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ABSTRACT

We describe a new cross-correlation (CC) approach used by our survey to derive stellar kinematics from galaxy-
continuum spectroscopy. This approach adopts the formal error analysis derived by Statler, but properly handles
spectral masks. Thus, we address the primary concerns regarding application of the CC method to censored data,
while maintaining its primary advantage by consolidating kinematic and template-mismatch information toward
different regions of the CC function. We identify a systematic error in the nominal CC method of approximately
10% in velocity dispersion incurred by a mistreatment of detector-censored data, which is eliminated by our new
method. We derive our approach from first principles, and we use Monte Carlo simulations to demonstrate its
efficacy. An identical set of Monte Carlo simulations performed using the well-established penalized-pixel-fitting
code of Cappellari & Emsellem compares favorably with the results from our newly implemented software. Finally,
we provide a practical demonstration of this software by extracting stellar kinematics from SparsePak spectra of
UGC 6918.
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1. INTRODUCTION

A cornerstone of the DiskMass Survey (DMS; Bershady et al.
2010a, hereafter Paper I) analysis consists of stellar kinematic
measurements performed in the low-surface-brightness, low-
velocity-dispersion regime of the disks of late-type galaxies via
integral-field spectroscopy (IFS). As discussed in Bershady et al.
(2010b, hereafter Paper II), the robust measurement of the line-
of-sight (LOS) velocity dispersion (σLOS) is a critical first step
when measuring the quantities of fundamental interest to our
survey, which include: the shape of the stellar velocity ellipsoid
(SVE); disk-mass surface densities, Σdyn; stellar mass-to-light
ratios, ϒdisk

∗,λ ; the dark-matter-halo density profile, ρDM(R); and
the maximum disk mass fraction, Fdisk

∗,max. This third installment
of our series presents a detailed description of our general
approach to extracting stellar kinematics from DMS galaxy-
continuum IFS.

Although measurements of stellar kinematics via stellar-
atmospheric absorption lines are prevalent in the literature,
most studies typically target hot, spheroidal systems, such
as elliptical/early-type galaxies or spiral-galaxy bulges, e.g.,
the SAURON Project (Emsellem et al. 2004; Falcón-Barroso
et al. 2006). With the caveat that studies of elliptical galaxies
are starting to push toward very low surface-brightness limits
(e.g., Weijmans et al. 2009), observational constraints based
on the desired spectral signal-to-noise (S/N) and spectral
resolution in elliptical-galaxy studies can be less taxing than for
similar observations of a typical spiral-galaxy disk: early-type
galaxies have higher surface brightness—factors of order five
in flux (∼2 mag arcsec−2)—and more substantial LOS stellar
motions—factors of order 10 in velocity dispersion—such that
sensitivity limits can be less stringent and spectral resolutions
may be lower for similar quality kinematic measurements.
Moreover, one expects spectra of early-type systems to be
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relatively simple compared to late-type-galaxy disks; the latter
are typically more strongly effected by nebular emission lines
and varied stellar populations (cf. Trager et al. 2000; Yi et al.
2005; Jeong et al. 2009).

Nonetheless, over the last �30 years (see van der Kruit &
Freeman 1984), stellar kinematics have been measured in a
number of late-type-galaxy disks. In particular, a series of work
starting with Bottema et al. (1987) and summarized in Bottema
(1993) remains one of the more exhaustive observational studies
of this type. Some more recent examples include: MacArthur
et al. (2009)—long-slit spectroscopy for eight Sbc–Scd galaxies
out to ∼1.0 disk scale lengths; Noordermeer et al. (2008)—PPak
IFS for four Sa–Sab galaxies out to ∼2.0 disk scale lengths;
Ganda et al. (2006)—SAURON IFS for 18 Sb–Sd galaxies out
to ∼1.5 disk scale lengths; and Kregel (2003)—long-slit spec-
troscopy for 17 edge-on Sb–Scd galaxies out to ∼2.0 disk scale
lengths. All of these studies measure up to, and occasionally
beyond, second moments in the stellar line-of-sight velocity
distribution (LOSVD). The analysis techniques used by these
studies vary: Bottema (1993) and Kregel (2003) focus on the
cross-correlation (CC) method (Simkin 1974; Tonry & Davis
1979; Statler 1995) using single stellar templates; MacArthur
et al. (2009) fit their galaxy spectra in wavelength space us-
ing a variant of the Movel algorithm with a library of stellar-
population-synthesis templates; and the other studies mentioned
have used the penalized-pixel-fitting (pPXF) method of Cappel-
lari & Emsellem (2004), again combining stellar templates to
provide an optimal match to the galaxy spectra in wavelength
space. Many more methods exist; see reviews by Kuijken &
Merrifield (1993) and de Bruyne et al. (2003). However, of all
the implemented approaches, the CC method and methods that
fit directly to the pixelated observations in wavelength space
(hereafter referred to has “direct pixel fitting”) are currently the
most prevalent in the literature.

The CC method has recently been abandoned in many
analyses due to complications in the error analysis (Rix &
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White 1992) and spectral masking (Cappellari & Emsellem
2004). This is despite prevalent lines of reasoning and evidence
available in the literature demonstrating that a CC approach
minimizes template mismatch and S/N limitations (Bottema
1988; Bender 1990; Statler 1995; Kregel et al. 2004), both
of which are expected to be important for our survey. Thus,
from its inception, we have preferred the CC method in
our survey analysis over direct pixel fitting, and we pursued
the CC method for the analysis of our pilot observations
(Westfall 2009). In doing so, we were prompted to perform
an in-depth study of the CC method from first principles
due to lines of inquiry that we were unable to answer with
readily available CC software. This study has become a critical
aspect in our understanding of the robustness of our stellar
kinematics. Moreover, our implementation of the CC method
provides for proper accounting of spectral errors and enables
(sometimes pervasive) use of masks to eliminate contaminant
spectral features, and, thus, it represents a step forward in the
applicability of the CC approach to stellar kinematics.

The primary concerns in any method used to measure stellar
kinematics from galaxy-continuum spectra are (1) S/N limita-
tions, (2) spectral masking, (3) template mismatch (including
continuum differences), (4) appropriateness of the prescribed
LOSVD, and (5) instrumental-broadening corrections. Some of
these topics are specific to the observational setup, but most are
ubiquitous for all stellar-kinematic analysis techniques. In this
paper, our discussion focuses on items 1 and 2; items 3–5 are
omitted for the following reasons.

Template mismatch is a rich subject, deserving of detailed
discussions. The current modus operandi of most direct-pixel-
fitting methods is to address template mismatch by creating
an optimized template composed of multiple stellar spectra of
different spectral type and luminosity class that is optimized
by chi-square (χ2) minimization (as in, e.g., pPXF). Indeed,
such approaches are physically motivated due to the compos-
ite stellar populations observed in any galaxy spectrum. We
have begun to discuss template-mismatch issues in the context
of our CC method in Paper II, taking advantage of the isola-
tion of kinematic versus template-mismatch information in the
CC function: We demonstrated that, for single giant-star tem-
plates ranging in spectral type from early G to early M, the
measured velocity dispersions for an example elliptical galaxy
(UGC 11356) vary by ∼15%, whereas they vary by ∼25% for an
example spiral galaxy (UGC 6918), with only modest changes
to χ2 as assessed in wavelength space (see Figure 11 of Paper
II). Moreover, we showed that the template with the minimum
χ2 does not necessarily represent the template with the least
template mismatch as determined via the CC function. Thus,
χ2 optimization of templates may complicate the assessment
of template mismatch; degeneracies in template matching in
direct pixel fitting do not necessarily correspond to identically
derived LOSVDs, and vice versa. That is not to say that single
stellar templates are preferred in general or for our own CC
method, but it does illustrate the complexity of investigating
template mismatch both statistically and astrophysically. Our
work in Paper II demonstrates that the CC function may pro-
vide a very effective means of diagnosing template mismatch,
beyond what we have gleaned from the literature. Thus, further
development regarding template mismatch using CC analysis
will be central to forthcoming papers in our series. For now, Pa-
per II provides our preliminary assessment of the power of the
CC method in assessing template mismatch of single stellar tem-
plates. Herein, we demonstrate our handling of the central hurdle

to this template-mismatch analysis, which concerns properly ap-
plied masking techniques, by laying out the formalism of our CC
method and the basic performance in the absence of template
mismatch.

Effectively any parameterized LOSVD can be accommodated
within the formalism of the CC method as long as the spectro-
scopic data are able to provide robust measurements of all its
defining parameters. For this paper, all our discussion focuses
on results based on a Gaussian LOSVD. An extension of our
CC method to include robust measurements of non-Gaussian
parameters (such as the skew, h3, and kurtosis, h4, parameters
in the Gauss–Hermite series of van der Marel & Franx 1993)
will likely require a detailed and nuanced discussion, such that
it is beyond the scope of this paper. Indeed, such higher-order
moments of the LOSVD may be interesting for investigating
the presence of thick disks or triaxial halos as evidenced by the
stellar line profiles; however, in general, we expect the LOSVD
for our nearly face-on disk galaxies to be relatively simple and
nearly Gaussian. In his implementation of the Gauss–Hermite
series in a CC method, Statler (1995) found that robust measure-
ments of non-Gaussian moments were limited to spectra with
S/N � 30, which is near the upper limit for individual spec-
tra in our survey. Thus, discussion of higher-order moments
will likely be most (or only) relevant to the analysis of our
stacked spectra (see Section 3.1 of Paper II); therefore, this dis-
cussion is deferred to later papers, if relevant to the analysis
therein.

