

Astronomy 730

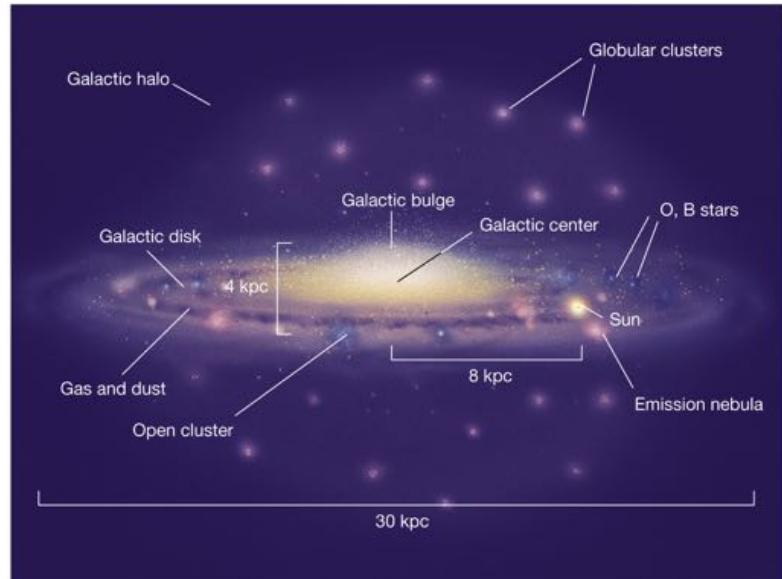
Milky Way

Outline

- ▶ **The Milky Way**
 - ▶ Star counts and stellar populations
 - ▶ Chemical cartography
 - ▶ Galactic center and bar
 - ▶ Galactic rotation
 - ▶ Departures from circular rotation

Modeling the Milky Way Galaxy (MWG)

- ▶ What is the stellar distribution?
- ▶ How big is the Milky Way?
 - ▶ Does (where does) the disk have an outer truncation?
- ▶ Does it have a bar?
- ▶ How do the stars move in the galaxy?
 - ▶ Galactic rotation and Oort's constants



Star Counts

▶ Formalism

- ▶ $N(M,S) = \int \Phi(M,S) D(r) r^2 dr$
 - ▶ N = # of field stars of a given absolute magnitude (M) and spectral type (S) in the galaxy
 - ▶ Φ = stellar luminosity function (# pc^{-3} for some spectral type)
 - ▶ $D(r)$ = density distribution
 - may also depend on M, S : $D(r, M, S)$
 - Alternatively, Φ may also depend on r

▶ The simplest thing we can actually observe:

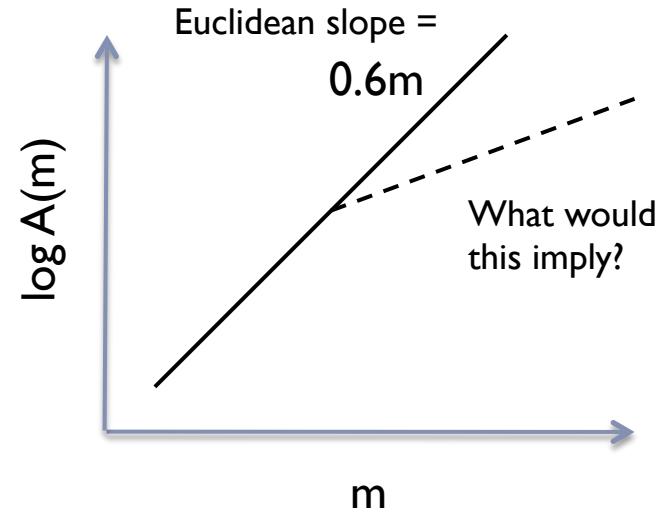
- ▶ $A(m) = \#$ of stars of some apparent magnitude, m .
- ▶ $A(m) = \int \Phi(M) D(r) \Omega r^2 dr$
 - ▶ Ω = solid angle of survey

▶ If we have colors, we might get a crude $A(m, S)$

- ▶ but without distances or some luminosity indicator, we can't break the dwarf-giant degeneracy (e.g., K V vs K III).

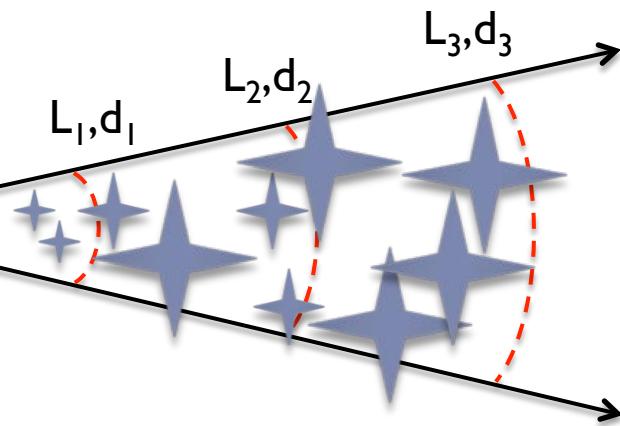
Star Counts: Infinite Euclidean Universe

- ▶ $A(m)$ represents the differential counts, i.e., number of stars per apparent magnitude interval
- ▶ Knowing the geometry (locally Euclidean), the count slope (dA/dm) tells us about the spatial distribution of sources.
- ▶ For a *uniform* space-distribution of sources it is straightforward to show
 - ▶ $d(\log A)/dm = 0.6m + \text{constant}$
- ▶ This leads to Olbers' paradox:
 - ▶ $I(m) = I_0 \exp(-0.4m)$
 - ▶ $L(m) = I(m)A(m)$
 - ▶ $L_{\text{tot}} = \int I(m)A(m) dm = \infty$
- ▶ The distribution of stars in the galaxy must be spatially finite
- ▶ What about the universe of galaxies?



The Malmquist Bias & the Night Sky

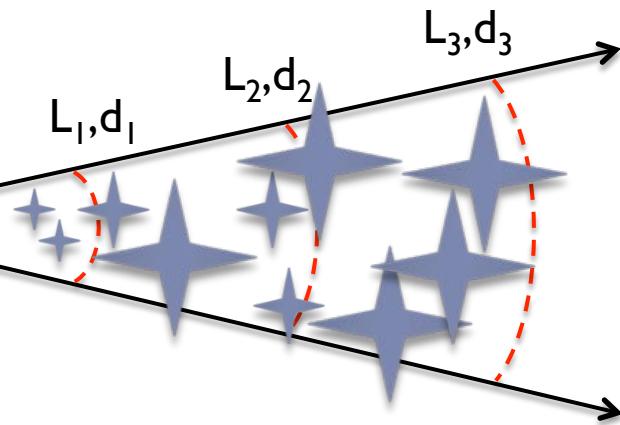
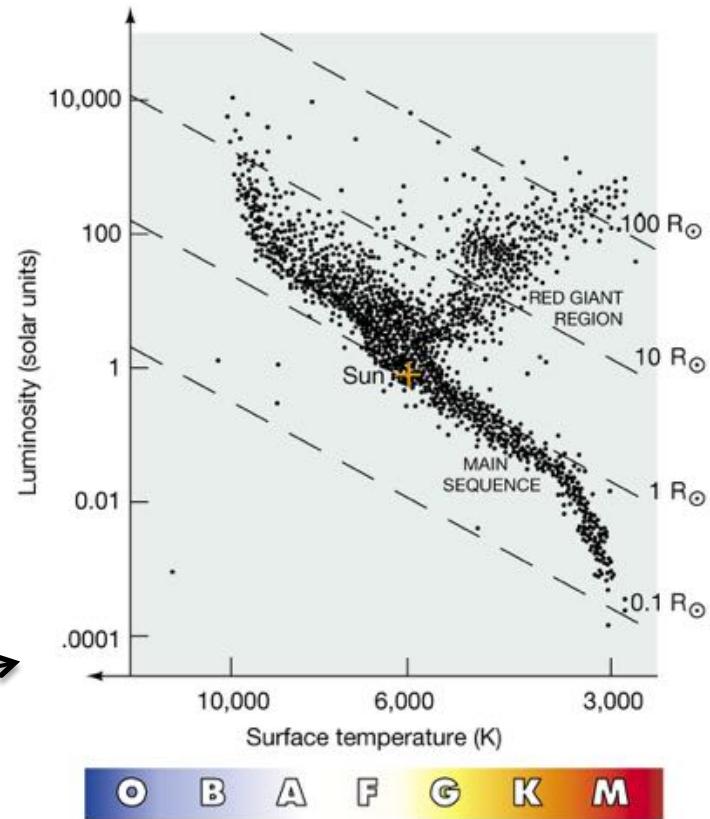
- ▶ What stars do you see when you look up at the night-time sky?
- ▶ Does this make sense given what you know about the HR diagram
- ▶ Malmquist bias:
 - ▶ You can see brighter objects farther away to a fixed m
 - ▶ Volume increases as d^3



For a uniform space-density, the observer is biased toward finding intrinsically luminous objects.

The Malmquist Bias & the Night Sky

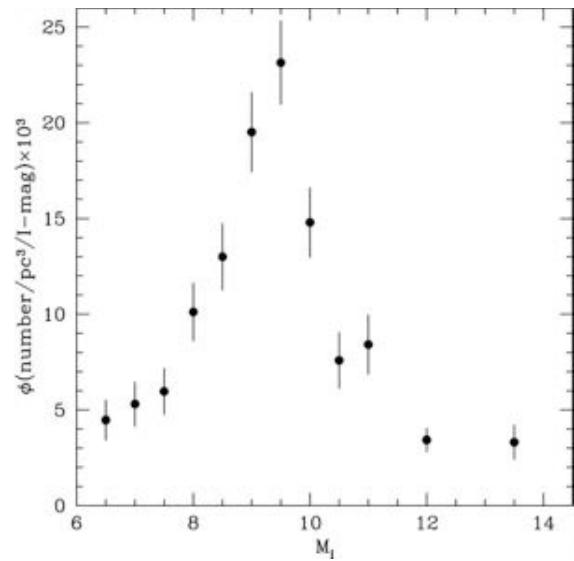
- ▶ What stars do you see when you look up at the night-time sky?
- ▶ Does this make sense given what you know about the HR diagram
- ▶ Malmquist bias:
 - ▶ You can see brighter objects farther away to a fixed m
 - ▶ Volume increases as d^3



For a uniform space-density, the observer is biased toward finding intrinsically luminous objects.

Star Counts & The Malmquist Bias

- ▶ What's the mean magnitude of stars with apparent magnitude, m ?
 - ▶ $M(m) = \int M \Phi(M) D(r) r^2 dr / \int \Phi(M) D(r) r^2 dr$
 - ▶ Recall $A(m) = \int \Phi(M) D(r) \Omega r^2 dr$
- ▶ Assume the stellar luminosity function (LF) is Gaussian for a given spectral type:
 - ▶ $\Phi(M, S) = \Phi_0 / (2\pi)^{1/2} \sigma \exp[-(M - M_0)^2 / 2\sigma^2]$
 - ▶ M_0 = mean magnitude
 - ▶ Φ_0 = # pc⁻³ for some spectral type
 - ▶ σ is the distribution width



Zheng et al. (2004, ApJ, 601 500):
MW disk M-dwarfs, I -band, HST

Star Counts & The Malmquist Bias

- ▶ Push through the integral for $M(m)$ and move things around a bit....

