
The Astrophysical Journal, 716:234–268, 2010 June 10 doi:10.1088/0004-637X/716/1/234
C© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

THE DISKMASS SURVEY. II. ERROR BUDGET

Matthew A. Bershady
1
, Marc A. W. Verheijen

2
, Kyle B. Westfall

1,3,5
, David R. Andersen

3
, Rob A. Swaters

4
,

and Thomas Martinsson
2

1 Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706, USA; mab@astro.wisc.edu
2 Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands; verheyen@astro.rug.nl

3 NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada
4 Department of Astronomy, University of Maryland, College Park, MD 20742, USA

Received 2009 October 18; accepted 2010 April 21; published 2010 May 17

ABSTRACT

We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk
stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light
ratio (ϒ∗), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies.
We find that a disk inclination range of 25◦–35◦ is optimal for our measurements, consistent with our survey
design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated
from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis
used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence
of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and
an extensive library of observed stars. We show that the baryon-to-total mass fraction (Fbar) is not a well-defined
observational quantity because it is coupled to the halo mass model. This remains true even when the disk
mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation
speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the
baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk
mass surface density (Σdyn), disk stellar mass-to-light ratio (ϒdisk

∗ ), and disk maximality (Fdisk
∗,max ≡ V disk

∗,max/Vc).
Random and systematic errors in these quantities for individual galaxies will be ∼25%, while survey precision
for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.
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1. INTRODUCTION

Paper I of this series (Bershady et al. 2010) presented
the DiskMass Survey (DMS), a study designed to break the
disk–halo degeneracy (van Albada et al. 1985), and bypass a
major roadblock in testing galaxy formation models. Without
an independent measurement of the mass-to-light ratio of
the stellar disk (ϒdisk

∗ ), it is not possible to determine the
structural properties of dark matter halos from rotation curve
decompositions. The DMS is an effort to make a direct, and
absolute kinematic measurement of the mass surface density of
intermediate-type spiral disks (Σdyn), calibrate ϒ∗, and determine
the density profiles of dark matter halos in these systems. In a
nutshell, the question we aim to answer is this: how maximal are
normal spiral disks? Specifically, we want to know how much
of the observed disk rotation within the inner 2–2.5 disk radial
scale lengths is in response to the mass of the disk itself.

In this survey, the amplitude of the vertical motions of col-
lisionless tracers in 46 galaxies are measured via integral-field
spectroscopy (IFS) of the integrated star light, in conjunction
with a photometric estimate of the vertical scale height of these
tracers. The former is measured as a velocity dispersion using
absorption lines in the stellar continuum sensitive to old but
luminous disk stars, typically K giants. The latter is based on
the correlation between disk oblateness and radial scale length.
An estimate of the disk-mass surface density then follows di-
mensionally from these length and velocity scales. Our pro-
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gram is inspired by the insights of van der Kruit & Searle
(1981) and Bahcall & Casertano (1984), and the pioneering
observations of van der Kruit & Freeman (1984, 1986) and Bot-
tema (1993). Similar surveys are also underway (Herrmann &
Ciardullo 2009) using different collisionless tracers, albeit with
the same dynamical approach.

Galaxies in the DMS were selected, as described in Paper I,
based on apparent size, inclination, and visual (qualitative)
morphology. Given these constraints, selection from the UGC
(Nilson 1973) resulted in a sample with disk central surface
brightness in range μ0,R = 20.5 ± 1.1 mag, comparable to
Freeman’s (1970) result (translated to the R band) of μ0,R =
20.65±0.3 mag for what are commonly referred to as “normal”
spiral disks. Galaxies in the DMS lie at distances of 15–200 Mpc,
with morphological types mostly between Sb and Scd. The
sample spans factors of 100 in K-band luminosity, 8 in blue-
to-infrared color, and 10 in disk size and central surface
brightness. A posteriori, we find the sample almost entirely
has rotation velocities >120 km s−1. Several studies (e.g.,
Dalcanton et al. 2004; Yoachim & Dalcanton 2006) have shown
that disk properties above and below this rotation speed have
distinct structural properties, including different fractions of
thick-to-thin disk components, as well as different dust-to-star
vertical scale heights. Faster rotators tend to have relatively
smaller thick-to-thin disk luminosity ratios, and shorter dust
scale heights. While these and other differences within the spiral
galaxy population preclude global dynamical conclusions about
disks systems based on the DMS sample, this survey does target
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the heart of the spiral population: Galaxies in the DMS are
typical of Tully–Fisher (TF) surveys, and well sample the knee
of the spiral luminosity function, in which most disk stars are
contained. As such, the DMS provides a particularly relevant
calibration of ϒ∗ in massive, star-forming systems in the nearby
universe.

While computing Σdyn from stellar velocity dispersions and
scale heights is conceptually simple, the actual measurements
are demanding and the analysis complex. To compute disk max-
imality (here,Fdisk

∗,max) we also need to measure the rotation speed
(Vrot), orthogonally projected to the vertical stellar motions (σz)
used to determine Σdyn. This orthogonality presents an obser-
vational quandary, requiring us to choose modest inclinations
for measuring both Vrot and σz. At such inclinations it is also
a challenge to determine the inclination angle itself. Finally, to
complete our scientific objectives, we also must determine ϒdisk

∗ .
This requires further measurement and analysis to correct Σdyn
for the atomic and molecular gas content of the disk, and to cor-
rect surface photometry for dust extinction. Disk dark matter, if
it exists, we assume is distributed with a scale height similar to
old disk stars.

Accurate ϒ∗ values are critical for inferring the dark-halo
profiles in the wide range of galactic systems required to trace
the cosmic history of the stellar baryon fraction. Hence, the
calibration of ϒ∗ is of prime relevance for understanding galaxy
structure and formation. Ideally ϒ∗ would be calibrated for
stellar populations spanning as wide a range of properties (age,
metallicity, and abundance) as possible. While the DMS does
not sample extreme populations likely found in giant ellipticals,
low-mass dwarf irregulars and spheroidals, and low-surface-
brightness disks, the DMS contains a well-defined sample
spanning a wide range of properties. This is ample for testing
the mass zero point of stellar population synthesis models as
well as trends with color and star formation rate. We argued in
Paper I that ϒ∗ should be known to 30% or better in order to
make substantial progress in determining, e.g., the maximality
of spiral disks.

The goals for this second paper in the DMS series are to
estimate, and present an accounting of, the error budget of the
primary derived quantities: Σdyn, ϒdisk

∗ , and Fdisk
∗,max. Specifically,

we verify that we can reach the stated goal of 30% uncertainty
in ϒ∗. As a secondary goal we substantiate our assertion that
low-inclination disks are optimal for this type of measurement.
To achieve these goals we step through every major aspect
of our measurement and analysis, starting with considerations
that informed our survey strategy, namely, uncertainties in
the disk stellar velocity ellipsoid (SVE; Section 2.1), disk
oblateness (Section 2.2), and inclination (Section 2.3). Within
the methodological framework established in Paper I, we detail
all facets required to arrive at an accurate and reliable estimate
for σz (Section 3). We focus here on the challenging aspects of
the spectral analysis unique and central to the survey. Distance
errors are considered briefly in Section 4. The development in
these preliminary sections allows us to establish our expected
error budget for the primary derived quantities from our survey
(Section 5): Σdyn, ϒdisk

∗ , and Fdisk
∗,max. The error-budget analysis

is summarized in Section 6. In Paper III (K. B. Westfall et al.
2010, in preparation) we present the cross-correlation technique
used to derive the SVE from pilot observations of UGC 6918.
The same galaxy is used here to illustrate central features of
our analysis. All distant-dependent quantities are scaled to
H0 = 73 km s−1 Mpc−1. Logarithmic errors are specified as
Δ ln X ≡ ε(X)/X, where ε(X) is the error in quantity X.

2. SURVEY DESIGN OPTIMIZATION

We argued in Paper I that a nearly face-on approach to
measuring both the disk mass surface density and the total mass
is optimal because of the quadratic dependence of Σdyn on σz,
compared to the linear dependence on the disk scale height.
We develop this argument by comparing (Sections 2.1 and 2.2)
the constraints available on the shape of the SVE compared
to those on the disk oblateness. We quantify in Section 2.2 the
contribution of disk-oblateness uncertainties to our error budget.
Because of the uncertainties in the SVE there is a detailed
balancing that can be done between the amount of projection
of the vertical versus tangential motions of the stars into the
observers line of sight. We tie together the uncertainties in the
SVE and inclination in Section 2.3 to arrive at an optimized disk
inclination range for the DMS.

2.1. Disk Stellar Velocity Ellipsoid

The SVE is described by its radial, tangential, and vertical
components: σR , σθ , and σz. Here we do not entertain the
effects of a tilted ellipsoid. What is relevant for the DMS, in
order to deproject σz from the observed line-of-sight velocity
dispersion, is the shape of the SVE. This shape is conveniently
parameterized by the axial ratios α ≡ σz/σR and β ≡ σθ/σR .
Expectations from the solar neighborhood are that σR > σθ >
σz, specifically with 0.5 < α < 0.6 and 0.6 < β < 0.7
for the thin disk, depending on what tracers are used (Binney
& Merrifield 1998). However, little is actually known about
these values in external galaxies, and no measurement exists
to indicate if there is a radial dependence to these ratios.
Radial dependences are likely, based on dynamical arguments,
including the simple observation that galaxies tend to be
dynamically hotter in their interior.

Extant knowledge of α and β for external spiral galaxies
(summarized in Shapiro et al. 2003) consists of integrals over
major- and minor-axis kinematic data within the inner 1–3 radial
scale lengths of six moderately inclined galaxies, requiring
assumptions regarding the form and validity of the epicycle
approximation and asymmetric drift equation; and 40 edge-on
galaxies, requiring further dynamical assumptions and scaling
arguments (van der Kruit & de Grijs 1999). All measured values
of α and β for external galaxies are global quantities.

These external-galaxy studies have used the epicycle approx-
imation to measure β, namely: β = 1

2 [∂(ln Vθ )/∂(ln R) + 1],
where Vθ is the tangential speed of the stars (see Westfall 2009).
Data presented in Shapiro et al. (2003) imply 0.6 < β < 0.8.
Since β depends on the derivative of the tangential speed, in
general we do not expect β to be constant with radius. To obtain
global values for β these same studies have parameterized the
radial dependence of the tangential speed as a power law. A
parameterization serves to minimize errors associated with the
derivative in the epicycle approximation. Adopting a more real-
istic functional form for the tangential speed (e.g., the “universal
rotation curve” of Courteau, 1997) would be preferable. With a
suitable model for the tangential speed, the uncertainty in the
value of β is not of concern because the very stellar measure-
ments needed to determine the line-of-sight velocity dispersion
(σLOS) can be used to estimate β.

To derive σz from σLOS then is largely a matter of determining
α, and herein lies the problem. From existing data there is
some hint of a trend in the ellipsoid ratio α to larger values
(0.8) for types earlier than Sb, but this is based on a few
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points with substantial errors. It is conceivable that this trend
is due to increasing bulge contamination in earlier types. For
later types, the mean ratio falls in the range 0.5 < α < 0.7,
with less indication of trend, but a 50% spread (1σ ), i.e.,
0.3 < α < 0.9. For an edge-on approach to measuring disk
mass, this translates into a 100% systematic error in Σdyn from
the velocity component alone. In short, the SVE in disk galaxies
is not well known.

This brief discussion concludes that the experimental design
to measure disk mass via the stellar σLOS must either determine
the SVE shape very well, or choose an inclination range where
σz is favorably projected and uncertainties in the SVE lead
to little error in the correction. It turns out that a nearly
face-on inclination answers both desiderata. Future papers in
this series will show the dependence on inclination for the
SVE determination (see also Westfall 2009). Here, we provide
estimates for typical α and β values and uncertainties in our
survey in Section 3.5.4.

2.2. Disk Oblateness

We show it is possible to estimate z0, the vertical scale height
used to determine Σdyn (Equation (1) of Paper I), reliably from
hR, the exponential radial disk scale length. Several independent,
photometric surveys exist of edge-on galaxies, linking scale
height and scale length to galaxy type, rotation speed, and other
readily observable global properties. In contrast to the situation
for the SVE, a relatively clear picture emerges.

2.2.1. Disk Vertical Structure

To place disk oblateness properly into the context of Σdyn error
budget, it is necessary to clarify the definition of scale height
in terms of the vertical structure of a disk. Anticipating the
generalization in Section 5 we begin by noting the formulation
for Σdyn in Equation (1) of Paper I assumes a locally isother-
mal disk with a vertical mass–density distribution function of
sech2(z/z0). Other density distributions are also appropriate,
including sech(z/zsech) and exp(−z/hz) (van der Kruit 1988).
A more general expression of Σdyn can be written to include
the three vertical distribution functions: Σdyn = σ 2

z /πkGhz,
where k = 3/2, 1.7051, 2 for exponential, sech, or sech2 ver-
tical mass distributions. Since all three functions behave as
exponential distributions at large scale heights, we can relate
z0 = √

2 zsech = 2hz in our specific functional formulation. We
use these equalities throughout the discussion here, and define
oblateness as q ≡ hR/hz ≡ 2hR/z0 ≡ √

2hR/zsech.
Unfortunately, the issue of what is the actual vertical

mass–density distribution of disks remains outstanding. In the
DMS, we parameterize this ignorance in the possible range of
k. An isothermal distribution is conceptually preferable given
a simple picture of a single, relaxed population of disk stars.
However, the non-isothermal density distributions, which have
discontinuous potentials at the mid-plane, appear to be a suitable
approximation to a combination of a thin and thick stellar disk
plus a very thin mid-plane distribution of atomic and molecular
gas and very young stars. This is a model qualitatively consis-
tent with our picture of the Milky Way. Indeed, recent studies
of resolved stellar populations in nearby, edge-on-galaxies also
show such three-component stellar systems, with scale heights
increasing with population age (Seth et al. 2005). Observations
in the near-infrared, capable of penetrating the disk mid-plane
dust layer, indicate that an exponential vertical distribution is
likely the best functional form (Wainscoat et al. 1989; Aoki

et al. 1991; de Grijs & van der Kruit 1997), although Aoki et al.
point out that the steepness of the density distribution inferred
from the K-band light near the mid-plane that they observed in
NGC 891 could be due to an excess of red super-giants with
low mass-to-light ratio (M/L). Yet even if the light near the
galaxy mid-plane is dominated by massive stars with low ϒ, the
additional gas components still make an exponential vertical
mass–density distribution a plausible approximation.

Luckily, the uncertainties in the vertical mass–density dis-
tribution can be decoupled from uncertainties in estimating a
characteristic scale height, hz, for the purposes of measuring
Σdyn. This is true so long as the light-weighting of the kine-
matic signal in face-on galaxies is the same as what defines
the photometric vertical profile in edge-on samples. This is a
reasonable assumption when coupling the near-infrared light
distribution in edge-on systems to gravity-insensitive kinematic
signal dominated by cool stars in face-on samples. (The lines in
our spectroscopic regions of Mg ib and Ca ii meet these desider-
ata.) In this situation, the relative contribution of different disk
components (e.g., thin and thick) is statistically self-consistent
in photometric estimates of scale heights (observed in edge-on
samples) and in kinematic estimates of σLOS (observed in face-
on galaxies); k parameterizes the dynamical variation in the disk
vertical mass–density to the estimate of Σdyn. Accordingly, we
focus now on what we know about the correlation of the vertical
to the radial scale lengths of the disk light distribution, and then
explore how the correlation might be biased by wavelength or
the presence of multiple disk components.

2.2.2. A Fiducial Relationship

Figure 1 illustrates our compilation of four studies (Kregel
et al. 2002; Pohlen et al. 2000; Schwarzkopf & Dettmar 2000;
Xilouris et al. 1997, 1999) of the vertical to radial disk scale
length (hz and hR, respectively) based on photometry of edge-on
galaxies. All absolute values have been rescaled consistently to
our choice of H0. For contrast and application to the DMS,
the two panels break out the spirals into intermediate-types
(top) and early and late types (bottom). The majority of DMS
galaxies in the Phase-B sample (Paper I), for which there are
stellar spectroscopic observations, have morphological types
consistent with those in the top panel.

For the Kregel et al. (2002) sample, we have adopted their
I-band results as they recommend, included three more-nearby
galaxies from their later work (NGC 891, 5170, and 5529;
Kregel et al. 2004), but excluded ESO555-G36 because of
contamination due to a bright fore-ground star (de Grijs 1998).

Of the seven edge-on galaxies we include in Figure 1 from
Xilouris et al. (1997, 1999), two overlap with the Kregel
et al. sample; however, these galaxies have been observed
independently and subjected to different modeling techniques.
The Xilouris et al. observations include B,V, I, J, and K
bands. Since we are interested primarily in the distribution of
old, luminous stars also used as dynamical tracers, and to be
consistent with the Kregel et al. sample we therefore focus on
the red and near-infrared bands (including I). Plotted are the
I-band values, after adjusting their distance estimates based on
recession velocities corrected for Virgo in-fall, consistent with
the procedures in Kregel et al. (2002).

Accordingly, for the Schwarzkopf & Dettmar (2000) sample,
for which they have observed in r, R,H,K bands, we have
restricted their sample to those 15 galaxies with near-infrared H-
or K-band measurements. Similarly, for the Pohlen et al. (2000)
sample, for which they have observed in g, r/R, i bands, we
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Figure 1. Radial to vertical scale length ratio (hR/hz) distribution in the I or near-infrared bands for edge-on spiral galaxies. Top panels show intermediate types
while bottom panels show early and late types based on a compilation described in the text. Left panels show the distribution vs. radial scale length (hR). The solid line
represents a linear least-squares fit (no rejection) to the Kregel et al. sample for Sb–Scd Hubble-types, typical of the DMS. Dotted lines are the 1σ dispersion about
these fits, corresponding to 0.095 dex or 25% random uncertainty in hz per galaxy based on measured radial scale lengths. The dashed line is a weighted regression
with intrinsic scatter (Akritas & Bershady 1996) to the same subset, yielding comparable results in slope and dispersion. Right panels are histograms of deviations
for all galaxies about the best-fit to the Kregel et al. sample, broken down by type. Black solid and dotted lines represent differential and normalized cumulative
distributions for the 60 galaxies typed between Sb and Scd. Intermediate light- and dark-gray histograms (top) and extreme light- and dark-gray histograms (bottom)
are the differential distributions for Sc/Scd, Sb/Sbc, Sd/Sdm, and Sa/Sab types, respectively.

have restricted their sample to only those five including i-band
measurements. We find that the scatter increases substantially
if we include bluer measurements. These last two studies
are particularly interesting because unlike the two previous
studies which use only an exponential vertical distribution,
they allow the vertical distribution to be characterized by either
exponential, sech, or sech2 functions. Their tabulated values
represent the corresponding effective exponential scale heights
regardless of the fitted functional form. By limiting their sample
to just the near-infrared measurements, the trends of radial to
vertical scale lengths appear identical for all functional forms.

While the scatter in Figure 1 may at first glance look large,
there are two significant degrees of coherence. First, disk
oblateness for intermediate-types Sb–Scd correlates with the
scale of the disk (hR; top panel). Second, there is an offset in
the relation with galaxy types earlier than Sb or later than Scd
(top versus bottom panels). The correlations are in the sense
that later-type galaxies (less bulge-dominated systems) have
thinner disks, and larger disks (at a given bulge-dominance) are
thinner. This makes some astrophysical sense in that whatever
produces a bulge or pseudo-bulge either represents a merging
or disk instability process that would heat the disk. The fact that
disk thickness does not scale linearly with disk scale length
must reflect a more complicated interplay between angular
momentum and the mechanisms responsible for disk heating.
While previous studies have noted the type dependence, the
correlation with scale appears as, if not more, fundamental, and
is likely associated with the general scale dependence of galaxy
properties (e.g., van den Bergh 1960). Key here for minimizing
scatter is this at least bivariate correlation.

Our fit to the Sb–Scd galaxies typical of the DMS for the
Kregel et al. subset (shown in Figure 1) statistically matches both

the slope, zero-point, and scatter of the other three samples; these
four samples are statistically indistinguishable in this regard.
The Kregel et al. sample is a good match to our own both
in the distribution of physical size, surface brightness, rotation
velocity, and morphological type (compare Table 1 of Kregel
et al. 2002 with our Table 3 of Paper I.) Hence, we adopt this fit
as the operational relation for the DMS at this time:

log(qR) ≡ log(hR/hz)

= 0.367 log(hR/kpc) + 0.708 ± 0.095. (1)

This is consistent with hz ∝ h
2/3
R . We conclude that the effective

oblateness of the disk can be reasonably estimated to about
25% (1σ systematic error for any one galaxy) for face-on
galaxies typical of the DMS sample, simply via measurement
of hR in the I band. We do not distinguish between sub-
types for Sb–Scd since there is presently no solid statistical
basis (e.g., Kolmogorov–Smirnov (K-S) test) to do so. For
error-budgeting purposes we adopt the logarithmic derivatives
Δ ln qR = 0.25 and Δ ln hR = 0.03, the latter following the
analysis of MacArthur et al. (2003). We believe Δ ln qR = 0.25
is likely an over-estimate for reasons given in Sections 2.2.3 and
2.2.5. For the three galaxies in the DMS earlier than Sb and the
two galaxies later than Sd, we use the data points in the bottom
panel of Figure 1 to estimate offsets from the above fiducial,
assuming the same slope. This adds 15% additional uncertainty
in qR (a total of 29% instead of 25% uncertainty in the oblateness
correction), but only for ∼10% of the DMS sample. We expect
a more comprehensive compilation of the literature or future
analysis will add to, and improve, the calibration of qR for all
types.
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Figure 2. Radial to vertical scale length ratio (hR/hz) distribution for edge-on spiral galaxies from Yoachim & Dalcanton (2006). Top panels show the distributions
as measured for B, R, and K bands assuming a single-component disk, as coded in the legend. Bottom panels show the distributions as measured in the R band for
a single-component disk and a two-component disk (thick and thin), as coded in the legend. Solid and dotted lines are the same as in Figure 1. Right panels are
histograms of deviations for all galaxies about the best-fit to the Kregel et al. sample, broken down by band (top) or disk component (bottom).