For the DMS, instrumental-broadening corrections are largely
marginalized because our template stars are observed using the
same spectrograph setup as used for the galaxy observations.
Second-order effects may still exist given the wavelength de-
pendence of the resolution (effecting resolution differences due
to the relative Doppler shift of galaxy-spectrum and template-
spectrum rest wavelengths), variation in the resolution due to
different entrance angles of each fiber in the pseudo-slit, and
errors in the reproduction of the spectrograph setup between
observing allocations. Our derived kinematics include such cor-
rections as formally described in Appendix A—this approach
is applied to SparsePak (Bershady et al. 2004, 2005) and PPak
(Verheijen et al. 2004; Kelz et al. 2006) IFS in K. Westfall
et al. (2011, in preparation), hereafter Paper IV; however,
instrumental-broadening corrections are more appropriately dis-
cussed on a case-by-case basis when measuring stellar kinemat-
ics for each galaxy data set, as opposed to the more general
discussion appropriate to the present paper.

Thus, our discussion herein proceeds as follows: We discuss
the CC method from first principles and address some primary
concerns for its use in measuring stellar kinematics in Section 2.
We also provide greater detail into the specific algorithm used
by our CC software in Section 3. In Section 4, we present a
large suite of Monte Carlo simulations used to test the accuracy
and precision of our CC method. Given its prevalent use in
the literature, Section 4 also presents a comparable set of
simulations using the direct-pixel-fitting, pPXF code (Cappellari
& Emsellem 2004) as a fiducial method by which to compare
our CC approach. Finally, we provide a brief demonstration of
our CC software as applied to SparsePak IFS of UGC 6918
in Section 5, which also includes a comparison with pPXF
results. The majority of the discussion focuses on applications
performed with the observed spectral resolution and range
measured for SparsePak IFS near the Mg ib triplet; however,
these results will be generally applicable. We summarize the
primary findings of this study in Section 6.
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2. THE CROSS-CORRELATION TECHNIQUE

Stellar kinematics from DMS spectra are extracted via a CC
analysis (Simkin 1974; Tonry & Davis 1979) that largely follows
and is mathematically identical to the prescription of Statler
(1995). However, after an in-depth analysis of the systematics
involved, we have developed a different approach that addresses
the practicalities of spectroscopic observations. That is, while
we have not altered the fundamental concepts behind the CC
method, we approach CC analysis with a novel algorithm
directed at working within the constraints of real data. Our
algorithm involves enforcing a symmetry between the treatment
of the galaxy spectrum and the convolved template used to fit
it, just as in direct pixel fitting, which is not true of previous
implementations. We emphasize that this algorithm is more
accurate than previous usage of CC analysis to obtain stellar
kinematics and is, therefore, the preferred method. The degree of
inaccuracy of previous implementations depends on the spectral
range and the equivalent width of spectral features near the edges
of the observed spectra.

As the basis for our alterations to the nominal CC algorithm,
we re-present the fundamentals of CC kinematic analysis and
establish the basis of our CC approach in Section 2.1. We then
explain the rational for our new CC approach as resulting from
issues considered during the development of our CC software4

in Sections 2.2–2.4. Finally, in Section 2.5, we provide a concise
statement of the fundamental tenants behind our CC approach.

2.1. Fundamentals

The optical continuum of a galaxy is largely constituted
of emission from the stellar photospheres, plus associated
stellar-atmospheric absorption lines, of a spatial ensemble
of galactic stars. The ordered (bulk) motion of the stars in
the galactic potential causes a systemic shift of the stellar-
atmospheric absorption lines, while the random motions—due
to the distribution of the stellar orbital eccentricities about the
tangential speed—serve to broaden the absorption lines. Let I be
the ideal template spectrum that identically represents the sum
of all rest-frame emission from sources within the solid angle of
an observed aperture, and let F be the true velocity distribution
function (VDF) along the LOS of all emission sources within
the same aperture. The true F could be a wavelength-dependent
function allowing for dynamical sub-populations of varying
spectral type as is seen in the Milky Way (e.g., Dehnen &
Binney 1998); practically, however, such complex functions are
not generally applied. Provided these definitions of I and F, the
galaxy spectrum, G, can be written as

G = I ⊗ F, (1)

where ⊗ denotes convolution. The only element in Equation (1)
that is truly available to the observer is G, and measurement of G
is limited by observational technology. Therefore, in all practical
applications of Equation (1) to observed data, I is replaced by
T—a single or optimized composite stellar template—and F is
replaced by a function B that is parameterized, at least to some
degree. Assessing the ideality of T is difficult, but not intractable,
as we have demonstrated in Paper II.

In direct pixel fitting, one solves Equation (1) by minimizing
the difference, assessed by χ2, between the two sides of the

4 Our CC software incorporates the PGPLOT Graphics Subroutine Library
( c©California Institute of Technology;
http://www.astro.caltech.edu/∼tjp/pgplot/).

equation for an observed G and I = T by iteratively adjusting
F = B. Contrarily, the CC approach to inverting Equation (1) is
to perform a relative frequency component analysis between T
and G using the CC function, X = G ◦ T where ◦ denotes
correlation. The solution to the broadening function is then
determined by finding B such that

G ◦ T ≈ (T ⊗ B) ◦ T (2)

X ≈ XT .

The accuracy of Equation (2) is dependent on the suitability
of the parameterization of B and the degree to which T represents
the sampled stellar population. The advantage of CC analysis
is that the equivalent-width weighted average shape of all lines
commonly found in G and T are represented via a single line
profile in X, which is compared to the intrinsic line shape of the
average of all lines in T. Therefore, by focusing on a correct
representation of the peak of the CC function, the determination
of B should be dominated by the line shape instead of the
line depth, effectively separating spectral properties primarily
dominated by kinematics (line shape) from those primarily
dominated by the chosen template (relative line depth). In direct
pixel fitting, the fitting algorithm is more equally subject to
matching both the line shape and relative line depth.

As written, a fitting algorithm that minimizes the difference
between the two sides of Equation (2) requires both a correlation
and a convolution for every fit iteration. Therefore, use of
Equation (2) with spectra containing few to many thousands
of discrete samples can be computationally intensive. As such,
literature definitions of the CC analysis method have employed
the commutative properties of the convolution operator to write:

G ◦ T ≈ (T ◦ T ) ⊗ B (3)

X ≈ AB,

where we use A to denote an auto-correlation (AC) function.
Therefore, a fitting algorithm that minimizes the difference
between the two sides of Equation (3) only requires one
convolution for every fit iteration (just as in direct pixel fitting)
because it is only necessary to calculate the AC of T once.
Calculations are further expedited by performing convolutions
and correlations in Fourier space.

The right-hand sides of Equations (2) and (3) are mathemat-
ically identical (XT = AB); however, as we demonstrate in the
next section, this is not true for the practical application of these
equations to real data. Observed spectra are both discretely sam-
pled and truncated by our current detector technology, which has
different effects on the practical calculation of XT and AB. These
effects dictate our departure from the literature formulation of
CC analysis, due to its inappropriate assumption that XT = AB ,
by following the procedural implications of Equation (2) as op-
posed to Equation (3). The motivation and relevance of this
choice are developed in the next few sections.

2.2. Cross-correlation with “Detector-censored” Data

A fundamental consideration when using algorithms depen-
dent on the Fourier analysis of spectra is the finite sampling of
data, both in terms of the individual velocity channel width and
the velocity window (the observed spectral range, OSR) avail-
able to the detector—see Section 2 of Brault & White (1971)
for a detailed discussion of these concerns. These considera-
tions are fundamental to our assertion in the previous section
that the mathematically equivalent quantities XT and AB, as de-
fined above, lose their equivalency when applied to real data.

3

http://www.astro.caltech.edu/~tjp/pgplot/


The Astrophysical Journal Supplement Series, 193:21 (17pp), 2011 March Westfall, Bershady, & Verheijen

Figure 1. Illustration of the effects of “detector-censoring” on correlation functions. (a) The K1 III template before (black) and after (white) convolution with a
Gaussian function, F, that has a velocity dispersion of σF = 70 km s−1. The detector-censored region of these spectra is delimited by the dotted lines and has a width of
ΔV ; only the white region is incorporated in the correlation functions in the lower two panels. We approximate the velocity window incorporated in the calculation of
the convolved value of a single pixel by ΔVF ≈ 6σF = 420 km s−1 (light-gray region). (b) The detector-censored AC function, A′ (dark gray); the detector-censored
AC function convolved with F, A′

F (black solid line); and the CC of the detector-censored template correlated with the version of itself that has been detector-censored
after a convolution with F, X′

I ′ (black-outlined light gray). The difference X′
I ′ − A′

F is plotted as a black dotted line. (c) The correlation functions A′
F (black solid

line), X′
I ′ (black-outlined gray line), and difference X′

I ′ − A′
F (black dotted line) over a smaller velocity window than in panel (b) to show the strong difference in the

two functions at positive velocities. Also plotted are detector-censored AC functions convolved with a broadening function F ′ where σF ′ = 0.9σF (dark gray line)
and σF ′ = 0.8σF (light gray line), demonstrating the systematic error expected in F if one does not properly account for the effects of detector censoring.

This section is primarily concerned with demonstrating this ef-
fect via an example illustration.