- ▶ $M(m) = M_0 - [\sigma^2/A(m,S)] [dA(m,S)/dm]$
- ▶ Or:

$$M(m) - M_0 = -\sigma^2 d \ln A / dm$$

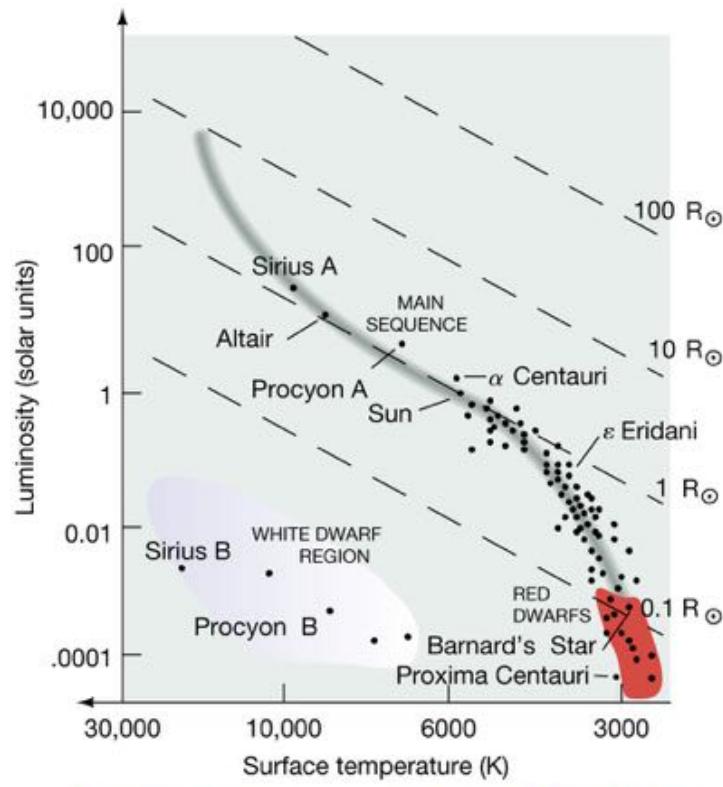
This is for the specific case of a Gaussian LF, but it can be generalized.

- ▶ If there are more stars at faint magnitudes, then the stars at some m are more luminous than the average for all stars in a given volume
 - ▶ This will come back to bite us with a vengeance when considering distant galaxy counts

A note on logarithmic derivatives:
 $d \ln x = dx / x$
This is nice because it normalizes the gradient to the amplitude of the signal, i.e., dimensionless.
Therefore often used in Astronomy

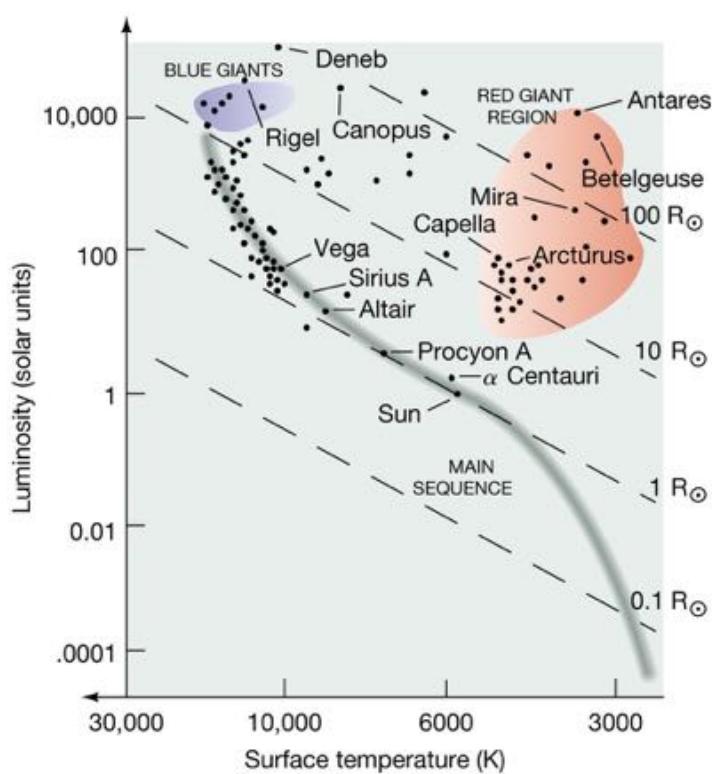
Space Densities: Local Neighborhood

Volume-limited



Spectral classification

Brightness-limited



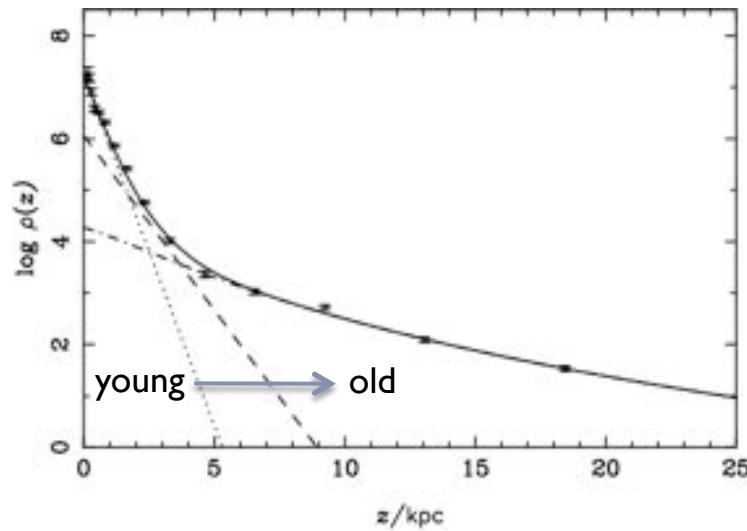
Spectral classification

Stellar Luminosity Function

- ▶ Measure for a distance(volume)-limited sample
- ▶ Bahcall & Soneira (1980) used:
 - ▶ $\Phi(M) = [n_* 10^{\beta(M-M_*)}] / [1 + 10^{-(\alpha-\beta)\delta(M-M_*)}]^{1/\delta}$
 - ▶ $n_* = 4.03 \times 10^{-3}$
 - ▶ $M_* = 1.28$
 - ▶ $\alpha = 0.74, \beta = 0.04, 1/\delta = 3.40$
- ▶ See also Figure 2.4 in S&G.
- ▶ Basic results
 - ▶ 10^5 times more G stars than O stars
 - ▶ Nearby stars tend to be
 - ▶ low-luminosity and apparently faint
 - ▶ Average $M/L = 0.67 (M/L)_\odot$

Star Counts: The Disk

- ▶ Star counts (z direction)
 - ▶ $n(z)$ proportional to $\exp(-z/z_0(m))$,
 - ▶ $z_0(m)$ is the scale height (and, yes, it does vary with magnitude)
 - ▶ More importantly, z_0 varies with spectral type:
 - ▶ young : old \rightarrow small : large
 - ▶ **WHY?**
 - ▶ Reid & Majewski (1993)
 - ▶ Thin disk with $z_0 = 325$ pc – Pop I
 - ▶ Thick disk with $z_0 = 1200$ pc – Pop II
- ▶ The Disk
 - ▶ $I(R) = I(0)\exp[-R/h_R]$
 - ▶ tough to measure in our own galaxy, but measurable in other disks pretty easily.
- ▶ Disk is really a double exponential:
 - ▶ $I(R,z) = I(0,0)\exp(-z/z_0 - R/h_R)$



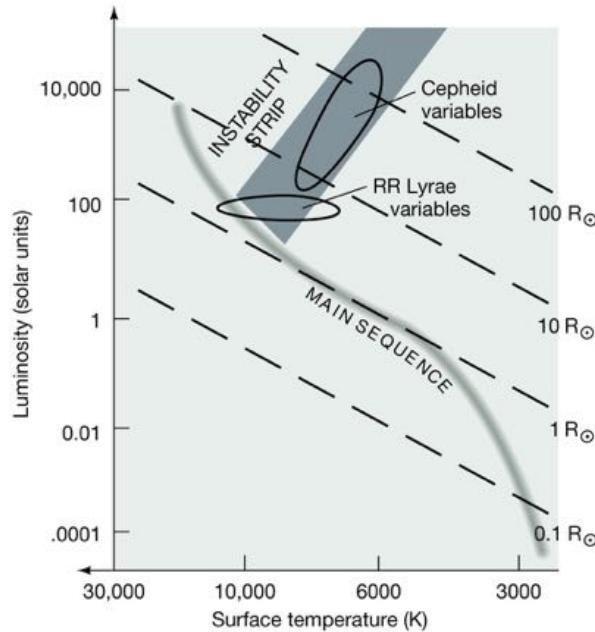
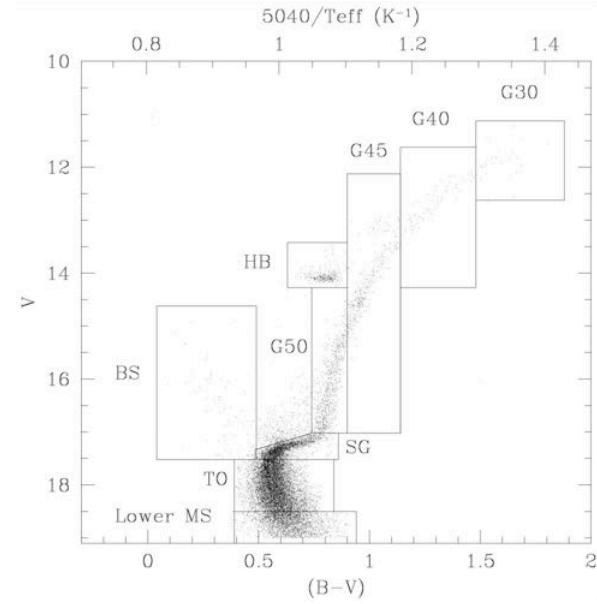
Du et al. 2003 A&A 407 541,
stellar density perpendicular to
the plane

Star Counts: The Halo

- ▶ **Halo stars**
 - ▶ Halo stars are faint, need an easy to find tracer
 - RR Lyrae stars**
 - ▶ Stellar density falls off as r^{-3}
 - ▶ Looks like the distribution of globular clusters, which you also get from RR Lyrae stars
- ▶ **We will come back to this density fall-off when we consider the rotation curve.**

