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}  The Milky Way 
}  Star counts and stellar populations 

}  Chemical cartography 

}  Galactic center and bar 
}  Galactic rotation  

}  Departures from circular rotation 

Outline   



Modeling the Milky Way Galaxy (MWG) 

}  What is the stellar distribution? 
}  How big is the Milky Way? 

}  Does (where does) the disk have an 
outer truncation? 

}  Does it have a bar? 
}  How do the stars move in the 

galaxy? 
}  Galactic rotation and Oort’s 

constants 



Star Counts 
}  Formalism 

}  N(M,S)=∫�(M,S)D(r)r2dr 
}  N = # of field stars of a given absolute magnitude (M) and spectral type 

(S) in the galaxy 
}  �= stellar luminosity function (# pc-3 for some spectral type) 
}  D(r) = density distribution 

¨   may also depend on M,S:  D(r,M,S) 
¨  Alternatively, � may also depend on r 

}  The simplest thing we can actually observe: 
}  A(m) = # of stars of some apparent magnitude, m. 
}  A(m) = ∫ �(M) D(r) Ω r2 dr 

}  Ω = solid angle of survey 

}  If we have colors, we might get a crude A(m,S) 
}  but without distances or some luminosity indicator, we can’t break 

the dwarf-giant degeneracy (e.g., K V vs K III). 



Star Counts: Infinite Euclidean Universe 

}  A(m) represents the differential counts, i.e., number of stars 
per apparent magnitude interval 

}  Knowing the geometry (locally Euclidean), the count slope 
(dA/dm) tells us about the spatial distribution of sources. 

}  For a uniform space-distribution of sources it is straightfoward 
to show 
}  d(log A)/dm = 0.6m + constant 

}  This leads to Olbers’ paradox: 
}  l(m) = l0dexp(-0.4m) 
}  L(m) = l(m)A(m) 
}  Ltot = ∫ l(m)A(m) dm = ∞ 
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What would 
this imply? 

Euclidean slope = 

}  The distribution of stars in the 
galaxy must be spatially finite 

}  What about the universe of galaxies? 



The Malmquist Bias & the Night Sky 

}  What stars do you see when you 
look up at the night-time sky?  

}  Does this make sense given what 
you know about the HR diagram 

}  Malmquist bias: 
}  You can see brighter objects farther 

away to a fixed m 
}  Volume increases as d3 

young old 
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L2,d2 

L3,d3 

For a uniform space-density, 
the observer is biased 
toward finding intrinsically 
luminous objects. 
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Star Counts & The Malmquist Bias 

}  What’s the mean magnitude of stars with 
apparent magnitude, m? 
}  M(m) = ∫ M�(M)D(r)r2dr / ∫�(M)D(r)r2dr 
}  Recall  A(m) = ∫ �(M) D(r)Ωr2dr 

}  Assume the stellar luminosity function (LF) 
is Gaussian for a given spectral type: 
}  �(M,S) = �0/(2π)1/2�exp[-(M-M0)2/2�2] 
}  M0= mean magnitude 
}  �0= # pc-3 for some spectral type 
}  � is the distribution width Zheng et al. (2004, ApJ,  601 500): 

MW disk M-dwarfs, I-band, HST 



Star Counts & The Malmquist Bias 

}  Push through the integral for M(m) and move 
things around a bit…. 
}  M(m) = M0 – [�2/A(m,S)] [dA(m,S)/dm]   
}  Or: 

     M(m) – M0 = -�2 d lnA / dm 
This is for the specific case of a Gaussian LF, but it can be 

generalized. 