Let us identically (without noise) know I at all velocities and
define F such that the velocity range over which F 	= 0 is
approximately ΔVF centered at V = 0. We can then create a
synthetic galaxy spectrum, IF = I ⊗F . Also, given our explicit
knowledge of I and F, we can define XI and AF as the ideal
counterparts of XT and AB, respectively, where the equivalency
XI = AF must be true. Now, let us sample IF and I over a
limited velocity range, ΔV , centered at V = 0 to obtain (IF )′
and I ′, where ΔV 
 ΔVF . Using these spectra, we can create
the detector-censored correlation functions X′

I ′ = (IF )′ ◦ I ′ and
A′

F = (I ′ ◦I ′)⊗F . If the detector censoring is immaterial to the
correlation functions, X′

I ′ should be equivalent to A′
F ; however,

we show in Figure 1 that they are, in fact, not equivalent.
Figure 1 follows the experiment outlined above using a K1

III template (HD 167042) as I and a Gaussian broadening
function with a dispersion of 70 km s−1 for F; we adopt ΔVF ≈

6σF = 420 km s−1 as illustrated. We apply an observational
detector censoring by limiting the velocity window (ΔV ) of
both I and IF; we emphasize that the censoring is applied to
IF after performing the convolution. Although we set a smaller
OSR than provided by our own real galaxy data, ΔV 
 ΔVF

such that this idealized situation is now synonymous with a
natural broadening of the template spectrum that is subsequently
censored by “observation” and relevant to the practicalities of
our galaxy observations. The subsequent calculation of X′

I ′
and A′

F demonstrates significant differences due to the detector
censoring. The way in which the detector censoring is applied
to the data invalidates the commutation applied to Equation (2)
to obtain Equation (3). One can also think of this in terms of the
information content: the light gray regions in Figure 1 contain
elements of I used to create IF that remain in (IF )′, but these
components are lost in the “detector censoring” such that they
are not available to I ′, leading to a fundamental difference in
the information content of X′

I ′ and A′
F .
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In Figure 1, we overplot A′
F and X′

I ′ , demonstrating the
significant difference between the two, particularly toward
positive velocities. The difference in the structure of X′

I ′ at
positive lags is mostly due to the red edge of the velocity window
we have applied. This was done by design to demonstrate a
strong example of the detector-censoring effect. Because the
velocity window edge is placed very near the reddest line in the
Mg i triplet, the detector censoring causes significant changes to
the equivalent width of the line in (IF )′ relative to the expectation
from I ′. However, this example is not contrived; the Mg i lines
can be, and indeed are, redshifted near the edge of our OSR for
some of the galaxies observed in the DMS.

Thus, having established that Equations (2) and (3) are not
equally good approximations when applied to real data, it is
important to understand the significance of this difference on
the measured stellar kinematics. We illustrate this in Figure 1(c)
by defining a broadening function F ′ such that A′

F ′ ≈ X′
I ′ , where

the difference between F and F ′ is due to detector censoring.
Given that the full width at half-maximum (FWHM) of X′

I ′ is
less than A′

F and that X′
I ′ − A′

F is asymmetric about V = 0,
F ′ will have a small velocity shift and a systematically lower
velocity dispersion when compared to F. To illustrate this, we
produce two A′

F ′ where we introduce a 10% (σF ′ = 0.9σF ) and
20% (σF ′ = 0.8σF ) systematic error in the velocity dispersion.
The resulting functions suggest that the systematic error in σ
will be of order 10%, with the systematic error in velocity being
much less substantial.

It is important to note that, depending on the implemented
procedure, this systematic error is not necessarily evident in
simulations testing the recovery of input kinematics when using
the nominal CC method. Without any detector censoring, the
commutation applied to Equation (2) to obtain Equation (3) is
perfectly valid, even if the spectra are not known at all wave-
lengths, because the information content is identical. Thus, tests
of the CC method following Equation (3) should find no sys-
tematic error as long as the synthetic galaxy spectra are created
using identically the same template spectrum used to create the
fitted AB function. Indeed, we found this to be true in our own
preliminary implementations of the nominal CC method. The
effect demonstrated in Figure 1 is not reproduced because of an
incorrect assumption in these tests; the effect is a fundamental
consideration when performing the CC method because spectra
are detector-censored by the very act of observation. Therefore,
fits to observed galaxy data should reflect this detector censoring
in a similar way.

The detector censoring of data also effects the calculation
of TB due to convolution errors near the OSR boundaries
of T. Indeed, if one does not properly account for these effects,
systematic differences between G and TB toward the OSR edges
will effect systematic errors in the measured kinematics; this
is also true of direct-pixel-fitting methods. Thus, the difference
in the applicability of the approximations in Equations (2) and
(3) are not automatically solved by preferring the procedural
implications of the former over the latter. This preference is
instead dictated by the ease with which one can mimic the effect
of observation on the spectrum fitted to the observed galaxy
spectrum and account for boundary effects on the convolution of
the template with the broadening function. It is important to note
that neither of these effects can be removed from the nominal CC
analysis by applying a data-windowing (or apodization) function
that downweights the contribution to the CC of pixels near the
edges of the spectral window. The effects can be mitigated in
this way, but not removed. Moreover, we make the point, as

was implicit in our placement of the censoring window, that the
significance of these effects is dependent on ΔV , ΔVF , and the
detailed structure of the spectra being considered. That is, one
expects the significance of these effects to be correlated with
the ratio ΔVF /ΔV and the equivalent width within ΔVF at either
end of the OSR.

The solution we have taken to these issues is to treat the fitting
function the same as is presented by our observing technology.
That is, using Equation (2) we first censor TB, creating (TB)′,
in an identical way to how our observations censor G, along
with eliminating regions near the OSR edges of both (TB)′ and
G that suffer from boundary errors in the convolution. Thus,
we implement a more symmetric comparison of the two spectra
G and (TB)′. In this sense, it is beneficial to observe template
spectra with a larger rest OSR that accommodates the OSR of the
galaxy spectra. As galaxy-continuum measurements are much
more observationally expensive than template observations, it is
preferable to do this instead of cutting out portions of the galaxy
spectrum, if possible. However, such an approach complicates
the detailed matching of, e.g., the resolution between the
template and galaxy spectra given the different observational
setups entailed. Until this is more practically accomplished,
we instead further limit the OSR of the galaxy spectrum to
accommodate the combination of the template OSR and the
velocity width of the fitted convolution function.

2.3. Masking

The spectra of star-forming spiral galaxies (as observed by
the DMS) have nebular emission lines. Moreover, observational
artifacts are likely to exist such as poorly subtracted sky
lines (especially with data taken in the region surrounding the
Ca ii triplet), cosmic ray events that erroneously pass nominal
removal algorithms, and telluric absorption features. None
of these features (nebular emission lines nor observational
artifacts) will be present in our stellar template spectra, at
least not in the same sense as they are in the galaxy spectra.
When fitting in direct pixel space, the effects of these spectral
features on the results of the fitted kinematics are removed by
masking pre-defined spectral regions from consideration in the
fit-minimization statistic.

We wish to maintain the same masking abilities in our CC
analysis. Although cast in the light of arguments concerning
the edges of the OSR for G and T, the situation regarding lost
information is only exacerbated by allowing for multiple mask
regions interspersed throughout the OSR, unless all information
available to G is also available to T. This is another key
argument in our preference of a CC approach that first creates
the detector-censored broadened template spectrum, (TB)′, in
using Equation (2) to solve for B. By first creating TB and
then (TB)′ using the masks and OSR available to G, we avoid
the complexities of performing equivalent operations through
Equation (3) and account for the detector-censoring issues
above. Thus, the process of masking spectral regions in our
CC-fitting method becomes as uncomplicated as that used by
direct-pixel-fitting methods.

Dalle Ore et al. (1991) have implemented a scheme that
used multiple observations to replace spectral regions with
artifacts (e.g., cosmic rays) by those without, and used regions of
standard galaxy spectra to replace emission regions. Whereas
analyses without masks or with a linear interpolation across
masked regions were poor, Dalle Ore et al. (1991) report that
such a splicing approach provided robust results. In our own
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Figure 2. Examples of the implementation of our masking scheme in the regions surrounding the Mg i (top row) and Ca ii (bottom row) triplets. The template
(K1 III in the top row and M3 III in the bottom row) and UGC 6918 galaxy spectra are displayed in the left column, while the unmasked (gray) and masked (black) CC
functions are displayed in the right column. Panels to the left show the mask regions (gray) in both the template and galaxy spectra, appropriately redshifted between
the two frames. The dark gray regions in the top left panel demonstrate the widening of the spectral mask based on the fitted velocity dispersion. The regions masked
are used to both remove emission lines (top left) and poorly subtracted sky lines (bottom left) and to limit the OSR between the template and galaxy spectra to a
common set of rest wavelengths. The unmasked CC functions in the right column require the same rest OSR but do not use the masks interspersed within this range,
whereas the masked CC function do.

analysis, we have implemented a scheme where we use the
velocity offsets of galaxy spectra taken within a given radial
range to remove sky lines and thereby create a relatively
clean, azimuthally averaged spectrum (Paper II); however, for
our SVE analysis, we wish to consider each fiber spectrum
individually. Similar to the Dalle Ore et al. (1991) approach, we
have considered a scheme where, instead of splicing in other
galaxy spectra, we would replace undesired spectral regions
with the appropriately convolved regions from the template
spectrum. However, by making any non-intrinsic substitutions
to the galaxy spectra, we effectively dilute the signal we are
attempting to extract by adding (primarily) systematic error
to our calculation. Instead, the scheme we apply in fitting the
kinematics to each individual fiber spectrum involves defining
the set of spectral regions to omit in the reference frame of
either G or T, determining the equivalent regions in the opposite
reference frame, and blanking the appropriate spectral regions
in each reference frame.

Figure 2 demonstrates the use of our masking procedure
in both stellar-continuum regions used in the DMS (Paper I)

for the high-surface-brightness galaxy UGC 6918. One can
imagine simply selecting the middle portion of the Mg i-
region spectra to avoid contamination from the [O iii] and
[N i] lines. However, such a scheme is impossible in the
Ca ii region; the shear number of sky-line residuals obviates
significant, uncontaminated portions of the spectrum. These two
spectral regions also demonstrate the use of masks identified
in the template reference frame (Mg i) and in the galaxy
reference frame (Ca ii). Each set of masks are Doppler shifted
to the opposite reference frame using the fitted velocity shift
between the spectra (see the description in Section 3 of the
iterative approach employed here). Additionally, the spectra are
automatically masked such that the rest-frame spectral edges
toward the blue and red are identical.