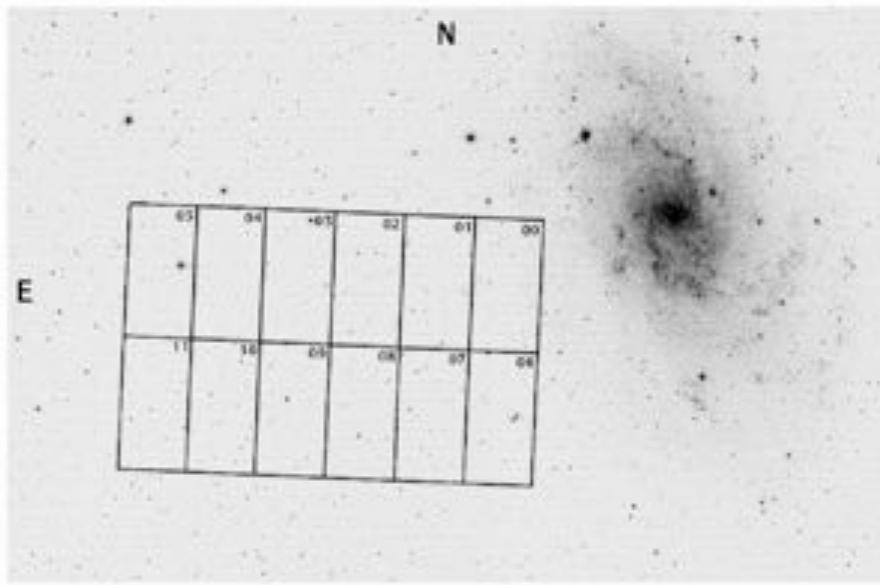
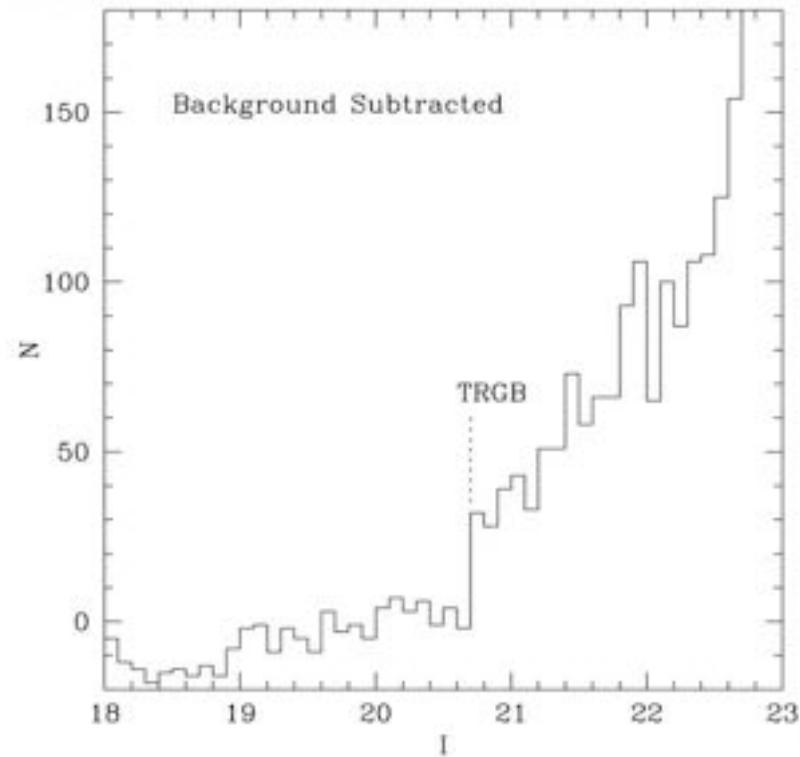
Recall: RR Lyrae Stars

- ▶ HB stars in “the instability strip”
 - ▶ Solar mass
 - ▶ Opacity driven pulsations yield variability which is correlated with M
 - ▶ $M = -2.3 \pm 0.2 \log(P) - 0.88 \pm 0.06$ (with some additional variation due to metallicity)
 - ▶ Old, low mass stars (hence good tracers of the halo)
- ▶ Higher mass (farther up the instability strip you’ll find Cepheids)



M33 LF

- ▶ Outer fields of M33
 - ▶ (Brooks et al. 2004, AJ, 128, 237)

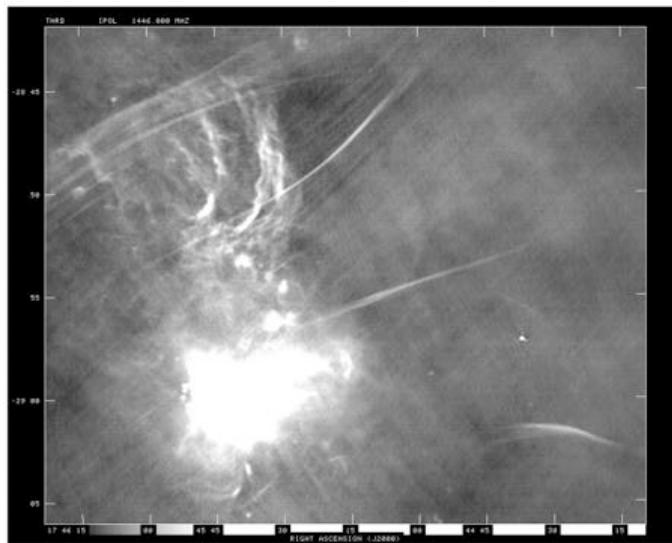
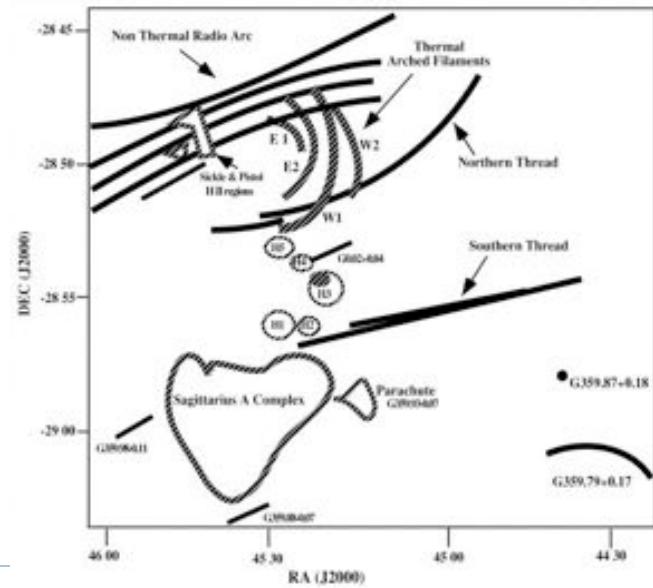


Counts proportional to luminosity function of *all* stars in M33 halo, corrected for contamination and completeness.
TRGB at $I = 20.7$ gives distance modulus.

Galactic Center

- ▶ We'll talk about the center again when we discuss AGNs
- ▶ The optical view:

- ▶ The VLA 1.4 Ghz view:

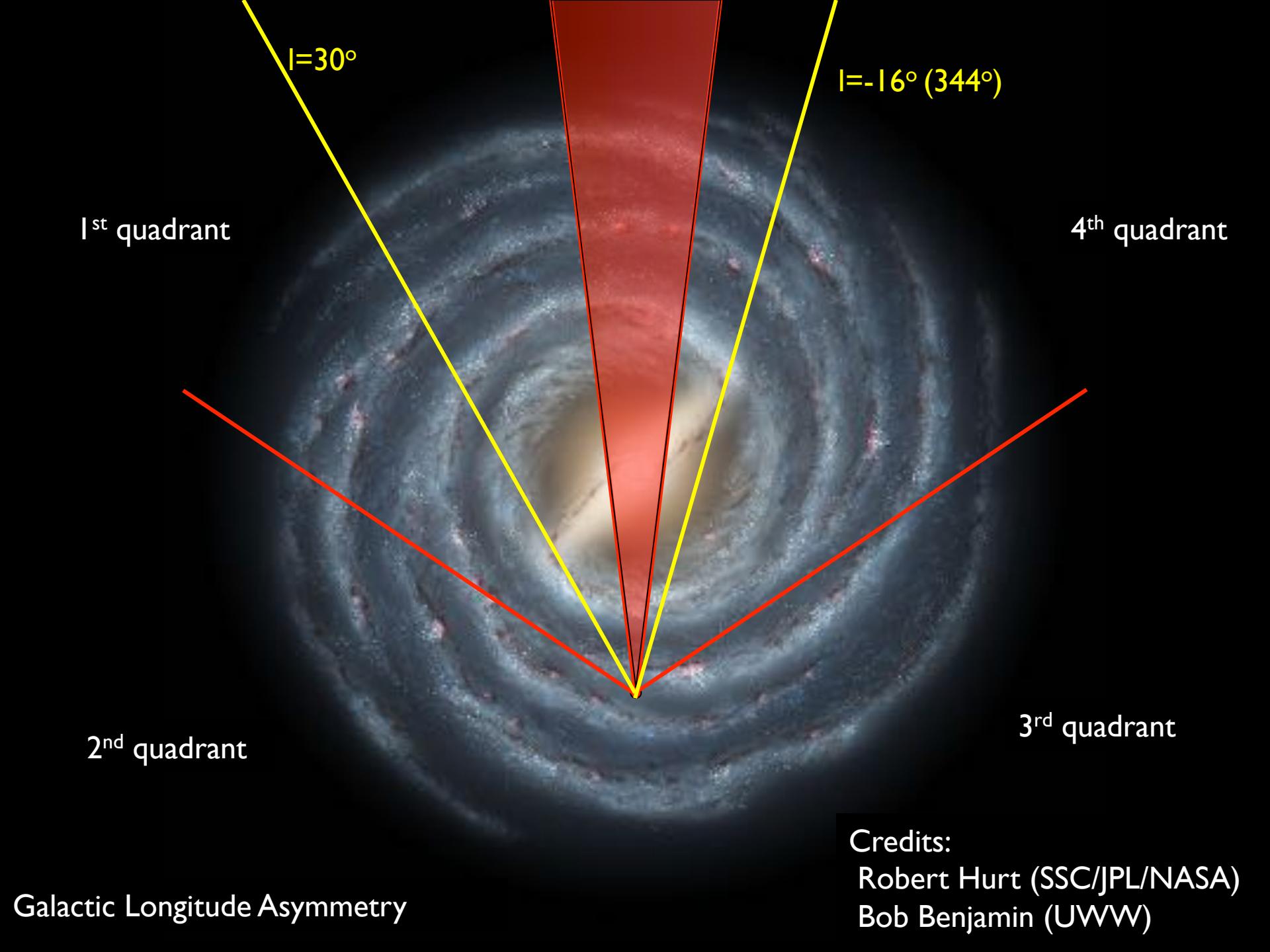


Galactic Center: Distance

- ▶ Use RR Lyraes + other stellar tracers
 - ▶ Use the globular cluster population, OH/IR stars in the bulge
 - ▶ Get mean distances → 8.5 kpc
- ▶ Proper motion studies of Sgr A*
 - ▶ Look for maser emission
 - ▶ Follow maser proper motion + observed velocity
→ distance (7.5 kpc)