2.2.3. Wavelength Dependence

While we have calibrated qR in the I band, we also explored the
wavelength dependence of this relationship. This is important
because we know disks in external galaxies have radial color
gradients presumably due to changes in mean age and metallicity
with radius; expectations from the solar neighborhood are that
vertical color gradients should exist as well due to increasing
scale heights with stellar population age. A priori, it is unclear if
the vertical and radial gradients scale such that disk oblateness
appears constant with wavelength. If not, in order to avoid
systematics in deriving Σdyn the oblateness–radial scale length
relation must be calibrated at the same wavelength used to
measure radial scale length, and at a wavelength appropriate
to measure the scale height of the kinematic tracers.

Inspection of the sizes (hR) and oblateness (q) as a function
of band pass in the Xilouris et al. sample shows clearly that
size increases while oblateness increases significantly at shorter
wavelengths. Larger radial scale lengths in the blue are not
unexpected: galaxy disks have color gradients in the sense that
they become bluer with radius, e.g., see de Jong (1996a) in the
face-on context. In fact, an inspection of the radial scale lengths
tabulated by de Jong (1996b) in B and K bands shows just this
effect. Likewise a decrease of q in blue light is consistent with
expectations that star formation is concentrated toward the mid-
plane, despite the impact of extinction and scattering on the
apparent light distribution. While the Xilouris et al. data show
an effect from I to B bands, there is also some hint of an effect
between I and V as well, but there is insufficient data to probe if
differences exist between I and redder bands.

Yoachim & Dalcanton (2006, hereafter YD) find a similar
result in a larger sample of 34 edge-on galaxies observed in
B,R,K bands. However, they also see a decrease in hz in the
K band, which they tentatively interpret as a combination of
extinction, observational depth, and stellar-population effects.

This data set is rewarding to work with because, like the work
of Kregel et al., the authors have published their uncertainties.
We have plotted their measurements in Figure 2 (top panels)
for all of their bandpasses. The histogram to the right shows
the residuals about the relationship given by Equation (1). From
these figures we draw two conclusions.

First, our calibration with independent data provides an
excellent description of the data. The mean residuals in the
R and K bands are under 4%, and the scatter is somewhat lower
(0.07 dex, or 18%). If we assume their sample is similar to what
we have compiled from the above studies, this indicates that
our zero point for qR is likely accurate to better than 7% in the
red and near-infrared, and that our estimate of Δ ln qR can be
reduced. Because we cannot verify this assumption, we retain
Δ ln qR = 0.25.

Second, the mean residual in the B band differ by at most
0.05 dex (12%), and while the R- and K-band mean residuals
differ formally by 5% they are indistinguishable on the basis
of a K-S test. This result requires no assumptions because it
is a differential comparison. In other words, our finding is that
while oblateness and scale length change with wavelength, to
first order this simply shifts galaxies along the regression given
by Equation (1). This implies that qR can be readily estimated
via any accurate scale length measurement from the blue to near-
infrared wavelengths. Since we are interested in the scale height
of the old stars, this still requires scale-length measurements in
the red or near-infrared.

2.2.4. Thick Disk Component

The YD data set can also be used to explore what impact
a thick-disk component has on our relation for qR. This is
important because the presence of a significant thick disk, if
hidden due to lack of projection in a face-on system, would
systematically increase σLOS relative to a system dominated by
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a thin disk. Unless the effective oblateness, qR, accounts for this
thick component, the result would be an overestimate of Σdyn.

Ever since the early work of van der Kruit & Searle (1981),
there have been on-going searches for thick disks around
external spiral galaxies. For example, with the advent of deep
CCD photometry, Morrison et al. (1994) found that NGC 5097
was absent a Milky Way-like thick disk, with at most a 2%
contribution (by light) from a thicker component. Fry et al.
(1999) found no evidence for a thick disk in NGC 4244 also
down to very faint light levels. However, even the earlier
photographic work of van der Kruit & Searle (1981) sometimes
showed small departures from a single exponential vertical
light distribution at very low light levels. The work of YD
convincingly shows the need for more than a single component
in a wide range of late-type spirals, at least qualitatively
consistent with the work of Seth et al. (2005). The impact of the
YD two-component disk fits in the R band is shown in the bottom
panel of Figure 2. Compared to the one-component fits, the
oblateness of the two-component thin plus thick disk increases
36% for the thin disk and decreases 50% for the thick disk. If the
kinematic signal in face-on systems could be uniquely identified
with thin or thick components, then these data could be used to
recalibrate Equation (1). The scatter in the qR relation for the
thin-disk component is comparable to that for the Kregel et al.
sample (25%), while for the thick-disk component the scatter is
only slightly larger (32%).

For the DMS, however, we expect both thin and thick disks
to contribute to our kinematic signal. For example, YD find the
ratio of thick-to-thin scale heights is roughly a factor of 2.4.
This is much larger than the value of 1.1 Seth et al. (2005)
found for the ratio of scale heights for red giant branch (RGB)
to asymptotic giant branch (AGB) stars in similar galaxies.
Hence YD’s findings are likely not coupled to population-age
effects, but some other mechanism. In other words, it is plausible
to assume that RGB stars (our expected primary kinematic
tracer) are well mixed in both thin and thick components
as parameterized by YD. In this case, while superficially
the changes in disk oblateness going from one to two-disk
components appear alarmingly large, we show that the single-
disk fits are a suitable characterization of the vertical light
distribution for mass modeling.

A rough assessment of the importance of the thick disk to the
integrated light can be gleaned from YD’s Figure 7: the observed
excess light departing from a single-disk fit becomes appreciable
above ∼3hz. The excess accounts for no more than about 5%
of the total light enclosed within their measuring window in
scale height (their fitting region is R/hR < 4 and z/hz = 6–8),
but the excess is at large heights where the dynamical impact
in terms of the effective scale height is more significant. This
percentage appears fairly independent of rotation velocity. On
the other hand, YD show that the luminosity ratio of thick-
to-thin disks decreases substantially at higher rotation speeds,
while the ratio of vertical scale heights is constant. (This requires
the thick disk radial scale length to increase at lower circular
velocities relative to the thin disk, which is what they see.) For
Vrot > 100 km s−1, the contribution of the thick disk to the
overall disk surface-brightness is below 10% in the R band.
This is consistent with previous studies finding little thick-disk
contributions or evidence for disk-flaring within four radial
scale lengths (equivalent to larger thick-disk scale lengths).
For example, NGC 5097 has a rotation speed of 220 km s−1

(Casertano 1983), while NGC 4244 has a rotation speed of
100 km s−1 (Olling 1996). For the DMS, 92% of the sample

has Vrot > 120 km s−1. This is in a regime where YD estimate
that the thick-disk component is below 10% of the total disk
light contribution and thick and thin-disk radial scale lengths
are equivalent. (Only 4% of our sample would be expected to
have >20% thick-disk contributions based on their calibration.)
Therefore, we anticipate the single-disk fits provide an fairly
accurate characterization of disk oblateness for the DMS.

We refine this initial assessment by calculating the first
moment of the vertical light profile,6 z1, for the one- and two-
disk model parameters in YD’s Tables 3 and 4. This moment is a
non-parametric proxy for hz, sensitive to the shape and extent of
the light distribution. For single-component sech2 vertical light
distribution z1/hz = 2 ln 2. Because YD provide the median
parameters over a set of different fitting schemes, where the
median is taken for each parameter individually, these values
do not make self-consistent sets. For example, if one integrates
the thin- and thick-disk profiles specified in their Table 4, their
tabulated ratio of thick- to thin-disk luminosity is not recovered.
We proceed by adopting the median scale lengths and scale
heights, but renormalize the central surface brightness of the
thin and thick disks to simultaneously yield (1) the tabulated
thick-to-thin luminosity ratio and (2) the same vertical surface-
brightness profile in the mean for single- and two-disk models
in the region for z < 3hz and R/hR < 4. The latter essentially
reproduces their Figure 7. We also implement their correction
for internal extinction for the two-disk model, which in their
scheme is a correction to the thin-disk luminosity only, but still
require condition (2) to be met.

The difference between the face-on, radial surface-brightness
profiles for the one- and two-disk models, renormalized as out-
lined above, are shown in the top panel of Figure 3. Without
extinction, the differences are of order 5%, as anticipated, in-
creasing at larger radii. The effect of extinction is to decrease
the contribution from the thin-disk component; with our renor-
malization this brings the one- and two-disk face-on surface-
brightness profiles into closer agreement. The ratio of vertical
first moments in the bottom panels of Figure 3 shows signif-
icant scatter consistent with measurement errors, and a trend
to relatively smaller z1 for the one-disk models at slower ro-
tation speeds. In the regime of interest to the DMS between
1 < R/hR < 3 for the fast-rotating disks (Vrot > 120 km s−1),
the z1 ratio is consistent with unity; with no extinction the
weighted mean ratio is 0.94, and with extinction this increases
to 1.06. In the context of the concerns framed at the beginning of
this subsection, it is clear that the presence of a thick-disk com-
ponent has an insignificant impact on the effective disk scale
height relevant for disk-mass measurement.

In Figure 4, we show that there is a correlation between
offsets from the fiducial oblateness relation of the thick and
thin components, as well as between the one- and two-disk
models. For the latter, the two-disk offsets are computed as
the luminosity-weighted mean offset of the thick and thin
components. In other words, when the thick disk tends to be
more or less oblate than what would be inferred by its radial
scale length, so too does the thin disk component; together
these offsets are in lock-step with the oblateness variation
of the one-disk model. Whether due to astrophysics or the

6 This is the moment at a specific radial and azimuthal location (R, θ ) in the
disk, i.e., not the projected edge-on light distribution. In this case,
z1(R, θ ) = ∫ ∞

0 I (R, z, θ ) z dz /
∫ ∞

0 I (R, z, θ ) dz, where
I (R, z, θ ) = ∑

1,...,j Ij (R, z, θ ), and

Ij (R, z, θ ) = I0,j e−R/hR,j sech2(z/z0,j ) is the light density for a single
isothermal component, j.
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Figure 3. Comparison of light profiles for one- and two-component disk fits. Top panels: face-on surface-brightness difference between one and two-component disk
fits from YD, renormalized as described in the text. Dark-gray region represents weighted mean and errors for fast-rotators (Vrot > 120 km s−1); light-gray areas
represent the same for slow-rotators (Vrot < 120 km s−1). Individual fits near R/hR = 2.2 are shown as shaded circles; their dispersion is large because of measurement
error. Bottom panels: ratio of the first moment of the vertical light profile for one and two-component models at R/hR = 2.2. Open circles represent moment integrals
taken out to z = 6hz of the one-component disk; filled circles represent moment integrals extended to convergence. Gray shaded areas and dotted horizontal lines
represent standard deviation and mean for the fast-rotators. Left-hand panels are for fits without correction for extinction. Right-hand panels adopt an extinction model
for the thin-disk component, as prescribed by YD.

Figure 4. Comparison of deviations from mean oblateness–radial scale length relationship for one- and two-component disk fits to the YD sample. The left panel
compares thin and thick disk oblateness deviations for the two-component model, where the mean relationship between oblateness and disk radial scale length is taken
to be Equation (1) with zeropoint adjustments giving zero mean deviation. The right panel compares deviations for the one- and two-component disk oblateness, where
the two-component value is the light-weighted sum of the deviations for the two components. There is no zeropoint adjustment with respect to Equation (1). Solid and
open symbols are for fast- and slow-rotators, as keyed in the figure.

fitting process, both models represent the same departures from
the fiducial oblateness relation. This result combined with the
insensitivity of z1 to one- versus two-component disk fits leads
us to conclude that the single-disk fits provide a statistically
accurate characterization of disk oblateness for the DMS.

2.2.5. Additional Correlations and Concerns

It is reasonable to expect that the estimation of hR/hz will
improve in the near future. Measurement precision will increase
with deeper images, sample sizes will increase with the exten-
sive imaging surveys now in hand, and sample homogeneity will

increase with better classification. In this context, it is relevant
to recall that the single-disk fits of YD yield 30% less scatter
than our calibrators.

It is also likely that the estimation of hR/hz will improve
because of additional correlations between disk oblateness and
other observables. For example, Dalcanton et al. (2004), Kregel
et al. (2005), and YD show that there is a correlation between
disk rotation speed and hR/hz. Kregel et al.’s sample also
shows a possible correlation of hR/hz with H i mass. Size,
rotation-speed, and mass are all proxies for galaxy scale (in
the van den Bergh sense), so these correlations may not be
independent. Indeed, we do not see any correlations in the
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residuals from qR with these other quantities. However, a
principal-component analysis may further reduce the scatter
in Figure 1. The significant residuals from the correlation of
hR/hz with hR (in excess of observational error) indicates a
further reduction in scatter of qR may be possible.

One other relation that is being used in the literature to
estimate hz (Herrmann & Ciardullo 2009) is an apparent
correlation of disk oblateness with surface brightness (Bizyaev
& Mitronova 2002, 2009). Taken at face value, the formula
provided by Bizyaev & Mitronova (2002) produces estimates
of hz based on measurements of hR and the disk central
surface brightness (in the K band) with 22% precision for
their sample. Applying Equation (1) to their sample we find
hz is estimated only to 30%–40% precision, depending on what
subset of their data is used. The subset with larger scatter is their
preferred subset of larger galaxies, for which they believe their
measurements are more robust. Somewhat worrisome is the fact
that this same sample has an offset of about 20% in the mean
from Equation (1) as well. Furthermore, the formulae relating
hR/hz to K-band central disk surface brightness from their two
studies (2002 versus 2009) do not give consistent results, with
hR/hz differing by over 60% near the Freeman value (assuming
typical B − K colors for disks). The sample and photometric data
are similar between these two studies by the same authors, but
there is insufficient information to determine why their derived
relation has changed. More puzzling is the fact that we do not
find a convincing correlation in the data sets we have analyzed
here (see, for example, Kregel et al. 2005). For these reasons,
Equation (1) remains our estimator for disk oblateness, and we
would caution against using surface brightness as a proxy for
disk oblateness at this time.

2.2.6. Contributions to the Error Budget

The uncertainties in estimating hz from applying the calibra-
tion of hR/hz in Equation (1) have both systematic and random
components. Random errors in hz arise from the propagation of
random errors in measuring hR in an individual galaxy. There
are also likely to be stochastic, astrophysical variations in disk
oblateness from galaxy to galaxy of a given size and type. These
variations contribute, no doubt, to some of the scatter about the
mean relation seen in Figure 1 even for the restricted subset of
Sb–Scd systems. However, while such variation leads to sys-
tematic errors in estimating hz for individual galaxies, the effect
is random for the sample as a whole. Hence, errors in hz that
arise from real variation in disk oblateness will be substantially
reduced in a statistical sense for the survey as a whole and will
be random errors. The propagation of these errors for Σdyn, ϒdisk

∗ ,
and Mhalo

dyn is discussed in Section 5, where we also consider the
impact of a thick disk.

2.3. Disk Inclination

How close to a face-on orientation is best? Low inclinations
minimize (1) line-of-sight contamination to σz from σR and σθ ,
(2) beam smearing from velocity-field shear, and (3) extinction
effects on the derived surface brightness, color, and velocity
dispersion of the disk. However, in order to obtain the full mass
budget of the galaxy, we must measure not only Σdyn but the
total mass (Mtot

dyn) via measurements of the projected circular
rotation and disk inclination (i).

Nominally, we would prefer galaxies which are minimally
inclined to derive kinematic inclinations from their velocity

fields, with sufficient accuracy such that errors on the derived
total masses from rotation curves are comparable to those of
the disk mass surface density from σz. However, the detailed
trade-off depends on the specific science goal. Within our sur-
vey there are two related ones, namely, (1) measurement of
Σdyn and calibration of ϒdisk

∗ , where low inclination is preferred
(< 30◦) to minimize line-of-sight contamination to σz; and (2)
measurement of disk-to-total mass ratios (from rotation-curve
decompositions), which favors modest inclination (25◦–45◦) to
balance disk- and total-mass errors. The Σdyn error-budget de-
pends on inclination primarily through the correction to σLOS
for the projected σR and σθ components of the SVE. The degra-
dation in precision of measuring σz is shallower than a simple
1/cos i function because the SVE shape can be measured di-
rectly from the data, and this measurement improves with
increasing inclination (up to moderate inclinations). Westfall
(2009) addresses the optimum inclination for SVE decomposi-
tion. The following discussion encapsulates the arguments used
to arrive at these quantitative inclination ranges, and how we
optimized our selection.

Our base-line approach has been to rely on kinematic esti-
mates of inclination (Paper I), which we find to be superior
at low inclination to photometric estimates based on apparent
disk ellipticity (Andersen & Bershady 2003). Indeed, one of the
motivations of Andersen’s (2001) survey was to establish the ef-
ficacy of using Hα velocity fields measured with coarsely sam-
pled integral field units (IFUs) to constrain disk inclination in
preparation for the current DMS. Because of the high signal-to-
noise ratio (S/N) and spectral resolution of the Hα data, we are
able to determine kinematic inclinations with a precision better
than 2◦ at the relatively low inclination of 28◦ (see Appendix A).

As noted in Paper I, inclination can also be estimated by
inverting the TF relation (Tully & Fisher 1977), with the
advantage that random errors in so-called inverse-Tully–Fisher
(iTF) inclinations do not blow up at low inclination, as do
both photometric ellipticity and kinematic isovelocity methods.
For nearly face-on galaxies the iTF-inclination random errors
in percentage terms are simply proportional to the quadrature
sum of the projected velocity and luminosity errors (the latter
including distance uncertainties), while the systematic errors are
proportional to the scatter in the TF relationship. Because of the
potential for large systematic errors (i.e., a priori: what is the
TF scatter for the sample or source in hand, and how accurate
are the non-Hubble flow corrections to the observed systemic
velocity?), our preference is to work in a regime of inclination
where kinematic inclinations can be measured with small
enough errors to reduce the overall error budget (random and
systematic), and where we can directly verify a galaxy’s location
on the TF relation. While our survey sample was selected
accordingly, post-facto, high-precision kinematic inclinations
are not obtainable for all survey galaxies. Consequently, we
have also utilized additional inclination constraints from iTF in
some cases (D. R. Andersen et al. 2010, in preparation).

Figure 5 illustrates the trade-offs with inclination between
logarithmic errors in total-mass and disk-mass surface density,
accounting for errors in inclination only (formulae are given
in the Appendices as noted). Left-hand panels show errors
assuming inclination is measured from fitting the Hα velocity
fields with a model of an inclined, rotating disk (Appendix A.1).
In the top panel, data points represent a preliminary analysis of
70 galaxies in the DMS, yielding quantitative expectations for
errors introduced by inclination uncertainties (Andersen 2001).
Black points and curves (decreasing left to right) represent
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Figure 5. Partial DMS error budget, expressed as logarithmic derivatives, illustrating tradeoffs with inclination and SVE decomposition. Left-hand panels adopt
kinematic inclinations and inclination errors; right-hand panels adopt iTF inclinations and errors for a range of slopes and TF-scatter (mag). Top panels assume
the SVE shape is known to 10%; bottom panels assume a 50% precision. In all panels, black curves, horizontal lines, and filled points represent total-mass errors
(Δ lnMtot

dyn); dark-gray open points, curves, and areas represent disk-mass errors (Δ ln Σdyn). Light-gray area in top-left panel represents the fraction of the observed
velocity dispersion (σLOS) to the projected vertical component (σz cos i) in a form proportional to the expected systematic error in deriving σz from σLOS. See the text
for details.

total-mass errors (Δ lnMtot
dyn, Appendix B.3), with dashed lines

enclosing the range of galaxies with good velocity fields and
regular kinematics, and the solid curve representing the mid-
point of this distribution. The dotted curve contains the most
deviant points with the largest kinematic inclination errors. Open
points and dark-gray curves in the top panel represent the disk-
mass surface-density errors (Δ ln Σdyn, Appendix B.1) assuming
the SVE is known to 10%—an optimistic scenario—and is
flattened with α = 0.7. Line types have the same meaning as
for total mass; the dark-shaded area shows the range of Δ ln Σdyn
for 0.4 < α < 1.0 and the mid-point of the inclination error
distribution. The light-gray shaded area represents systematic
errors due to deprojection of σLOS, discussed in Section 3.5.4.
The bottom panel repeats this calculation for Δ ln Σdyn assuming
the SVE uncertainty is 50% (Section 2.1.1). Total mass errors
are the same in the top and bottom panels.

The right panels of Figure 5 repeat the logarithmic errors
in total-mass and disk surface density, but adopt inclination
and inclination errors from inverting the TF relation (Appendix
A.2). Logarithmic errors in total mass (black horizontal lines)
are given for two assumptions of the observed TF scatter (0.1
and 0.3 mag, labeled) and a TF-slope of −7, suitable in red
bands. Black, dotted, horizontal lines give the fractional error for
0.3 mag scatter and TF slopes of −5 and −9. This range of slopes

and scatter cover the band-dependent results in the literature.
Best results are for the K-band TF found by Verheijen (2001)
with a −9 slope and a scatter of order 0.2 mag. Logarithmic
errors in disk-mass surface density are indicated by gray, shaded
regions for 10% (top) and 50% (bottom) uncertainty in the SVE
for a range of ellipsoid ratios 0.4 < α < 1.0, a TF slope of −7,
and 0.3 mag scatter. The solid, bisecting line assumes α = 0.7.
Dashed curves show the full range of TF scatter and slopes for
α = 1, while the dotted curve does the same for α = 0.4. For
both Δ lnMtot

dyn and Δ ln Σdyn, the precision is more sensitive to
the scatter than the slope of the TF relation.

Disk-mass errors are rather flat for i > 15◦ for 10% ellipsoid
errors. This would argue for going to inclinations larger than
40◦ to reduce total-mass errors. However, working against this
argument is the fact that systematic errors in Σdyn continue to
increase rapidly with inclination. Hence, we conclude that if
we can determine the SVE to 10%, we should select galaxies
with 30◦ < i < 40◦ to equalize total- and disk-mass errors
each at about 13%. A more reasonable estimate is that our SVE
errors will be closer to 20%–30% (Westfall 2009). This would
indicate lower inclinations of 25◦–35◦ to match total- and disk-
mass errors at about 1.5× higher levels (20%).