When defining sky-line mask regions, the region masked
should not be dependent on the fitted kinematics except to define
the corresponding regions in the template frame. However, one
could, for example, desire to mask the Mg i lines and define
the mask in the template frame. Given the lines are not only
redshifted but also broadened in the galaxy spectrum, we allow
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such masking regions to be broadened appropriately. This is
demonstrated in Figure 2 for the masks applied to the [O iii] and
[N i] lines. We expect a larger stellar velocity dispersion than
gas velocity dispersion such that the resized masking regions
should appropriately mask all of the nebular emission.

As shown in Figure 2, the application of the mask in the region
surrounding Mg i is critical to a determination of the stellar
kinematics. The comparison of the unmasked and masked CC
functions shows this definitively. The large oscillations in the
unmasked CC function toward negative velocity shifts are due
to the correlation of the [O iii] line with the template stellar-
absorption lines, which completely dominates any correlation
signal from the stellar-absorption lines common to both the
galaxy and template spectra. The difference in the masked and
unmasked CC functions for the red spectra is less pronounced
but still evident: a visual comparison shows that the poorly
subtracted sky lines contribute significantly to the noise in the
unmasked CC function. Therefore, while the masks have less
effect in this spectral region, their application is no less critical
to the robust determination of the stellar kinematics.

The application of our spectral masks forces pixels within
the mask region to have zero flux. Given our preparation of
the spectra before correlation, pixels with zero flux contribute
nothing to the CC function. However, masking in this way can
create undesired effects; we discuss these and other concerns in
the next section.

2.4. Other Concerns Specific to Fast Fourier Transforms

Proper use of Fourier analysis is non-trivial with discretely
sampled and non-periodic data. If one is not careful, a number of
effects can cause undesirable errors in the results. We again point
to Brault & White (1971) for a full description of many of these
effects, but comment on a few measures we have considered in
our analysis. Our considerations include (1) eliminating the first-
order boxcar function of a non-zero mean spectrum, (2) zero-
padding of spectra to eliminate aliasing, and (3) apodization to
eliminate jump discontinuities.

In preparing spectra for passage through the Fast Fourier
Transform (FFT) algorithm in our software (Section 12.3.2
of Press et al. 2007), we first remove the first-order boxcar
function in the observed spectra by subtracting the mean pixel
value. Note that this mean pixel value is of the pixels considered
by the correlation; therefore, masked regions are not included.
Second, we expand the data vectors to be a power of two in
length.5 Thus, we add zeros to either end of our spectra until this
condition is met. Zero-padding is also required to avoid aliasing
(Brault & White 1971); for example, the amount required for
convolution is the number of pixels in the broadening function,
B. When zero-padding our spectra we ensure the number of
pixels added to either end of the spectra are sufficient to
avoid this problem. Zero-padding at both ends of the spectra
also allows us to avoid periodicity/discontinuity issues; FFT
analysis interprets input spectra as periodic functions in order
to decompose them into discrete frequency components. Zero-
padding also helps mitigate undesired high-frequency ringing
in the Fourier transform due to discontinuities at the blue- and
red-wavelength extrema of the spectra.

However, our masking scheme can introduce sharp discon-
tinuities in the spectra which will also cause high-frequency
artifacts. It is standard procedure to apply apodization functions

5 FFT algorithms exist that do not require the number of discrete samples to
be a power of two; however, we have not yet implemented them in our code.

to each natural or introduced edge feature to diminish or elim-
inate these effects. An example of such a function is to apply
a cosine taper to some percentage of the first and last pixels
in a given continuous spectral region. Some more drastic win-
dowing functions diminish far more substantial portions of the
flux; there are many such functions (see, e.g., Section 13.4.1
of Press et al. 2007) an example of which is the “Hann Win-
dow,” which is known to many radio astronomers for its use in
aperture synthesis imaging. The application of these functions
in the nominal CC method was another primary reason for Rix
& White (1992) to pursue direct pixel fitting. Although we have
experimented with various apodization functions, we again de-
part from standard practice by not applying any apodization.
The reason comes from the relative nature of our analysis and
is as follows.

At no point in our CC analysis do we directly measure, e.g.,
the width of the peak of the CC function and interpret it in a
physical manner. Our base assumption in comparing X and XT
is that, all else being equal, the broadening function provides
the direct translation between the template spectrum, T, and the
galaxy spectrum, G. We find that, by treating TB symmetrically
with G, the resulting B is robust, even without the use of an
apodization function. Therefore, we have decided to leave the
relative pixel values in our spectra unaltered, aside from the
mean subtraction and application of the spectral region masks.
The results of our CC simulations in Section 4 demonstrate that
our determination of B is robust under these conditions.

2.5. Summary

Keeping the above definitions and discussion in mind, the key
point of this paper and the foundation of our CC approach can be
summarized as follows: The spectrum of a galaxy can be written
as G = T ⊗ B, which is used by direct-pixel-fitting methods to
solve for B provided a template, T. Our CC method simply
cross-correlates both sides of this equation with T, without
applying the commutation relation given in Equation (3). Before
correlation, G and T ⊗B are observationally censored in exactly
the same way—masking undesirable features and setting a
common rest wavelength range for both spectra—such that the
derived B should be identical to that obtained by direct-pixel-
fitting methods. Unlike direct-pixel-fitting methods, however,
this approach maintains a primary benefit of the CC function,
which is to effectively separate primarily kinematic information
and primarily template-mismatch information toward different
velocity lags.

3. IMPLEMENTATION DETAILS

By preferring Equation (2) over Equation (3), and by incor-
porating the fitted velocity into the determination of the mask
transcription between the template and galaxy reference frames,
the procedure followed by our fitting algorithm deserves some
comment.

When fitting X by XT , we do not consider the full velocity
range available to the spectra in assessing the goodness of fit
(χ2

X). As discussed above, we instead directly fit only the peak of
the CC function, which is preferentially dominated by kinematic
information than is its structure at large velocity lag. However,
we find the calculation of the full velocity range of X and XT
useful for assessing template mismatch (Paper II). Fitting the CC
function over the limited velocity range represented by the peak
is also beneficial to the calculation of the error in X. Following
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Statler (1995), we define the covariance matrix in X to be

(δXj,k)2 =
N∑

n=1

Tn−j Tn−k(δGn)2, (4)

where N is the number of pixels in G and δGn is the error in the
measurement of the galaxy spectrum at pixel n. Note that this
equation does not take into account any errors in T; instead, we
follow Statler (1995) by designating errors in T as a contributor
to template mismatch. Therefore, the calculation of

χ2
X = [X − XT ][(δX)2]−1[X − XT ]† (5)

requires the inversion of the covariance matrix [(δX)2], once
for every instance of the CC function, where † denotes the
transpose operator.6 By only considering a window surrounding
the CC peak, we can greatly reduce the computational expense
of this calculation. There are varied approaches to the definition
of this window in the literature; we define it by a multiple of
the CC-peak FWHM and center it on the CC peak velocity.
Although not presented in detail here, we find an optimal
window size of approximately twice the FWHM of the CC peak
based on minimizing both the systematic error in the kinematics
due to the window and the error calculation time; this is the
definition of the window we take throughout this document.
Individual determinations of B minimize Equation (5) for a
single calculation of X and [(δX)2]−1 over this fitting window.

For all fittings discussed herein, we employ a Gaussian
broadening function with the nominal three parameters: a
normalization, a; a peak velocity, V; and a velocity dispersion, σ .
The determination of B ostensibly allows for any value of σ ;
however, discrete convolutions are systematically in error when
B is undersampled. We have run tests demonstrating that
robust convolutions require that, when B is defined by a
Gaussian, it must have a velocity dispersion that is no less
than 0.85 pixels (in which case the Gaussian FWHM is no
less than 2 pixels). Thus, whenever this (Nyquist) criterion is
not met, we block-replicate the template spectrum—dividing
each original pixel into a set of N pixels with the same value
as the original pixel and a velocity width that is a factor
of N smaller—to decrease the velocity width of each pixel.
This avoids the undersampling of the Gaussian function and
produces the correctly convolved spectrum when it is block-
averaged—averaging the values of N pixels into a single
pixel having a factor of N larger velocity width—back to the
original sampling. We impose a maximum block-replication of
8 pixels for every one input pixel; Gaussian functions attempted
during the fit minimization with σ below that allowed by
this maximum block-replication factor are converted to delta
functions.

Our fitting algorithm runs through three iteration tiers. The
first iteration tier ensures the settling of the fit into a global—or,
at least, a large local—minimum in χ2 space. This is accom-
plished by starting the fit with an initial guess set of parameters
that are then altered to produce the minimum χ2

X following
the Levenburg–Marquardt minimization algorithm discussed in
Press et al. (2007, Section 15.5.2). The derivatives of the fitting
function XT required by this minimization routine are deter-
mined via a finite-differencing method. Once the fitting algo-
rithm minimizes χ2

X based on the initial guess parameters, we

6 Unlike Statler (1995), we use † in Equation (5) to denote the transpose of
the row matrix [X − XT ], as to not confuse the nomenclature with the template
spectrum T.

restart the minimization from a new set of guess parameters
that are randomly distributed using a characteristic scale for
each parameter (see Equation (10.5.1) of Press et al. 2007).
For a Gaussian function, we choose characteristic scales of 1,
100 km s−1, and 100 km s−1 for a, V, and σ , respectively. The
scale for a has been chosen based on input template and galaxy
spectra that have had their mean value normalized to unity such
that the normalization of B should also be of that order. The
scales chosen for V and σ are based on the expectations of our
survey. We find that our fitted kinematics are robust against the
choices for these scales, meaning that the χ2 landscape for our
analysis is well behaved. This statement becomes less accurate
for very low S/N spectra. First-tier iterations are typically per-
formed five times and the best resulting χ2

X sets the final fitted
parameters.