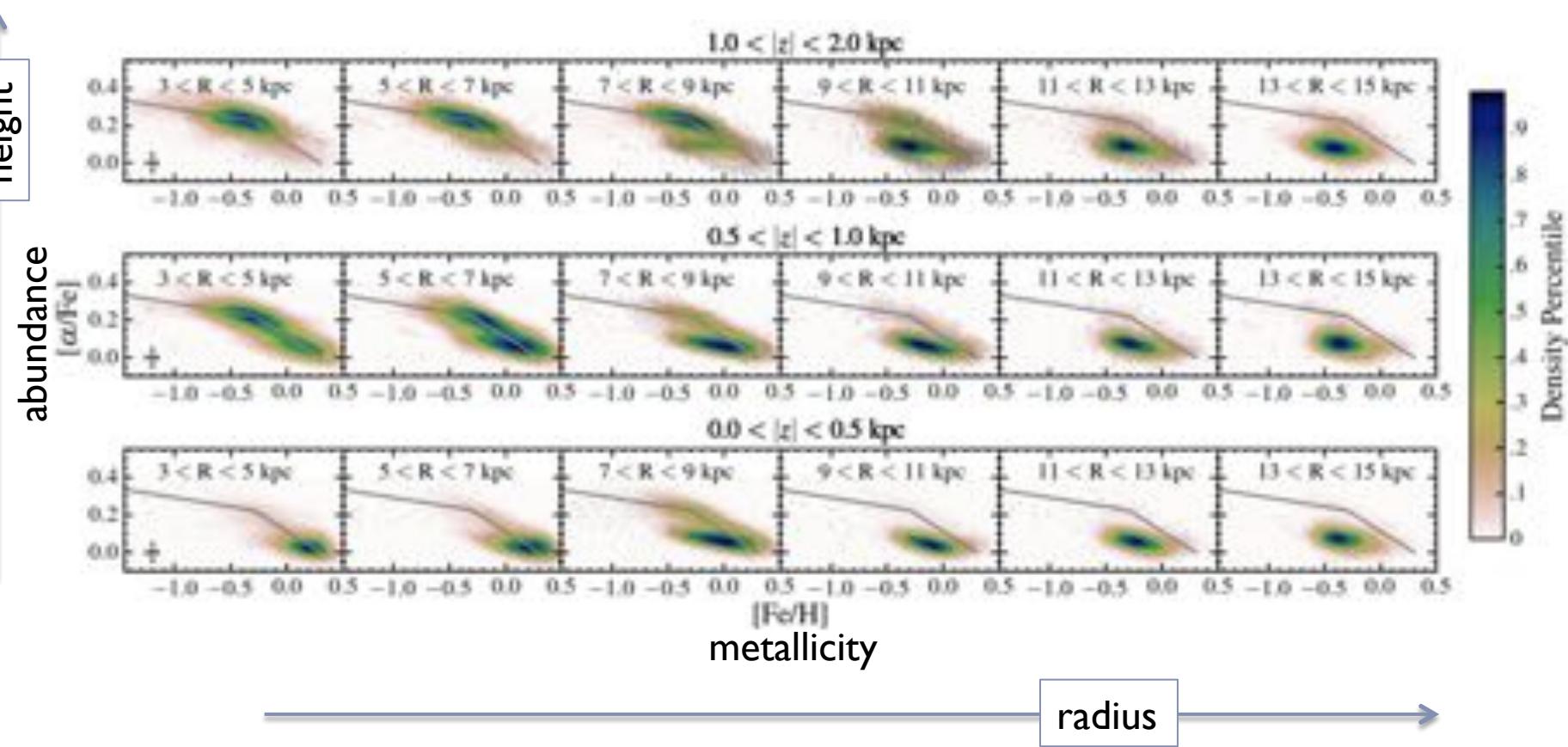
Galactic Bar

- ▶ Lots of other disk galaxies have a central bar (elongated structure). Does the Milky Way?
- ▶ Photometry – what does the stellar distribution in the center of the Galaxy look like?
 - ▶ Bar-like distribution: $N = N_0 \exp(-0.5r^2)$, where $r^2 = (x^2+y^2)/R^2 + z^2/z_0^2$
 - ▶ Observe $A(m)$ as a function of Galactic coordinates (l,b)
 - ▶ Use N as an estimate of your source distribution:
 - ▶ counts $A(m,l,b)$ appear bar-like
 - ▶ Sevenster (1990s) found overabundance of OH/IR stars in 1stquadrant. Asymmetry is also seen in RR Lyrae distribution.
- ▶ Gas kinematics: $V_c(r) = (4\pi G \rho / 3)^{1/2} r$
 - ▶ → we should see a straight-line trend of $V_c(r)$ with r through the center (we don't).
- ▶ Stellar kinematics – again use a population of easily identifiable stars whose velocity you can measure (e.g. OH/IR stars).
 - ▶ Similar result to gas.



Chemical Cartography

► The APOGEE-I view from SDSS-III

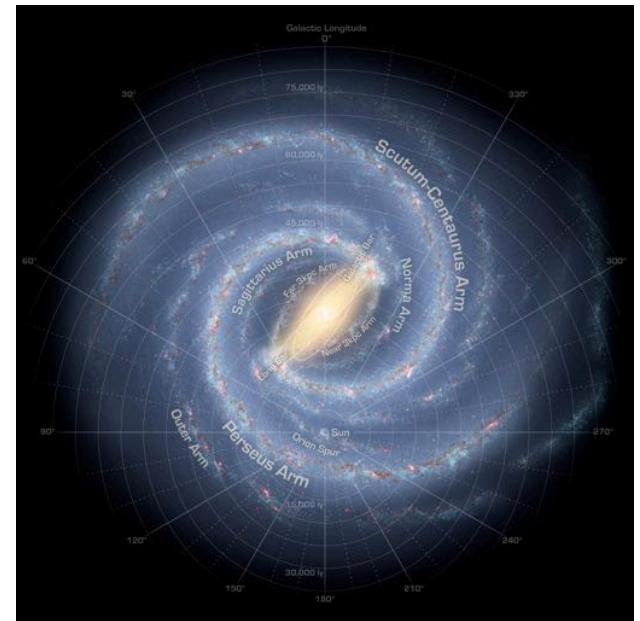


► Also: RAVE, SEGUE, GALAH/HERMES, APOGEE-2

Hayden+’15

Galactic Rotation: A Simple Picture

- ▶ Imagine two stars in the Galactic disk; the Sun at distance R_0 , the other at a distance R from the center and a distance, d , from the Sun. The angle between the Galactic Center (GC) and the star is l , and the angle between the motion of the stars and the vector connecting the star and the Sun is α . The Sun moves with velocity, V_0 , and the other star moves with velocity, V .
- ▶ See Figure 2.19 in S&G.



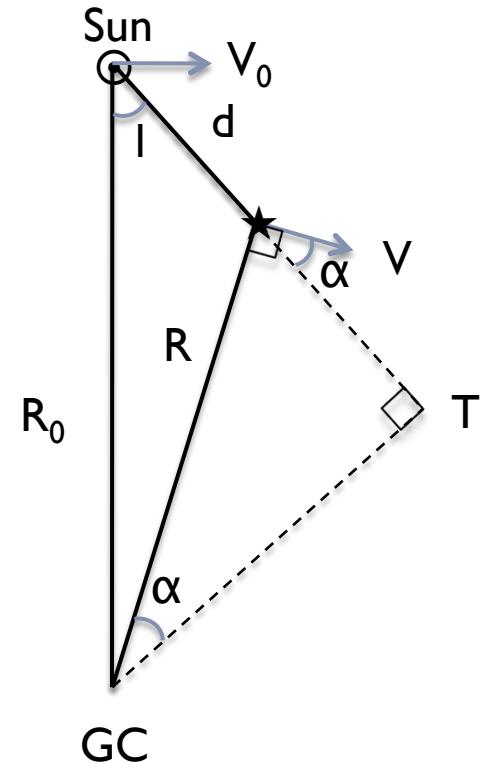
Relative motion of stars

▶ Radial velocity of the star

- ▶ $V_r = V \cos \alpha - V_0 \sin I$
- ▶ now use law of sines to get...
- ▶ $V_r = (\omega_* - \omega_0) R_0 \sin I$,
 - ▶ ω is the angular velocity defined as V/R .
 - ▶ I is the Galactic longitude

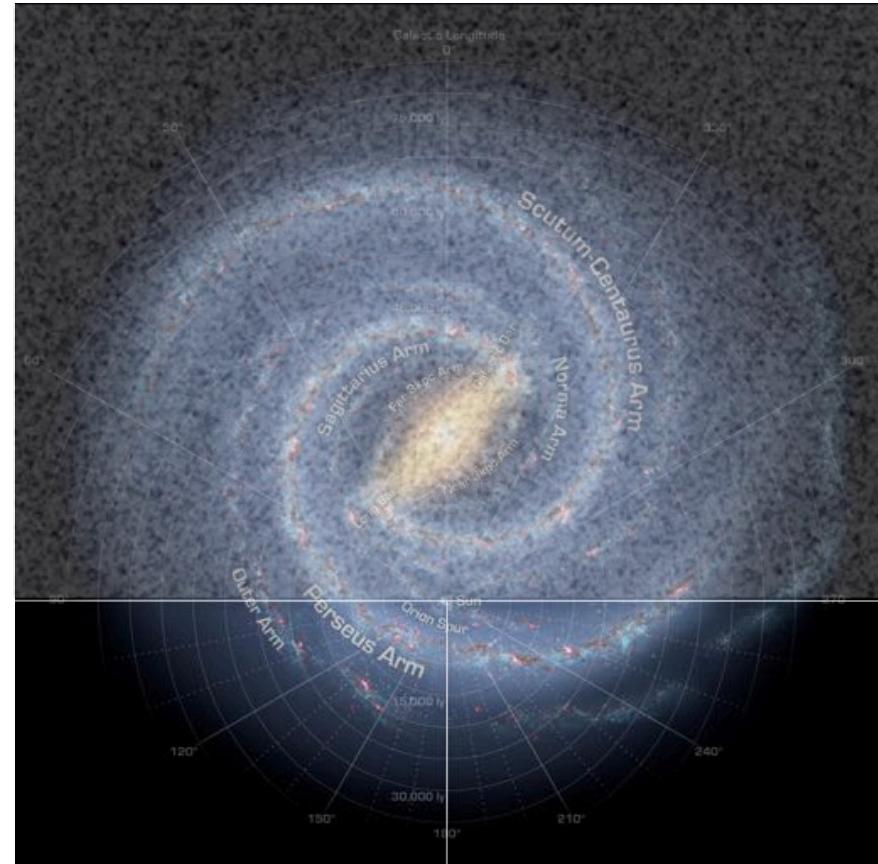
▶ Transverse velocity of the star

- ▶ $V_T = (\omega_* - \omega_0) R_0 \cos I - \omega_* d$



Longitudinal dependence

- ▶ $90^\circ \leq l \leq 180^\circ$
 - ▶ larger d
 - ▶ $R > R_0$
 - ▶ $\omega_*^* < \omega_0$
 - ▶ this means increasingly negative radial velocities
- ▶ $180^\circ \leq l \leq 270^\circ$
 - ▶ V_R is positive and increases with d

