

Astronomy 730

Course
Outline

Outline

▶ Course Overview

- Introductions
- Expectations
- Goals

Introductions

- Course Web Page and email list:
 - user.astro.wisc.edu/~mab/education/astro730/
 - astron730-l-f23@g-groups.wisc.edu

- ▶ Instructor:
 - Matthew Bershady / 6215 Chamberlin
 - Office Hours: W by appointment
 - mab@astro.wisc.edu

- ▶ Grading
 - General class participation: 20%
 - Short assignments: 20%
 - Research project: 60%

Optional:

If you are looking for additional problems to work for practice see Sparke & Gallagher. These will not be graded.

Materials

- ▶ **Classroom Notes:**
 - posted web
- ▶ **Readings**
 - Required Textbook: none
 - On Reserve in the Library*
 - ▶ Roughly a dozen texts on galaxies, cosmology and AGN.
 - ▶ See web page for list and description
 - Topical articles
 - ▶ Largely from professional, peer-reviewed journals such as AJ, ApJ, A&A, MNRAS
 - Course web page will give reading assignments, updated as the course progresses.
- ▶ **Data:**
 - see later slide in this presentation
- ▶ **Acknowledgements**
 - Thanks to Eric Wilcots (UW) and Chris Mihos (CWRU) for material used in this course.

*Working on it.

Expectations

- ▶ **Classroom discussion**
 - Class notes are for reference and will not be presented as lectures, except for brief introductions.
- ▶ **Short assignments**
 - Analytic & numerical, given in class
 - For classroom presentation and discussion
- ▶ **Course Project**
 - Define a research project using data from SDSS-IV/MaNGA on themes in or directly related to this course (other SDSS public data may be used if suitably justified).
 - ▶ The project must be original and of your own design
 - ▶ The project should be modest in scope
 - Undertake preliminary analysis using your own or available software and plotting tools.
 - Present results in class
 - Meet milestones along the way
 - Projects can be discussed with anyone, but each student must define, execute and present their own project.

Project Milestones

- ▶ **Learn to access SDSS-IV/MaNGA data – 11 Sep**
 - Explore Marvin and present result in class – 13 Sep
- ▶ **One-paragraph research topic – 25 Sep**
- ▶ **One-page research plan – 16 Oct**
 - You may modify your research topic up to this point
- ▶ **Interim status: 06 Nov**
 - Two page report with text and figures
 - ‘Lightning Talk’ – one pptx or pdf slide
- ▶ **Final report and presentation: 27 Nov – 13 Dec**
 - Up to 5-page (ApJL style) written summary
 - presentation slides with figures and images
 - 10 min oral presentation

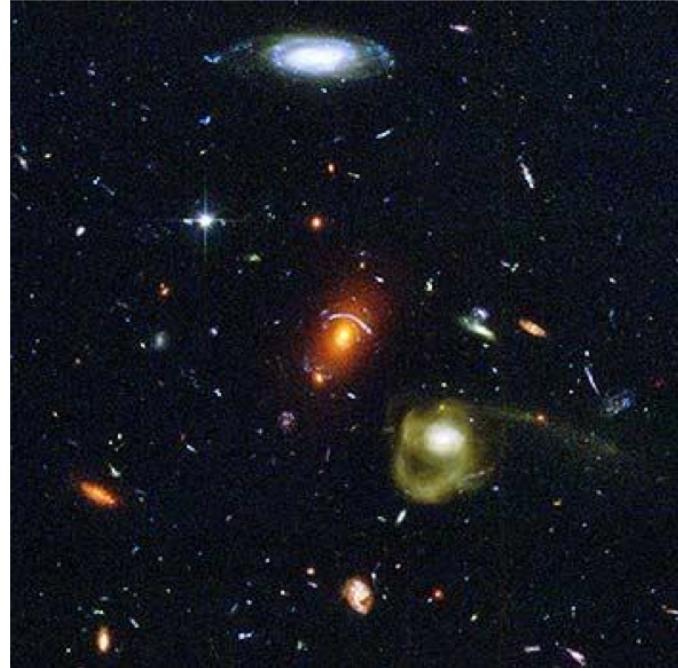
Project Milestones (continued)

► Interim status: 06 Nov

- 1 minute per person oral presentation
- 1 slide max
- Send slide in pdf or pptx to mab@astro.wisc.edu
- Written (2-page) report should:
 - VERY BRIEFLY AND SUCCINCTLY explain the high-level science goal (no need for background)
 - Identify key analysis steps
 - Present result of analysis on a small subset of data, e.g., a single galaxy

SDSS-IV Data Access

▶ Public data


- All surveys:
 - <http://www.sdss.org>
- SDSS-IV/MaNGA:
 - <https://www.sdss4.org/dr17/manga/>
 - https://www.sdss4.org/dr17/data_access/value-added-catalogs/
- Marvin:
 - <https://www.sdss4.org/dr17/manga/marvin/>
 - <https://dr17.sdss.org/marvin/>

Course Goals

- ▶ Obtain Overview of Galactic and Extragalactic Astronomy
 - Basic properties of galaxies and large scale structure
 - Evolution and the underlying astrophysics
 - Unresolved Issues – the assembly and growth of galaxies
- ▶ Develop Research Skills
 - using proprietary and state-of-the art data
 - that *may* lead to publication

The coin of the realm

Course Arcs

I. Overview

Thematic development:

- II. Stellar Populations
- III. Dynamics
- IV. Evolution

- V. Chemo-dynamics

Other key ingredients:

- VI. ISM
- VII. Environment

Case studies:

- VIII. Milky Way as Galaxy
- IX. ETGs ~ Spheroidal-dominated systems
- X. LTGs ~ Disk-dominated systems
- XI. Dwarfs

- We will do a quick first pass on all topics, and then return to each as needed.
- The schedule will be fluid.

Today's Assignment: Read these

- ▶ **The Story of Our Universe May Be Starting to Unravel**
 - NYT article, 02 Sep 2023
- ▶ Follow up on the age problem:
 - **The James Webb Space Telescope discovers enormous distant galaxies that should not exist**
 - ▶ Article for popular consumption
 - **A population of red candidate massive galaxies ~600 Myr after the Big Bang**
 - ▶ Labbe et al. 2023, Nature, 616, 266
 - **Stress testing Λ CDM with high-redshift galaxy candidates**
 - ▶ Boylan-Kochin 2023, Nature Astronomy
 - See also Melia, F 2023 (MNRAS, 521, L85)
- ▶ Follow up on the H_0 tension:
 - **New JWST data confirms, worsens the Hubble tension**

