0rP0v, where the subscript 0 indicates the
values of the corresponding non-rotating model. Since rP0 D �%0g0 and g0 has
only a radial component given by �jg0j D �g0, we have, instead of (44.12),

r � F D "%C
�
cP %

2T

P
.r � rad/g

�
0

vr : (44.13)

Comparing the non-rotating case, we have now introduced a new unknown variable
vr , which in spherical coordinates r; '; # together with the velocity component in
the # direction has to fulfil the continuity equation

1

r2
@.%r2vr /

@r
C 1

r sin#

@.%v# sin#/

@#
D 0: (44.14)

Equations (44.13) and (44.14) are the necessary conditions for determining also the
velocity field.
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44.4 The Non-conservative Case

Above we have shown the existence of meridional circulation only for a conservative
angular-velocity distribution. We now discuss the situation in a non-conservative
case. For this we choose ! D !.r/, but restrict ourselves to slow rotation. The
equations to be solved are

rP D �%r˚ C c; (44.15)

r � F D "%C
�
cP %

2T

P
.r � rad/g

�
0

vr : (44.16)

F D �4ac
3�%

T 3rT; (44.17)

�˚ D 4�G%; (44.18)

where the functions %; "; � are assumed to be known functions of P and T . Without
rotation the solutions are spherically symmetric, but rotation produces deviations
from that symmetry. The centrifugal acceleration c appearing in (44.15) has the
components

cr D !2r sin2 # D 2

3
!2r.1 �L2/; (44.19)

c# D !2r sin# cos# D �1
3
!2r

@L2

@#
; (44.20)

where we have introduced the second Legendre polynomial L2.#/ D .3 cos2 # �
1/=2.

In order to solve the system (44.15)–(44.18), we split all the scalar functions into
a spherically symmetric part (subscript 0) and one which is proportional to L2.#/:

P.r; #/ D P0.r/C P2.r/L2.#/; T D T0 C T2L2; ˚ D ˚0 C˚2L2; (44.21)

with jP2j � P0; jT2j � T0. For the vectors F and v we write

Fr D Fr0.r/C Fr2.r/L2; F# D F#2.r/
dL2.#/

d#
;

vr D 0C vr2.r/L2.#/; v# D v#2.r/
dL2.#/

d#
; (44.22)

with jFr2j and jF#2j being small compared to jFr0j. It should be noted that in
this notation the quantities P0; T0; : : : are not identical with the corresponding
functions of the non-rotating star, since in the centrifugal acceleration there is also
a spherically symmetric component, as can be seen from (44.19).

We now ignore second-order effects and count the number of equations for
the four “spherical” functions P0; T0; ˚0 and Fr0 and for the five “non-spherical”
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functions P2; T2; ˚2; Fr2; and F#2. These are all variables appearing in (44.15)–
(44.18) together with (44.21) and (44.22), if for the moment we ignore circulation
(vr D 0). It is obvious that each of the two scalar equations (44.16) and (44.18)
gives two equations, a spherical one and a non-spherical one, though in the case of
the vector equations (44.15) and (44.17) it is different. We explain this in the case
of (44.15). The r component gives a “spherical” equation [compare (44.19)]

dP0

dr
D �%0 d˚0

dr
C 2

3
%0!

2r (44.23)

and a “non-spherical” one

dP2

dr
D �%0 d˚2

dr
� %2 d˚0

dr
� 2

3
%0!

2r; (44.24)

while the # component gives [compare (44.20)]

P2 D �%0˚2 C 1

3
%0!

2r: (44.25)

Therefore the vector equation (44.15) yields the “spherical” equation (44.23) and
two “non-spherical” equations (44.24) and (44.25). The same holds for the vector
equation (44.17). Altogether we have four equations for the four “spherical”
functions but six equations for the five “non-spherical” functions. Obviously with
vr D 0 the problem is overdetermined. In general it can only be solved if meridional
circulations are present; then the vr appearing in (44.16) is the sixth unknown “non-
spherical” variable and the problem is no longer overdetermined. If vr is known, the
continuity equation (44.14) together with (44.21) and (44.22) gives v# .

44.5 The Eddington–Sweet Timescale

To obtain an estimate of the velocity of the circulation, we restrict ourselves to slow
rotation and to the conservative case. The estimate for the non-conservative case is
more complicated, but the results are very similar. We also assume " D 0, which
holds for the outer layers. Therefore l D constant.

We now can split each function A.r; #/ of the model uniquely into two terms:

A.r; #/ D NA.�/C A�.r; #/; (44.26)

where NA.�/ is the mean value of A.r; #/ over the surface � = constant, while the
integral of A� over each � surface vanishes:

Z
�

A�.r; #/dS D 0; (44.27)
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where dS is the surface element of the � surface. Then according to (44.6), k.�/ D
NF= Ngeff, where F and geff are the absolute values of F and geff, and (44.7) can be

written as

r � F D � d

d�

 NF
Ng

!
g2 �

NF
Ng
�
4�G% � 1

s

d

ds
.s2!2/

�
; (44.28)

where we have omitted the subscript eff in the symbols g and Ng. We now split the
terms of (44.28) according to (44.26). r � F has to be zero in the steady state in
regions where there is no nuclear energy generation (otherwise it has to be equal
to "%, a function which is also constant on � surfaces). But the term .r � F/�
can only be compensated by circulation. Indeed the circulation term in (44.13) is
ŒcP %T .r � rad/=P �rP0v. The integral of this term over equipotential surfaces
vanishes because of mass conservation, as does .r � F/�.

We now estimate .r � F/� for slow rotation and take NF= Ng from the non-rotating
model, an approximation which introduces only errors of order 	2, since in the
expression for .r � F/� the function NF= Ng appears multiplied only by terms of
order 	. Then

NF
Ng D L

4�Gm
; (44.29)

d

d�

 NF
Ng

!
D d

dr

 NF
Ng

!
dr

d�
D d

dr

�
L

4�Gm

�
1

g
D �L%

m

�
r2

Gm

�2
; (44.30)

and therefore

.r � F/� D �L%
m

�
r2

Gm

�2
.g2/� � L

4�Gm

�
1

s

d.s2!2/

ds

��
: (44.31)

Now (44.12) yields

ı% Ng
rad

.rad � r/vr D � L%

Ng2m.g
2/� � L

4�Gm

�
1

s

d.s2!2/

ds

��
; (44.32)

where in the circulation term we have made use of (4.21).
For angular velocities of the form !2 D c1 C c2=s

2 the expression in the last
bracket is constant and the last term vanishes for these special angular velocity
distributions which include solid-body rotation (c2 D 0). We first restrict ourselves
to these special rotation laws. As a rough estimate, we can say that .g2/�= Ng2 is
of the order of 	. Indeed g�, the variation of g over an equipotential, is due to
the difference of centrifugal acceleration between equator and poles, and therefore
g�=g � 	, and also .g2/�=g2 � 	. We then find with .rad � r/=rad and ı of the
order of 1,

vr � L

Ngm	 � LR2

GM2
	; (44.33)
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where we have replaced m and g by their surface valuesM and GM/R2 (Replacing
them by some mean values over the star would not change the order of magnitude.).
The time it takes a mass element to move over the stellar radius, then, is the
circulation timescale 
circ, first derived by Sweet (1950):


circ � R

vr
� GM2

LR

1

	
� 
KH

	
; (44.34)

where we have made use of (3.19), ignoring a factor 2. For the Sun one has 	 �
10�5; 
KH � 107 years, and therefore 
circ � 1012 years, which exceeds the lifetime
of the Sun.

This estimate has been made ignoring the last term in (44.32). If ! is not of the
special form given above, the term in the bracket will be of the order of !2, and
since !� is constant on cylinders but not on equipotential surfaces, ! will be of the
order of N! and the term in question will be of the order of

L!2

4�GM
� L

4�R3
	; (44.35)

where we have replaced !2R=g D !2R3=.GM/ by 	. We estimated that the first
term on the right of (44.32) is of the order of L%	=M . Therefore as long as we are
not too close to the surface we can replace % by the mean density N% D 3M=.4�R3/,
so that the two terms on the right of (44.32) are of the same order and our estimates
(44.33) and (44.34) also hold for rotation laws which are not of the special form
c1 C c2=s

2. But near the surface the first term on the right of (44.32) becomes small
owing to the factor %, and the second becomes the leading term. Then near the
surface, (44.33) has to be replaced by

vr � N%
%

LR2

GM2
	 � L

G%RM
	; (44.36)

where again we have neglected factors of the order of one. The circulation can
therefore become rather fast near the surface.