}  If there are more stars at faint magnitudes, then 
the stars at some m are more luminous than 
the average for all stars in a given volume 
}  This will come back to bite us with a vengeance 

when considering distant galaxy counts 

A note on logarithmic 
derivatives:  
d ln x = dx /x 
This is nice because it 
normalizes the gradient 
to the amplitude of the 
signal, i.e., 
dimensionless. 
Therefore often used in 
Astronomy 



Space Densities: Local Neighborhood 

Volume-limited Brightness-limited 



Stellar Luminosity Function 

}  Measure for a distance(volume)-limited sample 
}  Bahcall & Soneira (1980) used: 

}  �(M) = [n*10�(M-M*)] / [1+10-(�-�)�(M-M*)]1/� 

}  n* = 4.03 x 10-3 

}  M* = 1.28 
}  α = 0.74, �= 0.04, 1/�= 3.40 

}  See also Figure 2.4 in S&G. 
}  Basic results 

}  105 times more G stars than O stars 
}  Nearby stars tend to be  

}  low-luminosity and apparently faint 
}  Average M/L = 0.67 (M/L)¤ 



Star Counts: The Disk 

}  Star counts (z direction) 
}  n(z) proportional to exp(-z/z0(m)), 

}  z0(m) is the scale height (and, yes, it does vary 
with magnitude) 

}  More importantly, z0 varies with spectral type:    
}  young : old è small : large 
}  WHY? 

}  Reid & Majewski (1993) 
}  Thin disk with z0= 325 pc – Pop I 
}  Thick disk with z0= 1200 pc – Pop II 

}  The Disk 
}  I(R) = I(0)exp[-R/hR]  
}  tough to measure in our own galaxy, but 

measurable in other disks pretty easily. 
}  Disk is really a double exponential: 

}   I(R,z) = I(0,0)exp(-z/z0-R/hR) 

Du et al. 2003 A&A 407 541, 
stellar density perpendicular to 
the plane 

young old 



Star Counts: The Halo 

}  Halo stars 
}  Halo stars are faint, need an easy to find tracer 

    RR Lyrae stars 
}  Stellar density falls off as r-3 

}  Looks like the distribution of globular clusters, which you 
also get from RR Lyrae stars 

}  We will come back to this density fall-off when we 
consider the rotation curve. 



Recall: RR Lyrae Stars 
}  HB stars in “the instability strip”  

}  Solar mass 
}  Opacity driven pulsations yield variability which is correlated with M 
}  M = -2.3±0.2 log(P) –0.88±0.06 (with some additional variation due to metallicity) 
}  Old, low mass stars (hence good tracers of the halo) 

}  Higher mass (farther up the instability strip you’ll find Cepheids) 



M33 LF 

}  Outer fields of M33  
}  (Brooks et al.  2004, AJ, 128, 237) 

Counts proportional to luminosity 
function of all stars in M33 halo, corrected 
for contamination and completeness. 
TRGB at I = 20.7 gives distance modulus. 



Galactic Center 

}  We’ll talk about the center again when we discuss AGNs 
}  The optical view: 
 
 
}  The VLA 1.4 Ghz view: 



Galactic Center: Distance 

}  Use RR Lyraes + other stellar tracers 
}  Use the globular cluster population, OH/IR stars in the bulge 
}  Get mean distances è 8.5 kpc 

}  Proper motion studies of Sgr A* 
}  Look for maser emission 
}  Follow maser proper motion + observed velocity  
 è distance (7.5 kpc) 



Galactic Bar 

}  Lots of other disk galaxies have a central bar (elongated 
structure). Does the Milky Way? 

}  Photometry – what does the stellar distribution in the center of 
the Galaxy look like? 
}  Bar-like distribution: N = N0 exp (-0.5r2), where r2 = (x2+y2)/R2 + z2/z0

2 

}  Observe A(m) as a function of Galactic coordinates (l,b) 
}  Use N as an estimate of your source distribution:  

}  counts A(m,l,b) appear bar-like 

}  Sevenster (1990s) found overabundance of OH/IR stars in 1stquadrant.  
Asymmetry is also seen in RR Lyrae distribution. 

}  Gas kinematics:  Vc(r) = (4πG�/3)1/2r  
 è we should see a straight-line trend of Vc(r) with r through the 

center (we don’t). 
}  Stellar kinematics – again use a population of easily identifiable 

stars whose velocity you can measure (e.g. OH/IR stars).  
}  Similar result to gas. 



