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ABSTRACT

In order to extract eigenfrequencies of high-order p-modes with precisions of one part in 500,000, a careful
numerical treatment is necessary for both the input stellar model and the oscillation code. Here, we use poly-
tropes to avoid uncertainties associated with the input model. We have obtained eigenfrequencies in a number
of polytropes for l-values of 0-3 and radial orders up to about 40. In order to have the frequencies converge
with the necessary precision, we find that the input model must contain several thousand shells, and the oscil-
lation code must contain at least several dozen grid points in each loop of the eigenfunction. The outermost
loop requires many more points: our converged models contain several hundred grid points between the last

node and the surface.

An important check on our results is provided by a comparison of the asymptotic behavior of adjacent
mode separations with the limiting behavior predicted by Tassoul. Our oscillation code is based on the

Cowling approximation (as assumed by Tassoul).

Subject headings: stars: pulsation — Sun: oscillations

I. INTRODUCTION

Radial and nonradial pulsations of the Sun and stars hold
the key to the rapidly growing fields of helioseismology and
asteroseismology. As the GONG project comes on line in the
next few years, the frequencies of solar pulsation modes will be
measured with increasingly high precision, of order 0.01 yHz.
In the frequency range where solar oscillations have so far been
detected with maximum power (roughly 1.7-5 mHz), this cor-
responds to a fractional uncertainty of 2 x 107 in the mode
frequencies. The radial order of the observed modes can be as
high as 40.

A major theoretical challenge will be the ability to predict
the eigenfrequencies of a solar model with precisions of the
above order. Difficulties in meeting this challenge arise from
two separate sources. First, current solar models are subject to
uncertainties arising from opacities and treatment of convec-
tion which are much larger (fractionally) than the above
requirements. Second, the codes which extract the oscillation
frequencies are subject to numerical errors. In the present
paper, we are concerned only with the second of these.

As a means of checking an oscillation code, it is convenient
to refer to a test model “star ” in which the structure is known
with essentially infinite precision. Polytropes provide such test
models. Eigenfrequencies for some low-order modes in certain
polytropes exist in the literature (e.g., Cox 1980). But these are
inadequate for present purposes for two reasons. First, the
numerical precision is typically poorer than we require by
several orders of magnitude. Second, they do not provide a
really stringent test of an oscillation code: the eigenfunctions of
the low-order modes do not oscillate rapidly near the surface
of the star and therefore do not require the careful treatment
that is necessary for modes of high order. In a more recent
discussion, Christiansen-Dalsgaard (1982) has obtained eigen-
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frequencies for some high-order p-modes for the n =3 and
n = 0 polytropes: however, at the highest orders which he gives
(radial order 30), the fractional errors in the eigenfrequencies
fall short of the required precision by one to two orders of
magnitude. (The uncertainties are much smaller for the lower
order modes, but such modes carry very little power in the
solar oscillation spectrum.)

An important check on our eigenfrequency results is provid-
ed by the asymptotic behavior of the p-modes at high fre-
quency. Tassoul (1980) has discussed at length how the
frequency separation of high-order p-modes is expected to
behave asymptotically. Tassoul’s results have recently been
rediscussed including higher order terms by Smeyers and
Tassoul (1987), but the earlier results of Tassoul (1980) are of
sufficiently high order to be relevant here. According to
Tassoul (1980),

Vot = &+ Blx — Xo) 1)
where

x=n+=

5 Q)

Here, n, is the radial order of the mode; [ is the degree of the
spherical harmonic, equaling the number of complete circles
on which the vertical component of the velocity of oscillation is
always zero;

a=o0e—o il +1) 3)
and

ﬂ=ﬁo+ﬂll(l+l) @
The notation in equations (3) and (4) is that of Gough (1984).
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We note that although the radial order n, equals the number of
radial nodes in polytropes which are not too centrally con-
densed, this is no longer true for highly condensed polytropes:
in the latter, it may be necessary to exclude modes which oscil-
late in the g-propagation region (Robe 1968; Scuflaire 1974).
Numerical values of a, and B, are sensitive to the physical
structure of the outer layers of the polytrope; the numerical
values of «; and B, are also sensitive to physical conditions in
the core. As the mode number increases, the asymptotic fre-
quency separation between successive modes (n, and n,, ,) is
given by the quantity f. The limiting value of the mode separa-
tion is related to the sound travel time between surface and
center:

Rdr
ﬂo_l =2 ) (5)
o Cs

where c, is the sound speed.

The existence of asymptotic behavior has an important com-
putational advantage: the higher the order of the pulsation
mode, the more grid points are required in order to compute
the frequency with a specified precision. Thus, a considerable
saving of computational effort would result if the asymptotic
behavior of the frequences could be relied upon.

One of the questions we address in the present paper is: how
reliable is the asymptotic behavior in practice? For example,
how large does the radial node number need to be in order to
have, say, successive mode frequencies separated by an amount
which equals the asymptotic limit (8) with a precision compa-
rable to that which the GONG observers will be achieving, i.e.,
0.01 uHz?

To address this question, we restrict our attention in this
paper (for the sake of consistency) to the particular case for
which Tassoul originally derived the asymptotic behavior: that
is, we consider only pulsations which are described by the
Cowling approximation (i.e., neglecting variations in gravita-
tional potential in the course of the pulsation).