The same is true at the interfaces between radiative and convective regions where
r D rad, which we have excluded in our rough estimate of the left-hand side of
(44.32). At these singularities the circulation speed would become so large that its
inertia terms are important and (44.4) would no longer be valid.

Another more serious restriction of our estimates of vr is the assumption of a
certain time-independent angular-velocity distribution. If one starts, say, with ! D
constant, then circulation will occur, and by conservation of angular momentum, it
will immediately change the angular-velocity distribution, which in turn demands
another circulation pattern.

The “proof” of the existence of meridional circulation in the theory of first
order in 	 as given in Sect. 44.4 rested on counting the number of linear equations
and the number of variables. We showed that without circulation the problem is
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overdetermined. This, however, is only true if the linear equations are independent.
But if ! is considered as a free function, it can be chosen in such a way that the
equations become linearly dependent and in the first-order theory no circulation is
necessary to fulfil the equations. In the (unrealistic) case " D constant, � D constant,
the stellar-structure equations for radiative energy transport lead to a polytrope of
index n D 3. If " D constant, then l=m D constant and one has a very special
“standard model” as discussed in Sect. 19.5. It has been shown by Schwarzschild
(1942) that, for this model, solid-body rotation does not demand circulation in the
first-order theory. For other, more realistic stellar models, there are also angular-
velocity distributions for which there is no meridional circulation in the first-order
theory (Kippenhahn 1963).

The linear dependence of the equations can also be achieved if for a given
rotation law w, the molecular weight is considered a free function and chosen in
an appropriate way. We will come to this problem in the next section.

44.6 Meridional Circulation in Inhomogeneous Stars

We have already estimated that for the Sun that 
circ=
nucl � 102. But for more
massive main-sequence stars the situation changes. According to (44.34)


circ


nucl
� 
KH


nucl

1

	
� M1�˛

	
� M0:4

	
; (44.37)

where we have assumed a mass-radius relation R � M˛ and 
KH � M2=.RL/, as
can be derived from (3.19), and 
nucl � M=L, and we have put ˛ D 0:6 for the upper
end of the main sequence (Sect. 22.1). Therefore, if we go from the Sun to higher
masses, say, to 20Mˇ, then the ratio 
circ=
nucl (which for the Sun is about 1/100)
increases by a factor 3.3. Observations of rotating B stars show that 	 is larger by
a factor 105 than for the Sun. Therefore, 
circ=
nucl drops below unity towards the
upper end of the main sequence, so that the circulation is rapid enough to mix
the star. As a consequence one should expect that the fuel is not only used up in
the central region and the star should remain chemically homogeneous. But then the
stars, while converting hydrogen into helium, should move in the HR diagram from
the main sequence straight towards the helium main sequence [compare (20.20) and
(20.21) for M D M 0]. But we know from observation that the stars leave the main
sequence moving towards the region of the red stars and not towards the region
of the (blue) helium main sequence. This indicates that they do not mix, and the
explanation was found by Mestel (1953). Before the circulation can transport the
material out of the burning region, the moving matter will have been enriched in
helium. It therefore has a higher molecular weight than the surrounding into which it
has been lifted. But then the effect discussed in connection with a blob of material of
higher molecular weight � in a gas of lower � becomes important (Sect. 6.4). Let us
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Fig. 44.1 Material of higher
molecular weight in the
central region of a rotating
star (grey area) under the
influence of meridional
circulation

assume that the circulation lifts helium-enriched material as indicated in Fig. 44.1.
Then, since in hydrostatic equilibrium T=� must be constant on � surfaces, the
lifted matter has a higher temperature than the matter on the same � surface which
is not lifted. There is no buoyancy force acting on the lifted matter, since the
higher molecular weight is compensated by the higher temperature. But as the lifted
material adjusts thermally, it sinks back. This additional motion (“� currents”) acts
against the circulation, and the star can only be mixed if circulation is sufficiently
fast. But even in rapidly rotating main-sequence stars, the circulation is not sufficient
to mix the helium formed during hydrogen burning. Obviously layers in which the
molecular weight increases in an inward direction cannot easily be penetrated by
meridional circulation. One therefore often speaks of � barriers.

Note that � barriers in which no circulation occurs are not in contradiction to
our “proof” of the existence of meridional circulation in rotating stars. According
to our considerations in Sect. 44.4, which also hold for inhomogeneous stars as long
as � is spherically symmetric, circulation would set in. But after a short time the
circulation has modified the � distribution, and the original spherically symmetric
function �.r/ has become distorted and may be of the form �0.r/ C �2.r/L2.#/.
Then by counting the equations and variables as was done in Sect. 44.4, we would
not find the problem to be overdetermined, since �2.r/ is an additional unknown
function. It can be determined instead of vr by the “non-spherical” equations.

The foregoing arguments do not apply to homogeneous layers in outer regions of
stars, where no nuclear processes have changed the molecular weight substantially.
Indeed, meridional circulation streams and other hydrodynamical matter flows due
to rotation do lead to surface abundance changes, in particular of CNO elements.
This is observed in massive stars and well explained by current models including
rotation (see Maeder 2009).



Chapter 45
The Angular-Velocity Distribution in Stars

Stars formed out of an interstellar cloud contain a certain amount of angular
momentum, which is distributed over the stellar mass. Suppose there were no
transport of angular momentum between the mass elements during the formation
and evolution of the stars; one would then have local conservation of angular
momentum,

d.s2!/

dt
� s2

@!

@t
C v � r .s2!/ D 0; (45.1)

where v is the large-scale velocity in the star. Then the angular velocity !.s; #/
would be determined by the angular momenta of the mass elements in the original
cloud. However, the motion of atoms, the flow of photons through matter, and
instabilities that cause small-scale motions can transport angular momentum (An
example of the last of these is the convective motion in regions of dynamical
instability.). We now discuss these transport mechanisms in detail.

45.1 Viscosity

Viscosity due to microscopic motion, like that of the molecules in a liquid, is given
by the viscosity coefficient

� � %`vth; (45.2)

where ` is the mean free path of the particles and vth their mean velocity. In an
ionized gas the viscosity is determined by the collisions between the ions. Therefore
their mean free path and their thermal velocities have to be inserted in (45.2), and
one normally obtains values for � which in cgs units are of the order of 1.

In order to see whether viscosity is important in a star, one has to estimate the
timescale required for viscosity to influence a given angular-velocity distribution.
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This can be done with the ' component of the Navier–Stokes equations of motion,
which for constant viscosity can be written in the form

%
@!

@t
D ��!; (45.3)

where� is the Laplace operator. This equation is of the form of the equation of heat
transfer (5.31). In analogy to (5.32), we can estimate the viscosity timescale:

�visc � d2%

�
; (45.4)

where d is the characteristic length on which ! varies. If for d one takes the radius
of a star, say 1011 cm, then with % � 1 g cm�3, one finds �visc � 1022 s, a timescale
much longer than the cosmological time. In stars one can therefore neglect the
viscosity due to the collisions between the ions.

In a star, photons can also cause viscosity, since they transport momentum.
If they are absorbed after a mean free path `ph, they transfer their momentum to
the absorbing particle. A rough estimate of this radiative viscosity �rad is obtained
if in (45.2) % is replaced by the mass density of the radiation field %rad D aT 4=c2,
vth is replaced by c, and ` by `ph � 1=�%, the mean free path of a photon:

�rad � aT 4

c�%
: (45.5)

The characteristic timescale according to (45.4) is

�visc � d2%

�
� d2%2c�

aT 4
: (45.6)

With d D 1011 cm2, % D 1 g cm�3, � D 1 cm2 g�1, T D 107 K, we find the
characteristic time of radiative viscosity in a star to be 1018 s, again a timescale long
compared to the lifetime of a star. One therefore can neglect the effects of viscosity
not only caused by the atomic motion but also those caused by radiation: the stellar
gas moves like a frictionless fluid.

It should be noted that the radiation causes a kind of viscosity similar to that of
the atomic motion only in an isotropic radiation field. For a non-isotropic field the
radiative viscosity is not a scalar but a tensor.