Credits: 
 Robert Hurt (SSC/JPL/NASA)  
 Bob Benjamin (UWW) Galactic Longitude Asymmetry 

l=30o 
l=-16o (344o) 

1st quadrant 

2nd quadrant 
3rd quadrant 

4th quadrant 



Chemical Cartography 

}  The APOGEE-1 view from SDSS-III    

Hayden+’15 
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Also: RAVE, SEGUE, GALAH/HERMES, APOGEE-2 



Galactic Rotation: A Simple Picture 

}  Imagine two stars in the Galactic disk; 
the Sun at distance R0, the other at a 
distance R from the center and a 
distance, d, from the Sun. The angle 
between the Galactic Center (GC) and 
the star is l, and the angle between the 
motion of the stars and the vector 
connecting the star and the Sun is �. 
The Sun moves with velocity, V0, and the 
other star moves with velocity,  V. 
}  See Figure 2.19 in S&G. 



Relative motion of stars 

}  Radial velocity of the star 
}  Vr= V cos�–V0sin l 
}  now use law of sines to get… 
}  Vr= (
*-
0) R0 sin l,  

}  ω is the angular velocity defined as V/R. 
}  l is the Galactic longitude 

}  Transverse velocity of the star 
}  VT= (
*-
0) R0 cos l –
*d 
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Longitudinal dependence 

}  90o ≤ l ≤ 180o 
}  larger d 
}  R > R0 
}   
**< 
0 

}  this means increasingly negative 
radial velocities 

}  180o ≤ l ≤ 270o  
}  VRis positive and increases 

with d 

90o ≤ l ≤ 180o 
 

180o ≤ l ≤ 270 



Longitudinal dependence 

}  0o ≤ l ≤ 90o 
}   starting with small R, large 
 

}  At some point R = R0sin(l) and  
d = R0cos(l) 

}  Here, VR is a maximum è 
tangent point.   

}  We can derive �*(R) and thus the 
Galactic Rotation Curve! 

}  Breaks down at l < 20o 
(why?) and l > 75o (why?), but 
it’s pretty good between 4-9 
kpc from Galactic center. 



Galactic Rotation Curve 

Nakanishi & Sofue (2003, PASJ, 55,191) 

Best fit yields VC~ 220±10 km/s, and its flat! 



Galactic rotation 

}  Inner rotation curve from “tangent point” 
method   
 è Vcirc,¤= 220 km s-1 

}  Derived from simple geometry based on a nearby 
star at distance, d, from us. 

}  Tangent point where R = R0 sin l and d = R0 cos l : 
  Observed VR is a maximum 

}  Outer rotation curve from Cepheids, globular 
clusters, HII regions è anything you can get a 
real distance for 

}  Best fit: (220±10 km/s) depends on R0 (think 
back to the geometry) 

}  Yields 
0= V0/R0= 29±1 km s-1kpc-1 
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Rotation model 

}  Observations of local kinematics can constrain the global 
form of the Galactic rotation curve 

}  Components of rotation model: 
}  Oort’s constants which constrain local rotation curve. 
}  Measurement of R0 

}  Global rotation curve shape (e.g., flat) 

}  Oort’s constants A and B: 
}  
0= V0/R0 = A-B 
}  (dV/dR)R0= -(A+B) 
}  Vc,¤ = R0(A-B) 



Oort’s Constant A: Disk Shear 

}  Assume d is small 
}  this is accurate enough for the solar neighborhood 

}  Expand (
*-
0) = (d
/dR)R0(R-R0) 
}  Do some algebra…. 

}  VR= [(dV/dR)R0 – (V0/R0)] (R-R0) sin l 
}  If d << R0,  

}  (R0-R) ~ d cos(l) 
}  VR= A d sin(2l)  

}  where  A = ½[(V0/R0) – (dV/dR)R0] 
}   This is the 1st Oort constant, and it measures the shear (deviation 

from rigid rotation) in the Galactic disk. 
}  In solid-body rotation A = 0 

}  If we know VR and d, then we know A and (d
/dR)R0 



Oort’s Constant B: Local Vorticity 

}  Do similar trick with the transverse velocity: 
}  VT= d [A cos(2l)+B], and 
}  �l= [Acos(2l)+B]/4.74 = proper motion of nearby stars 

}  B is a measure of angular-momentum gradient in disk 
(vorticity: tendency of objects to circulate around) 