The second iteration tier adjusts the mask transcription
function, which incorporates both the fitted V and σ , depending
on the feature being masked (see Section 2.3). The adjustment
of the mask requires recalculation of X and [(δX)2]−1 and
is, therefore, not included in the first-tier iterations due to
the significance of the added computations. Each second-
tier iteration updates the mask transcription function after
completing a first iteration tier and then restarts the first iteration
tier. Second-tier iterations continue until the fitted kinematics
and the mask transcription parameters are marginally different
(<0.1 pixel).

The third iteration tier incorporates an adjustment of the con-
tinuum between the template and the galaxy spectrum. It is
often the case that the template spectrum will have a different
continuum shape than that of the galaxy. In the spectral region
near 5150 Å, for example, the flux contribution for UGC 6918
is divided roughly equally between A and K spectral types
(Paper I). However, in terms of the line structure, the K1 III
template provides the best fit to the galaxy spectrum (Paper II),
meaning that the largest differential contribution of the A-star
template is the continuum shape. Our “continuum-fitting” algo-
rithm works to eliminate such relative continuum differences by
fitting a low-order Legendre polynomial to the difference spec-
trum G − TB . The purpose of this iteration tier is to force the
continua of the two spectra to be minimally different such that
B is, to first order, only affected by the high-frequency (line)
fluctuations, as opposed to low-frequency (continuum) fluctua-
tions. Again, because our goal is to measure B, we need only
to “correct” the continuum of the template (or galaxy) spectrum
in a relative sense. Each third-tier iteration uses the derived TB
from a completed second iteration tier to adjust the continuum
and then restarts the second iteration tier. Third-tier iterations
continue until the coefficients of the fitted polynomial are all
marginally different from zero. Note, however, we employ a
hard limit of ten iterations for both the second and third itera-
tion tiers, such that fits to low-S/N spectra eventually converge
or are considered non-convergent under the second- and/or
third-tier criteria.

The first iteration tier is typical of previous implementations
of CC analysis and, indeed, proper use of χ2-minimization
algorithms; and the third iteration tier is an alteration to
concepts previously accomplished by, e.g., applying a high-pass
filter to the input spectra before using CC analysis to extract
stellar kinematics (e.g., Statler 1995). The second iteration tier
encompasses the primary novelty of our algorithm. It is also
worth pointing out that, even though we only consider the CC
peak in the first iteration tier, the formalism in Section 2.1
demonstrates that this peak considers all spectral information.
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Moreover, the third iteration tier considers the full wavelength
range in adjusting the relative continuum shape between the
template and galaxy spectra, which can have a significant
effect on the kinematics. Finally, our assessments of template
mismatch (Paper II) are critically dependent on considering
the full velocity range in the CC function. Thus, no spectral
information is discarded in our CC approach to extracting and
assessing the stellar kinematics in DMS spectra.

As a by-product of the Levenburg–Marquardt algorithm, we
use the covariance matrix to determine the formal parameter
errors. These errors correlate well with the empirical errors
generated from Monte Carlo simulations we describe in the
next section. However, for this to hold true, one needs good
estimates for the spectral errors. Our method for calculating
spectral errors is provided in Westfall (2009).

4. MONTE CARLO SIMULATIONS

We have performed a set of Monte Carlo (MC) simulations as
an assessment of the ability of our software to robustly determine
stellar kinematics in galaxies. For each simulation set, we define
a value for 〈S/N〉—pixel−1 with a pixel size of 7.6 km s−1 and
a spectral resolution element of ∼26 km s−1—and a broadening
function that are used to create a synthetic galaxy spectrum.7

Each realization of a synthetic galaxy spectrum is produced
by convolving a K1 III template by a known broadening
function and then adding normally distributed noise following
a wavelength-dependent S/N function. Each simulation set
consists of 50 such realizations. A previously seen example of a
synthetic galaxy spectrum without noise is shown as spectrum
IF in Figure 1.

A wavelength-dependent S/N function is adopted in order to
mimic the effects of the spectral vignetting function present in
our galaxy spectra. To create this function, we average S/N(λ)
across all fibers in the SparsePak IFS of UGC 6918 and fit it with
a low-order polynomial. The effect of the vignetting function is
thus shown to produce S/N ∼ 0.6 at the edges of the OSR with
a maximum of S/N ∼ 1.3 at ∼5150 Å for a spectrum with a
mean S/N of unity. For each MC simulation, we renormalize this
functional representation of S/N(λ) such that each realization of
a synthetic galaxy spectrum in the simulation has the appropriate
〈S/N〉 pixel−1.

Our CC simulations explore all combinations of the following
set of parameters:

〈S/N〉 = 1, 1.4, 2.0, 2.8, 4.0, 8.0, 16.0, 64.0

am = 1

Vm = 1000, 2500, 3600, 4160, 4640 km s−1

σm = 5, 10, 20, 40, 80, 110 km s−1.

Here, am, Vm, and σm represent the parameters for the Gaussian-
model broadening function, Bm. The parameter space covered
by these simulations is somewhat more limited than, but overall
representative of, that which is available to the DMS. The
range probed in 〈S/N〉 and σm reflect the ranges we expect
for our galaxy data; although azimuthally averaged spectra
may have greater S/N than represented. The chosen velocity
shifts are selected to demonstrate any effects of the detector
censoring for the minimum and first-quartile velocities of

7 In this paper, we present the kinematics from our Monte Carlo simulations
in units of km s−1 instead of pixels or resolution elements. The resolution and
pixel sampling information provided here can be used to predict the results for
other spectrograph setups.

galaxies observed within the DMS (∼1000 and ∼2500 km s−1),
the most extreme velocity still containing all three of the Mg i

triplet lines (∼3600 km s−1), and those velocities retaining only
two (∼4160 km s−1) and one (∼4640 km s−1) of those lines.
Thus, we have performed 240 CC simulation sets for the analysis
presented herein.

The limited representation of these simulations with respect
to all the applications foreseen in the DMS deserves further
discussion. Foremost among these limitations is that these
simulations will provide no assessment of the effects of template
mismatch either in the continuum or in the detailed line
shapes/depths. Additional, more targeted simulations have been
presented in Paper II as an exploration of the results for different
templates and the Ca ii spectral region. For the present study, our
simulations represent a scenario where we, in fact, have the ideal
spectrum I—a practical improbability for our observed galaxy
data. As such, these simulations represent a best-case-scenario
in terms of the systematic errors we expect in B. Moreover, we
only consider the Mg i region; however, we expect the results
to be largely transferable between the two stellar-continuum
wavelength regions and two IFS instruments (Paper I) used by
the DMS. Finally, since our template observations are taken
within the same observed wavelength region as the galaxy data,
the true galaxy data actually have an extension of their rest-
frame OSR toward the blue. In creating our synthetic galaxy
spectra, we cannot reproduce this portion of the spectrum and
simply supply a constant continuum value. Note, however, that
we do limit the red end of the synthetic galaxy spectra to the
observed wavelength range represented within our data. Having
described these inaccuracies, it is worthwhile to note that such
a scenario as provided by these simulations can be beneficial in
establishing the systematic errors solely due to spectral noise.
That is, using these simulations and an estimate of ∼4% for the
template mismatch (Paper II), we can produce a transitionary
S/N limit where the systematic errors due to spectral noise
become comparable to those expected for template mismatch.

We present individual examples of synthetic G, fitted TB,
synthetic X, and fitted XT for a few hand-picked simulations
in Figure 3. These simulations are chosen as those providing
reasonable results for B and, as such, are not necessarily
“representative” of all the simulations with the same parameter
set; we consider statistics of the ensemble of results below. Note
that we differentiate between the “model” and “fitted” Gaussian
parameters using the subscripts m and f, respectively. Figure 3
demonstrates that even at the lowest 〈S/N〉, one might expect to
find a reasonable measurement of B. In fact, the systematic and
random errors for the 〈S/N〉 = 1.0 example are comparable to
the 〈S/N〉 = 16.0 example; the difficulty in the determination
of B for the latter is the rather large σm and the censoring of the
Mg i triplet by the velocity shift. Also note that, with a pixel size
of 7.6 km s−1 and a spectral resolution of ∼26 km s−1, the CC
algorithm is able to recover the 5 km s−1 broadening to ∼14%
even at 〈S/N〉 = 2.8; however, the random error in this case
is >50%.

Figures 4 and 5 provide statistical quantities for each of
our 240 simulation sets. We calculate the mean and standard
deviation (ε) of each Gaussian parameter after rejecting strong
(3ε) outliers; only at 〈S/N〉 < 3 does the number of simulations
used in the statistics, Nsim, become significantly different from
the total number of simulations (50). Our assessments of the
simulation sets demonstrate negligible influence of the velocity
shift on the results. We expected this result specifically because
of our approach to the CC method (Section 2.2), and we
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Figure 3. Example results from our CC Monte Carlo simulations. The spectra and CC functions are sorted by their 〈S/N〉 (decreasing from top to bottom as labeled).
The input model kinematics (Vm and σm), returned fitted kinematics (Vf and σf ), and fitted χ2

ν value are provided for all data. Left: individual realizations of a synthetic
galaxy spectrum (G; black) and the resulting fit of the broadened K1 III template (TB; gray). Middle: CC functions of the synthetic galaxy spectrum with the K1 III
template (X; black) and the fitted CC function of the template with TB (XT ; gray) over a wide velocity range. Right: zoomed in view of X and XT after offsetting the
abscissa by the model velocity and normalizing it by the model velocity dispersion.

continue by largely omitting further discussion of velocity-offset
effects.