The expression (45.2) for viscosity can also be used in convective regions, where
rising and falling mass elements not only transport energy as discussed in Chap. 7
but also momentum. In the picture of the mixing-length theory, one can consider
the convection elements as “particles” which are created at some place, move
one mixing length `m, and dissolve. The corresponding “turbulent viscosity” �t in
analogy to (45.2) is

�t � %`mvt; (45.7)
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where vt is the convective velocity. In the case of the convective envelope of the
Sun, we assume vt to be 1 % of the speed of sound (as indicated in Fig. 29.5c). With
`m � HP � 108 cm, % � 10�4 g cm�3, a sound velocity of vs � 2 � 106 cm s�1
corresponding to a temperature of 3�104 K, and with vt � 0:01vs � 2�104 cm s�1,
we find �t � 2 � 108 cgs and the corresponding timescale �visc � 5 � 109 s �
160 years! One can therefore assume that the angular-velocity distribution in the
convective zone of the Sun, for instance, has reached a steady state in which the
initial angular-momentum distribution is smeared out by viscosity.

However, the analogy between friction caused by molecules and that by convec-
tive blobs has its limits. While the statistical motion of molecules is isotropic to a
high degree, there is no reason to suppose that convection in a stellar convective
zone can be described by elements with isotropic random motion. Convection is
maintained in a star by the radially outgoing energy flux. The motion is caused by
buoyancy forces which are antiparallel to the (radial) gravity vector. One therefore
can expect that the exchange of momentum by the turbulent elements is different in
the radial direction from that in other directions. The viscosity is no longer isotropic,
i.e. it is a tensor.

The macroscopic behaviour of a fluid with anisotropic viscosity is peculiar. We
know that in the case of isotropic viscosity, a self-gravitating sphere which initially
starts out with differential rotation approaches solid-body rotation after a viscous
timescale. This is not true any more for non-isotropic viscosity (Biermann 1951).
One can expect that non-isotropic turbulent viscosity causes differential rotation
and should therefore not be surprised that the surface of the Sun does not rotate
uniformly.

In this connection it should be noted that in a large part of the solar convective
zone, the layers are adiabatic (with constant rad) and surfaces of constant pres-
sure and of constant density coincide (since d ln%=d lnP D constant). As in the
barotropic case any angular-velocity distribution for which ! varies on cylinders of
s D constant will cause dynamically driven meridional circulation which by itself
changes the angular-velocity distribution.

Helioseismology has allowed to determine the rotation profile of the Sun.
Schou et al. (1998) have demonstrated that the radiative interior of the Sun is
rotating with nearly constant angular velocity, while the convective envelope shows
differential rotation, which changes gradually with depth from the surface rotation.
At 30 ı latitude angular velocity is nearly constant with depth, while at higher
latitude, where the surface rotation velocity is about 20–30 % lower than at the
poles, it rises mainly near the bottom of the convective envelope, at a relative radius
of about r=Rˇ � 0:28.

45.2 Dynamical Stability

The behaviour of incompressible homogeneous rotating fluids has been thoroughly
investigated (see, e.g. Chandrasekhar 1981). But in many respects compressible
gases behave differently. For instance, pure rotation (without meridional motions)
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in the case % D constant can only take place if ! is constant on cylinders of
s D constant (compare Chap. 44). Otherwise the curl of the centrifugal acceleration
!2ses would not vanish. But in the case of pure rotation the equation of motion in
the meridional plane is

1

%
rP C r˚ D !2ses : (45.8)

As long as % D constant, the curl of the left-hand side vanishes. For @!=@z ¤ 0 one
has curl (!2ses/ ¤ 0. Then the meridional components of the equation of motion
can only be fulfilled if meridional motions occur, and with them additional terms
appear in (45.8). This is also the case if the equation of state is barotropic (as for
complete degeneracy), since for P D P.%/, the curl of .rP=%/ also vanishes. The
same holds if the equation of state is not barotropic, but if some other mechanism
ensures that the surfaces of constant pressure and constant density coincide. One
example is convection zones in their adiabatic regime. From the condition r D rad

(where rad is constant or is a function of P and T ) it follows that the surfaces
of constant pressure and density coincide. If the convective region is chemically
homogeneous, then the equation of state (say for an ideal gas) assures that also
the pressure and density surfaces coincide. Therefore r � .rP=%/ vanishes and
meridional flow occurs if @!=@z ¤ 0.

But in a rotating star the pressure and density surfaces are normally inclined:

r �
�
1

%
rP

�
D � 1

%2
r% � CrP ¤ 0: (45.9)

Here the right-hand side is obviously proportional to the sine of the angle of
inclination. The vector rP=% is no longer a gradient; it can therefore cancel the
non-conservative part of !2ses and (45.8) can be fulfilled without any meridional
velocity components.

The different behaviour of a compressible non-barotropic gas compared to that
of an incompressible fluid also affects the stability behaviour.

It is well known that the shear motion of fluids can become turbulent. Then
kinetic energy of the shear flow goes into the kinetic energy of the “turbulent”
elements. If friction is strong, it can prevent this transition.

In an incompressible viscous fluid, therefore, the Reynolds number Re decides
whether the flow is turbulent or laminar (Landau and Lifshitz 1987, vol. 6):

Re D %vd

�
; (45.10)

where v is a characteristic velocity difference and d is a characteristic length.
For high Reynolds numbers (say Re � 3; 000) kinetic energy of the differential
motion becomes kinetic energy of the turbulent elements and the energy which is
necessarily lost because of friction is small: the flow is turbulent. If, on the other
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hand, Re is small, much more energy would have to be used up to overcome the
friction of the turbulent elements than is available from the reservoir of differential
motion: the flow is laminar. For a rotating star with % � 1 g cm�3, d � R �
1011 cm, v � 105 cm s�1, and � � 1 cgs (molecular or radiative viscosity), we find
Re � 1016, which means that the flow should be highly turbulent.

But the stellar gas is not incompressible and in most cases not barotropic.
Therefore, for a transition from laminar to turbulent motion, the energy due to the
shear motion not only has to go into kinetic energy of the turbulent elements (and via
friction into heat) but also into work against the buoyancy forces. Another critical
dimensionless number, the Richardson number Ri, can be used to decide whether
shear motion becomes turbulent despite the stabilizing effect of buoyancy. In the
case of a plane parallel flow v.z/; it is defined by

Ri D g

HP

jrad � rj
.@v=@z/2

: (45.11)

One can show that Ri < 1=4 is a sufficient condition for stability of the laminar
motion. In the case of a layer in the deep interior of a star we may estimate j@v=@zj �
!R=R D !; jrad � rj � 1;HP � 109 cm; g � 105 cm s�2 and find that the
rotation is laminar as long as ! < 2 � 10�2 s�1 or the rotation period is longer than
five minutes. Only neutron stars rotate faster.

Equation (45.11) has been derived under the assumption that the turbulent
elements undergo adiabatic changes during their motion. This is not necessarily
always the case, not even in the very deep stellar interior. For the sake of simplicity
we discuss it in the plane parallel approximation. Let us define a characteristic
timescale for a turbulent element in the case of shear instability of a plane parallel
flow by �` D jd z=dvj. This timescale can be considered as the “lifetime” of the
element. If its excess velocity over the mean velocity of its origin is�v D `jdv=d zj,
where ` is its mean free path, then it takes the time �` to move over the distance `.
The motion will only be adiabatic if �` � �adj, where �adj is the thermal adjustment
time of the element. With (6.25) one finds as the condition for adiabatic changes of
the turbulent elements of diameter d (as assumed in the Richardson criterion),

1 � �`

�adj
�
ˇ̌̌
ˇ d z

dv

ˇ̌̌
ˇ 16acT

3

�%2cP d2
: (45.12)

One can see that this condition is violated for very small shear (jdv=d zj ! 0)
as well as for small elements (d ! 0). Small elements always have time to adjust
thermally to their surroundings while they are moving. Then the stabilizing effect
of the temperature stratification disappears. The instability which then occurs for
small turbulent elements can become important. But one has to keep in mind
that extremely small turbulent elements cannot exist, since for them, even the low
molecular or radiative viscosity brakes their motion. One way of estimating the
lower limit would be to assume that the smallest elements are those for which
�` (which is normally short compared to the viscosity timescale of the elements)
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Fig. 45.1 Two tori of radii s1
and s2 are exchanged in order
to determine the work against
centrifugal forces

becomes comparable to �visc. This would mean that the critical size d of the turbulent
element is given by

d2 �
ˇ̌̌
ˇ d z

dv

ˇ̌̌
ˇ �%; (45.13)

while for smaller elements, viscosity overcomes the instability. Since the thermal
adjustment time of turbulent elements is shorter than their lifetime, however, the
stabilizing effect of buoyancy is reduced and a flow can be turbulent even if
Ri < 1=4.