Note, however, that errors in Figure 5 are lower lim-
its. Although additional photometric and kinematic errors are
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unlikely to dominate the total-mass error budget for inclination-
contributed errors above ∼10%, we know already that there is
a 25% error contribution to disk-mass errors from estimating
the vertical scale height z0 alone (Section 2.2). Using iTF in-
clinations looks very powerful for reducing errors in both disk
mass and total mass to levels well below other contributed errors
(10%).

For iTF inclinations to be effective (1) very low inclination
galaxies are needed to reduce disk-mass errors, and (2) a clean
identification of what kind of galaxies lie on a low-dispersion TF
relation is needed to reduce total-mass errors. The latter implies
the shape of the outer rotation curve needs to be well defined,
which means H i velocity map is required, and that occurring
warps are well understood (see discussion in Verheijen 2001).
With better SVE estimates, a wider range of inclinations can
be used below a given error threshold in disk mass. For 10%
errors in both mass quantities, inclinations below 15◦ and 25◦
are needed for SVE errors of 50% and 10%, respectively. Targets
cannot be so face-on that their projected velocity gradients are
unobservable. For Vflat = 250 km s−1, inclinations have to be
above 11◦ to keep the projected velocity a factor of 2 above
the turbulent motions (∼25 km s−1). However, since we are
not observing a line width but a velocity field, the averaging
of many spatial position allows for a velocity centroid to be
determined in the flat part of the rotation curve well below the
actual dispersion due to, e.g., turbulent motions, as illustrated in
Figure 16 of Paper I. Whatever the true inclination and circular
speed, clearly the galaxy in that figure has a very regular velocity
field and a flat asymptotic rotation curve from which an iTF-
based inclination can be precisely derived. Despite this promise,
in the absence of (2), i.e., known accuracy, using iTF remains a
compelling yet potentially fatal path if used in isolation.

To summarize, an optimal compromise for our survey goals
can be reached by targeting galaxies with kinematically deter-
mined inclinations between 25◦ and 35◦. We do, however, take
advantage of the iTF method to reduce errors in some situations
(D. R. Andersen et al. 2010, in preparation).

3. THE BROADENING FUNCTION

Since σz is at the heart of our measure of Σdyn, its estimation is
arguably where we can have the greatest impact on minimizing
errors. In Paper I, we outlined two complementary approaches
to deriving σz, with the intent of applying both in an iterative
fashion to (1) optimize the determination of the SVE (using
σLOS on individual fibers), and (2) minimize template mismatch
(using stacks of fibers in radial bins). We focus here on the
latter because this method ultimately allows us to probe σz at
the largest radii. However, most of what is discussed is generic
to both, or a coupled approach to determining σz.

Following the order of analysis, we proceed with determining
the impact on the error budget given our method of fiber stack-
ing (Section 3.1), deriving σLOS from cross-correlation methods
(Section 3.2), and estimating random errors on σLOS due to spec-
tral errors (Section 3.3) and template mismatch (Section 3.4).
Corrections to σLOS that enable us to arrive at a reliable σz

estimate are described in (Section 3.5). These corrections com-
pensate for effects of beam smearing, instrumental resolution,
projection, and internal extinction. As a tertiary topic we con-
sider the uncertainties in the spatial registration (including ef-
fects due to seeing variations) in Section 3.6. While positional
registration of the IFU pointings is actually relevant to the initial
fiber stacking, the uncertainties are negligible. Nevertheless, the
discussion is included for completeness.

3.1. Fiber Averaging: Ring “Stacking”

Two-dimensional spectroscopic data can be binned spatially
in a variety of ways to maximize S/N. Even for an analysis
of the ellipsoid ratio, for example, we can divide the fibers
into quadrants along major and minor axes, and average spec-
tra in bins of radius. For the purpose of estimating Σdyn, with
an estimate of the SVE shape already in hand, we take ad-
vantage of the near face-on geometry by combining fibers in
azimuthal rings to measure a single σLOS at a given radius.
The detailed assignment of fibers to a radial bin depends on
a galaxy’s inclination and position angle (P.A.), which we de-
termine kinematically. Nominally the binning is done by ra-
dius, but we have also found it useful to bin instead by surface
brightness as this can be useful in isolating arm and inter-arm
regions.

In any binning scheme, spectra are registered to take out
the effects of projected rotation before coaddition. This is
achieved by an iterative cross-correlation of each fiber spectrum
against a suitably broadened template. (The cross-correlation
technique is described in detail in Paper III and summarized
here in the following section.) We work progressively starting
with bins at the highest S/N, e.g., as a function of radius.
On the first pass, we adopt a template between G9 III and
K1 III, broadened to the dispersion of the previous bin. After
determining the best template and broadening function for the
stack (below), we adopt these as input for the registration
and iterate to convergence. The advantage of fiber averaging
is that we are only required to determine a velocity centroid
for each fiber in the average, instead of both centroid and
width.

The spectral stacking algorithm has these specific steps: (1)
determine the best-fitting velocity offset for each fiber within a
radial ring for a fixed velocity dispersion and provided template
spectrum; (2) shift all ring spectra to rest-frame velocity and
combine them using weights defined by (S/N)2; (3) using the
combined ring spectrum and the same template, determine
the best-fitting velocity dispersion after fixing the velocity
offset to be in the rest frame; and (4) repeat steps (1)–(3),
restarting with the updated velocity dispersion. Convergence
is reached when the difference in subsequent determinations of
the velocity offsets is below a specified threshold; here, we set
a threshold of 1 km s−1 except for rings with substantially low-
S/N components. Noordermeer et al. (2008) have presented an
alternate algorithm that alters the individual velocity offsets
in order to minimize the velocity dispersion of the stacked
spectrum. This is in contrast to relying on the best estimates of
the velocity centroid for each fiber as we have done here. While
the algorithms should be roughly equivalent at high S/N, we
prefer our approach for low S/N applications because velocity
centroids are more precise. We discuss the impact of errors in
the velocity registration on the derived broadening function in
Section 3.3.

One of the ways to aid in the convergence and make the
stacking process more robust at lower S/N is to provide a
prior estimate of the velocity offsets. We have compared priors
including (1) the measured velocities of gas determined from the
same spectra containing the stellar absorption (e.g., [O iii]λ5007
in the Mg ib-region); (2) model velocities of the gas, based on
a projected rotation-curve fit; (c) or the same, except for the
stellar data in the inner region, extrapolated to larger radii. In
all cases, we find that the resulting stacked spectra are identical
over the full range of S/N and radial bins. This implies that even
though the stellar and gas velocities systematically differ (i.e.,
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Figure 6. Fiber stacking in the Mg ib-region for SparsePak “ring 4” observations of UGC 6918 (see the text) in wavelength space for (a) un-registered spectra and
(b) velocity-registered spectra—both over the redshifted window containing only the Mg ib-triplet. Spectra are continuum-normalized to unity. Gray lines represent
individual fiber spectra, with one fiber highlighted by a thin black line; the thick, black line represents the averaged spectrum. The full spectra are shown in (c)
from top to bottom: the un-registered spectra and averaged spectrum, the velocity-registered spectrum, and the broadened, K1 III template used to register the galaxy
spectra. Spectra are offset in flux for clarity. The location of the Mg ib-triplet absorption and nebular emission from [O iii]λ5007 and the [N i]λλ5198,5200 doublet
are indicated. Many weak Fe and Ti absorption lines are also visible (see Figure 9).

due to asymmetric drift), the iterative, cross-correlation process
is robust to tune up the spectral registration. Indeed, without
such iterations, the stellar spectra broaden systematically at
radii where asymmetric drift is large or the S/N is low. This
is significant because it means we may apply such priors to aid
in the convergence of the velocity registration of, e.g., stellar
spectra in the Ca ii-triplet region stellar spectra where emission
lines are not observed.

Figure 4 of Paper I shows examples of azimuthal rings for
SparsePak and PPak observations of UGC 6918. The table inset
gives the number of fibers in each radial bin as a function of
radius, scaled to the radial scale length. Figures 6 and 7 of this
paper contrast the “before- and after-registration” spectra and
cross-correlations for the Mg ib region in one radial bin (ring
4) of UGC 6918. This ring is between 2.6< R/hR < 3.4, at a
mean V-band surface brightness of 21.6 mag arcsec−2. The data
represent a cumulation of 2.25 hr of exposure, achieving a mean
S/N of 21 pixel−1 in the coadded spectrum at roughly 0.5 mag
below the Freeman disk central surface brightness (Freeman
1970); UGC 6918 has a high surface-brightness disk.

As expected, the averaged spectrum and its associated cross-
correlation have substantially lower noise than their individual
elements. Particularly impressive is that after velocity registra-
tion not only is the correlation tightened (lines narrowed) but the
noise is also further reduced. This “noise” is due to the unreg-
istered superposition of absorption lines. Indeed, the registra-
tion reveals many, weaker lines in the spectrum, and produces
a cross-correlation that better matches that of the broadened
template even outside of the correlation peak where the broad-
ening function is determined. This comparison demonstrates the

power of cross-correlation to pull out signal from the multi-fiber
data distributed over a range of projected velocities. For com-
parison, if we were to limit ourselves to only those fibers that
could be fit individually, the S/N would drop by ∼20% because
40%–50% of the fibers could not be fit at the limiting surface
brightness of our data.

A final advantage of fiber averaging is the ability to mask
out sky lines. While these foregrounds are nominally subtracted
from the data, there are often residuals due to imperfect match
of the spectrograph aberrations between object and sky spectra,
detector under-sampling, or simply the enhanced rms due to the
large number of counts in the sky line. All of these “features”
lower the S/N in the specific wavelength region of the line;
however, the feature shifts in the galaxy rest frame in a spatially
dependent manner because of the galaxy internal motions.
Therefore, by masking out the sky-line regions from the stack,
it is possible to recover a continuous, line-free spectrum,
optimized for S/N. This is particularly important in the Ca ii-
triplet region where sky lines are strong and prevalent. Figure 8
illustrates the masking method.

In this example, we have chosen only to mask out the strongest
lines, typically those with peak flux more than twice the level
of the sky continuum. Mask widths are 0.3 nm (roughly 3
times the instrumental FWHM), except for closely spaced lines
where the mask width is reduced to leave inter-line gaps. Mask
widths are never less than 3 pixels. These mask widths were
found empirically to maximize the resultant S/N and, based on
simulations, to minimize systematics in the derived broadening.
(The sky lines are unresolved, and the internal velocity shifts of
the galaxy are always larger than the instrumental resolution.)
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Figure 7. Fiber stacking in the Mg ib-region for SparsePak “ring 4” observations of UGC 6918 in velocity space for (a) un-registered cross-correlations and (b)
velocity-registered cross-correlations—both within ±200 km s−1 of the galaxy recession velocity. The cross-correlation template is the un-broadened K1 III star shown
broadened in Figure 6. Gray lines represent individual fiber correlations, with one fiber highlighted by a dotted, black line, and the averaged spectrum correlation
shown as a thick, solid line. Thin and dashed black lines in panel (b) represent the broadened-template correlation and the un-broadened template auto-correlation,
respectively. Cross-correlations between ±5000 km s−1 are shown in panel (c) from top to bottom: the un-registered spectrum, the velocity-registered spectrum, and
the broadened, K1 III template used to register the spectra. Cross-correlations are offset in amplitude in panel (c) for clarity.

The only region which does not appear to benefit from masking
is in the molecular-band region from 860 to 870 nm. Masking
requires �105 km s−1 velocity spread in the Ca ii-triplet region
between fibers in a ring, achieved except in the inner-most ring
for 80% of our Mg ib sample and all but one galaxy observed in
the Ca ii-triplet region. The velocity spread is set simply by the
largest mask width.

3.2. Deriving the Broadening Function σLOS

We apply a cross-correlation technique, rather than direct
fitting of the spectral data in wavelength space, to determine
the broadening function and random errors on this broadening.
While the two methods are equivalent in principle, in practice
the information is projected in different ways (Simkin 1974). For
example, in the direct-fitting approach, an assessment of tem-
plate (mis)match is grossly evident in the detailed depth of vari-
ous lines. In contrast, assessment of the broadening (mis)match
is more readily obtained via inspection of the cross-correlation
function since all of the signal for line profile shape is consoli-
dated. Because the broadening is the primary signal of interest,
we prefer the cross-correlation method, particularly because in-
formation on template mismatch (relevant for systematic errors)
is still available in the cross-correlation using information out-
side of the peak (Section 3.4).

We have developed a new cross-correlation method, opti-
mizing several technical attributes relevant to the accuracy and
precision of the broadening measurement in our program. The
analysis code is very general in the sense that it allows for

Gauss–Hermite series decomposition of the cross-correlation
peak (van der Marel & Franx 1993) and input of any spectral
template. For clarity, we focus in this paper on results for simple
Gaussian broadening and templates based on measurements of
single, Galactic stars. A complete discussion of the method is
presented in Westfall (2009) and Paper III. We summarize here
the salient features germane to the error budget.

First, we construct a differential formulation based on con-
volution (rather than deconvolution; see Franx & Illingworth
1988) to derive the broadening in a way that treats the tem-
plates and galaxy data in an identical and symmetric fashion. To
describe this we adopt the nomenclature in Paper III where ◦ de-
notes cross-correlation, ⊗ denotes convolution, G is the galaxy
spectrum, T is the template spectrum, and B is the broaden-
ing function. We compare the cross-correlation of a broadened
and redshifted template with an un-broadend, un-shifted tem-
plate (BTXC ≡ XT ≡ (T ⊗ B) ◦ T ) to the cross-correlation
of the galaxy spectrum with the un-broadened, un-shifted tem-
plate (XC ≡ X ≡ G ◦ T ). We compare, in a χ2 sense, only
the core of the correlation peaks, finding a region of 1.7 times
the FWHM of the XC peak to be optimal in terms of precision.
Our approach contrasts with earlier applications (see Rix &
White 1992 and Statler 1995 for reviews) which compare the XC
with the un-broadend, un-shifted template auto-correlation (AC
≡ A ≡ T ◦ T ), or even deconvolve the XC peak directly. While
mathematically equivalent, our approach starts with broadening
the template, as is done in nature to the ideal template of the
galaxy spectrum. Moreover, our approach should be immune to
systematic effects due to “detector-censored” data, i.e., where
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Figure 8. Fiber stacking in the Ca ii-triplet region for SparsePak “ring 3”
observations of UGC 6918, with an internal projected velocity spread of
153 km s−1. The top panel shows the velocity-registered co-addition of 12
fiber spectra without masking bright sky-line regions. The middle panel has
the same registration, but is co-added with masking. The bottom panel shows
sky spectrum from the same data. Fluxes are normalized to the mean continuum
level; sky-continuum and galaxy continuum at this radius are comparable. Gray-
shaded regions indicates masks. Only the brightest lines have been masked (see
the text).

the observed bandpass is finite. What this means in practice is
that we do not have information from our templates about flux
contributions due to broadening from outside of observed spec-
tral window. We find that this is particularly important when
strong features of interest (e.g., Mg ib or Ca ii) are near the edge
of the detected bandpass in either the template or galaxy spec-
trum. Tests indicate the impact of detector censoring can lead to
systematics in σLOS of order 10% (Westfall 2009; Paper III). By
using convolution rather than deconvolution, we avoid filtering
problems associated with Fourier transforms of noisy data.

Second, the fitting procedure allows for the masking of
source emission lines and sky lines, handled symmetrically
for template and galaxy spectra. Emission-line masking is
critical in the Mg ib region not only for the [O iii]λλ4959,5007
doublet but also for the weaker [N i]λλ5198,5200 doublet
(Figure 6). Sky-line masking is critical in the Ca ii-triplet region
(Figure 8). Masking also enables us to isolate spectral regions of
interest, e.g., the Mg ib-triplet versus weaker Fe features in this
region, or Ca ii-triplet versus Paschen-series lines in the near-
infrared, as we discuss below. The inability to mask spectral
features with previous versions of cross-correlation software
has often been touted as a primary advantage of directing-
fitting methods (e.g., Rix & White 1992). However, in our
cross-correlation formulation masking is neither conceptually
difficult nor computationally challenging.

A relevant detail for Fourier-transform cross-correlation tech-
niques and masking concerns tapering (apodization) of the mask
edges to avoid high-frequency ripples. When the number of
masks is large relative to the number of spectral channels, the
tapering function appreciably diminishes the cross-correlation
signal. Because of the identical and differential way we treat
the template and galaxy correlation functions, we expect that
a ripple should not have an impact on the derived broadening

parameters. Simulations bear out the expectation that changing
the tapering function does not alter the accuracy of the recovered
parameters, but precision is improved by eliminating tapering,
or at most by applying a 2 pixel cosine taper. (Each pixel is
between 7 and 12 km s−1.)

Third, the fitting is iterative in two significant ways: (1) in the
optimization of the broadening, velocity-shifting of the template
and the mask placement in the two (template and galaxy) refer-
ence frames; and (2) in fitting a low-order spectral continuum
to the residuals between the broadened, shifted template and the
galaxy spectrum in wavelength space, and then removing this
residual from the observed galaxy spectrum (mathematically
equivalent to adding the residual to the broadened template,
but computationally simpler). The latter accounts for any low-
frequency spectral mismatch between the template and galaxy
due to, e.g., in order of likely significance: stellar mix, illu-
mination correction, color terms in flux calibration, reddening,
or nebular continuum emission. This continuum correction is
important because while the low-order spectral shape does not
contribute directly to the width or shape of the cross-correlation
peak, it does impact the cross-correlation function at lower fre-
quencies, which in turn alters the amplitude of the correlation
peak. This mismatch has impact on the differential comparison
of the BTXC and XC even for the high spectral-frequency com-
ponent (e.g., consider the effect of baseline variations near the
correlation-peak core), which fundamentally is the only quantity
of interest for σLOS. The mismatch also alters the goodness-of-fit
assessment of the template (Section 3.4).

Finally, the fitting process includes evaluation of the error
spectra and the computation of a full covariance matrix for de-
termining errors on the fitted parameters. These error estimates
have been tested against simulations, and found to be accurate
and robust. Comparison of the simulations with real data is
described below.

3.3. Random and Systematic Errors on Vsys and σLOS Due to
Spectral Noise

We focus here and in the next subsection on simulations
matched to the SparsePak observations of two galaxies from
our pilot program, taken in both Mg ib and Ca ii-triplet regions:
UGC 11356, a well-studied giant elliptical galaxy, and UGC
6918, a high surface-brightness spiral galaxy in our sample.
The former was observed for the purpose of comparing our
measurements to those in the literature. It should also contain a
relatively simple stellar population yielding similar kinematics
in the two spectral regions—albeit with σLOS substantially larger
than for our survey sources. UGC 6918 has σLOS values typical
of our survey sources, but potentially illustrates a composite
stellar system where systematic differences arise in the derived
σLOS between the two wavelength regions. These difference
might occur due to variations in the dynamics of disk stellar
populations correlating with age and hence color.

We have carried out a set of Monte Carlo simulations to
determine the accuracy and reliability of extracting the centroid
velocity (Vsys) and line width (σLOS) using our cross-correlation
technique. These simulations use our stellar templates, observed
at high S/N. These spectra are velocity shifted, broadened,
and noise-aberrated to span a range of S/N, σLOS, and Vsys
encompassed by our survey data. We extended the range of
simulated σLOS to higher values typical of the cores of giant
elliptical galaxies. Independent and more detailed simulations
in the Mg ib region applicable to UGC 6918 are given in
Paper III.
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Figure 9. HR 6817 (K1 III) template star observed at R = 11,750 (σinst = 10.8 km s−1, thin black line), and smoothed to the measured broadening of the galaxy
spectrum in Figure 6 (σLOS = 28.9 km s−1; thick line). Lines contributing to absorption in this spectrum are marked above and below in four tiers (inside out): Mg ib
triplet (filled triangles); Fe i (black open deltoids) and Fe ii (red open deltoids); Ti i (black open deltoids), Ti ii (red open deltoids), and Ni i (gray open triangles);
Cr i (black open deltoids), Cr ii (red open deltoids), and TiO (gray filled triangles). For reference a last outer tier marks He i (blue filled triangles) and O ii (green
filled triangles) absorption features in hot stars. Line identifications are taken from the ILLSS Catalogue (Coluzzi 1993). Vertical shaded regions mark the “Mg ib”
subregion, and the masked regions around [O iii]λ5007 and [N i]λλ5198,5200 nebular lines.

(A color version of this figure is available in the online journal.)

As part of our analysis, we divide the Mg ib-region into two
spectral subregions, and considered these in addition to the full
Mg ib and Ca ii-triplet spectral regions. These two subregions
contain, respectively, the Mg ib triplet, and everything but the
Mg ib triplet, as indicated in the K1 III spectrum in Figure 9.
As this figure shows, the latter subregion is dominated by
signal from many weak lines of Fe i, Ti i, Cr i, Fe ii, Ti ii,
and TiO, in decreasing importance, prevalent in the cool
stars expected to dominate the detailed line signature in the
integrated light of galaxies. This division was motivated by
the results of Barth et al. (2002) indicating the Mg ib-triplet
was problematic for σLOS measurements—plausibly due to
abundance variations between stellar templates and integrated
galaxy spectra. Inspection of Figure 9 shows that our Mg ib
subregion still contains narrow, weaker lines of Fe i and Fe ii,
as well as the TiO bandhead. In particular, the bluer two lines
of the Mg ib triplet are significantly contaminated, as seen in
the real galaxy spectra of Figure 6. The bluest line of the triplet
coincides nearly with the TiO molecular bandhead which is
strong in stars cooler than M0 (see Figure 15 in Paper I). In terms
of random errors on σLOS, we find from our simulations that
the two subregions have comparable S/N in a cross-correlation
sense, or about 1/

√
2 that of the full Mg ib region. Otherwise

both subregions yield similar systematic trends with S/N. For
this reason, we do not distinguish these subregions further in
discussion of S/N.