Figure 4 presents our assessment of the systematic errors
in our kinematic measurements. As expected, the accuracy
of the resulting fits is primarily a function of the spectral
S/N. We find �10% systematic error in σf for all simulations
when 〈S/N〉� 4. Below this limit, the returned accuracy of
σf becomes dependent on the input σm, as demonstrated in
Figure 4 by the different line gray scale. In fact, the results
exhibit an inverse correlation between the model and fitted
values for both a and σ . There appears to be no such trend in
V, at least consistent between all simulations; however, we find
that the systematic differences (whether positive or negative) in
V become more pronounced for models with higher σm. These
trends make some intuitive sense in that, as the noise increases,
the CC algorithm begins to become biased by the correlation
between noise peaks. The effect is strongest for models with
broader lines as the difference between their inherent widths
and the width of a pixel (the natural correlation width of a noise
peak) is larger than models with velocity dispersions of order
the size of a pixel. We do not plot the random errors in Figure 4
for clarity, but we find that the random errors are substantially
larger—factors of >2—than the systematic errors at all 〈S/N〉.

We plot the standard deviation, ε(x) for the variable x, in each
simulation set against the input σm and 〈S/N〉 in Figure 5 as an
assessment of our random errors. These data reinforce the point
that the quality of the fitted kinematics is determined primarily
by 〈S/N〉 and secondarily by σm. There is a strong correlation in
both ε(Vf ) and ε(σf )/σm with 〈S/N〉. Moreover, there is a direct

correlation between the model value σm and ε(Vf ). Finally,
there appears to be a critical value where σm switches from a
positive to negative correlation with ε(σf )/σm. For most of the
simulations, these two quantities are anti-correlated; however,
within the range 20 km s−1 < σm < 40 km s−1, ε(σf )/σm

changes from an inverse to a direct correlation at small σm to
large σm, respectively. This observation is strengthened by the
fact that all simulations done with 〈S/N〉 > 1 demonstrate this
effect; however, aside from simulations with σm = 5 km s−1,
the interdependence of ε(σf )/σm and σm is rather weak. As
of now, the origin of this transition is unknown; it could be
an observational effect due to sampling of σm by the spectral
resolution or it could be due to the detailed line structure in the
K1 III template. Although it may be possible to differentiate
these effects with further analysis, it is not pertinent to our
basic quantification of the random and systematic errors in our
kinematic quantities as a function of 〈S/N〉—the fundamental
goal of these MC simulations.

We provide here a list of general results drawn from Figures 4
and 5:

1. Statistically aberrant fits for spectra that have no convergent
kinematic solution are most probable when σm � 80 km s−1

and 〈S/N〉� 3; otherwise, we expect the probability of such
spectra to be �10% at 〈S/N〉 � 1.5.

2. The quality of the kinematic measurements is largely
independent of the velocity shift in the range Vm =
1000–5000 km s−1, as sampled by our simulations.

3. When 〈S/N〉 � 2, systematic errors in Vf are always less
than 15 km s−1 and the mean systematic error in Vf of all
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Figure 4. Assessment of the systematic errors in the fitted kinematics in our
CC simulations with respect to the input model values as a function of 〈S/N〉.
Lines connect the mean results over all model velocities, Vm, for a given model
velocity dispersion, σm (see the text). The line gray scale differentiates between
σm cases, with increasing dispersion going from darker to lighter shades of
gray: σm = 5 km s−1 have black lines, whereas σm = 110 km s−1 are nearly
white. The error bars represent the range in simulation results when each model
velocity is considered separately. Note slight offsets are applied in the abscissa
to ease differentiation between simulations of different σm. Given the large input
values compared to the difference, we plot the absolute difference between the
fitted velocity, Vf , and the model velocity, Vm; however, both the difference in
Gaussian intensity normalization, af −am, and velocity dispersion, σf −σm, are
plotted as a percentage of the input value. The bottom panel gives the number of
simulations used to calculate the statistics, Nsim, after rejecting strong outliers
(see the text). Inset panels give a zoomed view of the simulations performed at
high 〈S/N〉.

simulations with the same 〈S/N〉 and σm are always less
than ∼5 km s−1.

4. Systematic errors in σf are typically less than 20% for all
simulations and �5% for means binned by input σm when
〈S/N〉 � 2, except for the largest input velocity dispersion
(σm = 110 km s−1).

5. Random errors in each fitted quantity (af , Vf , and σf )
dominate over systematic errors by factors of two or more
at all 〈S/N〉.

6. We expect random errors of �10 km s−1 in Vf when
〈S/N〉 � 8.0 and σm � 110 km s−1; this degree of error
only occurs in spectra with σm � 20 km s−1 at 〈S/N〉 � 1.0.

7. Random errors in σf can be as much as 100% when

〈S/N〉 = 2 and σm ≈ 5 km s−1; however, this decreases to
20%–40% when σm � 10 km s−1.

Within the larger context of the DMS, we expect the majority
of our spectra to have intrinsic values of 20 km s−1 � σLOS �
40 km s−1; therefore, we expect random errors of �20% and,
at most, 10% systematic error when 〈S/N〉 � 3 pixel−1 (the
pixel size for SparsePak is 7.6 km s−1 in the Mg i spectral
region). We will not preclude ourselves from fitting kinematics
at lower S/N given that formal errors in this regime tend
to be larger than the systematic error; however, analysis of
such results will be tempered by the expectations from these
simulations. Moreover, the measured velocities should show
only very modest systematic errors even at 〈S/N〉 ∼ 1.5.

There are only three galaxies observed for the DMS by
SparsePak alone with velocities outside the range probed by
these simulations (their respective Vsys values are 4856, 7152,
and 9392 km s−1). At the maximum of these redshifts, the
rest wavelength overlap between a template star and the galaxy
spectrum is ∼100 Å and the strong Mg i triplet will have been
shifted out of the OSR. Thus, measurements of B for these
galaxies will depend on the other (mostly Fe lines) present in
the spectrum. We expect the S/N of these measurements to be
lower due to the decreased total and mean equivalent width
of these lines; however, there should be substantial kinematic
information in these spectra, even given the limited overlap.
Note that the bluest Mg i line is still within the OSR for PPak
at redshifts of z ∼ 0.04, which is very near the upper limit
of our survey. We will comment on the effects of limited rest
wavelength overlap effects on our kinematics where appropriate
in future papers; however, the simulations presented here predict
this to be of little concern.

Below we analyze SparsePak IFS for UGC 6918 with 2 �
〈S/N〉 � 30 for all individual spectra that provide correlation
peaks within a limited range of the expected systemic velocity.
The fitted kinematics to these spectra demonstrate velocity
dispersions within the range 10 km s−1 � σm � 70 km s−1.
Therefore, Figure 4 predicts that the �4% mismatch with respect
to the K1 III template (Paper II) should dominate the systematic
error in our stellar kinematics. Moreover, Figure 5 predicts errors
of ε(VLOS) ∼ 1–2 km s−1 and ε(σLOS) errors of �2% and ∼70%
at, respectively, large and small intrinsic σLOS and 〈S/N〉. These
estimates are determined by approximating that 〈S/N〉 ∝ σLOS
and that σLOS is inversely proportional to the galaxy radius, R, as
roughly appropriate for an exponentially declining dispersion.
We test these predictions in Section 5.

4.1. Comparison with pPXF

We directly compare the internal test of our CC software
(Detector-Censored Cross-Correlation, DC3) above with iden-
tical MC simulations performed using the pPXF software8 pre-
sented by Cappellari & Emsellem (2004). These MC simulations
are necessary for providing a quantitative comparison between
DC3 and pPXF and substantially augment the MC simulations
performed by Cappellari & Emsellem (2004). Specifically, we
expand the S/N regimes from 60 and 600 to eight values in-
creasing logarithmically from 1 to 64, the velocity offsets from
zero to a range of 1000–4640 km s−1, and the velocity dispersion
regimes from 48–360 km s−1 (0.8–6.0 pixels) to 5–110 km s−1

(0.7–14.6 pixels). To provide the most robust comparison be-
tween the two programs, we fit exactly the same synthetic spec-
tra using pPXF as was done in the previous section using DC3.

8 http://www-astro.physics.ox.ac.uk/∼mxc/idl/#ppxf; version 4.5
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Figure 5. Assessment of the random errors in the fitted kinematics in our CC simulations as a function of both 〈S/N〉 and σm. Black lines connect simulations for a
given 〈S/N〉, while gray lines connect identical σm. Error bars denote the range in simulation results when separated by input model velocity. The top left panel shows
the correlation between the standard deviation in the velocity, ε(Vf ), and in the velocity dispersion, ε(σf )/σm. The subsequent panels plot these quantities against the
input σm (middle row) and 〈S/N〉 (bottom row).

The mode in which we have run pPXF is designed to follow
closely that of our CC approach in that we apply the following
specifications: we adopt no penalization; we fit only the first
and second moments (V and σ ) of the LOSVD; we allow for a
third-order polynomial fit to the continuum (where a constant
is of zeroth order); we mask the same [O iii] and [N i] spectral
regions as done in the CC method; and we fit only the K1 III
template. Given that both our simulations above and the simula-
tions we perform with pPXF do not allow for template mismatch,
there is, ideally, no continuum differences between the synthetic
galaxy spectra and the fitted template; however, we generally
determine continuum adjustments in the nominal approach to
fitting stellar kinematics for our real galaxy data. Therefore, the
pertinent statistics in the recovery of the LOSVD should include
the errors added by the uncertainty in the continuum.

Figure 6 compares the results of the MC simulations run using
pPXF and DC3 in terms of both systematic and random errors.
The overall conclusion given by this figure and the discussion
below is that DC3 generally performs as well as pPXF, within
the confines of these tests. Thus, in DC3, we have addressed the
primary concerns with the CC method that have been invoked to
explain the preference for direct-pixel-fitting methods. We note
some features of our comparison between the DC3 and pPXF
results in more detail below.