There are other dynamical instabilities which are typical of rotational motion.
If they occurred in a star, the flows would become turbulent and the turbulent
viscosity would immediately change the original angular-velocity distribution.
The simplest case of such an instability can be studied by the example of an
incompressible or barotropic liquid rotating, say, in a cylindrical container. The
angular velocity ! may depend on s only, making pure rotation possible (see
Sect. 45.3). As “mass elements,” we consider the matter within two neighbouring
thin tori as indicated in Fig. 45.1. Their main radii are s1 and s2 D s1 C ds.
Their thicknesses shall be such that their mass contents dm are equal. We now
try to exchange the masses of the two tori by expanding the smaller one and
contracting the other without changing their angular momentum and calculate the
work necessary to make the exchange against the centrifugal force. The kinetic
energy of a torus is E D !2s2dm=2, which for a given mass is a function of s:
If we expand (or contract) one of the rings, then conservation of angular momentum
demands ! 	 s�2 and therefore E 	 s�2. At their original position (s1 and s2),
the two tori shall have the energiesE1 andE2, respectively. Owing to the expansion
s1 ! s2, the energy of the first torus changes by an amount

dE1 D E1s
2
1

.s1 C ds/2
� E1 D �2E1ds

s1
C 3

E1ds
2

s21
� � � � ; (45.14)
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while for the contraction s2 ! s1 of the other one, we find

dE2 D 2
E2ds

s2
C 3

E2ds
2

s22
C � � � : (45.15)

Then the total energy required for the exchange of the two tori is

dE D dE1 C dE2 D 2

�
E2

s2
� E1

s1

�
ds C 6

E1ds
2

s21
C � � �

D 2
d

ds

�
E

s

�
ds2 C 6

E

s2
ds2 C � � � ; (45.16)

where in the last term of (45.15), we have replaced E2=s2 by E1=s1, which only
introduces third-order errors in ds=s1. In the last equation (45.16), E means, for
instance, a value between E1 and E2. With E=s D s!2dm=2, we find

dE D 2!2dm

�
d ln!

d ln s
C 2

�
ds2: (45.17)

Since dE is the energy which has to be supplied for the exchange, dE > 0 indicates
stability, while dE < 0 gives instability (energy is gained). We therefore find the
condition for stability,

d ln!

d ln s
> �2: (45.18)

This is the Rayleigh criterion, which we have derived here in a heuristic way.
It says that if the specific angular momentum s2! decreases with distance from
the axis of rotation, the flow will be turbulent. We have to keep in mind that it
has been derived by assuming axisymmetric perturbations only. Since additional
non-axisymmetric instabilities may exist, (45.18) is only a necessary condition for
stability. Experiments with rotating incompressible fluids between coaxial cylinders
indicate that the transition from laminar to turbulent flow occurs when the left-hand
side of (45.18) becomes equal to �2. But a liquid between a slowly rotating inner
cylinder and a very rapidly rotating outer one can become turbulent even though
condition (45.18) is fulfilled.

In the derivation of the Rayleigh criterion we have assumed that the gas is
incompressible or at least barotropic. But in all other cases buoyancy forces become
important and the work against them has to be taken into account. In the case of gas
rotating with ! D !.s/ and with gravity pointing towards the axis of rotation (as it
is in the equatorial plane of a star), instead of (45.18) one has as stability condition

1

s3
@s4!2

@s
� gs

@ lnP

@s
.r � rad/ > 0; (45.19)

where gs.< 0/ is the component of gravity in the s direction.
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If the second term on the left is neglected, the Rayleigh criterion is recovered.
Without rotation (45.19) gives the Schwarzschild criterion (6.13) for stability.

As in the case of the Rayleigh criterion the derivation of (45.19) assumes that
the exchange of toroidal mass elements takes place only in the s direction. If in
a star the directions of gravity and of exchange do not coincide, then the Solberg-
Høiland criterion decides whether the flow is stable or not. We introduce the specific
entropy � :

� D cP ln.%P�1=�ad /C constant: (45.20)

As long as the equipotential surfaces are not too far from being spherical we can
write approximately that

g � r� D jgj
HP

.rad � r/: (45.21)

With the specific angular momentum j D s2!, the Solberg–Høiland criterion
(Tassoul 1978; Zahn 1974) requires for stability

1

s2
@j 2

@s
� jgj
HP

cP .r � rad/ > 0; (45.22)

gz

�
@j 2

@s

@�

@z
� @j 2

@z

@�

@z

�
< 0; (45.23)

gz
@�

@z
> 0: (45.24)

All three conditions have to be fulfilled in order to obtain stability; otherwise, the
flow is unstable. They are necessary and sufficient for stability as long as only
axisymmetric perturbations are allowed. They are also necessary for stability if non-
axisymmetric perturbations are permitted.

One immediately sees that (45.22) is identical to (45.19) and gives stability for
exchange in the s direction. Condition (45.23) is fulfilled as long as j increases on
surfaces of � D constant on the way from the pole to the equator. Exchange on
such surfaces does not imply buoyancy forces, and therefore it reproduces our old
condition (45.18). Condition (45.24) says that the Schwarzschild criterion has to be
fulfilled for exchange in directions parallel to the axis of rotation in which there is
no centrifugal acceleration.

For the problem of dynamical stability in the more general case ! D !.z; s/, we
refer to Tassoul (1978) and Zahn (1974).

45.3 Secular Stability

We have seen that buoyancy forces can stabilize angular-velocity distributions
which otherwise are dynamically unstable. In the case of non-conservative rotation
of a barotropic fluid, there can be no hydrostatic equilibrium between centrifugal,
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gravitational, and pressure accelerations. Therefore circulation currents are
necessary to fulfil the equation of motion in the meridional plane. If buoyancy
forces are present, equilibrium can exist for any rotation law ! D !.s; z/ as long as
gravity overcomes the centrifugal force.

However, buoyancy forces are not as reliable as, for instance, gravity. Let us
consider the axisymmetric case of a fluid between two rotating cylinders and let us
assume the Rayleigh criterion (45.18) to be violated, while the Solberg–Høiland
criterion (45.22)–(45.24) gives stability. We then know that if a toroidal mass
element is exchanged with another one further outwards in the s direction, energy
is gained from centrifugal forces, but the work which goes into buoyancy is larger.
Therefore, if kicked outwards, it will go back and, in the pure adiabatic case, starts
to oscillate around its original position. This reminds us of the oscillating blob
discussed in Chap. 6. But we have seen there that a blob with an excess of molecular
weight will sink while adjusting thermally. The situation is very similar in the case
of a rotating star in which buoyancy forces guarantee dynamical stability.

Let us discuss the case of non-conservative rotation. It is called “baroclinic”,
since the P and % are inclined against each other. Then centrifugal acceleration is
not curl-free and cannot be balanced by the (conservative) gravity. We now consider
a closed line in one quadrant of the meridional plane (Fig. 45.2). The vector of a
line element is dl . Then the integral of the centrifugal acceleration taken along the
line is I

c � d l ¤ 0: (45.25)

This means that the centrifugal acceleration produces a torque on the matter along
this line. In a barotropic (or incompressible) fluid this torque would cause a
meridional flow. In the more general case, rP=% can balance this torque. But the
matter will follow the torque within the timescale during which heat can leak out.

The matter will also flow if the Rayleigh criterion (45.18) is violated, but the
Richardson number (45.11) gives stability. This is analogous to the case of the salt-
finger experiment (see Sect. 6.5). If we then exchange two coaxial tori adiabatically
as indicated in Fig. 45.1, buoyancy will bring them back to their old position. But
since it takes a finite time to return to the initial state, heat will leak out of, or go
into, the two tori and they will never come back exactly to the old position. As the
blobs in the salt-finger experiment exchange chemical species, here a meridional
flow will exchange angular momentum. This flow is again controlled by the time
during which heat can leak away from the matter.