While we have studied simulations using a large range of
stellar templates, we illustrate results using K1 III and M3 III

templates here for clarity. These two stars, respectively, appear
to be the best, or close to the best single-star templates in
the Mg ib and Ca ii-triplet regions. This holds for all of the
galaxies in our sample analyzed to date, as well as the elliptical
UGC 11356, as we demonstrate below. The results of these
simulations are shown in Figure 10(a) (for the K1 III template)
and Figure 10(b) (for the M3 III template). Measurements
from galaxy observations are also shown for comparison. These
include all individual fibers in the Mg ib region in UGC 6918 for
which cross-correlation yielded successful measurements; the
inner 14 fibers for UGC 11356 in both Mg ib and Ca ii-triplet
regions; the same set of fibers in UGC 6918 for the Ca ii-triplet
region; and the five rings defined in Figure 4 of Paper I for UGC
6918 in both spectral regions.

The accuracy of the derived velocity centroid and broadening
based on the simulations is superb, and well below the random
errors for S/N > 3 pixel−1 (refer to panels in first and third
columns of Figures 10(a) and (b)). This result is independent of
broadening and centroid velocity. Below this S/N level there
is a hint that systematics begin to become significant, with
positive velocity and velocity-dispersion offsets for smaller line
widths, and negative offsets at larger line widths. This is clearly
demonstrated by the more detailed simulations presented in
Paper III. We conclude that at S/N > 3 pixel−1 systematic
errors in the derived velocities and widths are negligible. We
defer discussion of the accuracy of σLOS derived from the galaxy
observations until after consideration of the effects of template
mismatch.
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(a)

(b)

Figure 10. (a) Simulations and measurements of random errors in velocity (Vsys) and velocity dispersion (σLOS) vs. spectral-continuum S/N (per pixel) in the Mg ib
region (top row) and Ca ii-triplet region (bottom row). Measurements of simulated galaxy spectra (symbols in first and third columns from left; lines in second and
fourth columns from left), use the same methods applied to observed galaxy spectra, and are referenced to simulation-model values (Vmod, σmod). Simulations use
a K1 III template. Colors and symbols indicate (Vmod, σmod) in km s−1: black and filled circles (1110, 20); blue or light gray and filled triangles (1110, 60); and
red or medium gray and open circles (2350, 180). The first two cases bracket the observed range for spiral galaxy UGC 6918; the latter characterizes the elliptical
UGC 11356. Note the errors in Vsys (second column) are normalized by the measured velocity dispersions, σLOS, as are the errors in σLOS (fourth column); the latter
is therefore equivalent to Δ ln σLOS. Horizontal dashed and dotted lines in first and third columns are for reference. Cross-correlation measurements using a K1 III
template for SparsePak fibers sampling UGC 6918 (black symbols) and UGC 11356 (red or medium gray symbols) are shown in the second and fourth columns.
Individual fiber measurements are shown as pluses; stacks of fibers are shown as filled squares. (b) Same as panel (a), except using an M3 III template for simulations
and cross-correlations with UGC 6918 and UGC 11356.

(A color version of this figure is available in the online journal.)
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In terms of precision, to first order we find that Vsys and σLOS
errors scale inversely with S/N and σLOS as expected (wider
profiles yield less precise measures at a given S/N; refer to panels
in second and fourth columns of Figures 10(a) and 10(b)). At
very large σLOS there is some indication that the dependence
on S/N is somewhat stronger, at least for Vsys. There is very
little dependence of these results on the simulation template.
However, the simulations were fit with the correct template, so
the effects of template mismatch are absent in these results.

In contrast, the templates used to derive centroid veloci-
ties and broadenings for the galaxy observations may be mis-
matched. Indeed, comparison of measurements of simulations
to those of real galaxy spectra shows the latter have errors twice
as large in the Mg ib region, yet similar errors in the Ca ii-triplet
region. Interestingly, at a given S/N the errors derived from
the simulations are 2–2.5 times larger in the Ca ii-triplet region
than in the Mg ib region. Assuming no template mismatch, we
conclude that the Mg ib region in principle yields more precise
kinematic measurements than the Ca ii-triplet region at a given
spectral continuum S/N. However, in practice the two regions
yield comparable precision. It is plausible that the additional
contribution of random error to the kinematic measurements in
the Mg ib region is due to template mismatch. This conjecture
has some basis in the fact that errors in Vsys and σLOS in the
galaxy spectral data in the Mg ib region increase substantially
when they are fit with a template (M3 III) that is clearly not a
good representation of the spectrum in that region. In contrast,
the errors derived in the Ca ii-triplet region appear relatively
immune to the template applied.

On the basis of these simulations we conclude that the
typical random error in our survey for Δ ln σLOS is 3%, given
a typical spectral continuum S/N in the Mg ib region of 40 for
an azimuthally averaged spectrum (see Paper I and Figure 4
therein). Since the measurement of the broadening function is
not yet corrected for other effects (Section 3.5), for the purpose
of book-keeping we refer to this quantity as σobs, and hence
Δ ln σobs = 0.03.

One final consideration concerns the impact of velocity cen-
troid errors on the registration precision of the azimuthal av-
eraging. In general, centroid errors will systematically broaden
the stacked spectrum. Most of our data have spectral continuum
S/N > 2 in the individual fiber spectra. Since the errors on Vsys
remain well below σLOS (i.e., ε(Vsys)/σLOS < 0.3; Figures 10(a)
and 10(b)) in this S/N regime, azimuthal averaging introduces
less than a few percent increase to the derived broadening. This
is negligible for our purposes in this paper. However, we do note
that in our outer-most radial rings, where the S/N for individual
fibers is 1–2, our simulations indicate there could be as much as
a 20% increase in the measured σLOS due to registration errors.

3.4. Errors on σLOS due to Template Mismatch

Perusal of the literature reveals that single stars typically have
been used as templates for cross-correlation analysis to study
the dynamics of disk and spheroidal stellar systems. One criti-
cal question for our analysis is whether σLOS is sensitive to the
specific choice of template. Substantial discussion of the issue
of template mismatch can be found in Rix & White (1992),
Statler (1995), and references therein. Late-G or early-K giants
are usually adopted, with the (often unstated) assumption that
these stars dominate the kinematic signal in the integrated light
of early- and intermediate-type galaxies. This is certainly rea-
sonable given the luminosity of red-giant and horizontal branch
stars, and their apparent dominance of the integrated light of old

stellar populations. For later-type disks (especially near their
outskirts, or in the cores of vigorously star-forming systems),
the relative youth of their stellar populations may alter the pic-
ture, both due to the prevalence of luminous, hot, young stars
on, or near the tip of the main sequence and cool, intermediate-
age giants (e.g., the AGB). The concern regarding hot stars
may be tempered by virtue of their decreasing line strengths
from metals. Nonetheless, the question remains whether there
are substantial systematics in σLOS from template mismatch. We
define the template-mismatch error to be Δ ln σtpl ≡ Δσtpl/σLOS,
where Δσtpl is the half-width of the full range of σLOS for all
viable templates.

To motivate the importance of answering this question we
illustrate in Figure 11 the measured σLOS for fibers in the core of
UGC 11356 and UGC 6918 using a range of template stars from
F0 to M5, all luminosity-class II–III (giants). The specific stars
and their spectra are illustrated in Figure 15 of Paper I. Values are
means over the individual fiber measurements, with errors given
as the standard deviation of these measurements. The errors
are within a factor of 2 from the mean estimated errors from
the cross-correlation analysis, indicating little intrinsic variance
between the regions sampled by the individual fibers. The range
of template spectral types was chosen on the basis of direct
visual inspection of the template and galaxy spectra. In the Mg ib
region, types earlier than F0 have insufficient line strengths in
both Mg ib and Ca ii-triplet regions. While types later than M0
have a strong molecular bandhead in the Mg ib region which is
not observed, types as late as M5 are acceptable in the Ca ii-
triplet region. We extended our template range accordingly. We
have limited templates here to luminosity class II–III stars, based
on astrophysical prejudice for what stellar types with strong lines
are most likely to dominate the integrated light of galaxies.
Furthermore, we choose mostly solar metallicity stars given
the reasonable assumption that the integrated light of disks is
dominated by Population I stars. Nevertheless, we include one
sub-solar metallicity star (HR 4695), at intermediate spectral
type, to probe the validity of the latter assumption.

The left-hand column of Figure 11 demonstrates that template
mismatch is very significant in spirals and ellipticals, and in
both spectral regions. While trends of σLOS with spectral type
are different for the two spectral regions, they are qualitatively
similar for both galaxies. Compared to the full Mg ib region,
we find the systematic trends in σLOS with template are twice
as large in the subregion isolating the Mg ib-triplet, while the
sub-region excluding the Mg ib triplet has a smaller range. The
two Mg ib sub-regions also have different qualitative trends.
These differences are largely due to the appearance of the
TiO bandhead in cool stars later than mid-K, located near the
bluest of the Mg ib triplet lines. Given the increased random
errors (Section 3.3) in σLOS by limiting the spectral range to
either of these subregions, we do not considered them further
here. However, we note the added information by defining
such subregions can be exploited to further optimize template-
matching in the highest S/N regimes.

One method for limiting the impact of template mismatch on
σLOS is to restrict the template spectral range with a notional
argument, e.g., based on colors or stellar population synthesis
(SPS) models. For example, were we to restrict the templates
to F8-M2 or G8-K4 ranges, we would obtain Δ ln σtpl = 0.12
and 0.07 respectively. Indeed, more recent studies (e.g., Falcón-
Barroso et al. 2006) use SPS models to directly fit the spectral
continuum (effectively color) and line-strength. In principle this
option is open to us, but until recently the stellar libraries have
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Figure 11. Trends of σLOS (left) and mismatch indices XC-rms, AN,c, and χ2
ν (λ) (left to right) with template for the central regions of the elliptical galaxy UGC 11356

(top row) and spiral galaxy UGC 6918 (bottom row). Means and standard deviations are determined in UGC 11356 for seven fibers between 2′′ and 6.′′5 (effective
radius between 19′′ and 30′′; Bender et al. 1994; Fisher 1997; Gerhard et al. 1998), and in UGC 6918 for five fibers between 5′′ and 10′′ (hR = 9.′′4; Verheijen 1997).
Average S/N per pixel in the spectral continuum is 25 per fiber in the Mg ib region and 45 per fiber in the Ca ii-triplet region for both galaxies. Black circles represent
Mg ib-region measurements; gray triangles represent Ca ii-triplet region measurements for the same fibers in approximately the same location. Filled symbols in σLOS
and XC-rms columns represent templates that have XC-rms values statistically equivalent to the minimum XC-rms value; in other columns, filled circles are keyed
in the same way for their respective index. The templates are numbered and ordered by spectral type (giants only, luminosity class II–III), hot to cool, as indicated
between the two rows. Templates shown here are near-solar metallicity with the exception of template 8, (HR 4695, K1 IIIb), which is substantially sub-solar with
[Fe/H] = −0.48.

had insufficient spectral resolution for our purposes. The one
exception is PEGASE-HR (Le Borgne et al. 2004), based on
the ELODIE library observed at a resolution of R = 42,000.
Unfortunately, the models degrade the resolution to R = 10,000
for a Gaussian instrumental profile; this is too low for many
of our Mg ib observations, which often have non-Gaussian
instrumental profiles. Further, the library does not extend
far enough to the red to reach the Ca ii-triplet. Nonetheless,
improved models like these are highly desirable in the future.

Even with suitable high-resolution SPS models, properly
modified for our instrumental broadening, there remains the
issue of degeneracy—in a photometric sense—between equally
suitable models with a wide range of model parameters (e.g.,
age, metallicity, star formation history). The problem here is that
it has not yet been demonstrated that this photometric degen-
eracy has an equivalent kinematic degeneracy. Specifically, the
amplitude of Δ ln σtpl has not been quantified using the direct-
fitting SPS approach in any study presented in the literature.

For the above reasons we proceed here with a simple analysis
based on a set of single template stars. These are observed with
the same instrument and same instrumental configuration (often
observed on the same night) as used for our target galaxies. We
define a set of indices that allows us to minimize the impact of
template mismatch on σLOS, quantify Δ ln σtpl in this context,
and conclude with a brief discussion of how this approach can
be further improved.

3.4.1. Template Mismatch Indices

The function χ2
ν (XC) which is minimized to determine the

optimum broadening, σLOS, is the error-normalized rms between
the XC and BTXC, taken in the usual χ2 sense, but measured

only within a small fitting window of the cross-correlation (1.7
times the FWHM of the cross-correlation peak). We find that
χ2

ν (XC) is highly insensitive to changes in the template, even
though the derived σLOS varies substantially. This appears a
worrisome fact for the cross-correlation approach, but since
the Fourier transform does not throw out intrinsic information,
sensitivity to template mismatch must be present somewhere
in the cross-correlation function outside the fitting window.
Inspecting simulations, we concluded that (1) the relative
heights of the XC and BTXC give information on the match of
the average line depth (equivalent width) in the template versus
galaxy spectra, while (2) the “rms” amplitude and asymmetry of
the cross-correlation outside the fitting window give information
on the match of the relative line depths between the two.
Based on this, we developed two indicators based on the cross-
correlation function, and a third based on the direct spectrum to
compare direct-fitting versus cross-correlation approaches. All
three of these indices are illustrated in Figure 11 for the optimum
broadening for each template.

1. XC-rms is the rms between the XC and BTXC. It is like
χ2

ν (XC), except it is not error-normalized, i.e., it is not χ2,
and is computed over the full correlation range. This range
is nominally the same for all templates unless the fitted
velocities are substantially different. However, XC-rms is
normalized by the amplitude of the cross-correlation peak
to take into account the trend of stronger correlation peaks
(and hence asymmetry with later spectral types).

2. AN,c is the rms asymmetry (A) of the XC when mir-
rored about its fitted velocity centroid. It is an index of
the “lopsidedness,” or lack of mirror symmetry of the
cross-correlation, both at small and large lags. Like XC-
rms, it is also normalized (N) by the amplitude of the
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cross-correlation peak. It is further corrected (c) for the
asymmetry of the similarly normalized cross-correlation
of the broadened template with the un-broadened template
(BTXC). This accounts for the non-intuitive (but mathe-
matically correct) result that in the presence of detector
censoring (i.e., any finite spectral window) the cross cor-
relation of a template with its broadened counter-part has
some intrinsic non-zero amount of asymmetry. The correc-
tion is small (< 10%). With the exception of the correction,
AN,c is equivalent to the inverse of the term “R” defined by
Nelson & Whittle (1995).

3. χ2
ν (λ) is the error-weighted rms between the observed

galaxy spectrum and the best-fitting broadened template,
based on the cross-correlation and continuum fitting tech-
niques, as described above. This index is independent of
the fitting process that determines the velocity broadening,
but is otherwise equivalent to what is used in direct-fitting
methods.

Both XC-rms and AN,c have larger dynamic range given
their relative scatter than χ2

ν (λ). The insensitivity of χ2
ν (λ)

to variations in template raises the possibility that template-
mismatch errors in direct-fitting methods may be substantial.
The indices XC-rms and AN,c exhibit similar template resolution
for both galaxies and for a given spectral region. Consequently,
application of these indices (described below) to a large number
of galaxy spectra yields quantitatively comparable results for
Δ ln σtpl. Because of the greater simplicity and intuitive nature
of the XC-rms definition we adopt it in preference to AN,c.

3.4.2. Index Application and Performance

In practice, the above indices can be used to minimize Δ ln σtpl
by identifying the template with the minimum index value,
defining a confidence interval based on the errors in that index,
and then averaging σLOS for all templates with index values
within this confidence interval. Variance in σLOS can also be
determined for this same template subset, and Δ ln σtpl quantified
in a well-defined manner. For the data in Figure 11, error bars
on these indices are based on the measured variance between
groups of fibers, and are likely overestimates, for reasons
given below. Nonetheless they are suitable for demonstrating
the outlined technique to minimize the impact of template
mismatch. We adopt a “1σ” confidence interval in the sense
that a template index must be no greater than the quadrature
sum of the minimum index value and the 1σ errors on both the
minimum and template index values.

As anticipated in the preceding discussion, XC-rms and
AN,c are substantially superior to χ2

ν (λ) in terms of Δ ln σtpl.
A feature which appears to be problematic for χ2

ν (λ) is the
selection of templates at disparate temperatures in each spectral
region. This not only increases Δ ln σtpl, but without some deeper
understanding of what causes these selection discontinuities in
spectral type using χ2

ν (λ), it is hard to understand how to move
forward to improve the situation; one is tempted to abandon
χ2

ν (λ) and its associated direct-fitting approach as we have done
here. One clue for future efforts may be that the low-metallicity
star HR 4695 shows unusually low χ2

ν (λ). It is highly unlikely
that massive and luminous galaxies have integrated light with
sub-solar metallicity. Indeed, many galaxies in our sample have
high values of XC-rms and AN,c for this same star, i.e., it
provides a worse-fitting template, consistent with astrophysical
expectations. Template-mismatch sensitivity to metallicity is
definitely a desirable feature of any analysis attempting to
understand the dynamics and stellar populations of galaxies.

Because we have a large, comprehensive template library, we
can safely assume there exists a linear combination of templates
that, once broadened, accurately represent any observed galaxy
absorption-line spectrum. Here, we will make the further, sim-
plifying, assumption that at least one of the templates alone is a
suitable match to the observed galaxy spectrum. By this we mean
that there exists one template which produces minimal system-
atic error in the derived broadening due to template mismatch. In
future papers in this series, we substantiate that these are both
good assumptions. In using an index-minimization approach,
where the indices themselves are subject to random errors, the
impact of template mismatch on σLOS uncertainties—what we
have defined as Δ ln σtpl—is a random process. In other words,
we would get a different value for σLOS for the same set of tem-
plates for repeat measurement of a galaxy spectrum. Hence for
our application Δ ln σtpl is a random error.

Using the individual fiber measurements for UGC 11356 and
UGC 6918, we illustrate in Figure 12 the relative amplitudes
of random errors due to shot noise in the spectra (Δ ln σLOS)
and random errors due to template mismatch (Δ ln σtpl). As we
found earlier, Δ ln σLOS is inversely proportional to S/N. By
applying the XC-rms index, we dramatically lower the errors
associated with template mismatch, essentially eliminating it
for Ca ii-triplet region measurements, and making these errors
comparable to Δ ln σLOS in the Mg ib region. The correlation
between the two sets of errors is related to the fact that errors on
σLOS and XC-rms for a single spectrum and template correlate
in the same way with S/N.

As verification of our template-mismatch minimization
method, we show in the right panel of Figure 12 the differ-
ence between individual fiber measurements made in the Mg ib
and Ca ii-triplet regions at similar physical locations for our two
example galaxies. The velocity dispersion measurements are
statistically identical as we would expect for the elliptical and
also the spiral—if age-dynamical variations in disks are small.
Figure 11 shows that this result need not necessarily be the case
without some proper identification of suitable template. By ex-
tension, we may postulate this result as an initial confirmation
that age-dynamical variations for spirals are in fact small, as
observed in their integrated optical–near-infrared light. It is also
worth noting that our measurement of the absolute value of the
velocity dispersion in UGC 11356 agrees within the errors with
previous results in both the Mg ib region (Bender et al. 1994;
Fisher 1997; Gerhard et al. 1998) and the Ca ii-triplet region
(Nelson & Whittle 1995). This is significant since our best-
fitting template in the Mg ib region is similar to what was used
in previous studies. In the Ca ii-triplet region, our best-fitting
template is considerably latter than those observed by Nelson &
Whittle (1995), but we find little change in the derived broad-
ening when going to these earlier stellar types.

To apply our method in general we need to calibrate XC-rms
errors as a function of S/N. Based on simulations, we illustrate
in Figure 13 how the logarithmic errors on XC-rms depend on
S/N. Errors for the other indices were computed in the same
way. These errors are only due to random errors added to the
simulated spectra, i.e., there is no template mismatch between
the simulated BTXC and XC. We find logarithmic errors are only
weakly dependent on line width and S/N, which is convenient
for the application we have described.

To determine if these simulations are realistic we took groups
of fibers at similar radii and S/N (hence surface brightness)
in UGC 11356 and UGC 6918 separately, as illustrated in
Figure 11. We computed the variance in the indices and
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Figure 12. Random errors in σLOS due to shot noise in the spectra (Δ ln σLOS) and template mismatch (Δ ln σtpl) for 14 of the brightest individual fibers in UGC
6918 and UGC 11356 in the Mg ib and Ca ii-triplet spectral regions. The left panel illustrates the dependence of Δ ln σLOS on spectral continuum S/N; the dashed
line depicts the relation Δ ln σLOS = (S/N)−1. Symbols are defined in the legend. The middle panel illustrates the amplitude of Δ ln σLOS and Δ ln σtpl. Crosses denote
systematic errors using our full range of templates (see the text); circles denote systematic errors based on limiting templates using the XC-rms index; the dashed line
depicts the 1:1 relation. The right panel shows the fractional difference between σLOS measured in the Ca ii-triplet and Mg ib regions using our XC-rms index method
(δ(σLOS)/〈σLOS〉, where δ(σLOS) is the difference and 〈σLOS〉 is the mean value for the two regions) vs. the random error in this difference [Δ ln δ(σLOS)]. Dotted lines
illustrate “1σ” boundaries in random error.

Figure 13. Simulations (lines) and measurements (points) of the logarithmic
error in the template-mismatch index XC-rms (defined in the text) as a function
of spectral continuum S/N. Lines are simulations using a K1 III template (solid
lines) and an M3 III template (dashed lines) color-coded for different broadening
as given in Figure 10. Measurements of Δ ln XC-rms for individual fibers (plus
symbols) use the K1 III template in the Mg i-region and the M3 III template in the
Ca ii-region. UGC 6918 measurements are in black; UGC 11356 measurements
are in red or medium gray.

(A color version of this figure is available in the online journal.)

plotted them accordingly in Figure 13. We interpret these as
upper limits to the index errors since real variations between
the spectra may exist, e.g., stellar population non-uniformity.
These “measurements” of Δ ln XC-rms are roughly twice as
large as the values estimated from simulations. We adopt
Δ ln XC-rms = 0.06±0.02 and 0.12±0.04 based on simulations
and measurements, respectively, over an S/N range typical of
observed, azimuthally averaged spectra.