II. RADIAL AND NONRADIAL PULSATIONS OF POLYTROPES

The characteristic Lamb frequencies L and Brunt-Vaisala
frequencies N (in the notation of Unno et al. 1981) associated
with restoring forces of pressure and gravity in a polytrope of
order n can be calculated as functions of radius in terms of the
Lane-Emden function 6. For the definition of 6, see, e.g., Chan-
drasekhar (1939): in a perfect gas,  equals the ratio of local
temperature to central temperature. The dimensionless radial
coordinate ¢ is related to the radial variable r by &=r/r,
where r, is the Emden unit of length.

Thus, if we define

GM
0 =25 ©)

where M and R are mass and radius, and G is the gravitational
constant, we can write a normalized Brunt-Vaisala frequency
(subscript n denotes normalization) as

N?  (n—ny) 302
2= __ 0 -
N, = 92 (£ 1) x CC x < 9 ) 7

where CC is the central condensation of the polytrope (ie.,
central density divided by mean density). The parameter ng is
the effective polytropic index associated with the pulsations. In
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all models to be described here, we have taken ny = 1.5: the
associated adiabatic exponent

F=1+— ®)

no

has the value 5/3 in all of our results. In equation (7), prime
denotes differentiation with respect to &.

Similarly, the value of L associated with mode 1 is given by
le ) (no + l)
Ll,,_%2 3X'CCXI(I+1)X52XnO(n+1)’ 9)
where ¢ is the Lane-Emden coordinate.

The quantity N, diverges at the surface, and L, diverges at
the center. As will be mentioned below, our integrations are
terminated at a radial distance slightly beneath the formal
surface: as a result, the divergence in N, is avoided. Near the
center, we avoid the divergence in L, by starting the integra-
tions at a finite (but small) value of ¢, typically at a fractional
radius of a few times 104,

With regard to the increase in N, near the surface, for future
reference we note that at a certain radial distance, En, the value
of N, becomes equal to the normalized eigenfrequency, w,. The
value of 6 at this variable transition point (in the notation of
Tassoul 1980) will be denoted by 6. An equivalent variable
transition point also exists near the center of the polytrope (if
I # 0), where L, becomes equal to w,.

a) Standard Frequency

In the calculations to be reported below, we restrict atten-
tion to a polytrope of solar mass and radius. Taking
M =198 x10** g R=69627 x 10'° cm, and
G = 6.67 x 10~ ® cgs, we use the following standard frequency
in the results:

v, = 29; =99.778 uHz . (10)

If other choices of constants are preferred, our results can be
scaled accordingly. For example, if one prefers the product
GM = 1.32712438 x 10%® cgs based on planetary motion, the
standard frequency (assuming the same value for R as above)
would become 99.795 uHz. All of our frequencies should then
be multiplied by a factor 1.000174.

Another unit of frequency to which we shall refer below is v, :
this is the ratio of the sound speed at the center of the star to
the Emden unit of length. The ratio of v, to v, is 2n[ 3" x CC/
(n+ 1))

b) Polytrope Structure

We use a fourth-order Runge-Kutta method to solve the
Lane-Emden equation with variable step size. The output from
the structure integration is a table of N, values of the fre-
quencies log N? and log I?. The number of radial grid points
N, which we have used in our solutions ranges over almost an
order of magnitude, from several hundred to several thousand.
Oscillation frequencies are extracted from each radial grid set
until it becomes clear that increasing the number of grid points
in the input polytrope table no longer causes the eigen-
frequency to alter by more than 0.01 yHz.

The “surface” of the polytrope, where the Lane-Emden
function 6 passes through the value § = 0 for the first time, lies
formally at a well-defined value of ¢ = £, (Chandrasekhar
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1939). However, in order to avoid singularities in our numeri-
cal treatment of oscillations, we truncate the polytrope model
at an artificial “ surface,” where 6 has a finite nonzero value, 6.
We will discuss below the effect which the choice of 6, has on
the eigenfrequencies. The major requirement is that 6, must be
less than the value at the variable transition point 8 as defined
above. For high-frequency modes, this requires that 6, be
chosen to have a very small value. In almost all of the results to
be presented below, we have used 0, = 10~ 8. (Exceptions will
be noted.) Thus, for a model where the central temperature is
equal to the solar value (about 107 K), our typical cutoff occurs
at a radial distance from the center of the star where the local
temperature has fallen to about 0.1 K. For the n = 3 polytrope,
this cutoff is located at a fractional radial distance of
3.4 x 10~ 8 beneath the formal surface: in the Sun, this corre-
sponds to a depth of 0.024 km. For n = 0, we used §, = 10~
because of numerical difficulties associated with the step in
density at the surface.

The asymptotic frequency separation between successive
p-modes for polytrope n can be written as follows:

M 1 cC 1
= [5G—x—x | —, 11)
Bo G4R3><€1>< n+1XIO (

A
0 \/5 ’
In the integral on the right-hand side, the upper limit is for-

mally unity, and f'is the radial coordinate expressed in terms of
the radius of the star:

where

(12)

Io=

(13)

In view of the cutoff which we have imposed on the integration
to avoid divergence at the surface (0 = 6,), the practical upper
limit in the integral in equation (12) is slightly less than unity,
1 — f,. Note that 8, &, 1, = v/2.