What is the timescale of such a thermally controlled flow? Let us go back
to the baroclinic case and the example indicated in Fig. 45.2. Along each closed
meridional line there is a torque. The heat exchange can take place most effectively
if the thickness d is small, just as the thinnest salt-finger moves fastest, as can
be seen from (6.25) and (6.29). One would therefore expect that the smallest
elements move fastest. Indeed, with decreasing thickness, the velocity increases like
v 	 d�2. Certainly for small mass elements friction becomes important, but since
the molecular (or radiative) viscosity is low, the elements slowed down by friction
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Fig. 45.2 (a) The meridional
plane of a rotating star with
d!=dz ¤ 0. Thin lines give
! D constant. Along each
closed line, the integral over
the centrifugal acceleration as
defined in (45.25) does not
vanish, giving rise to a torque
which causes meridional
motions as indicated in (b)

are rather small. Estimates indicate that they are of the order of some metres in the
radiative interior of the Sun.

Here we have discussed the instabilities by rather heuristic arguments. A math-
ematically more satisfying treatment of this problem has been carried out by
Goldreich and Schubert (1967) and Fricke (1968). They find as conditions necessary
for secular stability

@ ln!

@ ln s
> �2; @!

@z
D 0: (45.26)

Although the first condition is identical with (45.18) we have to keep in mind that
there we discussed dynamical stability in the barotropic (or incompressible) case,
while here we deal with secular stability. The second condition of (45.26) does not
correspond to a stability condition in the barotropic case. If in this case it is violated,
there is no equilibrium. Only buoyancy forces can establish equilibrium in the non-
barotropic case, but this equilibrium is thermally unstable.

Several estimates have been made of the timescale by which the thermal
instabilities change the overall angular-velocity distribution, violating conditions
(45.26). There is no definite answer, but it may well be that it is the Eddington–
Sweet timescale (44.34) (Kippenhahn et al. 1980b).

What kind of angular-velocity distribution really does occur in radiative regions
of stars? Let us start with a conservative angular-velocity distribution, ! D !.s/,
say with ! D constant. Then meridional motions will start. Since they are due
to the thermal imbalance between polar and equatorial regions, their characteristic
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length scale should be of the order of the stellar radius. They will change the
angular-velocity distribution, and ! will become a function of z too. But then the
Goldreich–Schubert–Fricke criterion (45.26) is violated and instabilities will occur,
which grow fastest for small-scale perturbations. Therefore one again expects eddies
of the size of metres. At the present time, a complete picture of the transport of
angular momentum does not exist. Multidimensional hydrodynamical simulations
as well as advanced theories are used to understand the physics determining the
properties of rotation in stars. Seismology may yield observational evidence, too.
The present situation is summarized in more detail in the textbook by Maeder
(2009). Rotation is one of the big unsolved and important questions of stellar
structure theory. It will require much more physical insight and many more
numerical efforts to understand it.
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by A. Noels, M. Gabriel, 25th Liège Intern. Astrophys. Coll., p. 155
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Paczyński, B. (1971): Acta Astron. 21, 271
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Abundances of elements. See Chemical

composition
Accreting white dwarfs, 461
Accretion disk, 515, 516
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time-scale, 319

Adiabatic exponent, 125, 214, 529
Adiabatic temperature gradient, 27, 124
Angular-velocity distribution in stars, 569,

571, 572, 575, 577, 582
dynamical stability, 582–584
secular stability, 582, 584

Ascending giant branch. See Red giant branch
Asteroseismology, 553
Astrophysical factor, 182
Asymptotic giant branch, 414, 417, 418

convective regions, 427, 428
evolution, 433–436
hot bottom burning, 430
intershell convection, 426–429
nuclear shells, 417
nucleosynthesis, 426, 428, 430
thermal pulses (see Thermal pulses)

ˇ Cephei variables, 540, 552
Bifurcation, rotating liquid configurations, 559
Binding energy per nucleon, 176
Black dwarfs, 475, 490
Black holes, 509–516

formation, 453, 454
BL Herculis variables, 539
Boltzmann distribution

excitation of atoms, 127, 128
momentum of particles, 140

Boundary conditions, 91, 93, 106, 521
at the centre, 93, 105

series expansions, 94, 108
at the surface, 95, 98, 106

general formulation, 96, 98
influence on envelope, 98, 102
photospheric conditions, 96
zero conditions, 95

Bremsstrahlung neutrinos, 208
Brown dwarfs, 261, 326, 442
Brunt-Väisälä frequency, 53, 549

Carbon burning, 199, 200
in accreting white dwarfs, 461
in degenerate cores, 444, 454, 455, 458,

461
reactions, 199

Carbon flash, 436, 446, 454, 455, 458
time-scales, 458

Carbon main-sequence, 266
Carbon-oxygen cores

carbon flash, carbon burning, 436, 445,
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contraction and heating, 450, 451
dynamical instability, 470

Catalyzed matter, 484, 504
M �R relation for cold bodies, 502

Central conditions, 93
Central evolution

late phases, 449
pre-main-sequence, 323
through nuclear burnings, 441, 442, 448

Central values, 93, 256, 264, 400
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bump Cepheids, 540
change of period, 375, 376, 538
evolution, 375, 378
excitation, 534, 538
masses, 377, 378, 539, 540
period-luminosity relation, 538, 539

Cepheid strip, 375, 376, 535, 538
Chandrasekhar’s limiting mass, 221, 396, 453,

464, 477, 504
Chemical composition of stellar matter, 73,

426
change by nuclear reactions, 74, 422
convective mixing, 81, 385
diffusion, 76
equilibrum, catalyzed matter, 484, 487
mass abundances, 73
mixing by circulations, 573, 574
present Sun, 333, 336

Circulations, meridional, 567, 573
chemical inhomogeneities, 573, 574
time-scale, 572

Clusters of stars. See Star clusters
CNO cycle, 192, 195, 197, 344

in main-sequence stars, 257
Collapse

into black holes, 513
evolved cores, 450, 452, 468
interstellar clouds, 306, 314
polytropes, 227, 231, 462, 463
protostars, 318, 319

Combustion front, 459
Compact objects, 473–516. See also Black

holes, Neutron stars, White dwarfs
Complete equilibrium (mechanical and

thermal), 36, 92, 105, 107, 362, 424,
567

Compound nucleus, 179–181
Compton scattering, 164
Conductive opacity, 169
Conductive transport of energy, 42–43
Conservation of momentum, 9, 316
Conservative rotation, 565, 566
Continuity equation, 4, 15, 300, 313, 314
Contraction and heating/cooling, 323, 325,

440, 450, 451
Convection

as a diffusive process, 81, 357
fully convective regions, 355–357, 387
fully convective stars, 258, 271, 273
in main-sequence stars, 257, 260, 343, 348
mixing-length theory, 62, 70, 276, 278, 279

adiabatic, superadiabatic, 67, 69, 90,
337, 381

efficiency, 67, 69

limiting cases, 66, 68
mixing of chemical composition, 80
overshooting, 345, 349–354, 356, 357,

368–373, 377, 378, 381–383,
385–389, 411, 412, 414, 427, 433,
437, 443, 540

semiconvection, 345, 354–356, 370,
385–389, 411–414

stability criteria (dynamical), 47, 51
unstable g modes, 550
vibrational and secular stability, 54, 58

velocity, 63, 64, 69, 336
Convective blocking, 459
Convective transport of energy, 61, 69
Cooling of white dwarfs, 493, 494
Core collapse supernovae, 449, 469, 515

collapse of evolved cores, 450, 452, 461
collapse time, 465
electron capture, 464
instabilities, 452
neutrinos, 466, 468
rebounce, 466

Core contraction and heating, 370, 439
Core-mass-luminosity relation, 400, 401,

424–426
Core-mass-temperature relation, 393, 400
Core of neutron stars, 507
Coulomb barrier of nuclei, 177–179, 181, 200
Critical rotation, 561, 562
Crust of neutron stars, 506, 507
Crystallization, 157, 160

neutron stars, 506
white dwarfs, 480, 492

Deflagration front, 459, 460
Degeneracy

of electrons, 42, 139, 150, 151, 442
complete degeneracy, 140, 145, 152
Fermi-Dirac distribution, 145
non-relativistic, extreme relativistic,

145
partial degeneracy, 150

of neutrons, 498, 500
Degeneracy parameter, 145, 146, 151, 441, 442
Degenerate cores, 391, 436, 442, 443, 449
ı Scuti variables, dwarf Cepheids, 539
Detonation front, 453, 459–461
Diffusion

chemical elements, 76, 115
neutrinos in collapsed cores, 466–468
radiative energy, 38, 39
radiative levitation, 79
in standard solar model, 78, 330, 333, 338
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Dredge-up of nuclear species, 433
first dredge-up, 372, 384, 397
second dredge-up, 384, 417, 436, 443
third dredge-up, 427–429, 433