We find differences in the systematic error returned from
pPXF and DC3. For the pPXF simulations, we find the veloc-
ity systematic errors have a minimum range of 〈Vf 〉 − Vm ∼
±1 km s−1 (∼0.1 pixels; Figure 6(a)) and the velocity dispersion
has a ∼25% systematic error in 〈σf 〉 for the σm = 5 km s−1 case

(Figure 6(f)). We emphasize that the synthetic galaxy spectra
used here were created using DC3 sub-routines as explained
above, such that these systematic effects do not necessarily
represent failings of the pPXF software, but serve more as a
warning when attempting to measure kinematics with under-
sampled broadening functions. That is, these systematic errors
are likely due to numerical differences in the convolution algo-
rithm performed by pPXF and that used by DC3 (Section 13.1
of Press et al. 2007); it is natural for DC3 to perform bet-
ter given its use of exactly the same algorithm to fit the syn-
thetic spectra as was used to generate them. Measurements of
σf � (0.85ΔVp = 6.4) km s−1 where ΔVp is the pixel velocity
width, become strongly biased toward larger velocity dispersion
because the LOSVD is undersampled (i.e., below Nyquist). Both
pPXF and DC3 employ a block-replication algorithm in an at-
tempt to allow for measurements of σf below this limit (Sec-
tion 3); however, differences in the implementation may be
the cause for the systematic error seen in the pPXF results. The
regimes in which these systematic differences exist are relatively
uninteresting in terms of application to our DMS spectroscopy.
Also, the trend in the systematic error in σf noted in the previous
section for DC3—the bias of σf toward the size of a pixel at
low 〈S/N〉—does not appear to be as strong for pPXF (compare
panels (f) and (g) in Figure 6).

For both programs, the mean formal errors, 〈δVf 〉 and 〈δσf 〉,
calculated via the covariance matrix provide good measure-
ments of the error when compared to the standard deviation in
the returned parameters, ε(Vf ) and ε(σf ), at 〈S/N〉 � 4 (panels
(c), (d), (h), and (i) in Figure 6). Below this 〈S/N〉, the pPXF
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Figure 6. Detailed comparison between the accuracy and precision of DC3 and pPXF. All panels plot results as a function of 〈S/N〉 where the results for different
input velocity dispersions have been artificially offset horizontally and given different point types for illustration purposes. Points are given a lighter gray-scale color
as σm increases: black points are for σm = 5 km s−1 and white points (encircled in black) are for σm = 110 km s−1. Top row: Systematic error in velocity (left)
and velocity dispersion (right) determined by the mean of the fitted kinematic value for all 50 noise realizations in a given simulation, 〈Vf 〉 or 〈σf 〉, compared to the
input value. Dashed lines in the velocity comparison panels are provided for reference and follow 〈Vf 〉 − Vm ∝ S/N−1. See the text for a discussion of the apparent
systematic errors in the pPXF results. Middle row: systematic error in the formal errors, δVf or δσf , determined by comparing with the standard deviation in the
returned kinematics, ε(Vf ) or ε(σf ), measured from the 50 noise realizations of each simulation. Bottom row: comparison of the random errors in the kinematic
measurements between DC3 and pPXF determined by comparing the standard deviation in the kinematic quantities. Dashed lines in the middle and bottom rows mark
a 50% difference for the ratio presented by each panel.

calculations of 〈δVf 〉 and 〈δσf 〉 at low σm can be substantial
overestimates of the standard deviation derived from the MC,
which is not reflected in the DC3 simulations. By comparison,
DC3 provides formal errors that are good to better than 50% for
the vast majority of simulations at all 〈S/N〉; the exceptions for
Vf are in the highest σm cases where the formal errors tend to
be under estimates when 〈S/N〉 < 4, and the exceptions for σf

are in the highest and lowest σm cases when 〈S/N〉 � 2.
A comparison of the errors in the fitted parameters as

returned by pPXF and DC3 is done by showing the ratio of
the standard deviation in both Vf and σf in panels (e) and (j) of
Figure 6. In this sense, we again find the performance of the two
programs to be very comparable. In detail, the pPXF routine
obtains, on average, a ∼5% lower error in the parameters;
however, this difference is marginal when considering slight
differences in the wavelength regions incorporated during the
fitting procedure between the two programs. We have attempted
to make the masked regions identical; however, they will
inevitably be slightly different due to the details of the masking
implementation of the two routines.

5. EXAMPLE APPLICATION: UGC 6918

We have used DC3 to fit SparsePak IFS of UGC 6918
obtained during the pilot phase of the DMS. These data will

be fully described and used in forthcoming work to measure
disk and halo dynamical properties in this galaxy. Here, we
fit the stellar kinematics using only a K1 III template as it
minimizes template mismatch for this galaxy (Paper II), and is
simple and easily reproducible. We emphasize that the use of
a single stellar template here is not a requirement of DC3, but
merely a convenience for clarity of this illustration.

Ignoring the results of our MC simulations in Section 4 for
the moment, we attempt to fit any CC function with a peak
within a few hundred km s−1 of the systemic velocity of UGC
6918 (∼1109 km s−1) regardless of the S/N. For all fits, a
Gaussian function is used to parameterize B and a third-order
Legendre polynomial is used to adjust the continuum difference
between the broadened K1 III template, TB, and the fitted
galaxy spectrum in each fiber (see Section 3). Additionally,
wavelengths surrounding the [O iii]λ5007 and [N i] (λ5198 and
λ5200) nebular emission lines (as in Figure 2) are masked. The
fitting window, where X is compared with XT in a χ2 sense,
is centered on the CC peak and given a width of twice the
CC-peak FWHM. Figures 7 and 8 present the results for two
example spectra, one at high 〈S/N〉 and another at low 〈S/N〉.
The low-〈S/N〉 spectrum shown here represents a spectrum near
the low-〈S/N〉 limit where our fitting algorithm was able to
converge to measurements of Vobs and σobs.
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Figure 7. Cross-correlation analysis of the SparsePak fiber nearest the kinematic center (fiber 52); the radius is provided in the top panel along with the mean 〈S/N〉,
fitted kinematics, and χ2

ν statistic within the CC fitting window. The top panel shows the CC (X) of the galaxy spectrum (G) with the stellar template (T; the K1 III
star HD 167042) in black, while the best-fitting solution to Equation (2) (XT ) is displayed in gray. The inset shows an expanded view of the fit near the CC peak with
the vertical dashed lines denoting the window over which the fitted kinematics are derived. The difference between the fit and the data (Δ) is plotted and demonstrates
the efficacy of the fitting algorithm. The bottom panel shows G in black, and the best-fitting broadened and shifted template spectrum (TB) is overlaid in gray; the χ2

ν

statistic between these two spectra is also provided. The [O iii] and [N i] emission lines have been masked in our fits (gray regions). The difference between the data
and the fit shows a largely white noise, flat-continuum spectrum.

In Figure 7, we find excellent agreement between X and
XT over the full velocity range. However, in comparing G
and TB, we note the applied [O iii] mask does not properly
block the blue wing of the line profile. This artifact is easily
removed by enlarging the mask of the [O iii] line; however, its
presence provides a useful, albeit exaggerated, demonstration
of the template-mismatch information available in the full CC
function, outside the central peak. The effects of the unmasked
remnant of the [O iii] are evident in the difference X − XT ;
the [O iii] remnant is seen to correlate with the Mg i triplet
at ∼ −9000 km s−1. Nonetheless, this artifact has a negligible
effect on the fitted kinematics: we find the same results within the
errors even after doubling the width of the mask. The predicted
random errors of ε(Vobs) < 2 km s−1 and ε(σobs) ∼ 2% from
our MC simulations hold true for this spectrum.

It is difficult to assess any strong, systematic deviations
between X and XT or between G and TB in the fit to the low-〈S/N〉
spectrum shown in Figure 8; the random noise overpowers these
signatures. Even so, the correlation peak is still strong and
obvious, and we are able to obtain a set of fitted kinematics.
Our MC simulations demonstrate that, for the 〈S/N〉 and σobs of
this spectrum, we should expect no systematic error in Vobs but

a random error of 3–4 km s−1; for σobs, we expect systematic
errors of ∼10% with random errors of ∼60%. The measured
random errors in the fitted kinematics are consistent with these
expectations. Indeed, at ∼50%, the random errors are slightly
better than we expect suggesting the predictive power of our
simulations is good to ∼10%–15%, even in the presence of
some, if minimal, template mismatch.

5.1. Comparison with pPXF

We have also fit our SparsePak UGC 6918 spectra using
the pPXF software for comparison; the results for the high-
and low-〈S/N〉 fibers discussed above are given in Table 1.
For a fair and simple comparison, we use the K1 III star as
the fitted template for both DC3 and pPXF. For clarity and
reproducibility we have intentionally avoided using composite
stellar templates, although Paper II outlines how such com-
posites are constructed and applied in the context of DC3.
While composites templates more realistically mimic the ob-
served stellar populations, we also have shown in Paper II that
we expect �4% systematic error in our DC3 measurements
of σf for UGC 6918 in this spectral region when using a
single K1 III template. From our MC simulations, we expect
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Figure 8. Same as Figure 7 but for the low-〈S/N〉 spectrum from fiber 55.

Table 1
Example Stellar Kinematic Fits

〈S/N〉 Vf,DC3 Vf,pPXF σf,DC3 σf,pPXF

Fiber (pixel−1) (km s−1) (km s−1) ΔVf /δ(ΔVf ) (km s−1) (km s−1) Δσf /δ(Δσf )
(1) (2) (3) (4) (5) (6) (7) (8)

52 27.8 1125.3 ± 1.5 1125.2 ± 1.4 0.02 68.3 ± 1.6 63.9 ± 1.6 1.95
55 1.7 1076.4 ± 3.9 1073.6 ± 3.9 0.52 11.2 ± 5.7 11.9 ± 5.9 −0.08

Notes. Columns are: (1) fiber number; (2) mean S/N per pixel; (3) fitted stellar velocity from DC3; (4) fitted
stellar velocity from pPXF; (5) difference defined by ΔVf = Vf,DC3 − Vf,pPXF normalized by the error in the
difference; (6) fitted stellar velocity dispersion from DC3; (7) fitted stellar velocity dispersion from pPXF; (8)
difference defined by Δσf = σf,DC3 − σf,pPXF normalized by the error in the difference.

no strong systematic difference between the results from DC3
and pPXF.

