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Galactic Dynamics

» Basic morphology of galaxies (and parts of galaxies) is
determined by the orbits of stars

disk galaxies are disk-like because most of the stars orbit in
nearly circular orbits in a flattened plane.

» What determines the stellar orbits? The gravitational
potential: ®(r,0,z).

» What determines the gravitational potential? The
distribution of mass, 0 (1,0,z).



Fundamentals: Gravitational Potentials

» Newton’s gravitational force law for a point-mass M
d(mv)/dt = -GmMr/r3
=-mV D (r)
v,r vectors; r scalar; V¥ the gradient
® is the gravitational potential, @ =-GM/r
Thus, F(x) =-V O

the force is determined by the gradient of the potential.

» Gravitational potential generalized:
D (x) = -G | (o(x)/|x-x|) d*x’
F(x) = G | [(x"-x)/|x-x[*] 0(xX)d3x’

Force on a unit mass at position, x, from a distribution of mass 0(x).
» Take the divergence of F(x) [V *F(x) = -¥2® (x)] to get Poisson’s equation:

V2D (x) = 411G O(x)

» Directly related to Gauss’s law:

In the absence of sources: ¥*F(x) =0
Laplace equation: ¥2®(x) =0

See S&G and divergence theorem for
derivation. Think:
What does “divergence” mean?




Fundamentals: Divergence theorem
» Divergence theorem states that for some vector F

| WeF dV =] F «dS

Consider volume to be subdivided into a large number of small cells with
volume AV,

For the cell-walls bounded by the surface, the sum of the surface-integrals for
these cell-walls equals the surface-integral for the volume.

Y. [F edS =]F «dS
For the remainder of surfaces, since the outward surface-normal of one cell is
opposite that of the surface of the adjacent cell, the surface integrals cancel.
We can also write:

Y. [(I/AV)IF dS] AV, =[F «dS
In the limit where AV,=»0, the sum of the surface-integrals becomes an
integral overV

the ratio of the surface-integrals to AV.as AV.=»0 is the divergence of F.




Divergence theorem corollary

» For scalar and vector functions g and F:
» JgWeF dV =] gF «dS— | (F *¥)gdV



Application of potentials to galaxies

» Here’s the process:
We start by looking at some very simple geometric cases

Define a few terms that help us think about and characterize the
potentials

Become more sophisticated in the form of the potential to be more
realistic in matching galaxies

» Concepts:

Infer or postulate

circular and escape velocities

)]
Time scales: dynamical, free-fall pL V.o

Potential (W or PE) and kinematic energy (K or KE) | postutate Observe o
M . . b d'
Energy Conservation and Virial Theorem or observe predict

Angular momentum

» Example: rotation curves of galaxies



Energy considerations

» Recall:
d(mv)/dt =-mV¥ P (x),
» Take the scalar product with v
ved(mv)/dt + mve VP (x) =0
= d/dt[ Vomvi+ mDP(x)] =0
where d® (x) / dt = ve ¥ O (x)
» Total energy defined:
E=KE + PE =" mvZ + m®(x)
» This means E is constant for closed system
e.g., an unperturbed orbit of a star
This is true for static potentials.

If there is a time varying potential (i.e.in a cluster) only the total
energy is conserved (not the energy of an individual star)

For an external force add the summation of F_ -x



Kinetic energy and escape velocity

» If E is constant for closed system
» and by definition: KE =2 0

Implications:
As x = oo (far from potential) P(x) = 0.
If E>0atx=w thenv>0
i.e., the object has escaped the potential

Escape velocity for critical energy (E=0):

Ve(X) = (2| P (x)[)""




Potential Energy

» Work (W) done in assembling a mass distribution is the
potential energy.

» Start with initial portion of mass 0(x) which generates potential
G (x)
» Add an increment of mass dm: the work done is Om @ (x)
The work per unit mass over a distance X is
Fex=—xVOP(x)
Integrating the work from x=« to some finite distance, where
P (xDx) > 0
implies @ (x) as the total work (potential energy) per unit mass.

» Think of O m as equivalent to a change in density over the
assembled volume:

J 8 o(x)d3x.
» Then work done, dm ®(x) is:
SW =[68 p(x) D (x) d3x.