Dynamical stability/instability, 285, 290, 522,
523

angular-velocity distribution, 575–582
configurations of catalyzed matter, 504,

505
critical gamma, 291

effect of general relativity, 292, 505
highly evolved cores, 462, 470
Jacobi ellipsoids, 560
local perturbations (convection), 47, 52
non-radial g modes, 550
piston model, 288
protostars, 318
supermassive stars, 227

Eddington’s standard model, 220
Eddington–Sweet time-scale, 570, 572, 584
Effective temperature, 95, 433
Efficiency of convection, 67, 69
Eigenvalues, 58, 59
Electron capture, 469
Electron capture instability, 464
Electron scattering, 37
Electron scattering opacity, 163–164
Electron shielding of nuclear reactions, 188
Electrostatic interaction and equation of state,

160, 479
Energy conservation

neutrino losses, 32
for stellar matter, 31, 33
time-dependent terms, 32
for the whole star, 33

Envelope solutions
convective, 101
radiative, 98, 99
temperature stratification, 102

" mechanism, 531, 534
upper-main-sequence stars, 267, 541

Equation of motion, 13, 300, 311, 314, 512,
519, 544

non-spherical case, 15
Equation of state, 11, 25, 151–161

beyond neutron drip, 497
degenerate electron gas, 140, 144, 145,

150, 153
electron shielding, 160
electrostatic interaction, 479
for stellar matter, 151, 152
neutronization, 158, 159, 468, 483, 498

at nuclear matter density, 469
perfect gas, 28–31
perfect gas and radiation, 28, 123, 124, 154
real gas, 159, 160
tables, 136

Equations of stellar structure
change of chemical composition, 74
energy equation, 33, 92, 94, 114, 237, 314,

424
equation of motion, 13, 114, 285
Eulerian and Lagrangian descriptions, 3, 4
hydrostatic equilibrium, 10
transport of energy

conductive, 42
convective, 61
radiative, 37, 42

Equilibrium
complete (see Complete equilibrium

(Mechanical and thermal))
hydrostatic, 9, 10, 92
nuclear statistical, 455, 461

Equilibrium composition of stellar matter
equilibrum, catalyzed matter, 484

Evolutionary mass of Cepheids, 377
Explosions, 449–472

Fermi-Dirac distribution, 145
Fermi-Dirac integrals, 147
Fermi momentum,– energy, 42, 141, 158, 468,

470, 490, 498
Final stages

mass limits, 439, 448, 449
Fitting (shooting) method, 105, 106
Flash. See Carbon flash; Helium flash
f mode, 550
Formation of stars. See Star formation
Fragmentation of collapsing clouds, 307, 309

stellar masses, 308
Free-fall, 14

Gamow peak, 184, 186, 187, 189
Gamow penetration factor, 179
Generalized main-sequences, 267, 390, 407
General relativistic effects

dynamical stability, 505
hydrostatic equilibrium, 15, 17
neutron star masses, 501, 505, 506

Giants, evolution to, 367, 397
Globular cluster diagrams

horizontal branch, 407, 408, 411
luminosity function, bump, 400
red giant branch, 397
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g modes, 549
Goldreich–Schubert–Fricke criterion, 585
Gravitational energy, 16, 19, 303, 557
Gravitational instability of interstellar clouds,

299, 309
Jeans criterion, 302, 306

Gravitational mass of a star, 16, 505, 506
Gravitational potential, 7, 213, 557
Gravothermal specific heat, 21, 293, 295, 420,

445, 489

Hayashi line, 271–282, 321, 322, 327, 380
analytical approach, 273
forbidden region, 271, 276, 278

Heat conduction, 42, 45
and opacity values, 169, 172

Heating/cooling during contraction, 323, 325
3He burning, pre-main-sequence, 326
Helioseismology, 71, 330, 336–338, 553,

577
Helium-burning phase

helium ignition, 397
intermediate-mass stars, 367–385

Cepheid phase, 375
helium-shell burning, 384
loops in the HR diagram, 373, 384
production of C, O, Ne, 372, 384
time-scales, 371, 381

low-mass stars, 393, 433
CNO-flash, 407
helium flash, 401, 405
horizontal-branch phase, 407, 411, 539

massive stars, 371, 385–390
Cepheid phase, 378

nuclear reactions, 192
production of C, O, Ne, 198, 372

Helium-burning reactions, 198
Helium flash, 400–407, 410, 433, 443

mixing of composition, 407, 411
time-scale, 401

Helium main-sequence, 263, 264, 269, 541,
573

Henyey matrix, determinant, 110, 113
Henyey method, 106, 113
Hertzsprung gap, 367, 370, 375, 376, 383, 387,

391
Hertzsprung–Russell diagram, 252, 263, 271,

275, 280, 369, 407, 441
forbidden region, 271, 276, 278
star clusters, 328, 348, 407, 410

Homologous contraction, 241, 242, 312, 323
central evolution, 326
maximum central temperature, 326

Homology invariants U; V
for polytropic models, 244–246

Homology relations, 233–242, 346
main-sequence models, 234, 252, 256
for shell-source models, 392–396, 425

Horizontal branch, 400, 409
morphology, 408

Horizontal-branch stars, 407–414
metal content, 408
zero-age models, 409, 410

HR diagram. See Hertzsprung–Russell
diagram

Hydrodynamical methods, 117
Hydrogen-burning phase. See Main-sequence

phase
Hydrogen-burning reactions, 193–196

CNO cycle, 195, 256, 327
proton-proton chain, 193–195, 256

Hydrogen main-sequence, 251–262, 541
stability, upper and lower end, 260

Hydrostatic equilibrium, 9, 10, 34, 89, 92, 213,
291, 302, 421, 450

general relativity, 15, 17
post-Newtonian approximation, 17

Hydrostatic time-scale, 14
Hyperonization, 498

Ideal gas. See Perfect gas
Ignition of nuclear burning

minimum mass, 453
Initial-final mass relation, 431, 432
Initial values, 91, 92
Instability strip, 375, 409, 414, 535–540

BL Herculis variables, 414
Cepheid evolution, 375, 378, 538
observed stars, 538, 539
RR Lyrae variables, 408
W Virginis variables, 414

Inverse ˇ decay, 158, 483
Ionization of stellar matter

partial ionization, 101
partial ionization of H and He, 130, 135,

336, 537
mean molecular weight, 131
in the Sun, 135
thermodynamic properties, 127, 132

pressure ionization, 138
Saha equation, 129, 130

Isothermal-core models, 360–362
Schönberg-Chandrasekhar limit, 356–363
thermal stability, 359, 362
in the U � V plane, 250

Isothermal spheres of ideal gas, 222
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Jacobi ellipsoids, 559
Jeans criterion, 299–303

Jeans mass, 305–308
virial theorem, 303

� mechanism
stars driven by, 535–540

Kelvin–Helmholtz time-scale, 22, 45, 46, 56,
327, 370, 530

Kramers opacity, 99, 164, 281, 295, 487, 535

Lane–Emden equation, 216, 217, 219, 223,
241, 303, 304, 563

collapsing polytropes, 231
isothermal spheres, 222–223
solutions, 216–218

Later phases (post-He-burning), 439–448
carbon flash, 436, 445, 454–455, 458
central evolution, 424, 441, 446, 451
degenerate cores, 442–444, 454–461
final evolution, 450–454
neutrino losses, 266, 420, 436, 439–448
nuclear burnings, 437, 450–454, 461
thermal pulses, 422–424

Ledoux criterion, 51, 355, 357, 386, 387, 412,
413

Limiting mass. See also Mass limits
neutron stars, 501–508
white dwarfs, 221, 222, 477, 487

Loops in the HR diagram, 373–383, 387
Cepheid phase, 375–378

Luminosity
accretion, 314, 316, 321
local, 31
neutrino, 32
surface value, 31

Magic nuclei, 202
Magnetars, 471, 472, 508
Main-sequence models, 251–262

central values, 254–257
convective regions, 258–262
instability at small and large M , 260
M �R and M � L relations, 251–254
pp and CNO reactions, 257, 258
radiation pressure, 257

