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Elliptical Galaxies

N4473 C/PL N3608 C N4281 C

Scale=9x9" N4649 C STIS Targets

Classic ground-based view in the optical
HST STIS images of cores



An Alternative to Hubble Tuning Fork
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Ellipticals: Basic properties

» Surface photometry
1(r)=I_exp{-7.67[(r/R,)'*-11}
“r1/4” law proposed by de Vaucouleurs
R.= effective radius at which 1/2 of total light is emitted
Recall that this is a special case of the Sersic profile for n=4
Ellipticals show a range of n from 3 to 10.
Similar to bulges of early-type disk galaxies, but with higher
index, n

» Classification: EO-E7 describing increase in flattening

» Stellar populations: old, metal rich

» Environment: dense, usually in clusters or rich groups
morphology-density relationship



Ellipticals: Basic properties continued

» Deviations from basic structure

Centers =»in cD galaxies the surface brightness turns up in the
center.

Halos =»some have extended halos (excess light at large radii)

» What distinguishes ellipticals from spirals?
Ratio of V /O
V_is the circular velocity
O is the velocity dispersion
In MWG V_~220 km s-1, 0 ~50 km s-1;it’s the opposite in ellipticals
Ellipticals are kinematically dominated by the velocity
dispersion rather than the circular velocity.
Ellipticals are kinematically hot.
Presence/absence of large amounts of cool gas



Stellar populations

» Basic colors redder than spirals

Radial color gradient (redder in center)
Metallicity gradient: d[Fe/H]/dlog,r = —0.22

Based on Mg, Fe lines
» Spectra (compare with a spiral)

Look like a combination of G, F and K stars in the optical;
prominent Mg and Fe lines

Need high resolution spectra over the 350-650 nm range
+ stellar absorption line models
» Age-abundance degeneracy

Can use H 3 line strengths (in absorption) as age indicator
Why does this work!?



Stellar populations continued

» Trager et al. 2000 15 |
Age spread: 2-12 Gyr R
Nearly solar metallicity ( [Z/H] )
Slightly subsolar [Fe/H] q - e
Yields a high [Mg/Fe] ratio 05 1015202 0 05 1

» Other fits: old population with “frosting” of younger stars

» Bottom line: good fraction of old stars, but how old and real
fraction is not well known.



ISM in Ellipticals

» Cool gas
Usually outside of main galaxy
Associated with shells
Disks out to large radii
(exception: dwarf ellipticals with nuclear clouds)

No correlation between presence of cool gas and any
other property of the galaxy

» lonized gas — not much outside of nuclear regions
(i.e., little star formation)

» Hot (x-ray) gas — lots!



Hot Gas in Ellipticals

» Ly goes as Lp!' 623 Radial distribution
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X-ray to Optical comparison
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Stellar Kinematics

» Measuring intrinsic shape/potential:

|. Surface photometry =» mass distribution =»
potential (P, M(r) model) = orbit library =>»
superposition of orbits =¥ iterate

2. Surface photometry + resolved velocity fields and
velocity dispersion maps

» You measure of line-of-sight velocity distribution
D Vo™= JF(VigsViosdVies

> Then, 02= ] (<V)o> V1002 F(Viog) dViee

» This accounts for the streaming and random
motion of stars.



Stellar Kinematics continued
» LOSVD

Assume a Gaussian velocity distribution function (F) to this
makes things easier.

F=> eXP['(<vlos>'vlos)2/2 o_Iosz] >e®
b = (I/Z)WZ’ w = (<Vlos>'vlos)/glos
This all yields a symmetric line profile.

Remember we’re sampling a specific absorption feature (e.g.a
Mg Il line)

» But reality isn’t all that symmetric, so we need some
way to describe deviations from Gaussian =

“Gauss-Hermite” series which combines a Gaussian with an
orthogonal set of polynomials

F goes as: eX[| + 2 =30 N He(W)]

this is a polynomial of order k, with some coefficient h



Gauss-Hermite information

» Describe stellar kinematics
with four terms:

Vv, 02 hy,h,

» Third term:
hy (2w3-3w)/(372)
h,=» measures “skewness” or
deviation from symmetry. Large
positive h; represents a

secondary bump at v > v so that
the peak of the line is now <v

» Fourth term:
h, (4w*-12w2+1)/(24'72)
h,=» measures “kurtosis” or
symmetric departures from a

Gaussian. Large h,yields a boxy
profile centered on v



The data...

» Call near-infrared triplet

3 strong lines prominent in cool stars
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Kinematic and structural parameters
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Elliptical galaxies do rotate ...

kurtosis

» ... it’s just that their dispersion is larger.



Galaxy spins: angular momentum

e Emsellem et al. 2007, MNRAS, 379, 401

e Emsellem et al.201 |, MNRAS, 414, 888 2 4
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Angular momentum (continued)

* Need to pick a fiducial radius, say, based on
the light distribution.

* R, or some scale of it is reasonable if light
traces mass

* We've already seen this is useful as a classifier
(e.g., Cappellari+201 1)

e Emsellem+2007,
SAURON survey: E/SO

e Emsellem+2011,
ATLAS3D: ETGs \ = - b
(includes E/SO) . S ::E‘: —— - I!