Results of applying this calibration of XC-rms errors to az-
imuthally averaged spectra of seven representative galaxies7

from our survey are shown in Figure 14. The ring spectra have
S/N from 7 to 200 pixel−1. The median random error on σLOS
due to shot noise is 3%, with 75% of the sample having errors
<5%; random errors follow the trend and zero-point with S/N as
seen for the individual fibers. The median value is a restatement
of our result in the previous section for Δ ln σLOS. The median
random errors due to template mismatch are 4%, with 75% of
the sample having errors <5% assuming Δ ln XC-rms is what
is observed, i.e., about 0.12, or a factor of 2 larger than the sim-
ulation value. We adopt the median value, i.e., Δ ln σtpl = 0.04.

Were we to adopt a single template for all galaxies and all
radial bins, e.g., a K1 III star for the Mg ib region, our derived

7 UGC 463, 4555, 5180, 6128, 6869, 6918, and 10443.

Figure 14. Distribution of random errors due to shot noise in the spectra
(Δ ln σLOS) and template mismatch (Δ ln σtpl) for azimuthally averaged spectra
for seven spiral galaxies (see the text) in our Phase B sample. “High” and
“low” identify template errors assuming Δ ln XC-rms values of 0.12 and 0.06,
respectively (Figure 13 and text). Horizontal and vertical dotted lines in the
left-hand panel are the median values; the dashed line is a 1:1 relation provided
for reference. The S/N range spanned in the right panel is representative of
our survey (Paper I). The diagonal dashed line is the same relation between
Δ ln σLOS and S/N as adopted in the left panel of Figure 12.

σLOS would be low, on average, by about 2%, with a standard
deviation of 8%. There is a hint of a trend with radius such that
a K1 III star is either too early or too late at the innermost and
outermost radii, respectively. Adopting a K1 III star is not a
bad choice, but with the indices described here, we are able to
largely eliminate systematic error due to template mismatch.

3.4.3. Future Improvements

Our analysis can be improved in the following ways: (1)
by including a wider range of metallicity for stars already
in our existing spectral library; (2) by allowing for multiple
templates in each radial bin, either single-star templates or
multi-component SPS model templates based on our library;
(3) by enabling each of these spectral components to have
their own separate kinematic broadening (e.g., de Bruyne et al.
2004); and finally (4) by treating the Ca ii-triplet and Mg ib
regions simultaneously, in a self-consistent way such that the
stellar population synthesis is consistent with the observed, de-
reddened colors and spectra, while yielding an identical velocity
dispersion for a given template component in both spectral
regions (see Section 4.3.2 and Figure 7 of Paper I). These are
refinements for future work.
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3.5. Corrections to σLOS

3.5.1. Instrumental Resolution

The instrumental dispersion, σinst, is due to a combination of
the finite fiber aperture and spectrograph optical aberrations.8

We measure σinst via Gaussian linefitting to the line-lamp
spectra. For any given observational configuration we typically
identify 50 or more lines over the full spectral range which have
adequate S/N and are un-blended. The widths of these lines are
determined to high precision (a few percent), and provide an
exquisite map of the instrumental broadening as a function of
spatial and spectral position (the former is equivalent to fiber).
We find a mean broadening due to instrumental resolution of
σinst = 10.8±1.5±2.2 and 13.2±1.9±2.4 km s−1 in the Mg ib
and Ca ii-triplet regions respectively for SparsePak, and σinst =
18.8±1.7±1.4 km s−1 in the Mg ib region for PPak, where the
two sets of “errors” for each value are the characteristic range
of broadening in the spatial and spectral dimensions. Subtle
changes in spectrograph camera focus on different observing
runs produced different patterns of instrumental resolution with
wavelength and spatial position; these variations are within the
quoted range.

Instrumental-broadening corrections for the ionized-gas line
widths are determined directly based on the widths from line-
lamp spectra closest to the observed wavelength of the ionized-
gas line in the galaxy spectrum. Since our measurement of line
width from the stellar spectroscopic data are achieved via cross-
correlation against stellar templates observed with the same or
similar instrumental configuration, to first order the instrumental
broadening is taken into account. This accounting is imperfect
due to redshift, the fact that stellar templates were not observed
in every fiber, and because of focus variations between observing
runs.

The first two of these effects produce very modest differences
between the instrumental broadening of template and galaxy
spectra: Galaxy redshifts are low (z < 0.042; corresponding
to shifts typically 25% of the observed wavelength range), the
templates were observed with many fibers spanning the slit, and
the instrumental broadening varies little over the spectral and
spatial range of the data. Consequently, the mismatch in σinst is
<1 km s−1 and varies from fiber to fiber. However, run-to-run
changes in spectrograph focus have led to systematic differences
between the template and galaxy instrumental resolutions, σ inst

T
and σ inst

G respectively. We define δσ 2
inst ≡ (σ inst

G )2 − (σ inst
T )2, and

apply a correction of the form σ 2
LOS = σ 2

obs − δσ 2
inst. Note that

δσ 2
inst can be positive or negative.
For SparsePak, we estimate δσ 2

inst ∼ 0.0, and so we do not
apply a correction for instrumental mismatch. The remaining
mismatch due to redshift and fiber sampling effects are less than
a quarter of the range of observed instrumental broadening with
wavelength and fiber, or <0.5 km s−1, from which we arrive at
Δ ln σinst = 0.04 for SparsePak.

For PPak, δσ 2
inst is often not zero. A typical value of

√
|δσ 2

inst|
is 6 km s−1. With the effort of measuring line-lamp spectra line
widths, we are able to determine this quantity to better than
0.4 km s−1. The uncertainty includes the remaining mismatch
due to redshift and fiber sampling effects. Hence Δ ln σinst =
0.02 for PPak.

What is relevant for the error budget of Σdyn is the quantity
(σinst/σobs)2 Δ ln σinst (see Section 3.5.6 and Appendix B). In

8 The instrumental resolution defined as the FWHM, or 2.35 σinst.

this context, the uncertainties introduced by σinst are the same
for both instruments. We adopt an equivalent, median value
of σinst = 15 km s−1 and Δ ln σinst = 0.03 for calculations
below. Overall, the effects are systematic for a single fiber for a
given galaxy, but random when averaged over a stack of fibers.
Similarly, the effects are random when averaging over observing
runs for a single fiber and galaxy.

3.5.2. Beam Smearing

Beam smearing arises from the projected intensity, velocity,
and velocity-dispersion gradients across the SparsePak and PPak
fiber faces, or “beams,” suitably broadened for seeing. Features
of fiber-optical spectroscopic data that differ from aperture-
synthesis measurements at radio wavelengths and from direct-
imaging spectroscopy include the discrete nature of the beams
and the azimuthal scrambling properties of fibers. Compared to
imaging spectroscopy, the scrambling property of fibers insures
that the observed line width is independent of the direction of
the velocity gradient.

Begeman (1989) describes the general convolution process
that relates an observed moment of the velocity distribution
function (VDF) to the intrinsic distribution function, assuming
the VDF is Gaussian at any given spatial position. This study
arrives at a Taylor-series approximation to the convolution
integral relating the observed and intrinsic velocity fields. While
this can be generalized for non-Gaussian VDFs and higher-order
moments, the validity of a Taylor-series approximation must be
evaluated in each specific application. We follow the general
convolution scheme of Begeman (1989) but depart from this
formalism in several ways.

First, we employ an iterative scheme which starts with a
smooth (polynomial model) characterization of the observed
velocity and velocity dispersion fields. (In future analysis, we
extend this scheme to include higher-order moments, e.g., in
the context of a Gauss–Hermite expansion of the VDF.) We
adopt this characterization as the initial estimate of the intrinsic
distribution, and as such the scheme is well-posed. We then
synthetically “observe” it with the appropriate fiber footprints
convolved with an estimate for the seeing and instrumental
resolution. Initial correction factors are then estimated to be
the ratio of the synthetic observations to the estimated intrinsic
distributions. The data are corrected, fiber by fiber or ring
by ring, based on this initial beam-smearing estimate, re-
characterized, and then re-observed. The process is repeated
until the corrections converge. The correction scheme requires
no approximation.

Second, while our beam-smearing corrections are multiplica-
tive, and whereas Begeman (1989) defined a linear (additive)
correction, for our error analysis here we define an equivalent
quadrature beam-smearing correction, σ 2

beam. This quantity is
equal to the quadrature difference between the observed veloc-
ity dispersion (σobs corrected for instrumental broadening) and
the corrected velocity dispersions (σLOS). We make this defini-
tion to parallel the corrections for instrumental resolution and to
provide intuition in terms of a Gaussian convolution approach
(Westfall 2009).

A description of the trends in σ 2
beam with radius and azimuth

serves to illustrate the amplitude of, and variation in, this
correction. As a percentage effect, beam-smearing increases
rapidly with radius and then declines after the rollover from
the steep inner rise of the rotation curve; the peak and rollover
occur typically within one disk scale length. The corrections are
typically under 4% for PPak data and under 7% for SparsePak
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data. In an absolute sense, we find that beam smearing is
strongly dependent on the amplitude and shape of the rotation
curve in the centers of our pilot-survey sample galaxies. With
SparsePak, beam smearing produced by velocity gradients alone
are <5 km s−1 in the center and drops to ∼2 km s−1 on the minor
axis at several scale lengths, and below <1 km s−1 on the major
axis. While these numbers are representative of the survey as a
whole, this is a conservative upper limit because the majority
of observations were taken with PPak which has smaller
fibers, and because it does not account for velocity dispersion
gradients.

In general, beam-smearing corrections are determined by a
complicated interplay between velocity and velocity dispersion
gradients across the fiber faces. For example, at small radii
where the rotation velocity is small but the velocity dispersion is
large, beam-smearing corrections σ 2

beam can even be negative. As
another example, the crowding of isovels tends to make beam-
smearing proportionally largest along the kinematic minor axis.
However, the changing projection of the SVE dampens this
effect for small values of α because the intrinsic azimuthal
variation in σLOS is maximized.

Uncertainties in beam-smearing corrections arise from three
sources: the shape of the SVE, seeing, and the flux distribution.
The SVE shape, however, modulates the azimuthal dependence
of the beam-smearing amplitude, not the mean value at a
given radius. Consequently, there is no impact of the a priori
unknown SVE shape on the mean radial trend of σLOS, estimated
either from stacked rings or individual fibers. In contrast, when
measuring the SVE shape itself, the azimuthal modulation
in beam smearing is crucial to determine; we will explore
this in later papers in this series. The seeing dependence of
σ 2

beam is quite modest for SparsePak because of its large fibers
and the good delivered image quality of the WIYN 3.5 m
Telescope.9 For PPak observations the seeing values are well
known.

Finally, uncertainties in the beam-smearing corrections also
arise if the validity of our assumptions of the flux distribution
across a fiber “beam” are suspect. While the stellar distribution
in space and velocity is certainly smoother than that of the
gas, the fibers subtend large physical scales. Considering the
distances to our targets, the distributions of physical beam sizes
have median, upper and lower-quartile values of 1.45+0.65

−0.5 kpc
for SparsePak and 0.83 ± 0.3 kpc for PPak, respectively. Beam
sizes are under 2.9 and 1.7 kpc, respectively, for SparsePak and
PPak for 90% of the sample. For the galaxies in the sample,
there are typically between 2–3 and 4–5 fibers per radial disk
scale length for SparsePak and PPak, respectively. Nonetheless,
we find no significant difference between σ 2

beam calculated
assuming a uniform flux distribution and calculated assuming
an exponential gradient in the flux distribution equivalent to the
broadband surface-brightness profile.

As an estimate for our error budget we take half the beam-
smearing correction to be the uncertainty in the correction,
noting that (1) this will tend to be an overestimate; and
(2) the correction and therefore the uncertainty are small.
Beam-smearing corrections at 2.2 hR are typically 4% for
SparsePak and 1% for PPak. We adopt the larger value, namely,√

|σ 2
beam|/σobs = 0.04, and Δ ln σbeam = 0.5 for the calcula-

tions below. Errors in the beam-smearing correction are sys-
tematic per fiber, but random over the average of a stack

9 The WIYN Observatory, a joint facility of the University of
Wisconsin-Madison, Indiana University, Yale University, and the National
Optical Astronomy Observatories.

of fibers, therefore representing a random error in terms of
budgeting.

3.5.3. Line-of-sight Integration

There is also a broadening of σLOS due to the line-of-
sight integration through a differentially rotating disk of finite
thickness. This occurs even for an infinitely small beam. While
the cause is different than spatial beam smearing, the effect is
similar. For low-inclination disks, we might expect this effect
to be negligible. The typical radial range, δR, of the line of
sight through a disk in the DMS can be estimated based on
the typical disk inclination (i = 28◦) and disk radial scale
length (hR = 3.6 kpc, or 12.6 arcsec) of the Phase-B sample
(Paper I). From this the disk oblateness can be estimated
(qR ≡ hR/hz ∼ 8; Section 2.2). The radial range can be
approximated as δR ∼ 2 hz tan i = 2 qR hR tan i. Hence δR
is typically 1.′′6—substantially smaller than either the SparsePak
or PPak fiber “beams.” Since beam smearing is a small effect in
the DMS, we consider the effect of line-of-sight integration to
be negligible.

3.5.4. Line-of-sight Projection

The corrected velocity dispersion, σLOS, is a projection, along
the line of sight, of the SVE:

σ 2
LOS = (

σ 2
R sin2 θ + σ 2

θ cos2 θ
)

sin2 i + σ 2
z cos2 i, (2)

where i is the galaxy inclination relative to the observer, and θ is
the azimuthal angle from the kinematic major axis in the plane
of the galaxy. With definitions for the principal SVE ratios α
and β (Section 2.1), we further define

γ ≡ 1 +
tan2 i

α2
(sin2 θ + β2 cos2 θ ) (3)

to write

σ 2
z = σ 2

LOS

γ cos2 i
. (4)

To apply the correction to the coadded spectra in each radial
bin, operationally we take an azimuthal average of σLOS and not
σ 2

LOS. Hence, Equation (4) requires solving an elliptic integral of
the second kind for

√
γ . However, at low inclination we adopt

an excellent approximation10 such that σz ≈ σ̄LOS/
√

γ̄ cos i,
where σ̄LOS is the azimuthally averaged σLOS and

γ̄ ≡ 1

2π

∫ 2π

0
γ dθ = 1 +

tan2 i

2α2
(1 + β2). (5)

Anticipating the development in Section 5 for Σdyn, we estimate
the uncertainties in σ 2

z . From the discussion in Section 2.1,
we adopt expected typical values and uncertainties of α =
0.6 ± 0.15 (25%), β = 0.7 ± 0.04 (5%), and i = 30◦ ±
3.5◦ (12%). We find γ̄ cos2 i = 1.32 ± 0.29 (22%) and
σ 2

z = (0.76 ± 0.17)σ̄ 2
LOS (see Appendix B). Uncertainties

in σ̄LOS (Section 3.3, 3.4), inclination, and γ̄ all enter into
the error budget discussion in Section 5. Here, however we
see that despite the uncertainties in α and β, in general, the

10 The exact relation is given by σz = σ̄LOS / cos i
2π

∫ 2π

0 γ 1/2 dθ. However,(∫ 2π

0
√

γ dθ
)2 ≈ ∫ 2π

0 γ dθ is an approximation good to <0.2% for i < 45◦

and α = β = 0.7, and < 0.5% in the same inclination range for plausible
values of 0.3 < α < 1 and 0.7 < β < 1.
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correction is small because the inclination is small and γ is
near unity. This means that uncertainties introduced by this
correction are modest, which is a specific reason why we have
chosen the nearly face-on regime. The variation in

√
γ̄ − 1 =

σLOS/σz cos i − 1 is illustrated in Figure 5 as a function of
inclination and SVE shape (0.4 < α < 1.0, α = β); systematic
errors in disk mass due to deprojection should scale with this
function.

3.5.5. Extinction

With the exception of the isothermal case, where σz is
independent of scale height, dust extinction in the disk can
modulate the observed value of σLOS. Considering the face-
on case, an exponential vertical mass distribution is the most
extreme situation in the sense that the range of σz from mid-
plane to infinite height above the disk changes by a factor of√

2, i.e., about 41%, increasing with height (see van der Kruit
1988, whose general development in the absence of extinction
we elaborate on here). The effect of a dust layer, then, will be
to censor the mid-plane region and raise the observed σz. The
impact will depend on the total optical depth and the relative
scale height of dust and stars. For example, an infinitely thin
dust layer at the mid-plane will have no effect on σz, regardless
of optical depth. In the absence of dust, or in the infinitely
thin dust-layer case, the integrated σz is

√
3/2 times the mid-

plane value for an exponential vertical mass–density distribution
of constant ϒ. In general, the observed σz will increase in
either of two situations: (1) for a finite-thickness dust layer
as the optical depth increases at a given dust-layer thickness
relative to the stellar distribution, or (2) as the thickness of
the dust layer increases at a fixed total optical depth through
the disk.

A reasonable assumption is that the dust layer is comparable
to the gas layer, and much smaller than the stellar scale height for
the old stars we are using as dynamical tracers. This is consistent
with the observations of edge-on systems by Dalcanton et al.
(2004) for fast-rotating disks like those in the DMS. Even in
slow-rotating disks, which have thicker dust distributions, Seth
et al. (2005) find the RGB population have scale heights 1.5–3
times larger than the dust. While Howk & Savage (1999) have
shown, via unsharp image masking, that there are pronounced
extra-planar dust structures in fast-rotating disks seen edge-on,
there is good reason to believe these structures are associated
with the energetics of star formation in spiral arms (e.g.,
Kamphuis et al. 2007). The use of unsharp-masking, however,
removes the median extinction level from the image so that the
visual impression over-emphasizes the relative strength of the
extra-planar versus the near-planar extinction. Inspection of the
un-filtered images is qualitatively consistent with the multi-band
radiative-transfer analysis (e.g., Xilouris et al. 1998): the overall
extinction at large scale heights is substantially lower than that
near the mid-plane.

More debatable is the total, face-on optical depth. Work by
Domingue et al. (2000), Boissier et al. (2004), Holwerda et al.
(2005), and Tamura et al. (2009) all point to the clumpy nature
of dust extinction in disks seen at low inclination. The different
methods used in these studies each have their own substantial
uncertainties, but there appears to be a consensus that dust is
heavily concentrated toward spiral arms, with patchy effective
extinction in the range 0.3 mag < Ai

B < 2.5 mag; the inter-
arm regions are relatively thin (Ai

B < 0.1 mag) and become
thinner with increasing radius. Keel & White (2001) estimate
that for the disks in their sample of spirals “half the dust mass

[is] contained in only 20% of the projected area and 95%–98%
of the dust mass contained in half the area.”

An essential problem with all of these observational stud-
ies is their inability to access the full three-dimensional ge-
ometry of the stellar and dust distribution. This geometry,
as shown by Calzetti et al. (1994), is necessary for model-
ing accurately the extinction as it pertains to different layers
of the disk. Radiative-transfer modeling using clumpy stellar
and dust distributions (e.g., Matthews & Wood 2001, for the
low surface-brightness galaxy UGC 7321) are the path for-
ward, but such models have not yet been fully developed for
a wide range of galaxy types. However, some superb, multi-
wavelength modeling using smooth dust distributions have
been carried out by Xilouris et al. (1997, 1999). Their models
have been applied to edge-on, intermediate-type spirals, oth-
erwise typical of DMS galaxies. They find that the face-on
optical depth is less than one, implying galaxies seen face-
on would be nearly transparent. The extinction values are
comparable to those found suitable for moderate-inclination
galaxies using a simpler, but physically similar model
(Verheijen 2001).

To reconcile these results with the observational studies of
clumpy dust distributions, in a follow-up study Misiriotis et al.
(2000) have shown that from an edge-on perspective putting
dust smoothly in an exponential disk is indistinguishable from
placing the dust in a logarithmic spiral pattern of similar scale
height. Further, Popescu et al. (2000) and Misiriotis et al. (2001)
examined whether the smooth dust models of Xilouris et al. were
consistent not only with the apparent extinction of star light, but
also the far-infrared (FIR) emission from the dust itself. Based
on an FIR excess, they found evidence for an additional dust
component, plausibly from a very thin layer associated with
mid-plane star formation.

The coherent picture emerging from all of the above discus-
sion is one where the patchy regions of high extinction in spiral
arms are associated with this nearly mid-plane dust responsible
for the FIR excess, whereas the remainder of the disk is char-
acterized better by the log-spiral dust model of Misiriotis et al.
(2000). Because regions of high extinction near the mid-plane do
not affect σLOS, we therefore adopt the smooth dust-distribution
models of Xilouris et al. as a suitable mean for the arm–interarm
disk extinction modulating σLOS. In Section 3.7, we test our hy-
pothetical picture by exploring if azimuthal variations in σLOS
might be due to clumpy dust distributions associated with spiral
structure.

Here, then, we characterize the dust to be in a smooth
exponential distribution in radius and height. We adopt the
full range of values from the work of Xilouris et al. (1997,
1998, 1999) such that the dust has a scale height of roughly
0.6 ± 0.3 that of the stars, an exponential radial scale length of
roughly 1.4 ± 0.2 that of the stars, and a face-on optical depths
of τ = 0.35 ± 0.15 and 0.55 ± 0.20 in the I and V bands,
respectively, i.e., matching the Ca ii-triplet and Mg ib regions.
We have computed the impact on the observed σz in the worst-
case scenario where τ = 0.9 (at the galaxy center), and the dust-
to-star scale height ratio is 0.9: this is the worst-case scenario
in the sense that both optical depth and dust-to-star thickness
are one standard deviation off their nominal values such that the
impact on σz is maximized. The change in σz is only 1.3% higher
from the dustless case. Since our measurements are actually
made at around one dust scale length, with typically smaller
optical depths, the impact of extinction on the observed σz is
completely negligible. For this reason, we ignore extinction
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Table 1
Σdyn Error Budget for Individual Galaxies at i = 30◦

Quantity Type Section Equation Log Error

Quantity Σdyn

Random

σobs Measurement 3.3 B1 0.030 0.027
Template mismatch Measured correction 3.4 B1 0.040 0.036
Instrumental resolution Measured correction 3.5.1 B1 0.030 0.013
Beam smearing Measured correction 3.5.2 B1 0.500 0.001
SVE deprojection, α Measured correction 3.5.4 B1 0.250 0.204
SVE deprojection, β Measured correction 3.5.4 B1 0.050 0.013
SVE deprojection, i Measured correction 3.5.4 B1 0.116 0.184
Total SVE deprojection,

√
γ̄ cos i Measured correction 3.5.3 B1 0.138 0.275

hR Measurement 2.2 B1 0.030 0.019
Σdyn Total random error 5.1 B1 . . . 0.280

Systematic

hR : hz conversion, qR Estimated correction 2.2 B2 0.250 0.250
Distance, Dflow Uncorrected systematic 4 B2 0.080 0.051
Distance, H0 Uncorrected systematic 4 B2 0.070 0.044
Vertical distribution, k Uncorrected systematic 5.1 B2 (0.140) (0.140)
Σdyn Total systematic error 5.1 B2 . . . 0.259

Note. () = excluded from final tally.

effects on σLOS. The impact of extinction on the photometric
aspect of ϒdisk

∗ is discussed below.