Potential Energy (continued)

» Apply Poisson’s equation on & 0 yields
SW = (1/411G) [® (x) ¥2(S D)d3x.
» Use the divergence theorem to write:
SW = (1/411G) [P (x) (D)o dS — (1/411G) [W D (x) * ¥ (S D) d3x
» The surface-integral vanishes because:
D(r) and |[V(DP)|"2goasr'asr Do v
i.e, the integrand goes as r-3 while the surface area goes as r?

» Also there is this identify: ¥ O (x) ¢ V¥( 6(])) @ O |(WD)?

» From which it follows: :/I:/.hy s
SW=—(1ienG) s[J|vopex] :

» Sum over all W to get
=—(1/8nG) | [W D%
» Again apply Diverggnce'tﬁéorem and Poisson equation to arrive at

w =@T ,(’)/(x) ® (x) d’x




Why we might care about potential energy

Where are the baryons?

WMAP (e.g., Bennett et al.’ | 3)

» ~5% of the energy-density
» ~17% of the mass in the universe

» | Only ~3% of the baryons are bound in
galaxies; the rest are presumably a very

hot gas (cosmic web and halos)
Tenergy ™ matter

| « Stellar Mass Fraction ~ 0.5% - not well known!

M dark matter
W gas
W stars

We lucky few...

Log,e Se (photon cm™ s~ sr™)

Ly @ and OVI doublet (103.2, 103.8 nm; primary
coolant for T=3e5K near solar gas, Otte+’03)




Do this problem:

A galaxy forms, starting at t = t; ., out of matter initially at rest and dispersed over very
large separations, ry, ., —>. At t; .,

in dynamical equilibrium with total mass M, and circular speed v..The galaxy virializes on
a time-scale comparable to a few X ty . In terms of these parameters:

the matter begins to collapse into a bound structure

What is the total energy, kinetic energy, and potential energy of the system before
collapse occurs?

What is the total energy, kinetic energy, and potential energy of the system after it
virializes? How do you account for differences in the total energy?

Estimate the characteristic size of the galaxy, and state what assumptions you have
made to form this estimate.

Convert any total energy differences you find into the equivalent mass of hydrogen (in
units of M,) that can be ionized and heated to 10° deg (K) assuming all of the “missing
energy” goes into this heating (hint: take a look at Problem 7.2 in Sparke & Gallagher).
Also compute the numerical fraction of M, for v, =200 km s'.

Adopt v_ =200 km s*! for the next three questions:

€.

Assuming the material out of which the galaxy forms is representative of the universe
on average (see the lectures), what fraction of the galaxy’s baryons does your answer
in (c) represent?

Assuming the galaxy is depleted of a fraction of its baryons, such that its baryon mass-
fraction is 10% today, what is the temperature of the expelled gas?

What might these calculations tell us about the origin of the warm-hot ionized
medium (WHIM) in the cosmic web and the fraction of the total baryons in it?



Angular Momentum,Torque & Integrals of Motion

» L
» N

X X mv
torque =x X F=dL/dt=—-mx xV O

Torques is rate of change of angular momentum

» For a spherically symmetric galaxy, L is constant. For an
axisymmetric galaxy (most galaxies), only the component parallel
to the symmetry axis is constant

» Integrals of motion:

Any function of phase-space coordinates (x,v) that is constant along
an orbit

In static potentional ®(x):

E(x,v) = amv? + m®P(X) is an integral of motion
If ®(R,z,t) is axisymmetric about z-axis:

L, is an integral of motion
In spherical potential ®(R,t):

all three components of L are integrals of motion.



Virial Theorem

4

In an isolated system composed of multiple mass units, these
masses can change (and exchange) their kinetic and potential
energy as long as
the sum is constant (E is conserved overall):
<KE>+<PE> = constant
where <> are averages over the system
If the system is in equilibrium, the kinetic energy must balance
the potential energy, e.g., an object in a circular orbit around a
fixed mass.

This equilibrium configuration is referred to as “virialization”,
and implies:

2<KE> + <PE> =0
For an external force add the summation of F__.* x:
» 2<KE> + <PE> + F__'x = 0




Virial Theorem in practice

» This is a primary tool for inferring masses of dynamical
systems in astronomy, so it is important. Here’s how it is
applied:

Measure the velocity dispersion of some spherical system
(e.g., a star cluster).