Inserting the choices of G, M, and R mentioned above, the
numerical coefficient on the right-hand side of the expression
for B, has the value 700.92 uHz. Using this, we find that for
each polytrope, we can write

C
=—" 14
fo=135 (14)
Values of C, are listed in Table 1 for a representative number

of polytropes.

The value of I, can be obtained analytically for the case
n = 0 without any cutoff near the surface: I,(0) = n/2. Evalu-
ating the integral with the cutoff of 8, = 10~ ° in this case, we
found I,(0) = 1.56942, i.e., fractionally smaller than the correct
value by 8.8 x 1074, Also for n = 0, the complete oscillation
problem (including the gravitational potential perturbations)
has eigenvalues which approach asymptotic separations of
(2I")*/2 in units of the standard frequency (Pekeris 1938). Using
the standard frequency mentioned above (99.778 pHz), this
corresponds to asymptotic separations of 182.17 uHz. In the
asymptotic limit, this is also expected to be valid for the
Cowling approximation: compared with our value of 182.33
(see Table 1), the fractional difference (8.8 x 10™%) can be
attributed in its entirety to our cutoff at a finite value of 6.

For other values of n, the integral I, was performed numeri-
cally, using the cutoff mentioned above at §, = 10~8. Combin-
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TABLE 1
CHARACTERISTIC FREQUENCIES IN POLYTROPES

Polytrope

Index C. 6o Bo(0o) Bo(0)
00 ...... 286.15 107¢ 182.33 182.17
1.0 ...... 286.15 108 152.58 152.57
1.5 ... 296.96 1078 143.31 143.29
20 ...... 31393 1078 13571 135.69
30 ...... 374.03 1078 123.53 123.50
325 ... 398.09 108 120.91 120.88
35 ... 428.44 1078 118.42 118.38
40 ...... 522.34 1078 113.75 113.71
425 ...... 602.69 1078 111.55 111.52
45 ...... 738.57 1078 109.42 109.36

Note. Frequency units: uHz; standard frequency
99.778 uHz.

ing these with the values of C, we obtain the corresponding
values of B4(6,) in Table 1.

Note that the deeper the cutoff is located beneath the “true”
surface, the larger the numerical value of f(6,) becomes. As an
indication of the sensitivity of , to the choice of cutoff, we find
that for n = 3, if we alter the cutoff to 6, = 107, where k = 4,
5, 6, and 7, the corresponding values of B, are found to be
126.35, 124.38, 123.77, and 123.58 uHz, respectively. These are
to be compared with 123.53 uHz for k = 8 (Table 1).

For sufficiently small values of 6,, the subsurface cutoff
depth (1 —f,) becomes directly proportional to 6,: for
example, with n = 3, we find

(1 —f)~34x0,. (15)

Thus, with n = 3, the subsurface depth of the cutoff with k = 5
is 24 km. As a result, cutting off the n = 3 polytrope at even a
few dozen kilometers beneath the surface will result in overesti-
mates of order 1 uHz in the asymptotic mode separation.

Using the proportionality between 6, and the cutoff depth
near the surface, we can extend the numerical integration of I,
analytically to the true surface. For n = 3 we find the “true
asymptotic ” value to be

Bo(0) = 123.50 uHz . (16)

Values of the “true asymptotic” mode separations are listed
for all of the polytropes in Table 1 as B,(0). It is apparent that if
the asymptotic mode separation is to be obtained with a value
which agrees with the true asymptotic value within 0.01 yHz,
the subsurface cutoff must be chosen at even smaller values of
0, than we have used here. [For example, a value of 10710 is
required for 8, if By(6,) is to be within 0.01 uHz of the “true
asymptotic” value for n = 3.] However, because of computa-
tional limitations, we have not attempted in this paper to place
the cutoff depth closer to the surface than §, = 108, The point
is that, whatever value one chooses for the cutoff level, for
consistency the numerical mode separations should approach
the value of §, corresponding to that cutoff.

¢) Oscillation Code

Following Cowling (1941), the oscillation variables w and z
(associated with the pressure perturbation and the radial com-
ponent of the displacement, respectively) at angular frequency
o satisfy the equations

dw n+1

w _nr? -0 2 _ N2
e 3chzx(i' x (w,” — N,%)

(17)
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and

dz 2z 3cC w 1 1
2~ ‘(?) *(m)’“* 1’(?)"‘2 (w ‘u.f)‘ 19

Here, frequences with subscript “n” denote normalization
relative to w,, and Q = (n + 6)/5 for our choice of n,.