3.5.6. Summary of Corrections and Uncertainties

The final expression for the corrected vertical velocity dis-
persion of a stacked ring of fibers is given by

σ 2
z = σ̄ 2

LOS / γ̄ cos2 i, (6)

where
σ̄ 2

LOS = σ̄ 2
obs − δσ̄ 2

inst − σ̄ 2
beam, (7)

σ̄obs is the observed velocity dispersion from an averaged set
of velocity-registered fibers in a ring; δσ̄inst is the average
correction for instrumental broadening not naturally taken out
by the cross-correlation process (Section 3.5.1); σ̄beam is the
average correction for beam smearing due to the finite size of
our sampling aperture (Section 3.5.2); and γ̄ is the correction
for line-of-sight projection (Section 3.5.4). We have ignored
corrections for line-of-sight integration (Section 3.5.3) and
extinction (Section 3.5.5), and likewise the uncertainties in the
error budget for σz and quantities dependent upon σz.

The accounted uncertainties in σz from measurements and
corrections are listed in Table 1 in order: random measurement
errors in σLOS from cross-correlation (Δ ln σobs, Section 3.3);
random errors from template mismatch (Δ ln σtpl, Section 3.4);
instrumental broadening mismatch between template and galaxy
spectra (Δ ln σinst, Section 3.5.1); uncertainties in the beam-
smearing correction (Δ ln σbeam, Section 3.5.2); and errors in
deprojection due to uncertainties in α, β, and i (Section 3.5.4).

3.6. Other Considerations

3.6.1. Spatial Registration

IFU centering on a target galaxy can vary over a period of
many consecutive hours of observation due to guiding errors
or flexure. Such variations are small (<1′′), and negligible
over the course of a single exposure of 30–60 minutes. Larger
centering variations can occur between observations of the same
target taken on different nights or runs due to errors in offsets

during target acquisition. We estimate the repeatability of target
acquisition with the WIYN 3.5 m telescope at about 1′′ (rms) in
either R.A. or decl. Offsets of 20%–30% of a SparsePak fiber
diameter are therefore typical of a set of observations of a single
galaxy. For PPak observations, the position of a guide star on
the guide CCD of the spectrograph is repeatable to 0.′′2, i.e., the
pixel size of the guide CCD, or 8% of the PPak fiber diameter.

Precise and accurate spatial registration of the IFU spec-
troscopy must be made both internally to the different spec-
troscopic pointings as well as externally to the imaging
photometry. A robust determination of the relative spatial regis-
tration of the spectral data is critical for kinematic measure-
ments. Uncorrected drifts, offsets, and misalignment of the
pointing lead to an effective beam smearing when fiber spec-
tra are coadded, and to a mismatch when modeling the data or
combining data across configurations (e.g., Hα with Mg ib and
Ca ii-triplet region data). Registration of the IFU spectroscopic
data to the imaging photometry is required to match the kine-
matic measurements of enclosed mass and mass surface density
to enclosed luminosity and surface brightness. Since the IFUs
sparsely sample the spatial dimensions, it is all the more im-
portant that both the kinematic and photometric “footprints” are
aligned in order to minimize random errors in matching mass to
light. To prevent a substantial contribution to our error budget,
we want the spatial mis-registration to be smaller than the see-
ing. We set a conservative upper limit for spatial mis-registration
such that it increases the effective smearing due to seeing by no
more than ∼20% in a quadrature sense. This results in a mis-
registration requirement for SparsePak of �0.′′5 for the median
seeing conditions (0.′′8 FWHM; Section 3.6.2), or about 10% of
the SparsePak fiber diameter. For PPak, with median seeing of
1.′′4 FWHM, the mis-registration requirement is �0.′′8, or 30%
of the fiber diameter.

We use two independent methods to determine the relative
spatial offsets of our spectroscopic data from SparsePak. Both
take full advantage of the IFS spatial coverage. The first method
uses the velocity-field fitting technique described in Paper I
which simultaneously solves for the barycenter, P.A., inclina-
tion, rotation curve, and the relative offsets of the individual
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spectroscopic pointings for a given source (Andersen 2001; D.
R. Andersen & M. A. Bershady 2010, in preparation). The reg-
istration is strictly relative, but with the assumption that the
galaxy barycenter is co-spatial with the optical center of the
galaxy, this method also provides an absolute registration. As
we note below, this assumption can be checked by comparing
the kinematic center to the center derived from a comparison of
the spectral continuum distribution to broadband images.

Application of this kinematic technique to the SparsePak data
in the Hα and Mg ib regions for the seven galaxies noted in
Section 3.4.2 (Westfall 2009) yields median centering errors of
0.′′2 in the Hα region and 0.′′5 in the Mg ib region. (Exposure
times were 15 minutes in Hα and 45 minutes in Mg ib, typical
for our survey.) The amplitude of these random errors scale
directly with the product of the number of lines fit in each
region (we simultaneously fit [N ii] and [S ii] lines in addition to
Hα, whereas in the Mg ib-region we only fit the [O iii]λ5007
line) and the total number of fibers per pointing for which
line emission is detected.11 There is some indication that the
registration using [O iii]λ5007 is somewhat (up to 15%) noisier
than expected from this scaling, consistent with a velocity field
that qualitatively looks more chaotic than that measured in the
Hα region. Systematic errors can also be estimated by examining
differences in the registration when fitting a range of rotation
curve models, parameterized with two to three variables that
control the steepness of the rise, peak velocity, and asymptotic
behavior at large radius. For a set of models yielding comparable
minimum χ2 values, we find that these systematic errors are
2–2.5 times smaller than the random errors. There is a hint that
systematic errors become proportionately smaller as random
errors become larger, suggesting that we are overestimating our
systematic errors. This sample of seven galaxies, six of which
range from 24◦ < i < 38◦, are typical of our Phase B sample in
terms of quality of the velocity-field fit, inclination, and velocity-
field regularity. We conclude that relative centering errors of
5%–10% (random) and 2%–4% (systematic) of a fiber diameter
are representative of this kinematic method, and provided good
S/N data and a smooth velocity field.

The second registration method aims at matching the spectral
continuum in the IFS data cubes, in a least-squares sense, with
photometry from broadband images in a similar wavelength
region. One challenge is to define a meaningful χ2 statistic, re-
quiring a good definition of detector gain and error propagation
when deriving the extracted spectral continuum signal. Seeing
variations between image and spectra can also be problematic
(Section 3.6.2). In some early data, there were also uncertainties
in the IFU P.A., which complicated the χ2 mapping. However,
by comparing the kinematic P.A. from the velocity-field fits to
the photometric P.A.s ameliorates even these uncertainties.

Two approaches have been taken to this continuum-fitting
method. The first method fits the spectral continuum data
directly to aperture photometry of the broadband images using
the same relative two-dimensional foot-print pattern as the
IFU, and apertures that match the fiber diameter. Using this
approach, Swaters et al. (2003) were able to register the spectral
continuum from SparsePak Hα observations of a low surface-
brightness galaxy (DDO 39) to an R-band image with a centroid
precision of 0.′′5 or better. This source is substantially irregular
and has considerable foreground contamination from Galactic
stars. Application of this method to regular galaxies of normal

11 This product is typically 245 for an Hα region pointing and 40 for the Mg ib
region.

surface brightness at higher Galactic latitude should be more
precise. The second method matches the spectral continuum to
a one-dimensional light-profile. Bershady et al. (2005) report
continuum fitting in the Ca ii-triplet region using SparsePak
to the I-band surface-brightness profile of UGC 6918 with a
centroid precision of 0.′′25 or better. This precision is comparable
to the velocity-field fitting method, and allows us to place the
IFS observations on an astrometric scale without making any
assumptions about how light traces mass.

In a separate paper (D. R. Andersen & M. A. Bershady 2010,
in preparation) we have used DensePak Hα data of a similar
sample of 39 nearly face-on galaxies from Andersen et al.
(2006) to directly compare centers derived with the kinematic
and photometric methods described here. As noted in Paper I,
14 of these galaxies are in the DMS. The distribution of offset
differences (rms) based on this comparison is characterized
by a mode of 0.′′35, but a mean of 0.′′7 due to a tail that
extends to 2′′ and contains 10% of the sample. This tail is
likely due to the failure of one of the centering methods. For
example, the distribution extremum is UGC 4614, a galaxy
not in the DMS but with a Hα velocity field showing strong
twisting associated with spiral arms. In this case, the kinematic
method is likely more suspect because it is based on a fit
to an axisymmetric model. In general, galaxies with large
asymmetries in their rotation curves (>10% in velocity) show
systematically larger offset differences. By using both methods
we are able to identify sources with discrepant centering and
then, by inspection, determine which method is likely most
problematic, thereby minimizing centering errors. The above-
mentioned mode and mean of the offset-difference distribution
are equivalent, respectively, to centroiding uncertainties of 0.′′25
and 0.′′5 in both methods, consistent with our earlier estimates.
Hence, the registration precision we are able to achieve with
either kinematic- or continuum-fitting methods is good enough
that it does not enter the error budget. The centering uncertainties
for PPak are expected to be significantly smaller given its 331
fibers, each with smaller diameter than SparsePak.

3.6.2. Seeing Variations

Although the impact of seeing-mismatch between IFU and
broadband data on their spatial registration appears to be small
for the large-fiber IFUs used in the DMS, the commensurate
impact on mismatching “mass to light” is a different issue.
With changes in seeing, the light sampled by a single fiber may
not represent the same effective physical region as that of an
identical photometric aperture, even if it is correctly placed on
a broadband image. The issue is comparable to deriving colors
for sources in imaging data with variable seeing. For measuring
colors, the recourse is either to determine the seeing in each
image and degrade all images to the worst-case seeing (if the
source profile is not known a priori), or if the profile is known
(e.g., from stars), to carry out profile fitting on each source in
each image, and take a comparable fraction of the total light
from the derived profile fit to each image. Unfortunately, we do
not know the intrinsic light profile sampled by each fiber, and
for SparsePak we do not have estimates of the seeing conditions
during the IFU observations. For PPak observations, the CCD
image of each guide star exposure is stored and at our disposal.
From each series of guide star images, we have reconstructed the
effective seeing during each of the 60 minute PPak exposures
(T. Martinsson et al. 2010, in preparation). The distribution of
PPak seeing conditions (FWHM), suitably averaged over the
full exposure times for each galaxy, has a mean and standard
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deviation of 1.′′4±0.′′4; 80% of the data were taken in conditions
between 0.′′9 and 2.′′0; and all of the data were taken in conditions
between 0.′′8 and 2.′′1.

There are several factors which mitigate the impact of seeing
mismatch. First, SparsePak fiber diameters are 6 times larger
than the FWHM of the point-spread function (PSF) in median
conditions at WIYN (0.′′8), so that 70% of the light collecting
area of a fiber is more than the FWHM away from the fiber
edge. This diminishes the impact of any unresolved sources
in or near the edges of a fiber on the encircled energy as
the PSF varies. Second, by employing the spectral-continuum
registration method using an image with sufficiently good
seeing, we can degrade the image quality until the best match
is found between spectral and imaging data in a χ2 sense (e.g.,
Andersen et al. 2008). Finally in the case of fiber averaging,
either in spatially adjacent regions or in an azimuthal ring,
the impact of seeing variations will be averaged out. These
mitigating factors, while only qualitatively described here, are
sufficient to ignore seeing mismatch in further discussion of our
error budget.

3.7. Assessment of Uncorrected Systematics

The accuracy of any measurement ultimately depends on the
completeness of the assessment of, and correction for, system-
atic errors. The presence of overlooked or mis-estimated sys-
tematic effects abound in astronomy because of the complexity
of astrophysical systems and the lack of direct laboratory veri-
fication. The troubled history of the extragalactic distance-scale
measurement is but one notorious example. Since galaxies are
complex systems, and the measurement of disk mass involves
a delicate confluence of photometric and kinematic scales, it
would not be surprising to find that in 10 years time our knowl-
edge has increased sufficiently to revise the correction esti-
mates presented in this paper. Nonetheless, at this time we do
have sufficient information to surmise that any such revisions
will likely be modest. Of the two primary components of the
disk-mass measurement, hz and σz, we have explored potential
systematics associated with the vertical scale height extensively
in Section 2.2. Here, we present a simple empirical inquiry
on the likely amplitude of systematics in the stellar velocity
dispersion.

A primary concern we have is that our approach relies on
the assumption that to a high-degree disks are axisymmetric
and their mass-density distribution is smooth. Yet we know
non-axisymmetric structure in the form of spiral arms, lopsid-
edness or elongation (bi-symmetry) are also salient features of
disk systems. Specific concerns include: patchy extinction of
unknown scale height (raising σLOS due to mid-plane censoring
of an exponential vertical mass distribution); population gra-
dients (modulating σLOS due to template mismatch and σ–hz
trends with age); and velocity structure (enhancing σLOS due to
beam smearing from, e.g., streaming motions in spiral arms). To
check for these effects we have picked UGC 6918 as a test case
because it has the highest surface-brightness disk in our sample
(and hence is most likely to have significant extinction at least
in its inner regions); it has among the most asymmetric rotation
curves in our sample (D. R. Andersen et al. 2010, in prepara-
tion); and it contains a weak AGN—activity perhaps resulting
from the perturbed kinematics and also plausibly modulating
stellar-population gradients in recent times.

In Figure 15, we illustrate residuals in the spectral continuum,
stellar velocity, and stellar velocity dispersion from a smooth,
axisymmetric model. Kinematic measurements have been made

for individual fibers using a single (K1 III) stellar template
so that we may maximize our sensitivity to both radial and
azimuthal variations. We have constructed the residuals from
an axisymmetric model in the simplest and least parametric
way possible. The model consists of independent Legendre
polynomial fits of low order to the radial distributions of each
of these quantities. For purposes of illustration the velocity data
are deprojected for azimuthal location but not inclination, and
we exclude from the fit point that are more than 60◦ from
the kinematic major axis. However, the velocity residuals are
calculated from the derived rotation curve projected in azimuth.
Similarly, the model fit to the radial trend of the stellar velocity
dispersion is modulated in azimuth, when calculating residuals,
by an SVE with α = 0.6 (expected to be typical of late-type
disks) and β set by the epicycle approximation and the model
rotation curve.

By construction the residuals in radius have no structure,
although there is scatter at smaller radii substantially in excess
of the small estimated measurement errors. The scatter is below
12% rms in surface brightness and σLOS, and roughly 3 km s−1

rms in velocity. In azimuth, however there is clearly correlated
structure, most evident in the surface brightness and σLOS
residuals. The amplitude of this structure is below 15%. One
half of the galaxy also appears to be rotating 10 km−1 faster
than the other (in projection).

The bottom panels of Figure 15 explore whether variations
in σLOS are correlated with variations in surface brightness (as
might be expected if there is patchy extinction associated with
spiral structure) or deviations from smooth rotation. There is no
evident correlation between any of these quantities.

From this analysis, we conclude that in the worst possible
case (a high surface-brightness, kinematically asymmetric disk)
systematics are below 15%, and even these amplitude are
only apparent at the innermost radii where extinction is likely
greatest. Our expectations are that for the remainder of our
survey sample, such systematics will be smaller still, and hence
negligible to our overall error budget.

4. DISTANCE ERRORS

The flow-corrected distances, D, given in Table 2 of Paper
I have 7% ± 0.5% formal errors, which are the quadrature
sum of the estimated uncertainty in H0 (NED12 quotes 73 ± 5,
or Δ ln DH0 = 0.07; see Mould et al. 2000, who estimate
9%) and the heliocentric velocity measurements. The latter are
insignificant. Yet flow corrections are large, and their precision
and accuracy should be somewhat suspect at least to the
extent that there are no errors associated with these corrections
attributed to the distance estimates. Uncertainties arise both
from the flow model as well as peculiar velocities on top of
any bulk flow. For example, for both Phase-A and Phase-B
samples, the median flow-correction ΔVflow ≡ Vhel − 73D is
∼ − 300 km s−1. Flow corrections range from −811 km s−1

to +1301 km s−1; 90% of the sample is contained within
−620 km s−1 < ΔVflow < +230 km s−1. These values are
fairly independent of heliocentric velocity, which means the
corrections become very large at small recession velocities. The
largest corrections are in the sense of lowering distances and
related distance-dependent quantities of luminosity and size, but
raising Σdyn and ϒ. However the median correction is to increase
distances, and hence the predominate effect of flow-corrections

12 NASA/IPAC Extragalactic Database: http://nedwww.ipac.caltech.edu/

http://nedwww.ipac.caltech.edu/
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Figure 15. Correlations of surface-brightness, velocity and velocity-dispersion residuals: checks on uncorrected systematics for UGC 6918. Top three left-most panels
show radial trends of spectral continuum intensity (Icont) in the Mg i region, projected velocity V (deprojected for azimuth but not inclination) and corrected for the
estimated systemic recession velocity (Vsys), and the line-of-sight velocity dispersion σLOS. Polynomial fits (curves) define smooth model values Im, Vm, and σm,

respectively. The innermost surface-brightness datum is excluded from the fit and marked by x. Velocities are plotted as circles for azimuthal angles within 60◦ of
the major axis, and x’s otherwise. Ratios or differences of observed and model values for all points are shown vs. radius (R) and azimuth (θ ) in the galaxy plane in
the middle and right top three rows. The model σm is modulated in azimuth as described in the text. Bottom panels correlate these ratios and differences against each
other. Points in all panels represent individual fiber measurements from SparsePak, shaded by radius.

is to raise luminosity and size estimates, but diminish Σdyn
and ϒ.

Taking the quantity Δ ln Dflow ≡ |0.5[1 − Vhel/(73 × D)]|
as a conservative distance-error statistic associated with flow-
corrections and peculiar velocities, we find 90% of the Phase-A
and Phase-B samples have distances errors <11% and <8%,
respectively; 75% of the samples have distances errors <6%
and <4%; and 50% of the samples have distances errors
<3% and <2%. Similarly, Δ ln Dflow is less than 10% for
Vhel > 2100 km s−1 and less than 5% for Vhel > 5000 km s−1

for the Phase-A sample, and Δ ln Dflow is less than 10% for
Vhel > 1450 km s−1 and less than 5% for Vhel > 3350 km s−1

for the Phase-B sample. Adopting the 90th percentile errors
for Δ ln Dflow for the Phase-B sample in quadrature with un-
certainties in H0, we arrive at a total systematic error of 11%
for distance. This is applicable to individual galaxies. Since
sources cover a range of distances and directions in the sky,
velocity-flow corrections to their distances introduce random er-
rors in the ensemble measurements. For the survey as a whole,

the systematics are diminished to the uncertainty in H0 only,
or 7%.

In future papers, we discuss some individual cases, e.g.,
UGC 6918, where other indicators such as supernovae can be
used to better-calibrate distances. Of course, TF can be used
too, but since its use inherently biases the luminosity estimate
on a case-by-case basis (although not necessarily in the mean),
wherever possible we prefer to avoid this approach. This is
necessarily the case when using iTF to infer inclinations.

5. SURVEY ERROR BUDGET

The formulae for the dynamical disk mass, Σdyn, the disk
stellar mass-to-light ratio, ϒdisk

∗ , the disk fraction,Fdisk
∗,max, and the

baryon fraction, Fbar are presented in terms of our observables.
These formulae are used to derive our error budget for each
quantity, and to identify which portions of this budget lead to
systematic or random uncertainties for individual galaxies and
for the survey as a whole. For illustration purposes, we compute
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the errors on the disk-averaged values 〈Σdyn〉 and 〈ϒdisk
∗ 〉.

We make the canonical distinction between “random” and
“systematic” error components to mean that if the observation
were repeated under identical conditions, random errors lead to
a variance in the derived value. Systematic errors in individual
galaxy measurements which scatter symmetrically around an
accurate value of the mean for the sample ensemble are
categorized as random uncertainties for the survey.

5.1. Disk Dynamical Mass, Σdyn

As a nominal model we will adopt an exponential vertical
distribution function (k = 3/2) of constant scale height and
oblateness as parameterized in Section 2.2 by Equation (1).
Scaled to our nominal model, physical units and characteristic
values expected for the DMS, the radial expression for dynam-
ical mass surface-density becomes

Σdyn(R)
[
M� pc−2

] = 100.0

(
k

3/2

)−1

×
(

hz

444 pc

)−1 (
σz(R)

30 km s−1

)2

. (8)

Substitute hR for hz, Σdyn can be written as an explicit function
of our observables:

Σdyn(R)
[
M� pc−2

] = 100

(
k

3/2

)−1 (
q

qR

)

×
[(

D

60.1 Mpc

)(
hR

12.′′6

)]−0.63

×
(

σz(R)

30 km s−1

)2

, (9)

where q is the true axis ratio (oblateness) hR/hz, and qR is the
estimate given in Equation (1).

Equation (9) becomes our operating formula for estimating
errors. The first two quantities (k and q) are unity for the
nominal model, and have (known) uncertainties (Δ ln k = 0.14
and Δ ln q = Δ ln qR = 0.25). They lead to systematic errors
for individual galaxies, but random errors over the survey as
a whole. For our calculation here, we assume that galaxies do
not deviate systematically from our adopted oblateness relation
and our assumed form for the vertical density distribution.
The last three parenthetical quantities in Equation (9) are
our observables. In order: distance uncertainties, discussed in
Section 4 above, are systematic for individual galaxies, and
contain systematic (H0) and random (flow) errors for the survey
as a whole. Random errors in the measured recession velocities
are negligible. Measurement uncertainties in hR are random.
We note the reduced distance and size dependence due to the
correlation of oblateness with galaxy scale. Errors in σz are
random, including the observed line-of-sight dispersion, beam-
smearing and instrumental corrections, inclination, template
mismatch, and the SVE shape. We assume in our model that
estimates for the SVE shape and its uncertainty are made on a
galaxy-by-galaxy basis. Survey systematic errors for Σdyn, then,
include only distance errors from H0.