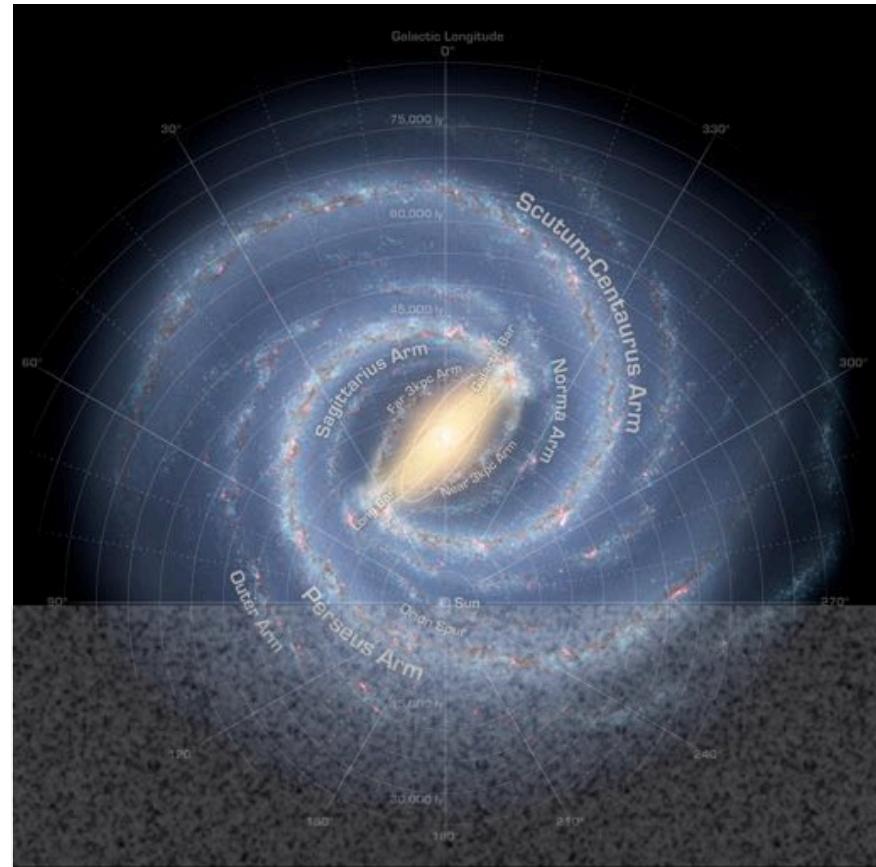


$90^\circ \leq l \leq 180^\circ$

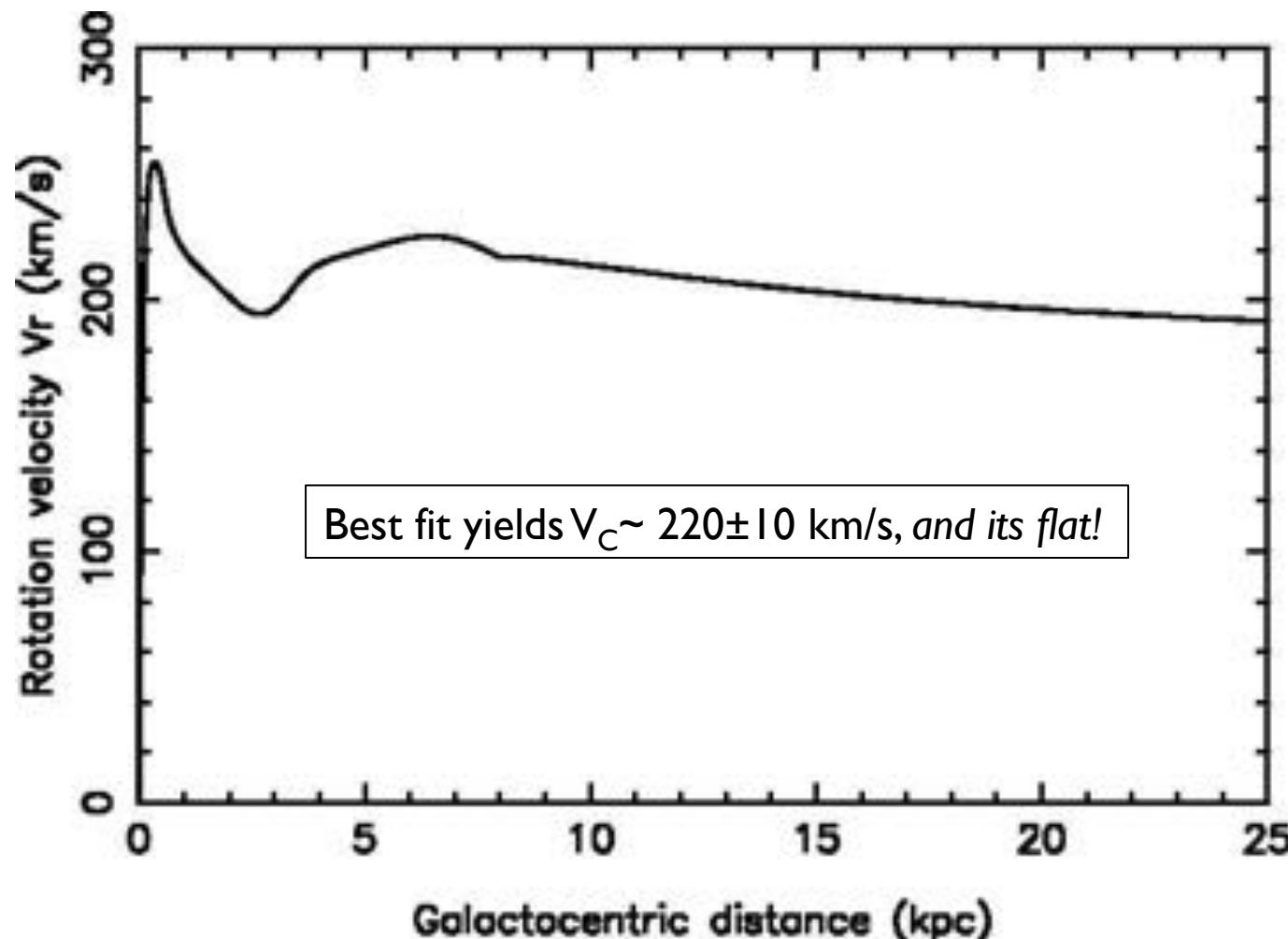
$180^\circ \leq l \leq 270^\circ$

Longitudinal dependence

- ▶ $0^\circ \leq l \leq 90^\circ$
 - ▶ starting with small R , large ω
 - ▶ At some point $R = R_0 \sin(l)$ and $d = R_0 \cos(l)$
 - ▶ Here, V_R is a maximum \rightarrow tangent point.
 - ▶ We can derive $\omega_*(R)$ and thus the Galactic Rotation Curve!
- ▶ Breaks down at $l < 20^\circ$ (why?) and $l > 75^\circ$ (why?), but it's pretty good between 4-9 kpc from Galactic center.

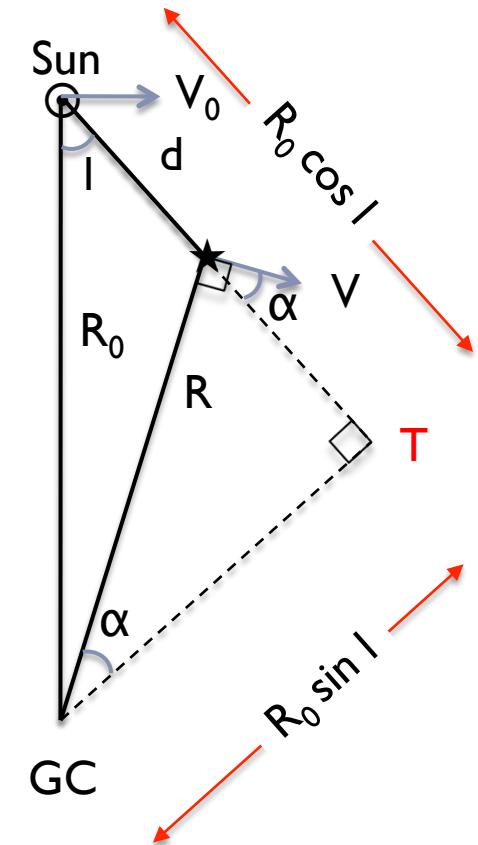


Galactic Rotation Curve



Galactic rotation

- ▶ Inner rotation curve from “tangent point” method
 - $V_{\text{circ},\odot} = 220 \text{ km s}^{-1}$
 - ▶ Derived from simple geometry based on a nearby star at distance, d , from us.
 - ▶ Tangent point where $R = R_0 \sin I$ and $d = R_0 \cos I$:
Observed V_R is a maximum
- ▶ Outer rotation curve from Cepheids, globular clusters, HII regions → anything you can get a real distance for
- ▶ Best fit: $(220 \pm 10 \text{ km/s})$ depends on R_0 (think back to the geometry)
- ▶ Yields $\omega_0 = V_0/R_0 = 29 \pm 1 \text{ km s}^{-1} \text{kpc}^{-1}$



Rotation model

- ▶ Observations of local kinematics can constrain the global form of the Galactic rotation curve
- ▶ Components of rotation model:
 - ▶ Oort's constants which constrain local rotation curve.
 - ▶ Measurement of R_0
 - ▶ Global rotation curve shape (e.g., flat)
- ▶ Oort's constants A and B:
 - ▶ $\omega_0 = V_0/R_0 = A - B$
 - ▶ $(dV/dR)_{R_0} = -(A + B)$
 - ▶ $V_{c,\odot} = R_0(A - B)$

Oort's Constant A: Disk Shear

- ▶ Assume d is small
 - ▶ this is accurate enough for the solar neighborhood
- ▶ Expand $(\omega_* - \omega_0) = (d\omega/dR)_{R0}(R - R_0)$
- ▶ Do some algebra....
 - ▶ $V_R = [(dV/dR)_{R0} - (V_0/R_0)] (R - R_0) \sin l$
- ▶ If $d \ll R_0$,
 - ▶ $(R_0 - R) \sim d \cos(l)$
 - ▶ $V_R = A d \sin(2l)$
- ▶ where $A = 1/2[(V_0/R_0) - (dV/dR)_{R0}]$
 - ▶ This is the 1st Oort constant, and it measures the shear (deviation from rigid rotation) in the Galactic disk.
 - ▶ In solid-body rotation $A = 0$
- ▶ If we know V_R and d , then we know A and $(d\omega/dR)_{R0}$

Oort's Constant B: Local Vorticity

- ▶ Do similar trick with the transverse velocity:
 - ▶ $V_T = d [A \cos(2l) + B]$, and
 - ▶ $\mu_l = [A \cos(2l) + B]/4.74$ = proper motion of nearby stars
- ▶ B is a measure of angular-momentum gradient in disk (vorticity: tendency of objects to circulate around)
- ▶ $B = -12.4 \pm 0.6 \text{ km/s/kpc}$
 - ▶ A measure of angular-momentum gradient in disk
- ▶ $\omega_0 = V_0/R_0 = A - B$
- ▶ $(dV/dR)_{R0} = -(A + B)$
- ▶ Observations of local kinematics can constrain the global form of the Galactic rotation curve

Measuring Oort's Constants

- ▶ Requires measuring V_R , V_T , and d
- ▶ V_R and d are relatively easy
- ▶ V_T is hard because you need to measure proper motion
 - ▶ $\mu \text{ (arcsec yr}^{-1}\text{)} = V_T \text{ (km s}^{-1}\text{)} / d \text{ (pc)} = V_T / 4.74d$
 - ▶ Proper motions + parallaxes
- ▶ $A = 14.82 \text{ km s}^{-1} \text{kpc}^{-1}$, $B = -12.4 \pm 0.6 \text{ km s}^{-1} \text{kpc}^{-1}$
- ▶ The interesting thing you also measure is the relative solar motion with respect to the Local Standard of Rest (LSR)

Solar Motion

- ▶ Stellar motion in the disk is basically circular with some modest variations.
- ▶ There is an increase in the velocity dispersion of disk stars with color → age
 - ▶ Seen in vertical, radial, and azimuthal dimensions
 - ▶ Results in v_{\odot} correlation with (B-V)
 - ▶ What about the thickness of the disk?
- ▶ Disk stars come in all different ages, but tend to be metal rich...