Main-sequence phase, 343–356, 388
chemical evolution, 267, 343, 346
convective overshooting, 349–354
massive stars, 344, 351

influence of rotation, 390

semiconvection, 356
time-scales, 347–348

Main-sequences
carbon main-sequence, 266
generalized main-sequences, 263, 267–269
helium main-sequence, 263–266
vibrational stability, 288
zero-age (hydrogen) main-sequence, 259

Mass
of Cepheids, 377
gravitational, 16, 505

Mass defect
neutron stars, 502, 504
nuclei, 175

Mass limits
degenerate cores, 442, 443
final stages, 446
ignition of nuclear burning, 326, 442, 443,

446
neutron stars, 505
types of late evolution, 437, 452, 471

Mass loss, 83–85
on the AGB, 419, 430, 433, 437
before helium flash, 407, 495
from cool giants, 83
critical rotation, 561, 562
dust-driven, 83, 431, 436
and final stages, 446
from massive stars, 83, 389, 390
radiation-driven, 83, 389
Reimers formula, 84
superwind, 431, 438

Mass-luminosity relation
helium and carbon main-sequences,

263–266
main-sequence models, 238, 251–254

Mass-radius relation
main-sequence models, 237, 238,

251–254
models of cold catalyzed matter, 504
neutron stars, 501, 502
polytropic stars, 221
white dwarfs, 395, 478, 479, 485, 487

Material functions of stellar matter, 107,
121–208, 315

Maximum mass of neutron stars, 502–506
McLaurin spheroids, 557–559
Mean free path, 37, 38, 42, 77, 78, 169, 467,

575
Mechanical structure, 12
Melting temperature, 153, 157, 492
Meridional circulations, 567–574

chemical inhomogeneities, 573, 578
Eddington–Sweet time-scale, 570–573
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Metallicity, 70, 74, 252, 280, 401, 403, 406,
408–410, 453, 470

of the Sun, 331, 333
Millisecond pulsar, 502
Minimum mass

ignition of nuclear burning, 325, 326, 441,
443, 446

Mirror principle of radial motions, 368
Mixing length, 62
Mixing-length theory of convection, 65, 70–71,

81, 331
Mixing of chemical composition

by convection, 80, 348, 427
by meridional circulations, 573, 574

Molecular weight, 11, 28
for ionized matter

mean value, 28, 29
per free electron, 29
per ion, 29

partially ionized matter, 132
� barrier, � currents, 574
Multiple solutions

helium-core models, 368
homogeneous equilibrium models, 267
isothermal-core models, 362

Neon disintegration, 201
Neutrino losses, 32

before helium flash, 57, 402, 403
degenerate CO cores, 443–447, 452
energy equation, 33, 91
temperature inversion, 403
thermal stability, 296, 444, 445

Neutrino luminosity, 33, 445, 447
Neutrinos, 205–209

core collapse, supernovae, 466–469
electron, 206, 340
from electron captures, 206
from hydrogen burning, 193–196, 206
from leptonic interaction, 206, 207

Bremsstrahlung, 208
photon scattering, 208
plasmon decay, 208
synchroton radiation, 209

mean free path, 205, 467
muon, 340, 341
solar (see Solar neutrinos)
tau, 340
Urca process, 206

Neutrino trapping, 467
Neutron drip, 158, 484, 497, 498
Neutrons

degeneracy, 498

production in thermal pulses, 428
superfluid liquid, 500, 507

Neutron stars, 15, 485, 497–508
equation of state, 498, 500, 502, 505
extension of atmosphere, 506
formation, 453, 454, 466
gravitational mass, 505, 506
interior models, 506, 507
magnetic fields, 508
masses, 502
maximum mass, 501–504, 506
merging, 471, 515
M �R relation, 501
stability, 504, 505
structure, 506, 507

Neutronization, 158–159, 466, 468, 498
threshhold, 483

Non-radial oscillations, 53, 543–553
dynamical stability, 549, 550
eigenspectra, 548–551
observations, 552

Nuclear burning
minimum mass for ignition, 442, 443
reaction network, 75
reactions, 175, 192–201
thermal stability, 292, 294–296, 401, 444

Nuclear burning phases
helium burning, 367–414
hydrogen burning, 35, 255, 343–354, 387
later burnings, 447
pre-main-sequence burning, 326, 328

Nuclear cross-sections, 179–182
astrophysical factor, 182
resonances, 181
temperature sensitivity, 186, 187

Nuclear energy generation, 35, 175–179, 534
electron shielding, 188–192, 260

Nuclear equilibrium, 482, 483
Nuclear reactions, 73
Nuclear statistical equilibrium, 455–458, 461
Nuclear time-scale

late phases, 449
shell sources, 419

Nucleosynthesis, 201–205, 430
of carbon and oxygen, 198–199
explosive, 449
of helium, 193–196
after helium-burning, 197–199
by neutron captures, 201–205, 428

Numerical methods, 105–119
explicit, implicit schemes, 113, 114
Henyey method, 106–113
hydrodynamical problem, 114
shooting (fitting) method, 105, 106
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Onion skin model, 440, 448
Opacity of stellar matter, 163–174

bound-bound transitions, 166–167
bound-free transitions, 165, 166
conductive opacity, 169, 170, 172
electron scattering, 102, 163–164

Compton scattering, 164
free-free transitions, 164, 165
molecules, 170–172
negative hydrogen ions, 168–169
opacity tables, 172–174
Rosseland mean, 40–41, 96, 163, 164, 540

Opacity Project, 172
OPAL, 161, 172
Oscillation of stars. See Pulsations
Oxygen burning, 200

reactions, 200

Pair annihilation neutrinos, 207–208
Pair creation instability, 469–471
Partition function, 128–131, 137
Pauli’s exclusion principle, 139, 140
Pear-shaped configurations, 559
Perfect gas, 11
Perfect gas and radiation

equation of state, 123
thermodynamic properties, 124–125

Period-density relation, 375, 524, 538, 539
Period-luminosity relation, 538, 539
Photodisintegration, 200, 201, 453, 454, 456,

457, 461, 470, 471
Photo neutrinos, 208
Photosphere, 95, 102
Photospheric conditions, 96
Piston model, 17–18

mechanical properties, 17, 18
stability, 58–60, 285–288

eigenvalues, 286–292
thermal properties, 45, 46

Planetary Nebulae, 438
Plasma neutrinos, 208, 400, 401
p modes, 549
Poisson equation, 6, 15, 189, 215, 562
Poloidal modes of non-radial oscillations, 546
Polytropes

adiabatic, convective, 214, 217, 245, 248,
304

collapsing, 462–465
isothermal, 214, 215, 222, 223, 245, 247,

250
slowly rotating, 562–564

Polytropic relation, -index, -exponent, 213–215
Polytropic stellar models, 215–231

collapsing polytropes, 227–231
isothermal ideal-gas sphere, 222–223
Lane–Emden equation, 231
M �R relations, 221
pulsations, 525–528
radiation pressure, 219–220
supermassive stars, 226–227

Population
I, 346, 347, 354, 369, 462, 539
II, 397, 400, 407, 539
III, 309, 406, 453, 470, 541

Post-main-sequence evolution
asymptotic giant branch, 417–438
Hertzsprung gap (see Hertzsprung gap)
intermediate-mass stars, 367–371, 446

core-contraction phase, 368
hydrogen-shell burning, 368

low-mass stars, 391, 399, 425, 446, 539
degeneracy, 402
hydrogen-shell burning, 324–325, 391,

396–398, 414
red giant branch, 397, 433

massive stars, 385–390, 447, 461
Post-Newtonian approximation, 17
pp reactions, 193–195
Pre-main-sequence contraction, 323–328

approach to main-sequence, 326–328, 391
central heating, 323, 325
minimum mass for hydrogen ignition, 326
time-scales, 327

Pre-main-sequence nuclear burning, 326
Proton-proton chain

in main-sequence stars, 257
reactions, 193–195

Protostar evolution, 311–322
collapse calculations, 314–315
collapse onto condensed object, 313–314
formation, 315–317
H2 dissociation, core collapse, 318

Pulsation of stars
adiabatic non-radial pulsations

eigenvalues, 549
adiabatic spherical pulsations, 519–527

dynamical stability, 523
effect of radiation pressure, 527, 528
eigenvalues, 519–523

influence of convection, 538
non-adiabatic spherical pulsations,

529–541
eigenvalues, 529–533
" mechanism, 531, 534–535, 541
instability strip, 535–540
� mechanism, 534–540
non-linear effects, 539
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quasi-adiabatic approximation, 531–532
non-radial oscillations, 543–553

eigenspectra, 548–551
excitation mechanism, 552
mode splitting due to rotation, 552
observations, 552