In Figure 9, we illustrate the difference in all kinematic
measurements made by DC3 and pPXF via residual maps of
ΔVf = Vf,DC3 − Vf,pPXF and Δσf . These differences increase
with radius, as expected from the decrease in spectral S/N,
and are incoherent in azimuth. The residuals are generally very
small and track the kinematic errors, such that all velocity mea-
surements are within the measurement errors determined by
each program. For the velocity dispersion measurements, 82%
and 94% of all spectra are within factors of, respectively, one
and two times the measurement errors. However, as shown in
Table 1, we find a marginally significant (∼2 standard devia-
tions) difference between σf,DC3 and σf,pPXF for the highest-
〈S/N〉 fiber, albeit the difference is small in relative terms (6%).

This difference may be due to different systematic effects of
template mismatch on the two algorithms. Inclusion of our es-
timate template-mismatch error does indeed reconcile the two
measurements.

Thus, as with our comparison of the two algorithms using MC
simulations, we find that a direct comparison of DC3 and pPXF
using real data demonstrates that the two algorithms produce
very comparable stellar kinematics.

6. SUMMARY

Robust stellar kinematic measurements are crucial to the suc-
cess of the DMS. Indeed, these measurements are the first step
toward determining the disk dynamics and, e.g., mass surface
density of each galaxy. Thus, the tools we use to perform these
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measurements deserve the extended discussion provided herein.
Our method is generally applicable, and it is directly relevant
to our kinematic analysis of the IFS in the DMS. We address
complications in CC analysis that have been used as rationale
for favoring direct-pixel-fitting methods (Rix & White 1992;
Cappellari & Emsellem 2004), such that they should no longer
be concerns. Our newly implemented CC software adjusts the
nominal algorithm used in previous CC analyses to more prop-
erly determine stellar kinematics under the practical inevitabil-
ity of detector-censored data. Moreover, as demonstrated in
Paper II, our approach retains the primary attraction of the CC
method, which is to largely consolidate kinematic and template-
mismatch information toward different regions of the CC
function.

The presentation of our CC approach follows both a math-
ematical discussion of the assumptions in the method and a
practical application of these methods to real data. Our tests
of the fundamental assumptions have isolated a �10% effect
incurred when the broadened stellar template is not treated in
a symmetric way with respect to the observed galaxy spec-
trum. This symmetric treatment is critical to our ability to apply
spectral masks in conjunction with the CC approach. We have
shown that such masks are necessary given the strong nebular
emission lines, sky lines, and observational artifacts (such as
cosmic rays) present in our data.

We extensively evaluate the performance—accuracy and
precision—of our CC software using MC simulations. As
expected, we find that the primary factor in the quality of
the determined kinematics is the spectral S/N; the velocity
dispersion, σ , is a strong secondary factor. With the caveat
that we do not explore template mismatch, two principle results
of our MC simulations are: (1) Random errors for spectra with
〈S/N〉 � 3 and 20 km s−1 � σ � 40 km s−1 are �20%
in σ . (2) Systematic errors for spectra with 〈S/N〉 � 2 are
typically �10% in σ but are always �10% in σ when 〈S/N〉 �
4. A detailed comparison with the pPXF software provided
by Cappellari & Emsellem (2004) demonstrates comparable
results.

Finally, we demonstrate a direct application of our CC soft-
ware to SparsePak IFS of the stellar kinematics of UGC 6918,
as well as a commensurate analysis using pPXF. As with our
MC simulations, we find the two algorithms provide compara-
ble kinematic measurements. Thus, we have been successful in
addressing concerns over S/N and masking limitations in the
CC method, effectively eliminating these concerns as reasons
to favor direct-pixel-fitting methods for measurements of stellar
kinematics. Our preference for DC3 is rooted the in the funda-
mental way in which CC methods isolate information pertaining
to VDF and template mismatch. The latter is a topic explored
further in future work.
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Figure 9. Interpolated on-sky maps showing the difference between the fitted
velocities (top) and velocity dispersions (bottom) provided by DC3 and pPXF
(i.e., ΔVf = Vf,DC3 − Vf,pPXF) for SparsePak IFS of UGC 6918. The look-up
table is to the right of each panel and black contours are placed at 2 km s−1

intervals. The cross marks the galaxy center and the dashed ellipse marks an
in-plane radius of 30′′, assuming an inclination of 30◦ and a position angle of
190◦. The differences in the kinematics are of the same order or less than the
derived errors in nearly all measurements.

(A color version of this figure is available in the online journal.)
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APPENDIX

INSTRUMENTAL-BROADENING CORRECTIONS

This appendix details the procedure for correcting velocity
dispersion measurements derived via CC for differences in the
instrumental broadening between the template and the galaxy
spectrum. We ignore beam-smearing effects in order to simplify
the following discussion.

From Paper II, we define δσ 2
inst ≡ (σ inst

G )2 − (σ inst
T )2, indepen-

dent of wavelength. However, the proper measurement of σLOS
via the CC method requires σ inst

T [λT ] = σ inst
G [λT (1 + z)] where

the observed galaxy-spectrum wavelengths (λG) are identical to
the Doppler-shifted template-spectrum wavelengths, λT (1 + z).
That is, even if the template and galaxy observations are taken
during the same night with the same spectrograph setup, one
expects δσ 2

inst 	= 0 if there is a wavelength dependence of the
instrumental dispersion and a non-zero Doppler shift between
the galaxy and template. Thus, we not only have to account for
gross differences between σ inst

T and σ inst
G due to, e.g., slight dif-

ferences in the spectrograph setup, but also second-order effects
incurred by the wavelength dependence of σinst.

We assume that the difference in instrumental broadening
between G and T has had a negligible effect on the derived
velocity between the template and the galaxy, which is a
robust assumption for our expected velocity accuracy and small
differences between σ inst

T and σ inst
G (at most a few km s−1). In

this case, only corrections to the measured velocity dispersion,
σobs, are applied.

We defineT to be the template with an instrumental resolution
that ideally matches G. The CC of this template with a broadened
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version of itself is XT ≡ TB ◦ T , where TB = T ⊗ B and B
is the correct LOS broadening function. Given a measurement
of the Doppler shift (z = λG,j /λT,j − 1 for spectral feature j),
one can create T by convolving T with a wavelength-dependent
broadening function, Bδλ, with a Gaussian velocity dispersion
of

σ 2
δλ[λT ] = (

σ inst
G [λT (1 + z)]

)2 − (
σ inst

T [λT ]
)2

+ σ 2
off, (A1)

where σoff is a constant put in place such that σ 2
δλ � 0 at all λT .

In principle, we need only force σoff � 0. However, in practice,
we require σδλ be large enough to avoid systematic errors in
the discrete convolution due to sampling issues. Moreover, the
CC method is predicated on a significant broadening between
the template and galaxy spectra; therefore, the difference in
resolution cannot be so large as to force σoff to be larger than the
astrophysical velocity dispersion in the galaxy spectrum. The
latter is very rarely a problem for the DMS and always occurs
at low S/N in our IFS; such occurrences will be noted where
appropriate in the analysis of DMS stellar kinematics.

Thus, a comparison between XT and X = G ⊗ T requires a
priori knowledge of the Doppler shift between G and T . Instead
of adding another iteration tier to our CC implementation,
we make some assumptions that allow for mathematical and
procedural shortcuts. The goal is then to generate a single
correction, δσ 2

inst, such that

σLOS = (
σ 2

obs − δσ 2
inst

)1/2
, (A2)

where B has velocity dispersion σLOS and the “observed”
broadening function, Bobs, has velocity dispersion σobs. The
measurement of σobs is that determined without correcting for
differences in instrumental resolution; that is, Bobs is determined
by minimizing G◦T − (T ⊗Bobs)◦T as described in Section 3.
Integrating the intensity-weighted effects of the instrumental
dispersion differences on the CC function, we also define

σ 2
δλ = δσ 2

inst + σ 2
off . (A3)

We calculate δσ 2
inst by defining a fourth broadening function,

B, that minimizes

(T ⊗ Bobs) ◦ T − (T ⊗ B) ◦ T (A4)

using our approach described in Section 3; the velocity offset
of B is fixed at zero and we allow no continuum-fitting iter-
ations. The minimization avoids complications from template
mismatch and shot noise, as opposed to one incorporating G.

Using the definition T = T ⊗ Bδλ, we can rewrite the result
of minimization of Equation (A4) to show

([T ⊗ Bδλ] ⊗ Bobs) ◦ T ≈ (T ⊗ B) ◦ T , (A5)

or, after applying some commutations,

A ⊗ (Bδλ ⊗ Bobs) ≈ A ⊗ B, (A6)

where A ≡ T ◦ T is the AC of the template spectrum. Such
commutations are accurate given the symmetric treatment of

the parenthetical terms on both sides of Equation (A5). Given
that the convolution (or correlation) of two Gaussian functions
produces a third Gaussian function with a dispersion equal
to the quadrature sum of the two input Gaussian functions,
Equation (A6) yields

σ 2
B = σ 2

δλ + σ 2
obs. (A7)

Substitution into Equation (A3) yields

δσ 2
inst = σ 2

B − σ 2
obs − σ 2

off . (A8)

The error in δσ 2
inst is a propagation of the errors in σoff

(determined by σ inst
G and σ inst

T ) and σB because σobs is taken to be
a fixed quantity. For the high- and low-〈S/N〉 spectra analyzed
in Section 5, we find δσ 2

inst/(|δσ 2
inst|)1/2 ∼ 5 km s−1.
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