Solar Motion

- ▶ LSR \equiv velocity of something moving in a perfectly circular orbit at R_0 and always residing exactly in the mid-plane ($z=0$).
- ▶ Define cylindrical coordinate system:
 - ▶ R (radial)
 - ▶ z (perpendicular to plane)
 - ▶ ϕ (azimuthal)
- ▶ Residual motion from the LSR:
 - ▶ u = radial, v = azimuthal, w = perpendicular
- ▶ Observed velocity of star w.r.t. Sun:
 - ▶ $U_* = u_* - u_{\odot}$, etc. for v, w
- ▶ Define means:
 - ▶ $\langle u_* \rangle = (1/N) \sum u_*$, summing over $i=1$ to N stars, etc. for v, w
 - ▶ $\langle U_* \rangle = (1/N) \sum U_*$, etc for V, W

Solar Motion

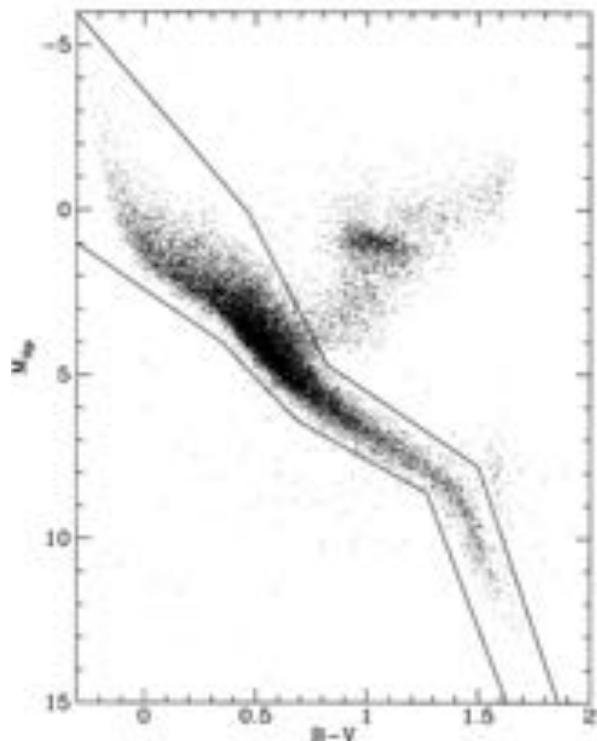
- ▶ Assumptions you can make
 - ▶ Overall stellar density isn't changing
 - ▶ there is no net flow in either u (radial) or w (perpendicular):
 - ▶ $\langle u_* \rangle = \langle w_* \rangle = 0$.
 - ▶ If you do detect a non-zero $\langle U_* \rangle$ or $\langle W_* \rangle$, this is the reflection of the Sun's motion:
 - ▶ $u_\odot = -\langle U_* \rangle$, $w_\odot = -\langle W_* \rangle$, $v_\odot = -\langle V_* \rangle + \langle v_* \rangle$
 - ▶ Dehnen & Binney 1998 MNRAS 298 387 (DB88)
 - ▶ Parallaxes, proper motions, etc for solar neighborhood (disk pop only)
 - ▶ $u_\odot = -10.00 \pm 0.36 \text{ km s}^{-1}$ (inward; DB88 call this U_0)
 - ▶ $v_\odot = 5.25 \pm 0.62 \text{ km s}^{-1}$ (in the direction of rotation; DB88 call V_0)
 - ▶ $w_\odot = 7.17 \pm 0.38 \text{ km s}^{-1}$ (upward; DB88 call this W_0)
 - ▶ No color dependency for u and w , but for v

Solar Motion

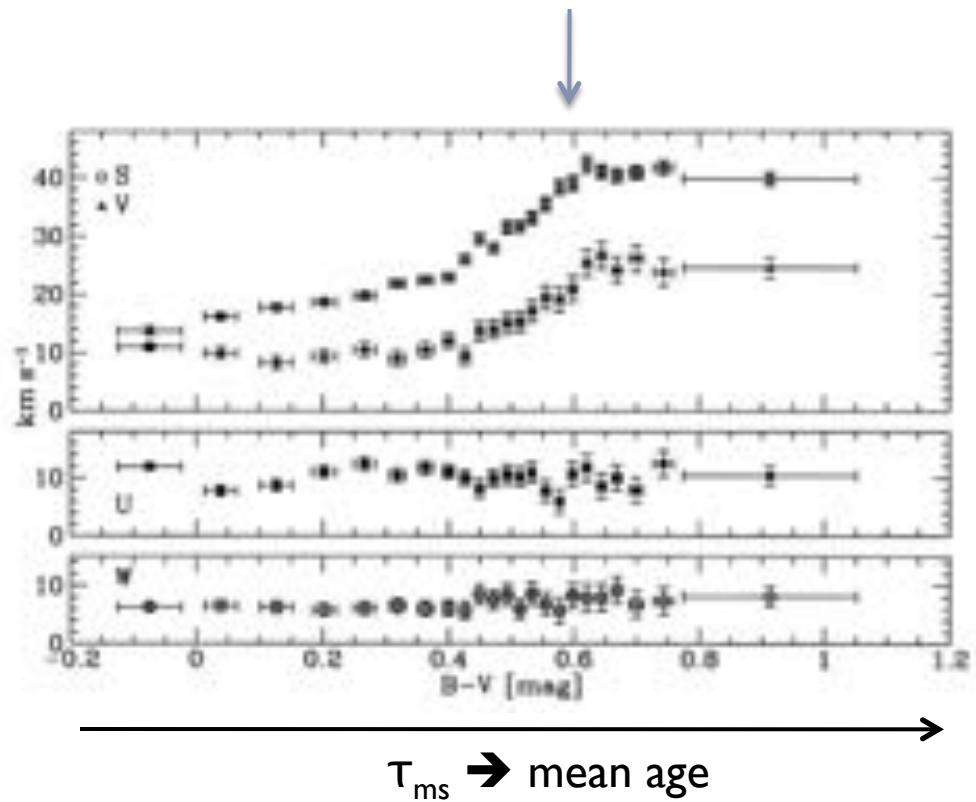
- ▶ **Leading & Lagging**
 - ▶ Stars on perfectly circular orbits with $R=R_0$ will have $\langle V \rangle = 0$.
 - ▶ Stars on elliptical orbits with $R>R_0$ will have higher than expected velocities at R_0 and will “lead” the Sun
 - ▶ Stars on elliptical orbits with $R<R_0$ will have lower than expected velocities at R_0 and will “lag” the Sun
- ▶ **Clear variation in v_\odot with (B-V)!**
 - ▶ Why?
 - ▶ Why only v and not u or w?
- ▶ **We can also measure the random velocity, S^2 , and relate this to v_\odot . This correlation is actually predicted by theory (as we shall see)!**
 - ▶ $S = [\langle u^2 \rangle + \langle v^2 \rangle + \langle w^2 \rangle]^{1/2}$

Parenago's Discontinuity

Clues to disk evolution:



Hipparcos catalogue:
geometric parallax and
proper motions



Binney et al. (2000, MNRAS, 318, 658)

$$S = S_0 [1 + (t/\text{Gyr})^{0.33}]$$

$$S_0 = 8 \text{ km s}^{-1}$$

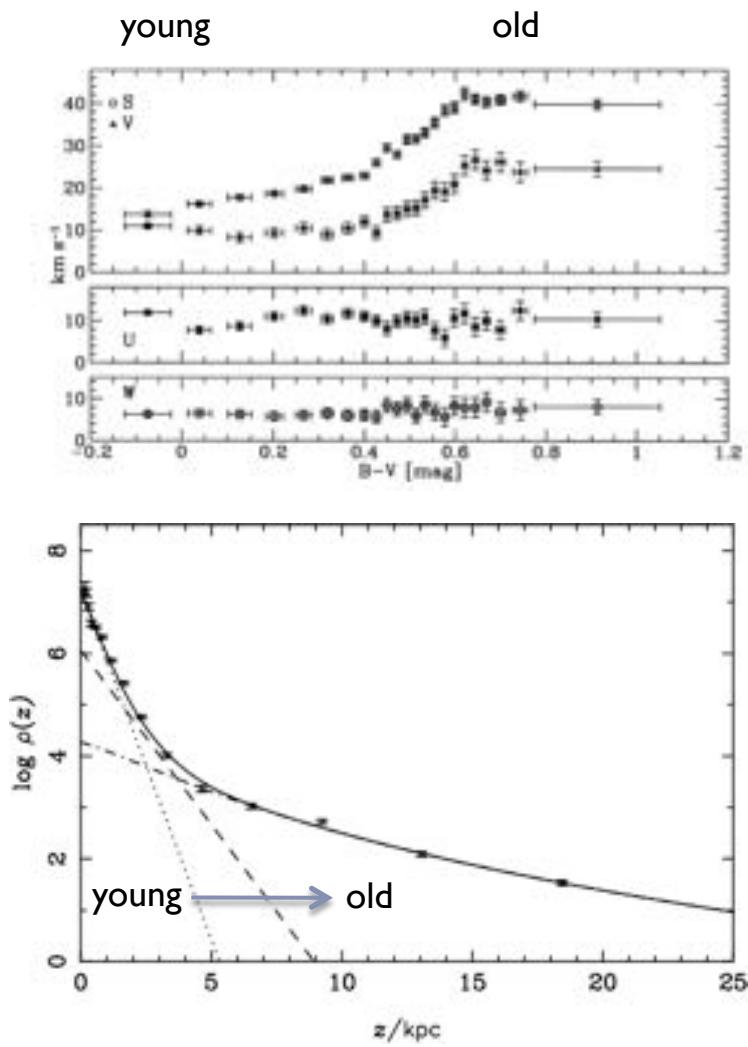
← random grav. encounters

← why might this be?

See also Wielen 1977, A&A, 60, 263

Parenago's Discontinuity: the disk

- ▶ The disk is observed to be well described by a double exponential in radius (R) and vertical height (z)
- ▶ Revisit nomenclature from lecture 6 to be consistent with S&G:
 - ▶ $\rho(R,z) = \rho_0 \exp(-z/h_z) \exp(-R/h_R)$
 - ▶ ρ is matter density, e.g., in stars $\rho_* = n_* \times m_*$
 - ▶ Integrate $\rho(R,z)$ in z to get $\Sigma(R)$, e.g. $M_\odot \text{ pc}^{-2}$
 - ▶ $\Sigma(R) = \int \rho(R,z) dz$
 - ▶ Multiply by the mass-to-light ratio ($M/L = \gamma$) to get $I(R)$, the surface-brightness : $I(R) = \gamma^{-1} \times \Sigma(R)$
 - ▶ $\mu(R)$ often is used to denote surface-brightness in magnitudes arcsec^{-2} .
 - ▶ $\mu(R,\theta)$ would be surface-brightness at location R,θ in the disk (cylindrical coordinates)
 - ▶ Integrate $\Sigma(R)$ in R to get total mass within a given radius $M(R)$, ... or $I(R)$ to get total light
 - ▶ $M(R) = 2\pi \int \Sigma(R) r dr$
- ▶ Why is the distribution exponential in radius?
 - ▶ This is hard to answer definitively, but it is an observed fact.
- ▶ Why is the distribution exponential in height?
 - ▶ Here we will attempt to get a better physical standing in coming lectures.



The Halo: Clues to formation scenario?