}  B = -12.4 ± 0.6 km/s/kpc 
}  A measure of angular-momentum gradient in disk 

}  
0= V0/R0 = A-B 
}  (dV/dR)R0= -(A+B) 
}  Observations of local kinematics can constrain the global form 

of the Galactic rotation curve 



Measuring Oort’s Constants 

}  Requires measuring VR, VT, and d 
}  VR and d are relatively easy 
}  VT is hard because you need to measure proper motion 

}  �(arcsec yr-1) = VT(km s-1)/d (pc) = VT/4.74d 
}  Proper motions + parallaxes  

}  A = 14.82 km s-1kpc-1, B = -12.4 ± 0.6 km s-1 kpc-1 

 
}  The interesting thing you also measure is the relative solar 

motion with respect to the Local Standard of Rest (LSR) 



Solar Motion 
}  Stellar motion in the disk is basically circular with some 

modest variations.  
}  There is an increase in the velocity dispersion of disk 

stars with color è age 
}  Seen in vertical, radial, and azimuithal dimensions 
}  Results in v¤ correlation with (B-V) 
}  What about the thickness of the disk? 

}  Disk stars come in all different ages, but tend to be metal 
rich… 



Solar Motion 
}  LSR � velocity of something moving in a perfectly circular 

orbit at R0 and always residing exactly in the mid-plane (z=0).  
}  Define cylindrical coordinate system: 

}  R (radial)  
}  z (perpendicular to plane)  
}  	(azimuthal) 

}  Residual motion from the LSR: 
}  u = radial, v = azimuthal, w = perpendicular 

}  Observed velocity of star w.r.t. Sun: 
}  U* = u*-u¤ , etc. for v, w 

}  Define means: 
}  <u*> = (1/N)�u* , summing over i=1 to N stars, etc. for v,w 
}  <U*> = (1/N)�U* , etc for V,W 



Solar Motion 
}  Assumptions you can make 

}  Overall stellar density isn’t changing 
}  there is no net flow in either u (radial) or w (perpendicular): 
}   <u*> = <w*> = 0.  

}  If you do detect a non-zero <U*> or <W*>, this is the reflection of the 
Sun’s motion: 

}  u¤ =  -<U*> ,  w¤ =  -<W*> ,  v¤ =  -<V*> + <v*> 

}  Dehnen & Binney 1998 MNRAS 298 387 (DB88) 
}  Parallaxes, proper motions, etc for solar neighborhood (disk pop only) 
}  u¤ =  -10.00 ± 0.36 km s-1 (inward; DB88 call this U0) 
}  v¤ =     5.25 ± 0.62 km s-1 (in the direction of rotation; DB88 call V0) 
}  w¤=      7.17 ± 0.38 km s-1 (upward; DB88 call this W0) 
}  No color dependency for u and w, but for v…. 



Solar Motion 
}  Leading & Lagging 

}  Stars on perfectly circular orbits with R=R0 will have <V> = 0. 
}  Stars on elliptical orbits with R>R0 will have higher than 

expected velocities at R0 and will “lead” the Sun 
}  Stars on elliptical orbits with R<R0will have lower than 

expected velocities at R0 and will “lag” the Sun 
}  Clear variation in v¤ with (B-V)!  

}  Why? 
}  Why only v and not u or w? 

}  We can also measure the random velocity, S2, and relate 
this to v¤. This correlation is actually predicted by theory 
(as we shall see)!  
}  S = [<u2> + <v2> + <w2>]1/2 



Parenago’s Discontinuity 

Hipparcos catalogue: 
geometric parallax and 
proper motions 

τms è mean age 

Binney et al. (2000,  MNRAS, 318, 658) 
S = S0 [1+(t/Gyr)0.33]  ç random grav. encounters 
S0

 = 8 km s-1    ç why might this be? 