Several caveats are worth mentioning regarding the impact on
our Σdyn estimate due to the presence of (1) a radial gradient in
the halo potential, (2) a thick disk, and (3) a thin gas-layer. First,
the impact of the halo potential on σz should be small because the
halo density gradient is locally negligible compared to the radial

density gradient of the disk, particularly in the radial region of
interest in our survey. Both (2) and (3) alter the effective k value
that should be used with the associated hz and σz, and also the
effective value of hz. Since the effect of a thick disk is to make
hz larger and k smaller (a two-component monotonic profile is
always cuspier than a one-component monotonic profile), the
effects of a thick disk on our estimates of Σdyn tend to cancel.
We also demonstrated in Section 2.2 that the impact of a thick
disk on the effective value of hz is smaller than the plausible
range of k. Hence, we include the estimate of Δ ln k alone as a
parenthetical entry in Table 1 to indicate an upper limit to the
potential systematics associated with variations in the effective
vertical density distribution.

Appendix B.1 has the formulation of the random and sys-
tematic errors for 〈Σdyn〉 under the plausible model that the
observables are independent. Table 1 collects the terms in three
categories: (1) measurement errors on σobs (Section 3.3) and
hR (Section 2.2); (2) uncertainties from correcting for system-
atic effects, including instrumental resolution (Section 3.5.1),
beam smearing (Section 3.5.2), line-of-sight projection (Sec-
tion 3.5.4), template-mismatch (Section 3.4), and oblateness
(Section 2.2); and (3) uncorrected systematic effects, which in-
clude the vertical distribution function and distance (Section 4).
We have excluded the effects on σLOS from line-of-sight inte-
gration (Section 3.5.3) and dust extinction (Section 3.5.5) as
negligible contributions to the error budget. A typical survey
value of σz = 30 km s−1 and i = 30◦ are adopted to set the error
scale. Results depend weakly on the choice of σz because the
dominant errors (deprojection and template-mismatch) scale.
However, there is a significant dependence to the error in Σdyn
on inclination, illustrated in Figure 16.

Typical errors for individual galaxies in our survey will be
28% (ran) and 26% (sys) for Σdyn. The dominant error terms for
Σdyn are (1) the conversion of scale length to scale height (25%
systematic error); and (2) the deprojection of σLOS into σz (27%
random error). Contributions to the latter come nearly equally
from uncertainties in the ellipsoid ratio, α, and the inclination.
Dividing the sample into quartiles (e.g., ten galaxies binned by
color, luminosity, or surface brightness) will yield errors of 12%
(ran) and 4% (sys) for Σdyn.

5.2. Disk Stellar Mass, Σ∗, and Mass-to-light Ratio, ϒdisk
∗

The total dynamical disk M/L can be written as ϒdisk
dyn =

Σdyn/I , where the surface intensity I has units of L� pc−2, and it
is implicit that I is associated with the disk. This is an empirical
definition based on the apparent luminosity distribution. It is
useful for mass decompositions when information on other
constituents of the disk (gas and dust) is unavailable. ϒdisk

dyn has
the same dependence on distance, σz and hR as does Σdyn, with
an added dependence on the surface photometry. The latter in
general is not a limiting factor in terms of random error.

To obtain ϒdisk
∗ , however, requires an estimate of the stellar

mass surface density, Σ∗, and the extinction-corrected flux
surface intensity, Ic: ϒdisk

∗ = Σ∗/I c. We express the flux
surface intensity in wavelength-specific form where Iλ =
I c
λ exp(−τλ), and the extinction in magnitudes, Aλ = 1.086τλ =

−2.5 log(Iλ/I
c
λ ) = μλ − μc

λ; μ is equivalent to I, except
expressed in mag arcsec−2. The extinction correction is the sum
of the Galactic foreground extinction A

g

λ and effective internal
extinction Ai

λ within the galaxy, given the complexities of the
dust geometry, scattering, and (at long wavelengths) emissivity.
Internal extinction is modest in the outer parts of late-type disks



No. 1, 2010 THE DISKMASS SURVEY. II. 261

Figure 16. Logarithmic errors for Σdyn (left), ϒdisk
∗,K (middle), and Fdisk∗,max (right) vs. inclination for an single galaxy (top panels) and for averages of ten galaxies

(bottom panels). Systematic errors (sys) are shown as horizontal dashed lines. Random errors (ran) are calculated using estimated inclination errors based on kinematic
determinations (black curves), and iTF determinations (gray curves). The vertical line at 28◦ marks the crossover between these two estimates.

(Section 3.5.5), and for our reddest near-infrared bands (K and
3.6 μm Spitzer bands) extinction corrections are small, as are
the uncertainties in these corrections. There is also a ∼3% zero-
point uncertainty inherent to any magnitude system (e.g., the
uncertainties in the AB95 calibration; Fukugita et al. 1996).

To arrive at Σ∗ corrections must be made for the gas mass
surface density (Σgas), comprised of atomic (Σatom) and molec-
ular (Σmol) components, and for non-baryonic disk dark matter
(Σdark). We ignore ionized gas and dust contributions to Σdyn,
assuming they are negligible. While we mention Σdark here for
completeness, we drop it from subsequent consideration; hence-
forth, any non-baryonic disk component is subsumed in the
stellar component, and we write Σ∗ = Σdyn − Σatom − Σmol.

Measurements of the neutral hydrogen gas mass surface
density (ΣH i) is straightforward and part of our program. We
scale ΣH i by a factor of 1.4 to arrive at the total atomic
gas density. This scaling takes nucleosynthesis products into
account (a factor of 1.32 corresponds to a 24% primordial helium
mass fraction). Estimating Σmol is more indirect and uncertain,
although Spitzer images at 8, 24, and 70 μm are at our disposal;
flux ratios from these bands imply dust of various grain sizes,
and indirectly molecular gas phase.

First, we adopt η ≡ Mmol/Matom as the parameterization
the total mass ratio of molecular to atomic gas, and we
assume the atomic and molecular phases have comparable
abundances. Early studies by Young & Knezek (1989) based
on measurements of CO(1–0) line emission indicated η was
of order unity, but varied strongly with Hubble type between
1.8 and 0.3 going from Sb to Scd. They found the range for
a given type comparable to the mean. More recent work by
Casoli et al. (1998) shows η < 1 for all types decreasing
from roughly 0.35 to 0.1 between Sb and Sd, although this
trend is reduced if only the most dynamically massive systems
are considered. This result is consistent with the most recent
literature-compilation studies, e.g., Obreschkow & Rawlings
(2009). We adopt a values of η = 0.25 ± 0.1 (Δ ln η = 0.4) as
typical for galaxies in our survey. Since the atomic mass density

contributes roughly 11%±6% of the total dynamical mass within
the luminous portion of a typical intermediate-type disk (e.g.,
Verheijen 1997; Hoekstra et al. 2001), the molecular component
is of order 3% ± 2%. Uncertainty in the mass contribution of
the molecular component can be further reduced by accounting
for the observed correlations of η with far-infrared luminosity
and dynamical mass, as noted by Casoli et al. (1998). More
recent work by Leroy et al. (2008) indicates even more precise
estimates of the distribution of molecular gas mass can be made
via 24 μm flux maps, which we have for our entire sample.

Second, to arrive at Σmol we adopt a second parameteriza-
tion, namely ξ ≡ Σmol/(Σ∗ + Σmol), and make the reasonable
approximation that while the atomic and molecular total masses
are correlated, the mass surface density of the molecular com-
ponent is better correlated with the stellar mass surface density
(Regan et al. 2001). This approximation allows us to substi-
tute masses for mass surface densities in the definition of ξ .
Taking the sum of atomic and molecular gas along with stars
as the total dynamical disk mass, Mdisk

dyn , we can then rewrite
ξ = η/(Mdisk

dyn /1.4MH i − 1), which is a constant estimated for
each galaxy. From this it follows Σ∗ = (1 − ξ )(Σdyn − 1.4ΣH i).
Finally, the expression for the stellar M/L at a given wavelength
and radius in the disk,

ϒdisk
∗,λ (R) = (1 − ξ ) [ Σdyn(R) − 1.4 ΣH i(R) ]

dexp[−0.4 (μλ(R) − Aλ(R) − M�,λ − 21.57)]
(10)

becomes a function of our observables and parameterization of
the molecular mass component. In this equation, ϒdisk

∗,λ has solar
units when the Σ’s are expressed in M� pc−2. The luminosity
scale is set by M�,λ − 21.57 ≡ μ�,λ, where M�,λ is the
solar absolute magnitude in the relevant band and magnitude
system. Appendix B.2 contains the formulation of the random
and systematic errors for Σ∗ and ϒdisk

∗,λ .
To set the error scale, a number of values need to be defined.

In terms of masses, first we assign a 3% random measurement
error to ΣH i in a given radial ring (2.5% flux-calibration error,
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Table 2
Σ∗ and ϒdisk∗ Error Budget for Individual Galaxies at i = 30◦

Quantity Type Section Equation Log Error

Quantity Σ∗, ϒdisk∗
Random

ΣH i Measurement 5.2 B7 0.030 0.002
Σdyn Corrected measurement 5.2 B7 0.280 0.321
Σ∗ Total random error 5.2 B7 . . . 0.321
μλ Measurement 5.2 B4 0.050 0.022
Internal extinction, Ai

B Estimated correction 5.2 B4 0.180 0.074
Internal extinction, Ai

I Estimated correction 5.2 B4 0.060 0.025
Internal extinction, Ai

K Estimated correction 5.2 B4 0.008 0.003
ϒdisk

∗,B Total random error 5.2 B3 . . . 0.331
ϒdisk

∗,I Total random error 5.2 B3 . . . 0.323
ϒdisk

∗,K Total random error 5.2 B3 . . . 0.322

Systematic

Molecular:atomic mass ratio, η Estimated correction 5.2 B8 0.400 0.040
Σdyn Uncorrected measurement 5.2 B8 0.259 0.298
Σ∗ and ϒdisk∗ Total systematic error 5.2 B8,B3 . . . 0.300

2% random error given S/N ∼ 15 per beam and typically 10
beams per ring). Second, we assign typical values of Ndisk = 5
and Natom = 10 as the number of radial bins in the stellar σLOS
and H i maps, respectively, to relate errors in total disk and
H i mass to their respective surface-density errors. Third, we
estimate a characteristic ratio of the stellar to H i disks masses,
Mdisk

∗ /MH i, to be 7.2 ± 3.8 for a maximum-disk, or 3.5 ± 1.9
for a so-called “Bottema-disk” (Bottema 1997),13 based on the
13 Sb–Scd galaxies from the study by Hoekstra et al. (2001); we
adopt the mean Bottema-disk value here. From these values and
given η above, it follows that ξ = 0.09. The uncertainty in ξ is
large (40% random error and 53% systematic error at i = 30◦)
due to a combination of the uncertainty in the molecular-gas
mass and the measurement errors in the atomic and total disk
masses. However, what is relevant to the error in Σ∗ and ϒdisk

∗ is
the quantity [ξ/(1 − ξ )] Δ ln η, which is only about 4%. Finally,
we adopt the mean value Σ∗/ΣH i = 9.0 ± 5.4 for a Bottema
disk, which follows from Mdisk

∗ /MH i above, and characteristic
radii RHI/R∗ ∼ 1.6 ± 0.3 based on Verheijen & Sancisi (2001).
The variances quoted here for Mdisk

∗ /MH i and RHI/R∗ are
astrophysical and do not enter into our error estimates because
they are measurable quantities in our survey. For estimating
characteristic errors of individual galaxies or ensemble averages
we adopt the mean values for M∗/MH i and Σ∗/ΣH i. Note that
Σ∗ and ΣH i have very different radial dependences.

For photometric errors we adopt Δμλ = 0.05 mag arcsec−2

as a conservative upperlimit to both photon shot-noise and
calibration uncertainty. Adopting the model in Verheijen (2001),
we find Ai

λ = 0.45, 0.15, 0.02 mag in the B, I,K bands,
respectively. As an upper limit, we take ΔAλ = 0.4Ai

λ based
on the variance in the Xilouris et al. studies, and assume
that this uncertainty dominates over uncertainties in correction
for foreground extinction (we selected galaxies with Ag

B <
0.25 mag; Paper I). Treated in this way, correction for extinction
introduces a random error assuming extinction variations across
a disk. In practice, measurement of the broadband spectral
energy distributions, the Balmer decrement, or the Hα to 24
μm flux ratio will allow us to estimate the extinction on
a spatially resolved scale, thereby reducing this uncertainty.

13 A so-called Bottema disk has Fdisk∗,max = 0.63, whereas a maximum disk has
0.85 < Fdisk∗,max < 0.90.

Possible exceptions are regions of high-extinction in spiral arms,
which we will be able to identify via Spitzer 8, 24, and 70 μm
maps.

Appendix B.2 has the formulation of the random and system-
atic errors for Σ∗ and ϒdisk

∗ under the plausible model that the
observables are independent. Table 2 collects the terms includ-
ing (1) measurement errors on μλ and ΣH i, and (2) uncertainties
from correcting for systematic effects, which include extinction
and the molecular mass fraction. The inclination dependence
of errors in ϒdisk

∗,K is illustrated in Figure 16. We have excluded
spatial registration errors (Section 3.6.1) and seeing variations
(Section 3.6.2) as negligible contributions to the error budget.
The error on Σdyn is brought forward from Table 1. There are
no additional uncorrected systematic effects. With the excep-
tion of the molecular gas-mass fraction, parameterized by η,
and systematic effects in Σdyn, the remaining uncertainties in-
troduce random errors on individual ϒdisk

∗ measurements in any
one galaxy. For example, an error in μc

λ is a random error for
ϒdisk

∗ because the μλ measurement error is random, and ΔAλ is
treatable as a random error (extinction variations from galaxy
to galaxy and within a galaxy are stochastic but estimable). En-
semble estimates of ϒdisk

∗ for the survey as a whole suffer only
from systematic errors as described for Σdyn. Typical errors in
ϒdisk

∗ for individual galaxies in our survey will be 32% (ran) and
30% (sys), weakly dependent on bandpass. Dividing the sample
into quartiles will lower ϒdisk

∗ errors to 14% (ran) and 6% (sys).

5.3. Disk Fraction, Fdisk
∗,max

The disk mass fraction within some radius, R, is defined as

Fdisk
∗ (R) ≡ V disk

∗
Vc

∣∣∣∣
R

, (11)

where V disk
∗ and Vc are the circular rotation speeds associated

with the disk stars and entire potential, respectively. Opera-
tionally, we substitute V disk

∗ = √
f disk∗ Mdisk∗ G/R, and adopt

the disk gas tangential speed for Vc; Vc, V disk
∗ and Mdisk

∗ are all
functions of R. The factor f disk

∗ accounts for the non-sphericity
of the mass distribution in the potential symmetry plane. In gen-
eral, fi for the ith mass component can be a function of radius.
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Figure 17. Rotation speed of an exponential disk with central mass surface
density of 100 M� pc−2 and oblateness 0.05 < q < 0.25 vs. radius normalized
by scale length, compared to a spherical density distribution with the same
enclosed mass. The bottom panel shows the ratio of spherical to disk velocities.
Dashed and solid lines show disks truncated at R/hR = 4 and 10, respectively.
The radial range where these disks have peak velocities is shaded in gray.

Fdisk
∗ takes on the value Fdisk

∗,max at R = Rdisk
∗,max where the rota-

tion curve from the stellar disk component reaches a maximum,
(i.e., V disk

∗ = V disk
∗,max). Using the numerical integration code of

Casertano (1983), we find that Rdisk
∗,max ∼ (2.2 + 1/q) hR for an

oblate, constant ϒ disk with q > 4. Based on Equation (1),
90% of our sample with stellar kinematic measurements has
0.09 < 1/qR < 0.18. We continue to assume that q = qR is a
good statistical approximation.

We arrive at an estimate for f disk
∗,max using our knowledge of

the likely range of disk oblateness. Binney & Tremaine (1987)
illustrate that an infinitely thin (hz/hR = 0) exponential disk
has a 15% higher peak velocity than its spherical counterpart
(Vdisk/Vsphere ∼ 1.15 at R = 2.2hR). Using numerical integra-
tion, we find Vdisk/Vsphere ∼ 1.16 − 0.3/q at R = Rdisk

∗,max for
q > 4, illustrated in Figure 17. The mean disk oblateness of our
sample is 7.1. With a 25% uncertainty in disk oblateness for any
individual galaxy, f disk

∗,max = 1.242 ± 0.023. This is less than a
1% contribution to the error budget of f disk

∗,max.
Appendix B.3 contains the error formulation for Fdisk

∗,max in
terms of the observational uncertainties associated with Vc and
Mdisk

∗ (which, as argued in the previous section is proportional
to Δ ln Σdyn), and f disk

∗,max. In estimating errors on Vc we make
the reasonable assumptions that velocity measurements of the
gas are made; asymmetric drift is negligible such that Vc = Vrot
is an excellent approximation; Vrot = (Vobs − Vsys)/ sin i along
the major axis, namely, corrections for line-of-sight integration
are negligible in nearly face-on disks; and errors on Vsys are

Figure 18. Changes in halo mass as a function of stellar mass-to-light ratio for
the Ursa Major galaxy sample from Verheijen (1997). Dotted lines illustrate
a plausible error model for this distribution. Solid and dashed lines give the
error-weighted mean and error in the mean. Low and high surface-brightness
galaxies (LSB and HSB) are marked.

negligible. The terms are collected in Table 3. The inclination
dependence of errors in Fdisk

∗,max is shown in Figure 16. Even
though f disk

∗,max is fundamentally related to hz/hR , it enters
independently in Fdisk

∗,max in addition to the impact of hz/hR

directly on Σdyn; uncertainty in f disk
∗,max introduces systematic

error for and individual galaxy. We exclude errors on Rdisk
∗,max

because both the uncertainty in hR and range of Rdisk
∗,max are

small, and Fdisk
∗,max is relatively insensitive to radius at Rdisk

∗,max

due both to the flatness of Vc and V disk
∗ near this radius. Finally,

because there is just a single Fdisk
∗,max measure per galaxy, we only

consider sample errors on this quantity. In this context, all error
terms are random with the exception of systematic errors in H0
entering through dependence on Σdyn. Typical Fdisk

∗,max errors for
individual galaxies will be 19% (ran) and 15% (sys), reducing
to 8% (ran) and 3% (sys) for averages over ten galaxies.

5.4. Discussion: Baryon Fraction, Fbar

The baryon fraction is given by the ratio of the baryon
mass to the total dynamical mass within some radius: Fbar ≡
Mtot

bar/Mtot
dyn. The total baryon mass, Mtot

bar, is straightforward to
define given our estimate of the stellar disk mass, the atomic and
molecular mass, and reasonable estimates for the bulge mass.
The latter can be parameterized by the bulge-to-disk ratio, e.g.,
in the K band, with a correction for systematically different
mass-to-light ratios as determined by the disk and bulge colors
and SPS models calibrated directly by the survey. For galaxies in
our survey the dominant term in Mtot

bar is the stellar disk mass, so
in essence the uncertainties in Mtot

bar are driven by uncertainties
in ϒdisk

∗,λ .
However, the total mass requires reasonable estimates of

the total halo mass, which are difficult to make because of
its extended nature and the radial limits of our kinematic
data. While H i measurements dramatically improve halo mass
estimates, they are still insufficient to constrain the total halo
mass with any confidence. This is poignantly illustrated by the
analysis in Verheijen (1997) of the Ursa Major galaxy sample.
Even ignoring an isothermal halo (which has infinite mass),
and considering only a single, mathematical form for the halo
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Table 3
Fdisk∗,max Error Budget for Individual Galaxies at i = 30◦

Quantity Type Section Equation Log Error

Quantity Fdisk∗,max

Random

Σ∗ Corrected measurement 5.2 B9 0.321 0.161
Vobs Measurement 5.3 B9 0.020 0.020
Velocity deprojection, i Measured correction 5.3 B9 0.116 0.105
Fdisk∗,max Total random error 5.3 B9 . . . 0.193

Systematic

Σ∗ Uncorrected measurement 5.2 B10 0.300 0.150
Disk oblateness, f disk∗max Estimated correction 5.3 B10 0.019 0.009
Fdisk∗,max Total systematic error 5.3 B10 . . . 0.150

density profile which yields a finite and well-defined total mass14

the estimated fraction of luminous to dark matter (Fbar) varies
significantly for individual galaxies depending on how the dark-
matter profile is constrained. Were we to consider variants of
the density profile form, the uncertainty on the total mass for a
single galaxy would increase further still.

To bring this point home more clearly, we have examined the
logarithmic derivative of changes in the estimated halo mass
(Mhalo

dyn ) with changes in the baryon mass for a given galaxy.
We use the Ursa Major sample and fitting done by Verheijen
(1997), parameterizing the baryon mass with the K-band mass-
to-light ratio. Fits to the halo mass and scale were constrained
by the observed H i rotation curve, the observed H i mass
distribution, and a stellar mass distribution based on the K-band
luminosity profile and a choice for ϒ∗,K (constant with radius).
Three choices of ϒ∗,K were used, corresponding to the so-
called maximum disk, Bottema disk, and an intermediate value.
Figure 18 shows the distribution of Δ lnMhalo

dyn /Δ ln ϒ∗,K versus
Δ ln ϒ∗,K for both high- and low-surface-brightness subsets of
the Ursa Major sample. While there is no clear difference
between these subsets, a trend of larger scatter with smaller
Δ ln ϒ∗,K is evident. It is reasonable to surmise that there are
uncertainties associated with the logarithmic derivative directly
related to Δ ln ϒ∗,K , i.e., the (log) size of the interval in ϒ∗,K used
to measure the derivative. The dotted lines in the plot show this
error model, which looks plausible. On this basis we calculate
the mean and error in the mean for the appropriately weighted
distribution to find

Δ lnMhalo
dyn /Δ ln ϒ∗,K = 1.32 ± 0.32, (12)

where Mhalo
dyn is the total (dark) halo mass. These values are

consistent with the derivative being equal to unity. In other
words, ϒ∗,K and total halo mass (Mhalo

dyn ) are close to 1:1
covariant. What is happening physically with the model is that
as ϒ∗,K increases the halo scale radius is forced to increase.
The mathematical nature of the model is such that Mhalo

dyn also
increases with increasing scale size to produce a “best fit.”
This is not unlike the conspiracy first noted by Bosma (1981)
between the mass of the H i disk and that required to make the
observed rotation curve flat (explored more recently by, e.g.,
Hoekstra et al. 2001 and references therein). Here, however, the
conspiracy is between the stellar and halo masses, and purely a
result of the fitting degeneracy.