▶ Layden 1995 AJ 110 2288

- ▶ Age of halo RR Lyrae stars > 10 Gyr
- ▶ $-2.0 < [\text{Fe}/\text{H}] < -1.5$; $V_{\text{rot}}/\sigma_{\text{los}} \sim 0$; $\sigma_{\text{los}} \sim 100-200 \text{ km s}^{-1}$
- ▶ $-1.0 < [\text{Fe}/\text{H}] < 0$; $V_{\text{rot}}/\sigma_{\text{los}} \sim 4$; $\sigma_{\text{los}} \sim 50 \text{ km s}^{-1}$

▶ Relative to LSR

- ▶ $\langle U \rangle = -13 \text{ km s}^{-1}$
- ▶ $\langle W \rangle = -5 \text{ km s}^{-1}$
- ▶ $\langle V \rangle_{[\text{Fe}/\text{H}] < -1.0} = 40 \text{ km s}^{-1}$
- ▶ $\langle V \rangle_{[\text{Fe}/\text{H}] > -1.0} = 200 \text{ km s}^{-1}$

Velocity dispersion defined:

$$\sigma_{\text{los}}^2 = \int (v_{\text{los}} - \bar{v})^2 F(v_{\text{los}}) dv_{\text{los}}$$

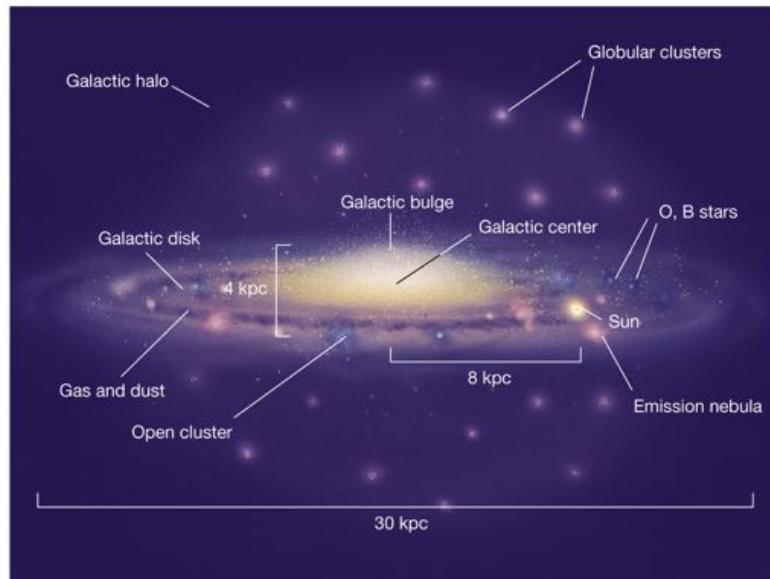
or, $\sigma_{\text{los}} = ((\bar{v} - \bar{v})^2)^{1/2}$

where $F(v_{\text{los}})$ = velocity distribution function

- ▶ Conclusion: there is an extended old, metal poor stellar halo dominated by random motions with very little, if any, net rotation ($0 < V < 50 \text{ km/s}$)

Globular Cluster Population

- ▶ Harris, W.E. 2001 “Star Clusters”
 - ▶ ~150 globular clusters in MWG
 - ▶ Distribution is spherically symmetric, density falls off as $R_{GC}^{-3.5}$
 - ▶ Bimodal metallicity distribution
 - ▶ $[Fe/H] \sim -1.7$ (metal-poor) → found in halo
 - ▶ $[Fe/H] \sim -0.2$ (metal rich) → found in bulge



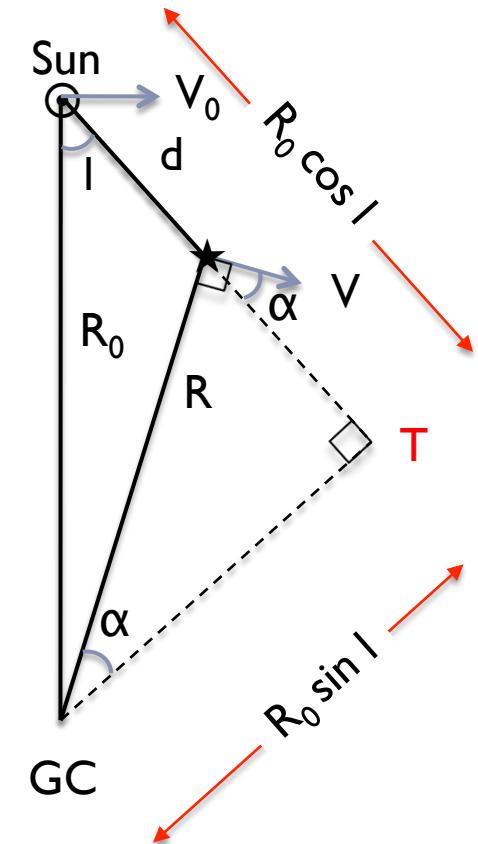
Measuring Galactic Rotation

▶ Gas:

- ▶ Good because the MW is optically thin at CO (mm) and HI (21cm) wavelengths
- ▶ Bad because you have to use the tangent method –
 - ▶ essentially impossible to measure distances

▶ Stars:

- ▶ Good because you can measure distances directly
- ▶ Bad because it is difficult to measure distances for distant or faint stars
- ▶ Bad because traditional studies are done in optical, which can't penetrate mid-plane dust
- ▶ ... enter the Sloan Digital Sky Survey (SDSS):



Measuring Galactic Rotation: Example

- ▶ Select stars of a single spectral type....A stars

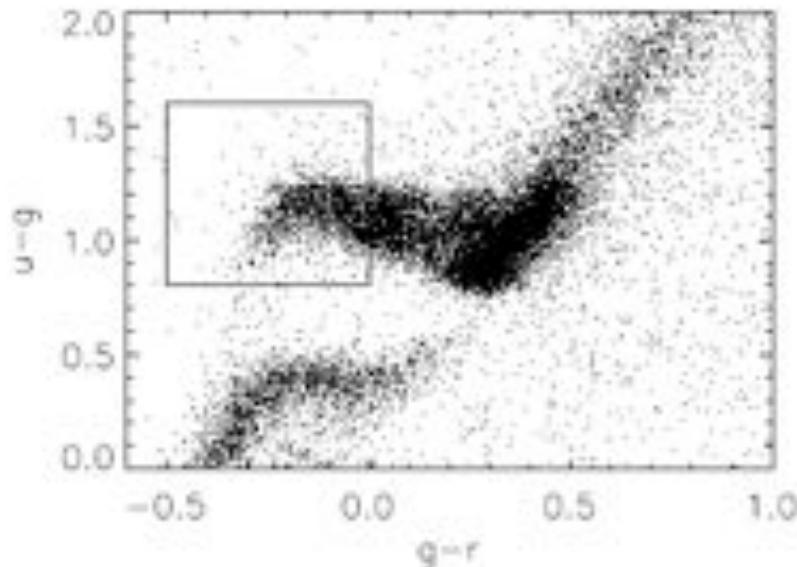
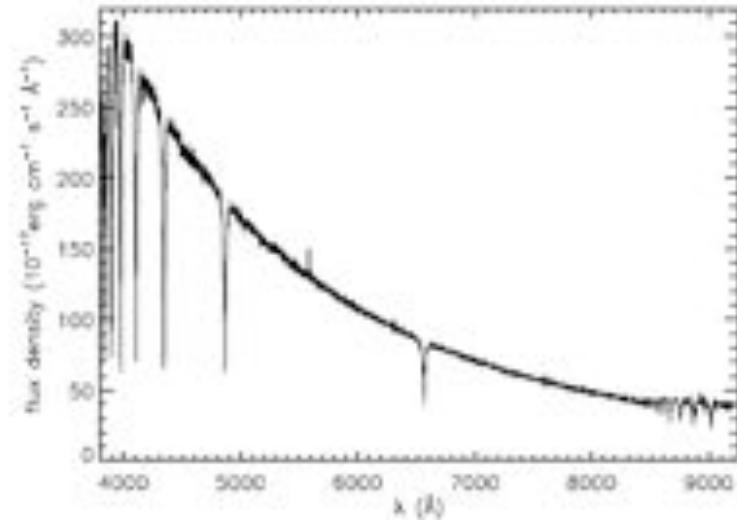


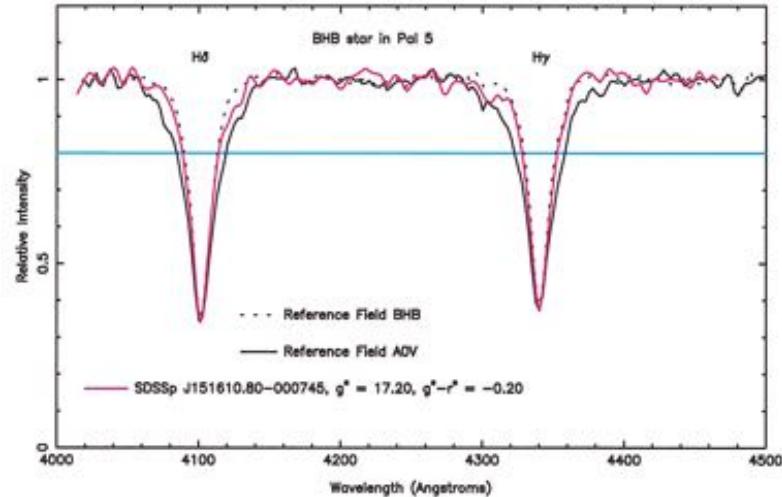
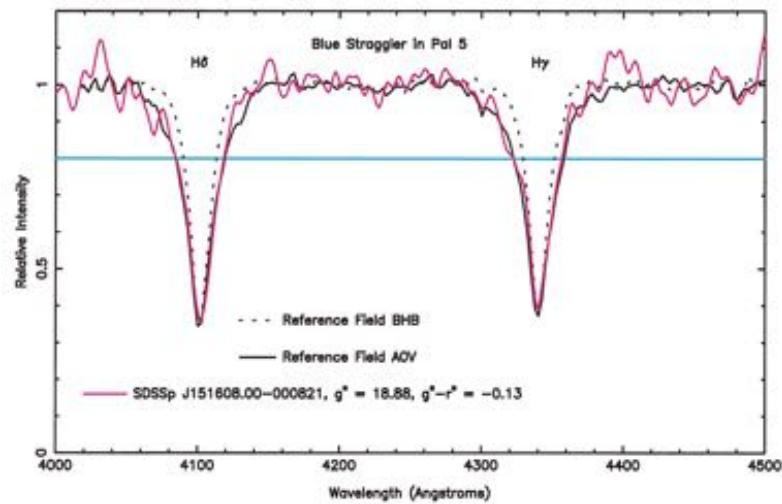
Fig. 1.— SDSS color-color diagram showing all spectroscopically targeted objects that were subsequently confirmed as stars. The large Balmer jump of A-type stars places them in the region where our "color-cut" selection box is drawn. This color selection approach follows Yanny et al. (2000).