We integrate these two equations from center to “surface”
by a fourth-order Runge Kutta method, where by “surface”
we denote the radial distance where 6 = ,,. In the oscillation
code, the tabulated logarithmic values of N, and L, are inter-
polated linearly in the radial coordinate 3 times for each radial
step.

i) Integration near the Center

In order to ensure maximum precision in the eigen-
frequencies, we begin the integration near ¢ = 0 using eigen-
functions which are extracted from equations (17) and (18) by
retaining only the dominant term in the coefficients of z and w
in these equations. For [ s 0, the (unnormalized) dominant
terms are found to be

z=¢"! (19)
and
w=(A4/) x &, (20)
where
_n+1 2
=3cC X W, (1)

The functional form of equation (19) is consistent with the
findings of Smeyers and Tassoul (1987) that the radial com-
ponent of the displacement at the center of the star is finite and
nonzero for | = 1 and zero for | > 1. For | = 0, the dominant
terms are found to be

2

T (22)

w=exp— 4
and

23)

z= —— x wé.

r

These are only the leading terms in a series solution: higher
order terms are needed if one wishes to extract, say, Cowling’s
function ¢: this is the function which Cowling (1941) uses in
order to estimate the corrections to the eigenfrequencies due to
perturbations in the gravitational potential.

We start the integrations of the oscillation equations by
evaluating w and z, using equations (19)~23) at a fractional
radius f= 1.8 x 1074,

ii) Surface Boundary Condition

Using a trial frequency w, we integrate from the “center” to
the “surface,” and use a Newton-Raphson method to deter-
mine the eigenvalue, which causes the total pressure fluctua-
tion to be zero at the perturbed boundary (cf. Ledoux and
Walraven 1958). In terms of the variables in the present nota-
tion, the boundary condition is

wx02+(1+nx8 xz=0. (24)
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iii) Number of Integration Steps

For purposes of integration, we specify a parameter Ny,
which is the number of points in the innermost loop of the
eigenfunction. At each node, the radial step size is reduced in
such a way that the number of points remains roughly constant
in each loop, and equal (roughly) to Ny, throughout the star.
An exception, however, is made in the outermost loop. Here,
the number of points plays an important role in determining
the precision of the eigenvalue, and its smooth approach to
convergence. Therefore, we restrict the radial step size to be no
larger than the radial grid spacing in the input polytrope table.
With such a choice, we typically have several hundred grid
points in the outermost loop. And typically half of these lie
between the variable transition point £y and the boundary.

iv) Range of Oscillation Frequencies

In view of the observed concentration of power in the solar
oscillations around periods of 5 minutes, we limited our search
for eigenfrequencies to the range from 1700 to 5000 yHz. For
the polytrope n =3, this allows us to determine eigen-
frequencies for modes where the number of radial nodes varies
from 12 to 37 (for I = 2). Since for polytropes of lower (higher)
polytropic index, the frequency spacing between successive
eigenmodes becomes greater (smaller) (see Table 1), by
restricting our calculations to a particular frequency range in
all cases, we are limited to fewer (more) modes for the poly-
tropes with smaller (larger) indices.

For the spherical harmonic degree, we restrict our attention
tothe values! =0,1, 2, 3.

d) Convergence Requirements

Our aim is to increase both the size of the input polytrope
table, N,, and the number of integration steps per loop in the
oscillation code, N,,,,, until the eigenfrequencies converge to
better than 0.01 uHz, and to ensure that the choice of the cutoff
point, 6, also has no further effect.

As an extreme example, we present in Table 2 the results we
have obtained for the highest frequency mode with [ = 2 for
the n = 3 polytrope. (All values are for 6, = 10~".) As regards
the required number of points per loop, the approach to con-
vergence seems to be essentially complete for N,,,, = 50. We
shall use N,,,, = 50 in what follows.

As regards the value of N,, extrapolation of the results on
the last line of Table 2 suggests that a further doubling of N,
beyond the largest value in Table 2 would increase the eigen-
frequency by about 0.002 uHz. Further doubling would result
in an increase which is smaller by a further factor of 4-5. Such
increases would not affect the eigenfrequency at the level of

TABLE 2
APPROACH OF EIGENVALUE TO CONVERGENCE

N'

Nigop 846 1706 3423 6852
10......... 4898.617 4898.755 4898.782 4898.788
20......... 4897.872 4898.013 4898.046 4898.054
30......... 4897.831 4897.976 4898.009 4898.016

4897.825 4897.969 4898.002 4898.010
4897.822 4897.967 4898.000 4898.008
4897.822 4897.967 4898.000 4898.008
4897.822 4897.967 4898.000 4898.008

Norte. Polytrope n = 3, | = 2. Units of frequency: yHz. Stan-
dard frequency: 99.778 uHz.
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0.01 uHz. Therefore, in what follows, we shall use N, = 6852
for the n = 3 polytrope, and comparable values (6500-7500)
for the other polytropes.

By way of reference, we note that for the last entry in Table 2
(with Ny, = 70, N, = 6852), the total number of radial steps
in our oscillation code turns out to be 3913. Of these, 947 lie on
the outermost loop of the eigenfunction, and 740 lie beyond the
variable transition point radius ¢y. For comparison, using the
same value of Ny, but with N, = 1706 (for which the eigen-
value is in error by 0.04 uHz), the corresponding figures are
2657, 228, and 177. Thus, even with 228 points on the outer-
most loop, the eigenfunction is not precise at the level of 0.01
uHz, at least for the choice of interpolation which we use
(linear).