Angular momentum (continued)

ATLAS3P results at R = R,
£ =0.85,0.75,0.65,0.55,0.45 and 0.35
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Angular momentum (continued)

ATLAS3P results: A cleaner separator thanV/ 0, R, better than R_/2, but latter
useful for isolating special cases (KDCs, 2 0)

isotropic oblate systems viewed edge-on.
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Results

» Pick a potential that will fit observed kinematics and surface
brightness profile, e.g.,
D (R,Z2)=(1/2)v,%n(R 2+R?)
Use four key kinematic parameters to characterize orbits and hence
shape of potential (recall SOS program in HW3)

» Use tracers at large radii (PN and GCs) to obtain over-all
velocity

» Findings:
M/L ratio increases with R
M/r =5 x 10'2M kpc’!
M/L ~ 100-200 in some cases
Kinematics dominated by a dark halo beyond -2 R,
“flat” O vs R curves (just like spirals)

(further confirmation of dark halo comes from power law like
distribution of hot x-ray emitting gas)



True shape of elliptical galaxies

» We see the 2-dimensional projection of a three dimensional
thing: How can we tell the true shape?

Prolate or oblate?
Orbits
Viewing angle
Velocity fields
» Look for deviations in the 2-dimensional data =» twists in the
isophotes

Peng, Ford, Freeman (2004) use planetary nebula to map kinematics
in NGC 5128

PNs =>» bright, emission line sources, widely distributed
| 141 PNe =>» velocity field for N5128
Twist in isovelocity contours suggests triaxiality

» Can do this with stellar velocity fields within the galaxy as well
(see papers by Statler et al)



Scaling relations: The so-called “Fundamental Plane”

» Scaling relationship between size, velocity dispersion,
and surface-brightness

Faber-Jackson law: L ~ 0 * R,: the half-light radius
) . 0: the velocity dispersion
» E’s OCCUpY a Plane 1 Re, g, ue space H.: the surface-bzrightness at R,
(mag arcsec?)
Re ~ 0 A U g | the surface-brightness at R,
A~lA4 in flux units.
B~-08 Question: At what
» Virial theorem: radius is 0 measured?
<R >=< o'2><|e>-|<M/L>-I Recall:

» Observed fit:

log R.=—0.8logl, + |.4log0O
» Why the discrepancy!?

M/L is not constant?

E’s have anisotropic velocities?




Fundamental Plane (2-D projections)
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Fundamental Plane (3-D)
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Hot Gas and Dark Matter

» T =» velocity dispersion =» mass distribution

Let’s assume hydrostatic equilibrium
pressure support balances gravitational potential
dp/dr = —p GM(r)/r?

d/dr( 0, kT/pm ) = — o ..  GM(r)/r?
M here is the mean atomic mass

Direct measure of elliptical mass from X-ray data

Also works in galaxy clusters

» Gas temperature > stellar kinetic temperature
Um <0 >?/k<T>~ 0.5
=> this alone suggest some dark matter
T_./Ts ratio increases for low velocity dispersion

gas
What does this tell us?



X-ray to Optical comparison

» Recall:
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Stellar kinematics and dark matter

» Apply something like the CBE

» Jeans equation for spherical, isotropic stellar system
d(o 0?)/dr = -GM(r) p Ir?+ o V?r
Adopt a mass model

e.g. isothermal sphere, NFW halo
This is only for the dark matter

e.g. Hernquist: 0 (r)=(Ma/2m)(1/r(r+a)?)
This is only for the luminous matter

For N5128, this yields M/L ~ 12-15



Central regions

» Based on high-resolution photometry
try to fit some function to the observed light distribution

looking for deviations from Sersic profile
() =1,2(8- 7@ (1 )T [ 1+ (el €] -B V@
r,= “break” radius
Y = inner logarithmic slope (r <r,) = v =-dlogl/dlogr
B = outer slope
o = sharpness of break

» “core” galaxies (7 > 0)
» “power law” galaxies — steep surface brightness profile with
luminosity densities in center brighter than “core” galaxies
tend to be less luminous, smaller galaxies
» Two families of early-type galaxies

Mergers/BH increase velocity dispersion and flatten light profile
Gas dissipation increases nuclear luminosity



Central black holes

» How do you tell?
» Ellipticals

Central surface brightness
Velocity dispersions
Mg/ O relationship

» Spirals

Rotational velocities

VLBA measurement of masers
in NGC 4258




Case study: NGC 821

Ground-based image
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Mg/ O relationship

» The mass of the black hole is highly correlated with the luminosity
and total mass of the spheroid component (spiral bulge or elliptical)
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Formation of .

» Mergers

Clliptical galaxies

Tails and bridges result of tidal forces

Two galaxies approach on parabolic orbits

Systems pass, turn around, but leave tails behind them

Ultimately the systems merge

» Simulated merger remnants follow r!* law

» Observationally....

E+A galaxies look like merger remnants

Ellipticals reside in

high density environments



Gallery of interactions

Arp 344 = “The Antennoe” NRBE
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+A galaxies
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Galactic Cannibalism

» “dynamical friction” induced cannibalism turns a normal
elliptical into a cD giant =» some E’s have multiple nuclei

» Dynamical friction = braking of some massive body via
large numbers of weak gravitational interactions with a
distribution of smaller masses (i.e. stars)

=>satellite, M, deflects stars into building a trailing
concentration of stars, increasing the gravitational drag, slowing
down the satellite

» Applications:

Growth of elliptical galaxies

Milky Way is swallowing a number of its satellites

could the halo be comprised entirely of tidally stripped stars!?



Galactic Cannibalism (continued)

» Consider:
Satellite with mass, M
Stars with mass, m
Relative velocity, v,

Impact parameter, b
Angle of deflection, 6

» “reduced particle”; g =mM/(m+M)

» Change in velocity parallel to the initial motion
Av = (2mvy/M+m)[1+(b2v,*/G*(M+m)?]-'2rtb db

Then you integrate over impact parameter and some velocity
distribution



Growth of the MW Halo?
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Making galaxies

elliptical

spiral

Steinmetz



Major mergers

Mihos & Herbquist



Minor merger

Mihos & Hernquist



Minor merger

Mihos & Hernquist