14 Here we consider a Hernquist (1990) profile.

This result emphasizes that whatever errors there are in ϒ∗,K ,
Fbar will remain constant in a statistical sense. The nominal
value of Fbar, however, will be set by the nature of the rotation
curve shape, the halo model, and the way it is fit. All of
these differences will lead to a wide range of Fbar’s which are
dominated by systematic effects. Of course, with a different
halo model, we may find a different result, but so, too, is
the value of Fbar likely to change. The primary point is that
Fbar is conceptually unsatisfactory given what can be observed.
While future lensing estimates may make it possible to make a
statistical determination of total mass, for the moment a more
robust observational quantity is Fdisk

∗,max.

6. SUMMARY AND CONCLUSIONS

Our entire error-budget analysis of the DMS precision and
accuracy is summarized graphically in Figure 16, illustrating the
trends of random and systematic errors on Σdyn, ϒdisk

∗,K , and Fdisk
∗,max

with disk inclination. We show results adopting the nominal
parameters given in the previous section, but differentiate results
for kinematic inclinations and inclinations inferred from K-band
iTF.

The breakdown of the errors, adopting kinematic inclinations
at i = 30◦, are given in Tables 1–3. We have divided the
inventory into three groups of random (ran) measurement errors,
systematic errors for which we correct (and in this case we
are interested in the estimated residual error to this correction,
including it in our random error budget), and finally the
systematic (sys) errors for which we cannot correct. The latter
are an important delineation because they represent systematic
errors beyond the control of this and other current astronomical
experiments. These systematic errors are comparable to our
random errors for individual galaxies, but are 5 times lower
than the random errors when we average results over a subset
of the survey. The reason for this is simply because many of the
systematics for individual galaxies are not systematic for the
sample as a whole.

Note that the dominant errors for all quantities of interest
are the SVE axial ratio α and inclination (random errors), and
the disk oblateness q (systematic errors); they dominate the
error on Σdyn, and propagate to dominate the errors on Σ∗, ϒdisk

∗ ,
and even Fdisk

∗,max. Random errors in α and inclination would
need to be lowered (each) by a factor of 4.5 for other terms
to become appreciable (notably σobs). Random errors in Σdyn
would have to decrease fourfold for extinction uncertainties to
dominate the random errors in ϒdisk

∗ in the B band. Even if our
extinction uncertainties are optimistic, they are inconsequential
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for the error budget for our reddest bands sampling the stellar
continuum. For Fdisk

∗,max, the inclination errors associated with the
deprojection of the rotation speed are about 1.7 times lower than
the contributions from errors in Σdyn.

Systematic errors in all cases are independent of inclination.
Random errors, however, are strongly inclination dependent, and
in general increase with inclination. The one exception is the
disk fraction Fdisk

∗,max, which rises steeply at smaller inclinations
below 30◦ if kinematic inclinations are adopted. In general,
adopting iTF inclinations leads to smaller random errors below
i = 28◦, but the gains are only significant for individual galaxies,
except for Fdisk

∗,max. The reason for the reduced error sensitivity
of ensemble Σdyn and ϒdisk

∗,K measurements to the choice of
inclination estimator is due to the additional error terms which,
for individual galaxies are systematic, but for the ensemble
become random, and are independent of inclination. Because
of this modest improvement using iTF for galaxy ensemble
estimates of Σdyn and ϒdisk

∗,K , and because Fdisk
∗,max is most relevant

in the context of knowing independently where a galaxy lies on
the TF relation, we prefer kinematic inclinations. This, however,
does not preclude the interesting use of iTF for calibrating Σdyn

and ϒdisk
∗ at very low inclination.

Our findings show that typical errors for individual galaxies
in our survey will be 28% (ran) and 26% (sys) for Σdyn; 32%
(ran) and 30% (sys) for ϒdisk

∗ , weakly dependent on bandpass;
and 19% (ran) and 15% (sys) for Fdisk

∗,max. Dividing the sample
into quartiles (e.g., ten galaxies binned by color, luminosity,
or surface brightness) will yield errors of 12% (ran) and 4%
(sys) for Σdyn; 14% (ran) and 6% (sys) for ϒdisk

∗ ; and 8% (ran)
and 3% (sys) for Fdisk

∗,max. These numbers compare favorably
to the DMS goal of achieving 30% errors in ϒdisk

∗ . Hence, the
DiskMass Survey will be able to break the disk–halo degeneracy
for individual intermediate-type spiral galaxies in the survey,
and calibrate ϒdisk

∗ to sufficient accuracy and precision so that
SPS models can be used to break the disk–halo degeneracy
in other rotation-curve samples in the nearby universe and at
high redshift. This will open the door to measuring the detailed
shape of dark-matter halos and understanding the structure and
formation of galaxies.
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APPENDIX A

ERRORS ON INCLINATION

A1. Velocity-field Fitting Estimates

Based on a preliminary analysis of roughly half the Phase-A
Hα sample, we parameterize the errors from inclined-disk model
fits to the kinematic data, described in Paper I and Andersen
(2001). We find the error distribution is roughly log linear:

log di = a + b × i,

with the slopes and intercepts given in Table A1. These values
form a lower envelope (best, or smallest inclination errors at a

Table A1
Kinematic-inclination Error Coefficients

a b

Best 0.84 −0.019
Mid 1.26 −0.024
Worst 1.74 −0.030
Extreme 2.49 −0.039

given inclination); a mid-point to the main grouping of points
(mid); and upper envelope to this main grouping (worst); an
outside envelope to the very worst cases (extreme); and are
rationalized to cross at 82◦ at a value di = 0.◦2. These values
for di can then be used directly with the formulae below for the
logarithmic errors in Mtot

dyn and Σdyn.

A2. Inverse Tully–Fisher Estimates

The TF relation is parameterized as

Mj = c1,j + c2,j log(WR/ sin i)

where Mj is the absolute magnitude in the jth band, WR is the line
width, equivalent roughly to 2 Vobs, and c2,j is the TF slope. With
inversion and differentiation, the inclination error in radians is
given by

di

tan i
=

√
(Δ ln Vobs)2 +

(
ln 10

c2,j

dMj

)2

, (A1)

where dMj is the scatter in the TF relationship (magnitudes).
This quantity is constant with inclination. Expression for the to-
tal mass and disk-mass error come from inserting Equation (A1)
into Equations (B1) and (B11), respectively.

For the data in this survey, the dominant contributor to the
iTF inclination error comes from the scatter in the TF relation
itself. The example in Figure 16 in Paper I is typical of the Hα
data quality, but extreme in the sense that the galaxy is very
nearly face-on, i.e., under 3.◦5 inclination assuming an intrinsic
rotation velocity of 200 km s−1 or greater. The velocity error is
about 2%, a little less than the contribution from 0.1 mag scatter
and a −9 slope for the TF relation. In general, galaxies in our
sample are at higher inclination and the TF scatter dominates
Equation (B11). In this case, for large ellipsoid errors (e.g.,
50%), differences in Δ ln Σdyn are dominated by the SVE shape;
TF slope and scatter are almost inconsequential in the range 0.1
and 0.5 mag and slopes between −5 and −9, typical of what is
observed in the optical through near-infrared bands. For smaller
ellipsoid errors (e.g., 10%), TF scatter dominates the variation
in Δ ln Σdyn with i for Δ ln Σdyn > 0.1 (or i > 30◦). At smaller
values, TF scatter and SVE shape lead to comparable variations
in Δ ln Σdyn at a given i. TF slope has a much smaller effect.

APPENDIX B

ERROR FORMULAE

This Appendix serves three agendas: (1) to provide analytic
expressions for random (indicated as [ran]) and systematic (in-
dicated as [sys]) errors of key survey quantities for individual
survey galaxies; (2) in doing so to identify which terms con-
tribute to these two types of errors, and how this changes when
considering results for individual survey galaxies versus the
survey as a whole; and (3) to isolate the contribution from un-
certainties in disk inclination and the SVE. The latter serves to
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focus on quantities central to the rationale behind a near face-on
strategy for the DMS. Error functions are given as logarithmic
derivatives for disk-mass surface density (Σdyn), the disk stellar
mass-to-light ratio (ϒdisk

∗ ), the disk mass-fraction (Fdisk
∗,max), and

total mass (Mtot
dyn).

B1. Errors on Σdyn

Σdyn (Equation (9)) is estimated via line-of-sight velocity dis-
persion, corrected for instrumental effects and SVE projection
(Equation (6)), estimated disk oblateness (Equation (1)), appar-
ent disk scale length, and distance. Deprojection requires in-
formation on inclination. With distinctions made in Sections 5
and 5.1, the logarithmic derivative of 〈Σdyn〉 for disk-averaged
measurements of an individual galaxy can be separated into a
random term,

(Δ ln〈Σdyn〉)2 [ran] = 0.4(Δ ln hR)2 +
4

Ndisk

×
{[(

σobs

σLOS

)2

Δ ln σobs

]2

+

[(
σbeam

σLOS

)2

Δ ln σbeam

]2

+

[(
σinst

σLOS

)2

Δ ln σinst

]2

+ (Δ ln σtpl)
2

}

+
tan4 i

α4γ

2
({[

2α2γ + (1 + β2) sec2 i

]

× di

tan i

}2

+ [(1 + β2)Δ ln α]2

+ (β2Δ ln β)2

)
(B1)

and a systematic term,

(Δ ln〈Σdyn〉)2 [sys] = (Δ ln k)2 + (Δ ln q)2

+ 0.4[(Δ ln DH0)2 + (Δ ln Dflow)2], (B2)

where for the simplicity of notation, the quantities γ , σLOS,
σobs, σbeam, σinst, and σtpl are all averages over azimuth and
radius (e.g., γ in Equation (B1) represents 〈γ̄ 〉, where γ̄ is
the azimuthally averaged value defined by Equation (5)). Here,
di is expressed in radians, and the logarithmic derivatives of
individual terms are characteristic values for an azimuthal ring
at a single radius. The errors on Σdyn at a single radius for an
individual galaxy only differ by the removal of the N−1

disk factor
in the middle set of terms in Equation (B1); N−1

disk specifies the
number of radial rings of averaged (stacked) fibers. These terms
have different dependence on σLOS because of the way they enter
into the calculation of σLOS. Suitable values for each of the above
terms are itemized in Table 1. Survey systematic errors for Σdyn
include only uncertainty distances due to H0.

Error dependence on inclination and SVE include only the
last set of terms in Equation (B1), which follow from setting
Δ ln〈Σdyn〉 = Δ ln(γ̄ cos2 i). Neither γ cos2 i or γ̄ cos2 i are
rapidly varying functions of i; γ̄ cos2 i is unity for all i for
α = β = 1, varies by less than a factor of 2 for α = β = 0.7,

and by less than a factor of 4 for α = β = 0.4. This fact,
strangely at odds with the geometric projection of σz, arises
because we are relying on the SVE shape to derive σz from the
line-of-sight measurement. In contrast, the geometric projection
of σz can be written logarithmically as σz cos i/σLOS = 1/

√
γ̄ .

The systematic error on deriving σz from σLOS (expressed as
a fraction) then must be proportional to σLOS/σz cos i − 1 =√

γ̄ − 1.

B2. Errors on ϒdisk
∗,λ

ϒdisk
∗,λ (Equation (10), Section 5.2) is estimated via the stellar

disk surface-density and the extinction-corrected flux density.
The former is a function of Σdyn, ΣH i, and a parameterization
of the molecular gas component. The logarithmic derivative of
〈ϒdisk

∗,λ 〉 can be written as(
Δ ln

〈
ϒdisk

∗,λ

〉)2 = (
Δ ln

〈
I c
λ

〉)2
+ (Δ ln〈Σ∗〉)2. (B3)

The expression for the first term is

(Δ ln〈I c
λ 〉)2 = 0.85

Ndisk

[〈Δμλ〉2 + 0.85 〈ΔAλ〉2
]
, (B4)

where 〈Δμλ〉 and 〈ΔAλ〉 are the characteristic errors in a single
ring for the surface brightness (mag arcsec−2) and extinction
correction (mag), respectively. This is a suitable approximation
for magnitude errors below 1. The second term can be written
as

(Δ ln〈Σ∗〉)2 =
(

ξ Δ ln ξ

1 − ξ

)2

+ (1 − ξ )2

×
[(

Σdyn

Σ∗
Δ ln〈Σdyn〉

)2

+

(
1.4 ΣH i√
Ndisk Σ∗

〈Δ ln ΣH i〉
)2]

, (B5)

and

(Δ ln ξ )2 = (Δ ln η)2 +

(
ξ

1.4η

Mdisk
dyn

MH i

)2

×
[(

Δ lnMdisk
dyn

)2
+ (Δ lnMH i)

2

]
. (B6)

where MH i,Mdisk
∗ , and Mdisk

dyn are the H i, stellar, and total disk-

mass components. Approximating Δ lnMi = N
−1/2
i 〈Δ ln Σi〉 =

Δ ln〈Σi〉 for the ith mass-component measured in Ni radial rings,
where 〈Δ ln Σi〉 is the characteristic error in Σi for a single ring,
and Δ ln〈Σi〉 is the error in the mean value, we then collect
random and systematic error terms to obtain

(Δ ln〈Σ∗〉)2[ran] =
[

1

Ndisk

(
1.4(1 − ξ )

ΣH i

Σ∗

)2

+
1

Natom

(
ξ 2

1.4η(1 − ξ )

Mdisk
dyn

MH i

)2]
〈Δ ln ΣH i〉2

+

[(
(1 − ξ )

Σdyn

Σ∗

)2

+

(
ξ 2

1.4η(1 − ξ )

× Mdisk
dyn

MH i

)2]
(Δ ln〈Σdyn〉)2[ran] (B7)
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(Δ ln〈Σ∗〉)2[sys] =
(

ξ

1 − ξ

)2

(Δ ln η)2

+

[(
(1 − ξ )

Σdyn

Σ∗

)2

+

(
ξ 2

1.4η(1 − ξ )

Mdisk
dyn

MH i

)2]

× (Δ ln〈Σdyn〉)2[sys]. (B8)

We relate all ratios involving mass or surface density to
Mdisk

∗ /MH i with the identities of Mdisk
dyn /MH i = Mdisk

∗ /MH i +
1.4(1 + η), Σdyn/Σ∗ = (1 − ξ )−1 + 1.4(ΣH i/Σ∗), and ΣH i/Σ∗ ∼
(MH iR

2
∗/Mdisk

∗ R2
HI), where R∗ and RHI are the characteristic

length scales of the stellar and H i distribution. Suitable values
for each of the above terms are discussed in Section 5.2 and
itemized in Table 2.

Random errors in ϒdisk
∗,λ include the sum of Equations (B4)

and (B7); systematic errors are equal to Equation (B8). Survey
systematic errors and inclination dependence for ϒdisk

∗,λ , come
from terms in Equation (B8) with Σdyn[sys], as noted respec-
tively in the previous section for Equation (B2).

B3. Errors on Fdisk
∗,max and Mtot

dyn

Fdisk
∗,max is estimated via the mass of the stellar disk, its

oblateness, and the projected total circular rotation speed (Vobs−
Vsys; see Section 5.3), corrected for inclination. Using the results
in the previous section we find

(
Δ lnFdisk

∗,max

)2
[ran] = 1

4
(Δ ln〈Σ∗〉)2[ran]

+ (Δ ln Vobs)
2 + (di/ tan i)2 (B9)

(Δ lnFdisk
∗,max)2[sys] = 1

4

[
(Δ ln f disk

∗ )2 + (Δ ln〈Σ∗〉)2[sys]
]
.

(B10)
We subsume the errors in the kinematic center and P.A. of a
galaxy in the errors for Vobs and inclination, and ignore the
negligible errors on Vsys. The last term in Equation (B9) is
roughly 2 di/i for small i, where di is expressed in units
of radians. The only systematic errors in this quantity for
the survey ensemble stem from distance, coupled to Σ∗ via
Σdyn (Equations (B2) and (B8)). Inclination dependence to the
random errors are from the last term in Equation (B9) and terms
in Equation (B1) related to Σ∗.

Errors in the total potential mass at a given radius are

(
Δ lnMtot

dyn

)2
[ran] = 4

(
Δ ln Vobs)

2 + (di/ tan i)2
)

(B11)

(
Δ lnMtot

dyn

)2
[sys] = (Δ ln ftot)

2, (B12)

where ftot is a measure of the flattening of the potential.
Inclination dependence only arises from the deprojections of
the observed tangential velocity Vobs.

REFERENCES

Akritas, M. G., & Bershady, M. A. 1996, ApJ, 470, 706
Aoki, T. E., Hiromoto, N., Takami, H., & Okamura, S. 1991, PASJ, 43, 755

Andersen, D. R. 2001, PhD thesis, Penn State Univ.
Andersen, D. R., & Bershady, M. A. 2003, ApJ, 599, L79
Andersen, D. R., Bershady, M. A., Sparke, L. S., Gallagher, J. S., Wilcots, E.

M., van Driel, W., & Monnier-Ragaigne, D. 2006, ApJS, 166, 505
Andersen, D. R., Walcher, C. J., Boker, T., Ho, Luis, C., van der Marel, R. P.,

Rix, H.-W., & Shields, J. C. 2008, ApJ, 688, 990
Bahcall, J., & Casertano, S. 1984, ApJ, 284, L35
Barth, A., Ho, L. C., & Sargent, W. L. W. 2002, AJ, 124, 2607
Begeman, K. G. 1989, A&A, 223, 47
Bender, R., Saglia, R. P., & Gerhard, O. E. 1994, MNRAS, 269, 785
Bershady, M. A., Andersen, D. R., Verheijen, M. A. W., Westfall, K. M.,

Crawford, S. M., & Swaters, R. A. 2005, ApJS, 156, 311
Bershady, M. A., Verheijen, M. A. W., Swaters, R. A., Andersen, D. R., Westfall,

K. M., & Martinsson, T. 2010, ApJ, 716, 210 (Paper I)
Binney, J., & Merrifield, M. 1998, Galactic Astronomy (Princeton, NJ: Princeton

Univ. Press)
Binney, J., & Tremaine, S. 1987, Galaxy Dynamics (Princeton, NJ: Princeton

Univ. Press)
Bizyaev, D., & Mitronova, S. 2002, A&A, 389, 795
Bizyaev, D., & Mitronova, S. 2009, ApJ, 702, 1567
Boissier, S., Boselli, A., Buat, V., Donas, J., & Milliard, B. 2004, A&A, 424,

465
Bosma, A. 1981, AJ, 86, 1825
Bottema, R. 1993, A&A, 275, 16
Bottema, R. 1997, A&A, 328, 517
Calzetti, D., Kinney, A. L., & Storchi-Bergmann, T. 1994, ApJ, 429, 582
Casertano, S. 1983, MNRAS, 203, 735
Casoli, E., et al. 1998, A&A, 331, 451
Coluzzi, R. 1993, Bull. Inf. Centre Donnees Stellaires, 43, 7
Courteau, S. 1997, AJ, 114, 2402
Dalcanton, J. J., Yoachim, P., & Bernstein, R. A. 2004, ApJ, 608, 189
de Bruyne, V., De Rijcke, S., Dejonghe, H., & Zeilinger, W. W. 2004, MNRAS,

349, 461
de Grijs, R. 1998, MNRAS, 299, 595
de Grijs, R., Peletier, R. F., & van der Kruit, P. C. 1997, A&AS, 327, 966
de Jong, R. 1996a, A&A, 313, 377
de Jong, R. 1996b, A&AS, 118, 557
Domingue, D. L., Keel, W. C., & White, R. E. 2000, ApJ, 545, 171
Falcón-Barroso, J., et al. 2006, MNRAS, 369, 529
Fisher, D. 1997, AJ, 113, 950
Franx, M., & Illingworth, G. 1988, ApJ, 327, L55
Freeman, K. C. 1970, ApJ, 160, 811
Fry, A. M., Morrison, H. L., Harding, P., & Boroson, T. A. 1999, AJ, 118, 1209
Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaky, K., & Schneider,

D. P. 1996, AJ, 111, 1748
Gerhard, O., Jeske, G., Saglia, R. P., & Bender, R. 1998, MNRAS, 295, 197
Herrmann, K. A., & Ciardullo, R. 2009, ApJ, 705, 1686
Hernquist, L. 1990, ApJ, 356, 359
Hoekstra, H., van Albada, T. S., & Sancisi, R. 2001, MNRAS, 323, 453
Holwerda, B. W., Gonzalez, R. A., Allen, R. J., & van der Kruit, P. C. 2005, AJ,

129, 1396
Howk, J. C., & Savage, B. D. 1999, AJ, 117, 2077
Kamphuis, P., Holwerda, B. W., Allen, R. J., Peletier,, & van der Kruit, P. C.

2007, A&A, 471, L1
Keel, W. C., & White, R. E. 2001, AJ, 121, 1442
Kregel, M., van der Kruit, P. C., & De Grijs, R. 2002, MNRAS, 334, 646
Kregel, M., van der Kruit, P. C., & Freeman, K. C. 2004, MNRAS, 351,

1247
Kregel, M., van der Kruit, P. C., & Freeman, K. C. 2005, MNRAS, 3581, 503
Le Borgne, D., Rocca-Volmerange, B., Prugniel, P., Lançon, A., Fioc, M., &
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