As regards the effects of varying the cutoff point, we may cite
the example of the 12th-order I = 2 mode in the n = 3 poly-
trope. Using the shortest table of input values (N, = 847), we
find that the eigenvalue converges to 1796.886 pHz for all
values of 8, between 10”7 and 10~%, but there is no con-
vergence if 0, is chosen to be as large as 1072 and 1072, For
this particular mode, the variable transition point in fact lies at
Oy =55 x 10™*. Thus, the cutoff point must certainly be
chosen to lie closer to the surface than &y.

e) Testing of Polytrope Oscillation Code

A standard test of a complete oscillation code (including
perturbations to the gravitational potential ¢) is provided by
comparing the eigenfrequencies for the n = 0 polytrope with
the analytic values of Pekeris (1938). Although this is not
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strictly relevant for the Cowling approximation, an extension
of the Pekeris treatment to the Cowling case has been provided
by Sauvenier-Goffin (1951). (We acknowledge the assistance of
an anonymous referee in this regard.) In Figure 1 we present
the difference in frequency between our results for the n =0
polytrope and the analytic predictions of Sauvenier-Goffin. (In
plotting Fig. 1, we extended the frequency range to low values
in order to include the three lowest order p-modes: this is the
only figure where we will plot such low frequencies.) The differ-
ences between our frequencies and the analytic values are at
most a few times 0.01 uHz over the frequency range from 300
to 5000 uHz. Thus, for present purposes, our numerical tech-
niques seem to be satisfactory. The finite values of the differ-
ences in Figure 1 may be due to our truncation of the n =0
polytrope at a rather large value of 6, (10~6).

For the polytrope n =3, a comparison between our fre-
quencies and those obtained from an independent code will be
mentioned below (§ I11e).

III. RESULTS

We adopt the conventional manner of presenting the eigen-
frequencies in the form of an echelle diagram (e.g., Fig. 2). In
such a diagram, the spectrum is divided into segments of length
Av, starting at an arbitrary frequency v,, and the segments are
displayed vertically. Frequency increases downward and to the
right.

Eigenfrequencies belonging to a particular l-value are sym-
bolized in our echelle diagrams by the I-value. In plotting the
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FiG. 1.—Differences between our mode frequencies for n = 0 polytrope and the analytic frequencies (from Sauvenier-Goffin 1951) as a function of frequency. Both
axes are linear and are labeled in units of uHz. Symbols denote the l-value of the mode, i.e., the spherical harmonic degree of the oscillation. The horizontal solid and

dashed lines correspond to differences of zero and +0.01 uHz, respectively.
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eigenfrequencies denote the l-value. The echelle frequency is chosen to be equal to B4(6,)(Table 1).

diagrams, we have chosen as echelle frequency the value of
Bo(0,) listed in Table 1.

a) Asymptotic Behavior: General

The expected approach to asymptotic behavior is that the
locus of eigenfrequencies for a particular Il-value should
become vertical toward the lower boundary if the echelle fre-
quency has been chosen to be equal to g for that l-value. In
fact, the value of B, in equation (4) is sufficiently small that all
four loci in the echelle diagram should become almost parallel
as they approach the vertical asymptotes. Departures from
vertical behavior arise from higher order terms in the asymp-
totic expansion. The approach to vertical behavior is apparent
in Figure 2.

Echelle diagrams are characterized by two well-separated
pairs of loci, one for I = 3 and | = 1, the other for I = 2 and
I = 0. The separation between the two pairs is characterized by
B/2, while within each pair, the splitting is characterized by
10(c; — n, B,) and 6(xx; — n, B,) respectively (cf. eqs. [3] and
[4]). (Here, n, is the radial mode number corresponding to the
smaller value of [ in the pair.) Typical values of «; and 8, can
be extracted from the results in Figure 2: at the highest fre-
quencies we find 2.8 and 0.034 uHz, respectively.

The example shown in Figure 2 is representative of the
echelle diagrams which we have obtained for all values of the
polytropic index n < 3:in all cases, the loci of constant-/ show
curvature which is concave toward the left.

For higher values of the polytropic index, the echelle

diagram at first retains its characteristic appearance (i.e.,
including four well-defined loci for the four I-modes), although
the curvature reverses, and becomes concave towards the right
(cf. Fig. 3 for the polytrope n = 4.25). However, as the poly-
tropic index approaches the critical value of 5.0 (where the star
has infinite radius), the characteristic appearance of the echelle
diagram does not appear until the frequencies of the modes
become quite high (cf. Fig. 4 for the polytrope n = 4.5). At low
frequencies, the mode separations for I = 1, 2, and 3 in the
n = 4.5 polytrope are so variable that it is difficult to recognize
any pattern in the echelle diagram. However, at higher fre-
quencies, the expected asymptotic behavior emerges. The [ = 0

modes are an exception: their separations are close to asymp-
totic throughout our frequency range.