We observe V,, from which we can derive: 0, = <V >!/2

If we assume motions are isotropic, then VeV = 2 V2 ~37 2,

Kinetic energy = (3/2) M0 2

Potential energy looks something like: —GM?/2fr,

r.is a “core radius” at which point the surface brightness is /2 of
its central value.

f is a fudge-factor or order unity that accounts for the details of
the mass distribution in the integral [ ox) ® (x) d*x.

Solve for mass, M



Recap: |

» Recall:

inergy considerations

Newton: d(mv)/dt =—mV¥ ®P(x),
Poisson: V20 (x) = 411G p(x)
Total energy defined: E = KE + PE = Y2 mv? + m® (x)

PE =W

=% | o(x) D (x) d3x

Escape velocity (E=0): v (x) = (2| P (x)])'"?
» Virial Theorem: KE = —!2 PE for systems in
equilibrium
In practice: this is the way we measure masses for

astronomical objects because KE measured independent of
potential and PE is proportional to M.



Recap: Virial Theorem

» Why is KE = —V2 PE for equilibrium?
» Define moment of inertia

| = m xex
» Then it follows:
V2 d?(1)/dt? = m d/dt ( xedx/dt)
= m d/dt (x°v)
= m [ dx/dtev + x ¢ dv/dt ]
= m vev + d/dt(mv)ex

A )
2 KE = mv? -mV ® (x)ex = PE

» For a system in equilibrium: d?(I)/dt? = 0
| is time-independent
Is dl/dt interesting?



Spherical mass distributions

4
<

Start simple....
Newton showed:

» A body that is inside a spherical shell of matter experiences no

net gravitational force from that shell.
Mass contained in solid-angle 0S2 of shell as seen by body depends on
distance to shell:
om = 2 0% x rZ, where Z is the mass-surface-density of the shell.
Hence in any two directions:
dm/dm,= (r/r))> = J&F=-0F
particle is attracted equally in opposite directions
VO=-F=0
The gravitational force on a body that lies outside a closed
spherical shell of matter is the same as it would be if all the
shell's matter were concentrated into a point at its center.

®=-GM/R



Spherical distributions: characteristic velocities

» The gravitational attraction of a density distribution,
©(r’), on a particle at distance, r; is:
F(r) = —(dP/dr) = -GM(r)/r?
M(r) = 411] o (r')r'2dr’
» Circular speed:
In any potential d @ /dr is the radial acceleration

For a circular orbit, the acceleration is v%/r
> v.2=r(d®/dr) = GM(r)/r

outside a spherical mass distribution, v_goes as r!/2
Keplerian

» Escape speed: v (r) = (2| @ (r)])'2 = [2 JGM(r)dr/r2] 2



Homogeneous Sphere: characteristic time-scales

» M(r) = (4/3)r3 o
0 is constant
» For particle on circular orbit, v.= (411G 0 /3)'2r
rises linearly with r.
Check out the Galaxy’s inner rotation curve.
What does this say about the bulge?

» Orbital period: T = 2mir/v_= (311/G 0 )
» Now release a point mass from rest at r:
d2r/d2 = —~GM(r)/r2 = —(411G 0 /3)r

Looks like the egn of motion of a harmonic oscillator with frequency
=2n/T

Particle will reach r = 0 in 1/4 period (T/4), or

ty,= (3M/16G )"




Isochrone Potential

» Since nothing is really homogeneous...
» @(r) = -GM/[b+(b%+ r?)!/7]
b is some constant to set the scale
v 2(r) = GMr?/[(b+a)?a] = (GM/r) "2at large r
q = (b2+r2) )
» This simple potential has the advantage of having constant

density at small r, falling to zero at large r
P, = 3M/ 161Gb3

» Similar to the so-called Plummer model used by Plummer
(1911) to fit the density distribution of globular clusters:
O (r) = -GM / (b2+ r2)!12
p(r) = (3M / 4TIGb3) (1+r/b2) 52



Singular Isothermal Sphere

» Physical motivation:

Hydrostatic equilibrium: pressure support balances gravitational

potential
dp/dr = (ky T/m) dp/dr = —p GM(r)/r?
p(r) = o2/2nGr?
where 02 = k; T/m
» Singular at origin so define characteristic values:
P’ =p/pg
r =rlr,
ro = (90%/ 4nGp,)'2
»  dD(r) is straight-forward to derive given our definitions:
d(r) = V.2 In(r/r,)
V. = 411p, ry? <

» A special class of power-law potentials for =2

Look what happens to
V(r) when =2

p(r) = po (ro/r)*
M(r) = 2111(2)0 re® ré-®/ (3-«) /

vV A2(r) = 41tp, ry®* re=®/ (3-x)




Pseudo-Isothermal Sphere

» Physical motivation: avoid singularity at r=0, but stay
close to functional form. Posit:

p(r) = Poll + (r/r.)2]"
» ®(r) is straight-forward to derive given our definitions
» V(r) = (4G poyr2[1-(r/r)arctan(r/r)])'?

» This gives a good match to most rotation curves within the optical
portion of the disk.

» But it does not give a good description of the light distribution of
disks.



Characteristics of dynamical systems - 1

» Summary:
v.= \(r d®/dr) = V(GM(r)/r), circular velocity
v.= (2| P|)'?, escape velocity
tyn = VEMI6GP)
ty = V(1/Gp), free-fall time ~t4,

t..s — R/V, use characteristic radius and velocity



Characteristics of dynamical systems - 2

» Relaxation from N-body encounters of stars:
t.= v3/ (41 G2 m.2 n), ...time-scale for strong encounters
~ 4%x102yr (v/10 km s7')3(m./My)2 (n/1pc3)!
=» unimportant except in very dense star systems
However, many weak encounters cumulate such that after a
time t_,,, the amplitude of the perturbed motion of the star is
comparable to its initial motion:

to = t./ 2 I\
~2%102yr (v/10 km s7')3(m./Mg)2 (n/1 pc3)! (In\)!
where/ A =b__/b_.. ~ R/r, = N/2 for isolated system of N stars

max’ ~ min

when 2 Nm.v? ~ G(Nm.)?/2R and r, = 2Gm./V?
el Ceross ~ N/ 6 1n N/2

relax’ “cross

Still very large for realistic N (10'° to 10! for galaxies)



Characteristics of dynamical systems - 3

» Instabilities to collapse: the Jean’s length
c. = V(g T/ 4 M)
sound-speed for temperature T and mol. mass t m
A= esVMGP) ~c, t
M = (/6) X120 = 20 Mg(T/10K)¥2(100cm3/n)'2

What this basically says is that regions smaller than the sound-
crossing time have time to re-arrange their density structure in
response to gravity, and hence are stable against gravitational
collapse; larger structures are unstable to collapse.

It is relevant for setting the mass-scales for star-formation and
galaxy formation.



Flat rotation curves: the Milky Way

300

200

Best fit yields V-~ 220%10 km/s, and its flat!

100
|

Rotation velocity Vr (km/s)

ol . v s
0 S 10 15 20 25

Galactocentric distance (kpc)

Nakanishi & Sofue (2003, PASJ, 55,191)



Flat rotation curves: external galaxies

Which looks most like the MW?
Why different shapes and extents?

NGC 4389 NGC 3917 |

= NGC 3992 ~_ : |
> -

V,oq/Sin(iog) (km/s)

T T T

-5 0 5 -15-10 -5 0 5 10 15 =25 =20 -15-10 -5 0 5 10 15 20 25
Distance (kpc) Distence (kpc) Distance (kpc)
F1G. 2. Prototype examples of the three categories of rotation curves. Left : Galaxy with a rotation curve that rises continuously until the last measured
point. The measured maximum rotational velocity ¥, is set by the extent of the H 1 disk (R curve). Middle: * Classical " rotation curve; a gentle rise in the
central regions with a smooth transition into the extended flat part (F curve). Right: Rotation curve that reaches a maximum in the optical regions after

which it declines somewhat to an extended flat part in the outer disk. In this case, the maximum rotation velocity exceeds the amplitude of the flat part (D
curve). The vertical arrows indicate + R, and the horizontal arrows indicate the rotational velocities as inferred from the global profiles.