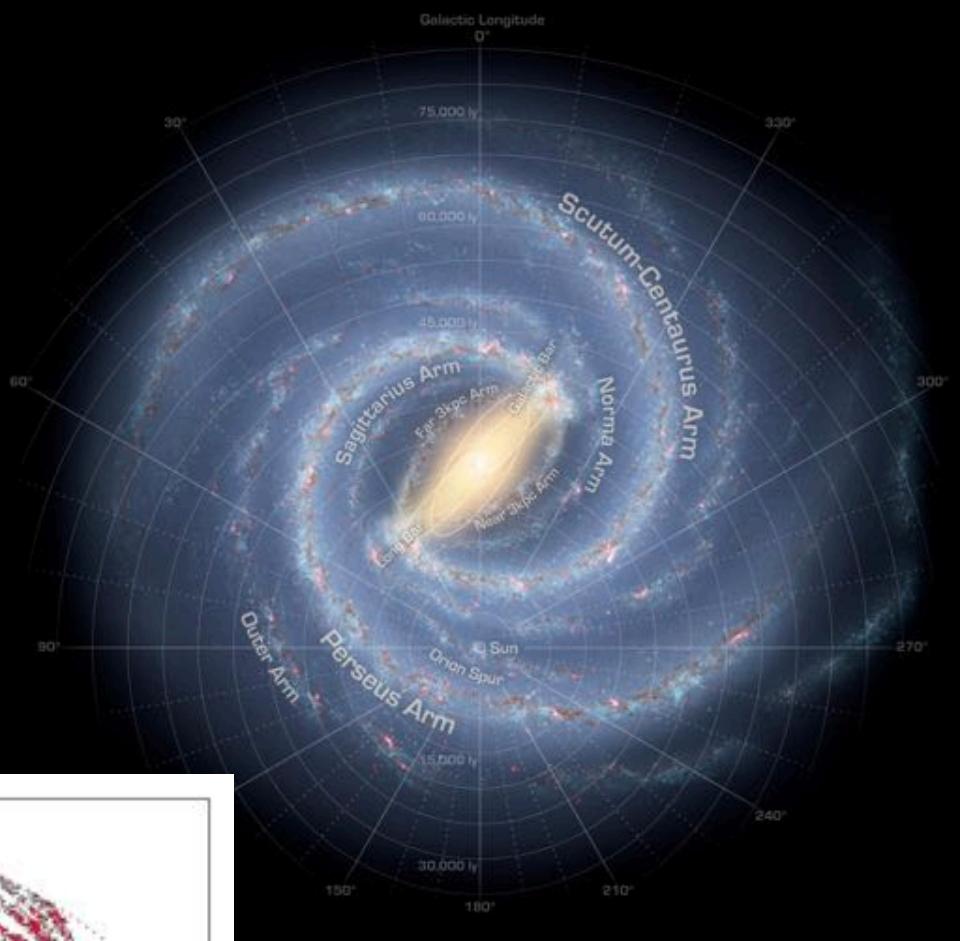
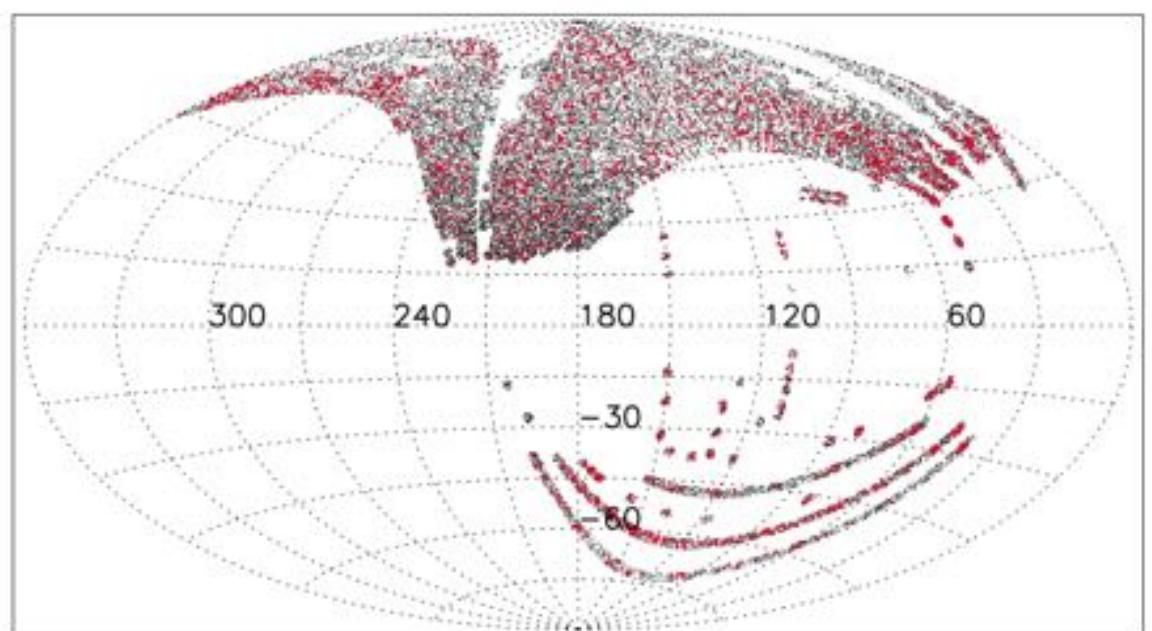
Xue et al. 2008

Measuring Galactic Rotation: Example

- ▶ Distinguish between blue horizontal branch stars and blue stragglers (MS) so the luminosity is known
- ▶ Infer distances

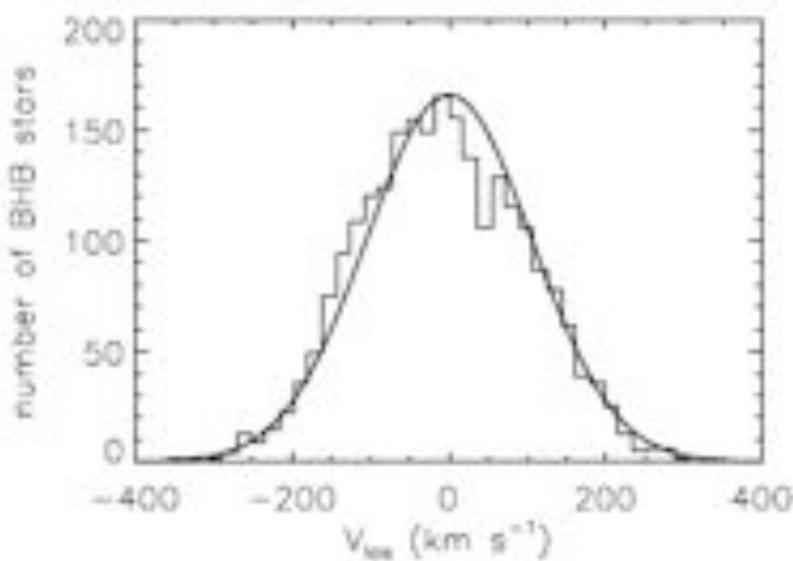
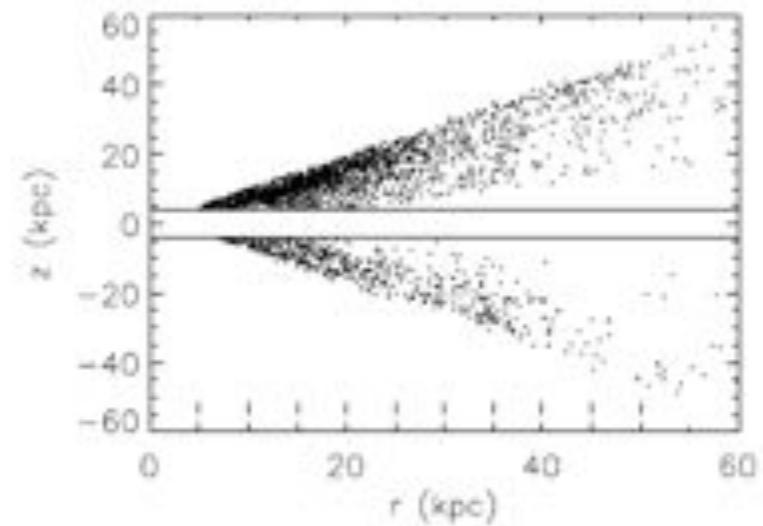
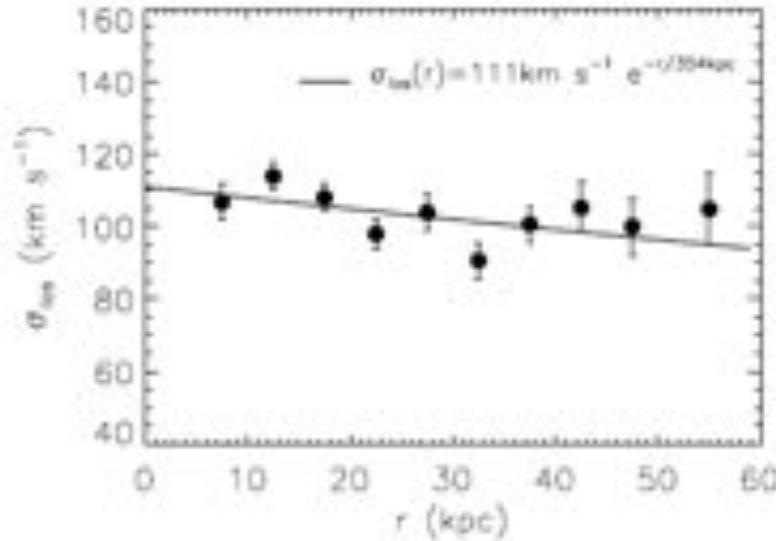


Sight Lines



Measuring Galactic Rotation: Example

- ▶ Determine the spatial distribution w.r.t. the GC →
- ▶ Measure the observed distribution of line-of-sight velocities ($\downarrow V_{\text{los}}$), and the dispersion of these velocities, σ_{los} , as a function of Galactic radius



Measuring Galactic Rotation: Example

- And now the trick: Estimate circular velocity (the rotation curve) from the velocity-dispersion data.

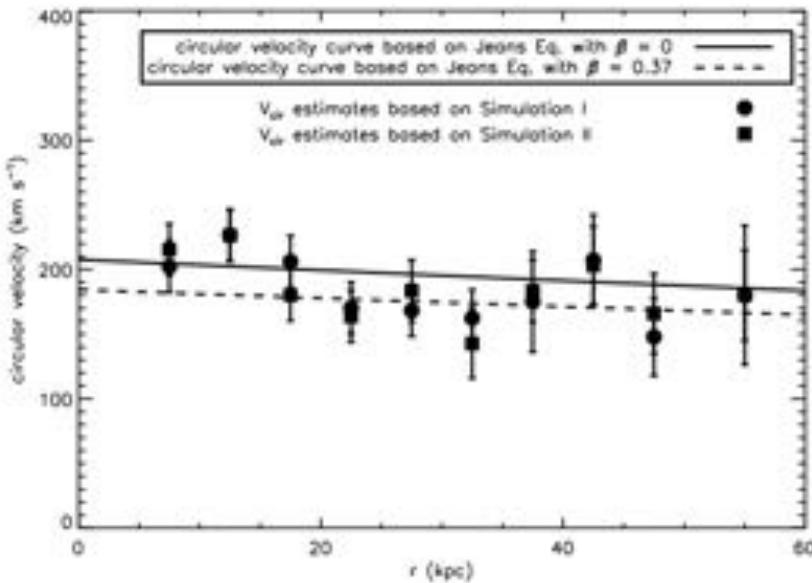


FIG. 15.—Distribution of circular velocity estimates, V_{circ} , for two different simulated galaxies. The circles represent the V_{circ} estimates for the observed halo BHB stars based on simulation I, and the squares represent the V_{circ} estimates based on simulation II. The two lines show the circular velocity curve estimates derived from the velocity dispersion profile (Fig. 10) and the Jeans equation with $\beta = 0.37$ and $\beta = 0$.

For reference, we show how these estimates of $V_{\text{circ}}(r)$ compare to those derived from the Jeans equation and the fit to $\sigma_{\text{los}}(r)$ shown in Figure 10. From the Jeans equation, $V_{\text{circ}}(r)$ can be estimated from the velocity dispersion, σ_r (Binney & Tremaine 1987), as follows:

$$-\frac{r}{\rho} \frac{d(\sigma_r^2 \rho)}{dr} - 2\beta \sigma_r^2 = V_{\text{circ}}^2(r), \quad (8)$$

with

$$\beta = 1 - \frac{\sigma_t^2}{\sigma_r^2}, \quad (9)$$

where $\sigma_r(r)$ and $\sigma_t(r)$ are the radial and tangential velocity dispersions, respectively, in spherical coordinates and $\rho(r)$ is the stellar density.

- So we need to learn some dynamics

Why Dynamics?

- ▶ We can then also interpret the data in terms of a physical model:

Mass decomposition of the rotation curve into bulge, disk and halo components :

- Dark Matter
- Stellar M/L $\equiv \Upsilon_*$
- The IMF
- Missing physics