b) Odd-Even Splittings

The splittings within the odd and even I-value loci in the
echelle diagrams (A,; and A,,) are expected to be in the ratio
10/6 if the modes follow the asymptotic behavior predicted by
equations (3) and (4). Values of the odd and even splittings at
our highest frequencies, and their ratio, are given in Table 3 for
a number of polytropes. The approach to asymptotic behavior,
based on this criterion, appears to be quite good for polytropic
indices up to 3.5. For the higher order polytropes, it appears
that we must go to frequencies in excess of 5000 uHz before
this particular aspect of asymptotic behavior is attained.
An expression for the splitting between even I-values is given
by Cox, Guzik, and Kidman (CGK) (1987): the frequency dif-
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TABLE 3

ODD-EVEN SPLITTINGS OF MODE FREQUENCIES AT OUR
HiGHEST FREQUENCIES

Polytrope A, Ao,
Index Ays Ao, Ay, 0,,(CGK)

00 ......... 8.52 502 170 0.99
10 .. 8.16 498  1.64 1.01
L5 . 8.69 530 164 1.00
20 ...l 9.90 588 168 0.99
30 o 14.40 8.68 166 0.94
325, 16.28 990 164 0.97
35 oo 1868 1152 162 0.89
40 ......... 2555 1712 149 0.76
425......... 3037 2185 139 0.65
45 ......... 3722 2514 148 0.46

NoOTE—Units: pyHz. Standard frequency: 99.778 pHz.
Expected value of A, ;/A,, asymptotically is 1.67.

ference 04,(CGK) between the | = 0 mode of order n, and the
I = 2mode of order n, — 1is

002(CGK) = 6F/(n, + 1) , (25)
where the frequency F is defined by
_eR)_ [Fdedr
"R o dr r’

Here, c is the sound speed. The integral in equation (26) [to
which we refer as I(CGK)] can be transformed in terms of the

4n*F (26)

MULLAN AND ULRICH
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Lane-Emden function. For the polytrope n = 0, the integration
yields I(CGK) = n/[2(6)"/*] in units of v, (§ Ila above); ie.
I(CGK) = n2B4(0)/2, and F = B,(0)/8 = 22.77 uHz. For other
values of the polytropic index, n, numerical integration indi-
cates that with a cutoff at 6, = 1078, the value of I(CGK)
(again in units of v,) can be approximated remarkably well (to
better than 1%) by a linear funtion of n:

I(CGK) = 0.636 — 0.06 x n . @7

In Table 3 we compare the even-mode splittings predicted by
equation (25) with the values we have derived for A,,. The
predictions agree well with our values for the lower values of
the polytropic index, but the predictions become too small as n
increases. Higher order corrections are needed in equation (25)
for the higher n values.

¢) Asymptotic Behavior: Mode Separation

It is worthwhile to examine in a more expanded manner how
the asymptotic limit of frequency separations between adjacent
modes is approached. The format which we choose for this
purpose is to take the numerical difference between adjacent
modes, Av, , _;, and then derive the difference between this
quantity and the predicted asymptotic value By(6,) (from
Table 1).

Results for the polytrope n = 3 are presented in Figure 5.
The abscissa is the mode frequency. Points are plotted with the
appropriate I-value. The horizontal continuous line at an ordi-
nate value of zero is the limit toward which all curves should

s 2§ ¥ ¥ ¥ T L T T T
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N i
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N '
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z 3
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FiG. 5.—Frequency separation between adjacent modes as a function of frequency for polytrope n = 3. Abscissa shows the frequency of the eigenmodes (units of
#Hz). Ordinate shows the difference (in uHz) between the separation of adjacent modes and the asymptotic value Bo(0,) listed in Table 1. The latter is shown by a
horizontal solid line. Horizontal dashed line indicates a difference of 1 uHz relative to the asymptotic mode separation. The symbol used to plot each eigenmode is
the l-value. Positive (negative) values of the ordinate in this figure correspond to leftward (rightward) concave curvature in Fig. 2.
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converge according to Tassoul (1980). To provide a sense of the
vertical scale of the plot, a horizontal dashed line is also
plotted in the figure at an ordinate of +1 uHz. Plotted points
lying between the dashed line and the solid line have
approached the asymptotic behavior to better than 1 uHz.

For the polytrope n = 3, the results converge monotonically
from above towards the expected value of B4(6,). Clearly, for
the lowest l-value, the approach to asymptotic behavior is
already better than 0.1 yHz even at the lowest order modes
which we have considered. The two highest I = 0 modes which
we have calculated are separated in frequency by 123.531 uHz:
this agrees to better than 0.01 uHz with the predicted asymp-
totic value (see Table 1). Higher [-values require higher fre-
quencies to approach asymptotic behavior. In accord with
equation (4), the mode separations increase slightly for larger
I-values. A value for the parameter §, can be extracted from
our highest frequency points: for n =3, we find f; = 0.033
uHz. However, the exact numerical value of ; depends on
which pair of l-values one uses, ranging from 0.033 to 0.036
uHz.

As we decrease the order of the polytrope (n = 2.0, 1.5, and
1.0), we obtain the results which are shown in Figures 6-8. (The
format is the same as in Fig. 5) Monotonic convergence from
above appears in all of these, just as in n = 3.0. For n = 0.0
(Fig. 9), convergence from above again appears, but here, we
find overshoot below the predicted asymptotic separation. We
note, however, that the approach to convergence is not strictly
monotonic. It is not clear why the results should be non-
monotonic only for the n = 0.0 case: it may be because of our
unusually large choice of 8, for this case (10~), or it may be
because of numerical difficulties associated with the density

RADIAL AND NONRADIAL PULSATIONS OF POLYTROPES

1021

step at the surface. The overshoot in Figure 9 may also occur
for the same reasons.