Clues to disk evolution: 

See also Wielen 1977, A&A, 60, 263 



Parenago’s Discontinuity: the disk 
}  The disk is observed to be well described by a double 

exponential in radius (R) and vertical height (z) 
}  Revisit nomenclature from lecture 6 to be consistent 

with S&G: 
}  ρ(R,z) = ρ0 exp(-z/hz) exp(-R/hR) 

}  ρ is matter density, e.g., in stars  ρ*= n* × m* 
}  Integrate ρ(R,z) in z to get Σ(R), e.g. M¤ pc-2 

}  Σ(R) = ∫ρ(R,z) dz
}  Multiply by the mass-to-light ratio (M/L = Υ) to get I(R), 

the surface-brightness :  I(R) = Υ-1 × Σ(R) 
}  μ(R) often is used to denote surface-brightness in 

magnitudes arcsec-2.  
}  μ(R,θ) would be surface-brightness at location R,θ in the 

disk (cyclindrical coordinates) 
}  Integrate Σ(R) in R to get total mass within a given radius 

M(R), … or I(R) to get total light 
}  M(R) = 2π ∫ Σ(R) r dr 

}  Why is the distribution exponential in radius? 
}  This is hard to answer definitively, but it is an observed 

fact. 
}  Why is the distribution exponential in height? 

}  Here we will attempt to get a better physical standing in 
coming lectures.  

young old 

young old 



The Halo: Clues to formation scenario? 
}  Layden 1995 AJ 110 2288 

}  Age of halo RR Lyrae stars > 10 Gyr 
}  -2.0 < [Fe/H] < -1.5 ;   Vrot/�los~ 0   ;  �los~100-200 km s-1 
}  -1.0 < [Fe/H] < 0     ;   V rot/�los~ 4  ;  �los~ 50 km s-1 

}  Relative to LSR 
}  <U>            = -13 km s-1 
}  <W>           = -5 km s-1 
}  <V>[Fe/H]<-1.0  = 40 km s-1 
}  <V>[Fe/H]>-1.0  = 200 km s-1  
 

}  Conclusion: there is an extended old, metal poor stellar 
halo dominated by random motions with very little, if any, 
net rotation (0 < V < 50 km/s) 

Velocity dispersion defined: 
   �2

los= ∫(vlos–v)2 F(vlos) dvlos 
or, �los= ((v –v)2)1/2 
 

where F(vlos) = velocity 
distribution function 

 



Globular Cluster Population 

}  Harris, W.E. 2001 “Star Clusters” 
}  ~150 globular clusters in MWG 
}  Distribution is spherically symmetric, density falls off as RGC

-3.5 

}  Bimodal metallicity distribution 
}  [Fe/H] ~ -1.7 (metal-poor) è found in halo 
}  [Fe/H] ~ -0.2 (metal rich) è found in bulge 



Measuring Galactic Rotation 

}  Gas: 
}  Good because the MW is optically thin at CO 

(mm) and HI (21cm) wavelengths 
}  Bad because you have to use the tangent 

method –  
}  essentially impossible to measure distances 

}  Stars:  
}  Good because you can measure distances 

directly 
}  Bad because it is difficult to measure distances 

for distant or faint stars 
}  Bad because traditional studies are done in 

optical, which can’t penetrate mid-plane dust 

}  … enter the Sloan Digital Sky Survey (SDSS): 
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Measuring Galactic Rotation: Example 

}  Select stars of a single spectral type…. A stars 

Xue et al. 2008 



Measuring Galactic Rotation: Example 

}  Distinguish between blue 
horizontal branch stars 
and blue stragglers (MS) 
so the luminosity is 
known 

}  Infer distances 



Sight Lines 



Measuring Galactic Rotation: Example 
}  Determine the spatial 

distribution w.r.t. the GC è 
}  Measure the observed 

distribution of line-of-sight 
velocities (ê Vlos), and the 
dispersion of these velocities, 
σlos, as a function of Galactic 
radius                                 î 



Measuring Galactic Rotation: Example 
}  And now the trick: Estimate circular velocity (the 

rotation curve) from the velocity-dispersion data. 

}  So we need to learn some dynamics 



Why Dynamics? 
}  We can then also interpret the data in terms of a physical 

model: 

Mass decomposition 
of the rotation curve 
into bulge, disk and 
halo components : 
è  Dark Matter 
è  Stellar M/L � Υ* 
è The IMF 
è Missing physics 