Pulsational mass of Cepheids, 377
Pulse instability, 420, 421
Pulses. See Thermal pulses
Pycnonuclear reactions, 191, 445, 453, 479,

482–485, 489

Quark stars, 500
Quasi-adiabatic approximation, 531–532, 552

Radiation pressure, 123–124, 136, 152, 153,
256, 261, 262, 541

influence on pulsations, 527, 529, 541
in main-sequence models, 257, 266
in polytropic models, 219
supermassive stars, 226, 227, 470

Radiative transport of energy, 37–46, 534,
567

Radiative viscosity, 576
Rayleigh criterion, 581–583
Red giant branch, 370, 375, 378, 397–401,

407, 414
Resonance reactions, 180
Reynolds number, 69, 578
Reynolds stress model, 61, 351
Richardson number, 579, 583
Roche lobe, 269
Roche model, 560–562
Rosseland mean of the absorption coefficient,

40–41, 90
Rotation of stellar models, 555–585

angular-celocity distribution
dynamical stability, 577–582
secular stability, 582–585

angular-velocity distribution, 572, 575–585
conservative rotation, 565–566
meridional circulations, 567–568
non-conservative rotation, 569–570, 582
polytropes, 562–564
Roche model, 560–562

critical rotation, 561, 562
rotating liquid configurations, 557–560

stability, 559
thermodynamic properties, 565–574

von Zeipel’s theorem, 566–567
r-process, 203
RR Lyrae variables, 408, 414

Saha equation, 129, 130, 318
limitation for high densities, 137–138

Salt-finger instability, 56, 583
Scale height of pressure, 50, 70
Schönberg–Chandrasekhar limit, 356–363

in the U � V plane, 250
Schwarzschild criterion for convection, 51,

355, 357, 386, 387, 412
Schwarzschild radius, -metric, 509, 511–513,

515
Screening factor, 190
Secular (thermal) stability, 294–296

angular-velocity distribution, 582–585
isothermal-core models, 359, 362
McLaurin spheroids, 557
neutrino losses, 296, 445
nuclear burning, 294–296, 401, 445
piston model, 288
salt-finger, 56, 58, 405
shell sources, 419–421

Sedimentation, 78, 79, 331, 334
Semiconvection. See Convection,

Semiconvection
influence on loops, 381

Shell-source burning
double-shell sources, 414, 421
helium, 384
hydrogen, 267, 368, 391, 392, 406, 414,

493
late phases, 417, 419
local nuclear time-scales, 419

Shell-source homology, 392–397, 424, 426
Solar neutrinos, 338–341

measurements, 339
spectrum, 339, 340

Solberg–Høiland criterion, 582, 583
Specific heat

electron degeneracy, 156, 490
gravothermal, 21, 293–294, 401, 420, 444
ionization, 132
radiation pressure, 124
white-dwarf matter, 487–496

s-process, 203
13C-pocket, 428, 429
neutron poison, 430
neutron source, 203, 428–430

Stability, 283–296
dynamical stability, 290–292
general considerations, 283, 285, 290
gravitational, 299–309
local perturbations, 47–60

dynamical stability, 47–52, 55
secular (salt-finger) stability, 56, 58
secular instability, 56–58
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vibrational stability, 54, 55
perturbation equations, 289, 290
piston model, 58–60
secular (thermal) stability, 292
vibrational stability, 290, 292, 529, 530

Standard model of Eddington, 220
Standard solar model, 330, 333–336, 338
Star clusters

age determination, 348
Hertzsprung–Russell diagram, 346, 347,

407
Star formation, 299–322

Bonnor–Ebert sphere, 306
collapse of clouds, 311–317, 575

adiabatic/isothermal, 307–309, 319
free-fall, 311
time-scales, 307

fragmentation, 307–309
gravitational instability, 299–309
pre-main-sequence contraction, 323–328
protostar evolution, 315–322, 327

low-mass stars, 321, 328
massive stars, 321, 328

Stellar-structure equations. See Equations of
stellar structure

Strange stars, 500, 502
Sub-Chandrasekhar models, 453
Sun

age, 293, 329, 330
central values, 13
chemical composition, 333, 337
convective regions, 329, 335, 337
evolution, 333, 334
hydrogen burning, 329, 332, 336, 340
luminosity, 21
mass, radius, 12
oscillations (see Helioseismology)
solar neutrinos, 338–341
solar quantities, 329, 330
standard solar model, 333–336, 338
structure, 335
time-scales, 14, 22, 35–36

Super-AGB, 436–438, 442, 453, 454, 469, 495
Supermassive stars, 226–227, 258, 291
Supernova

electron capture, 437, 448, 453, 469
gamma-ray burst, 471–472
pair-instability, 454
SN1987A, 387
type 1.5, 453
type I, 449, 452, 453, 459–461, 471
type II, 449, 453, 468, 469

Supernova explosions, 437, 448, 449, 452, 461,
466

neutrino photosphere, 468
neutrinos, 466

Surface conditions, 95–103
Synchrotron neutrinos, 209

Temperature gradient
in convective regions, 50–55, 64–70
for radiative transport, 43

Thermal adjustment time, 43–45
Thermal pulses, 417–419, 421–424, 427–430,

433, 434, 437, 438
cycle time, 441
dredge-up, 427
instability, 420, 421
late pulse, 438
nuclear reactions, 427

Thermal stability. See Secular stability
Thermonuclear fusion, 175, 178, 192
Thermonuclear reaction rates, 182–187
Thomas-peak, 399
Time-scales, 36, 91

accretion, 313
collapsing clouds, 302, 307
convection, 459
explosion, 14
free-fall, 14, 299, 302, 305, 306, 312,

465
helium-burning phase, 371, 373
hydrostatic, 14, 15, 35
Kelvin–Helmholtz, 22–23, 45
local oscillations, 52, 54
main-sequence phase, 347
meridional circulations, 572
nuclear, 35
pre-main-sequence contraction, 328
for the Sun, 22, 35
thermal adjustment, 43–45, 55, 56, 306

Tolman–Oppenheimer–Volkoff (TOV)
equation, 17, 504

Transport of energy
conductive, 42–43, 89
convective, 61–71, 90
diffusion approximation, 38, 40
mechanisms, 37
radiative, 42, 89

Triple ˛ reaction, 197, 199
Tunnelling probability, 179, 482
Turbulence of rotational motion, 578–581
Turbulent viscosity, 576, 577

Uniqueness of solutions, 118–119
Urca process, 206
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U � V plane, 243–250
convective cores, 248–250
isothermal cores, 250
radiative envelopes, 248

Variable stars
ˇ Cephei variables, 540, 552
BL Herculis variables, 539
Cepheids, 375, 378, 538–540
non-radial oscillators, 552
RR Lyrae variables, 408, 414
W Virginis variables, 539

Velocity
convection, 63, 69
meridional circulations, 573–574

Vibrational stability, 290, 292, 529, 530
excitation mechanisms, 534–541
local mass elements, 54–55
piston model, 288, 509
stars in the instability strip, 375, 535, 539
upper-main-sequence stars, 260, 266, 541

Virial theorem, 19–23, 239, 294, 304, 489
piston model, 21–22
surface terms, 23

Viscosity of stellar matter, 69, 70, 577, 579,
583

coefficient, 575
radiative, 576

turbulent, 576
Von Zeipel’s theorem, 567

White dwarfs, 11, 438, 444, 475–496
accreting, 461
chemical composition, 483
cooling time, 432, 488, 491
crystallization, 480–482, 489, 492–494
energy reservoirs, 489, 490
formation of, 437
initial masses of progenitors, 432, 433, 447
limiting mass, 221–222, 475–479, 487, 504
masses, 495
mechanical structure, 479–487

particle interaction effects, 479–487
M �R relation, 221, 477, 478
non-radial oscillations, 552
phase separation, 481, 482
pulsations, 525
thermal properties, 157, 487–496

W Virginis variables, 539

Zero-age horizontal-branch, 408–414
models, 408–410

Zero-age main-sequence (ZAMS), 251–262,
269, 327, 332, 346

ZZ Ceti variables, 552
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