Increasing the order of the polytrope (n = 3.25, 3.5, 4.0, 4.25,
and 4.5) leads to the results which are shown in Figures 10-14.
For these polytropes, uniform convergence from above is no
longer the rule. Instead, we find, in the case of the lower [-
values, convergence from below. The higher [-values show a
nonmonotonic approach to asymptotic behavior. The alter-
ation from convergence from above (for n < 3) to convergence
from below (for n > 3.5) corresponds to the alteration from
concave-left curvature in the echelle diagram (Fig. 2) to
concave-right curvature (Fig. 3). The polytrope n = 3.25
appears to provide a transition between the two behaviors: for
the I = 0 modes, the frequency separation between adjacent
modes lies within 0.02 uHz of the value of 8, across our entire
frequency range.

As a measure of the closeness of approach to asymptotic
behavior, we list in Table 4 the difference (in uHz) between the
separation between our two highest | = 0 modes and the value
of B,. It appears that, at least for polytropes with n < 3.5,
mode separations are within a few times 0.01 puHz of the
asymptotic values when the frequency of the modes has
increased to 5000 uHz. (An exception must be made for n = 0
because of numerical difficulties associated with the density
step at the surface.) For higher order polytropes, the steep
gradients of the physical variables inside the polytrope are
such that we must go to higher frequencies before satisfactory
approach to the asymptotic values is seen. Thus, steep density
gradients either near the surface or near the center apparently
make it more difficult to approach the asymptotic behavior
predicted by Tassoul (1980).
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TABLE 4

DEVIATION BETWEEN SEPARATION OF
OuR Two HIGHEST | = 0 MODES
AND THE ASYMPTOTIC PREDICTION

Bo(6o)
Polytrope
Index Deviation
+000................ -0.12
+1.00.....ocenenn... +0.03
+1.50. ... +0.03
+200. ... +0.03
+3.00.. .o +0.00
+325. -0.01
4350 —0.03
+4.00.............. -0.13
+4.25.. .. —-0.24
+450................ —0.26

NoTe—Units: pHz. Standard fre-
quency: 99.778 uHz.

d) Tabulated Eigenfrequencies forn = 3andn = 1.5

For reference, we provide in Tables 5 and 6 the eigen-
frequencies of all modes with | = 0-3 which lie between 1700
and 5000 uHz for the polytropes n = 3 and n = 1.5. The central
condensations in these two polytropes are sufficiently small
(Scuflaire 1974) that for | = 1-3, the radial order equals the
number of zeroes in the radial displacement eigenfunction. For
I = 0, the radial order exceeds by unity the number of zeroes in
the radial displacement eigenfunction (cf. Cox 1980, p. 239).

TABLE 5
EIGENVALUES (IN uHZ) oF HIGH-ORDER p-MODES IN n = 3
PoLYTROPE
1
n? 0 1 2 3

... 1715.762
120 .. 1748.030 1796.926 1841.285
13 1817.019 1872.101 1921.580 1966.638
14............ 1940.709 1996.120 2046.134 2091.840
15 2064.386 2120.094 2170.601 2216910
16............ 2188.049 2244.028 2294.990 2341.860
17, 2311.699 2367.927 2419.310 2466.705
18, 2435338 2491.793 2543.570 2591.455
19, 2558.966 2615.631 2667.773 2716.120
20, 2682.583 2739.444 2791.927 2840.708
b2 O 2806.192 2863.234 2916.036 2965.225
22 i 2929.792 2987.002 3040.104 3089.677
23 3053.385 3110.752 3164.135 3214.072
24, 3176.971 3234.484 3288.132 3338412
25 i 3300.551 3358.202 3412.098 3462.705
26 i 3424.124 3481.905 3536.037 3586.951
27 i 3547.693 3605.595 3659.948 3711.157
28. i 3671.256 3729.273 3783.836 3835.324
29 i 3794.814 3852.940 3907.702 3959.455
30l 3918.368 3976.596 4031.547 4083.552
3l 4041919 4100.245 4155.374 4207.620
32 4165.466 4223.883 4279.183 4331.660
33 4289.009 4347.514 4402976 4455.673
4. 4412.551 4471.138 4526.754 4579.662
35 .. 4536.089 4594.755 4650.519 4703.626
36...cceunnnn. 4659.624 4718.366 4774.270 4827.571
37 it 4783.157 4841.970 4898.008 4951.495
38t 4906.688

Note—Standard frequency: 99.778 uHz.
* Radial order of the mode.
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TABLE 6
EIGENFREQUENCIES (IN pHZ) oF HIGH-ORDER p-MODES IN n = 1.5
POLYTROPE
1
n? 0 1 2 3

10............ e e 1697.436 1755.922
| 5 S 1712.151 1779.333 1842.337 1901.686
12, 1855.964 1923.444 1987.012 2047.121
13, 1999.699 2067.442 2131.506 2192.289
14............ 2143.371 2211.347 2275.851 2337.235
15 . 2286.994 2355.175 2420.072 2481.995
16t 2430.574 2498.940 2564.188 2626.598
| 2574.120 2642.652 2708.218 2771.069
18 .. 2717.637 2786.320 2852.173 2915.426
19, 2861.128 2929.948 2996.064 3059.683
20 i 3004.599 3073.544 3139.899 3203.854
b2 I 3148.052 3217.110 3283.685 3347951
22 i 3291.488 3360.652 3427.429 3491.981
23 3434911 3504.171 3571.135 3635.951
24............ 3578.321 3647.670 3714.808 3779.869
25 i, 3721.719 3791.152 3858.451 3923.741
26.. . 3865.109 3934.619 4002.068 4067.572
27 i 4008.490 4078.072 4145.660 4211.364
28 4151.864 4221.512 4289.232 4355.123
29 i, 4295.229 4364.941 4432.783 4498.850
30l 4438.589 4508.360 4576.318 4642.551
31, 4581.944 4651.771 4719.835 4786.225
32 4725.293 4795.172 4863.340 4929.875
3B 4868.635 4938.566 ee

NoT1e—Standard frequency: 99.778 uHz.
* Radial order of the mode.

e) Comparison with n = 3 Results from an Independent Code

Over the last few years, one of us (R. K. U.) has independent-
ly developed an oscillation code for extracting eigenfrequencies
from realistic solar models. This code incorporates the ability
to switch the gravitational potential perturbations on or off. In
order to compare with the results obtained in the present
paper, this code has been run in the “switch-off” mode for the
n = 3 polytrope.

In the first instance, the code was run with 574 radial zones:
this is close to what is used when the full code (including
“switch-on”) is applied to standard solar models. Eigen-
frequencies were extracted for I-values of 0-3, and for modes
up to radial order n, = 32. We refer to this set of eigen-
frequencies as U574. Differences between the results obtained
in the present paper and U574 are presented in Figure 15. At
frequencies below about 3000 uHz, the differences for | = 2 and
I = 3 are very small, averaging 0.01 uHz in absolute value. For
I =1 and | = 0, the differences at the lower frequencies are on
average a few times 0.01 uHz. At higher frequencies, the differ-
ences increase to 0.1-0.2 uHz.

In the second instance, the “switch-off” code was run with
780 radial zones. Of these, 150 are situated between r = 0.99R
and R. There are about 80 zones in the outermost loop of the
eigenfunction, and (for the higher order modes) about 20 zones
in the loops in the interior. Frequencies obtained with this code
are referred to as U780. Differences between present results
and U780 are shown in Figure 16. For I = 1, 2, and 3, the
absolute differences are smaller than for U574, although the
divergence above 0.1 uHz persists at the higher frequencies.
For | = 0, the differences become larger than 0.2 yHz at the
higher frequencies.

These results support our previous conclusion that many
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us (R. K. U.), using 574 radial zones and no gravitational potential perturbation. Horizontal continuous line denotes zero difference. Horizontal dashed lines denote

differences of +0.1 pHz. Symbols denote [-value.

radial zones are required in the outermost loop of the eigen-
functions if the frequencies are to be obtained with a precision
of 0.01 uHz.

IV. SUMMARY AND CONCLUSIONS

We have obtained eigenfrequencies for high-order radial and
nonradial p-mode pulsations in polytropes in the Cowling
approximation. Qur aim has been to obtain the eigen-
frequencies in the frequency range 1700-5000 pHz with a preci-
sion of 0.01 uHz. In presenting our results, we have used mass
and radius equal to solar values, with a “standard frequency ”
(cf. eq. [10]) 0f 99.778 uHz.

A careful treatment of the central and surface regions has
been included: near the center, we use only the dominant terms
in a series expansion of the solutions of the oscillation equa-
tions, and near the surface, several hundred grid points are
used across the outermost loop of the eigenfunction. We have
examined the polytropesn = 0, 1, 1.5, 2, 3, 3.25, 3.5, 4, 4.25, and
4.5. Characteristic frequencies associated with sound-wave
crossing times are listed for these polytropes in Table 1.

We have used our results to examine the approach to the
asymptotic behavior discussed by Tassoul (1980). We find that
the frequency differences between successive eigenmodes con-
verge qualitatively as expected. And for polytropes n = 3 and
n = 3.25, the convergence is also quantitatively satisfactory

within 0.01 uHz. However, for the other polytropes which we
have considered, we find that the approach to asymptotic
separations is in general not as good as 0.01 uHz even for the
highest order modes we have considered (radial order about
40) (see Table 4). Moreover, the direction of convergence is
opposite for the polytropes with large index from that for the
polytropes with small index: this occurs presumably because of
higher order corrections to Tassoul’s predictions.

The work in the present paper has been restricted to the
Cowling approximation, as if the polytropic stars had
somehow switched off their gravitational potential pertur-
bations. In a subsequent paper, we plan to extend the present
work by comparing the exact frequencies (obtained without
using the Cowling approximation) with the asymptotic
approximations.
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Fi6. 16.—Same as Fig. 15 for a model of n = 3 polytrope with 780 radial zones
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