Verheijen 2005, Ap}, 563, 694



Flat rotation curves: external galaxies
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Ficure 2. Hr rotation curves for a number of spiral galaxies (Sancisi & van Albada 1986). Distances are based
on Hy, =75 km s~ Mpc™'. The optical radius, R,;, and the number of disc scalelengths, 4, at the last measured
point are indicated. For the inner region of UGC 2885 optical velocities (Rubin et al. 1986) have been used.
All curves remain approximately flat beyond the turnover radius of the disc (2.5 £).

Van Albada et al.
| 986, Phil. Trans.

Royal Soc. London,
320, 1556, 447



Flat rotation curves: the disk

» Disk component

2 (r) =Y x p(r)
2 is the mass surface-density
Y is the mass-to-light ratio (M/L)
U is the surface-brightness

Surface mass density (Mg pc?) is just the mass to light ratio
times the surface brightness (L pc?)

» Mass =» potential =» circular velocity

The trick here is to deal with the non-circular density
distibution.



Flat rotation curves: the exponential disk

» 2 (r) = 2, exp(-r/hg)

» Mass:
» M(F) = 20 2 (F)F dF = 21 Z ghe[I—exp(=r/hg)(1 +r/hy)]
. A bit of work; see
4 9 POtent|a| > Freeman (1970) and
Toomre (1963)
®(r,z=0) = -G 2, r [lo(y)Ko (v) = (1)K, (¥)]
y = rl2hg

|, K are modified Bessel functions of the 15t and 2" kinds.

» =» circular velocity
VA(r) = r dd/dr = 4G 2 o he y? [lo(y)Ko (y) =, (n)K; (¥)]

Note: This is for an infinitely-thin exponential disk. In
reality, disks have a thickness with axis ratios hg:h,
between 5:1 and |0:|



Rotation from an exponential disk

Disk oblatness:

q= h,/h,
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Fig. 17.— Rotation speed of an exponential disk with central mass surface density of 100
M pe~? and oblateness 0.05 < ¢ < 0.25 versus radius normalized by scale-length, compared
to a spherical density distribution with the same enclosed mass. Bottom panel shows the
ratio of spherical to disk velocities. Dashed and solid lines show disks truncated at R/hp=4
and 10, respectively. The radial range where these disks have peak velocities is shaded in
gray.
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Flat rotation curves: the halo

» “Halo” component — we need V(r) to be constant
at large radius (the bulge helps only at small r).
» One option is the singular isothermal sphere, here V(r) is
constant at all radii.
Is that plausible given observed rotation curves (e.g, MW)!?

» Another option: the pseudo-isothermal sphere
p(r) = poll + (r/r)’]"
V(r) = 4nG pyr2[I-(r/r)arctan(r/r)])'?
This gives a good match to most rotation curves within the optical
portion of the disk.

» Also the NFW* profile, motivated by cold-dark-matter
(CDM) structure-formation simulation (see S&G p. | | 7):

Pnrw(r) = po(rfay) ' + (r/a,)]?
View () = (411G ,OnanZ [ In(l + (r/a ))/(r/a)— l/(I + (,./an))])l/z

*Navarro, Frenk & White 1996



The Disk-Halo Degeneracy

» Q: Is it possible to decompose the rotation curve of
a spiral galaxy into disk, bulge, and halo components?

» Mass decomposition:
Recall v.2 = r(d ®/dr)
® = 2. @, i= bulge, disk, halo, kitchen sink
For spherical mass distribution
r(d®/dr) = GM(r)/r
For a flattened mass distribution define f. such that
r(d®/dr) = fGM(r)/r
vi= 2. fGM(r)/r= 2 v 2
Measure v 2
Estimate individual components v 2 constrained by v.2= 2 ,v_2

» Can it be done with any reasonable fidelity?



The Disk-Halo Degeneracy

» Q: Is it possible to decompose the rotation curve of a
spiral galaxy into disk, bulge, and halo components?

» A: No; Solutions are degenerate

» Degeneracies:

Unconstrained fitting functions for halo:
e.g., pseudo-isotherm. vs NFW

Disk M/L (Y 4ic) uncertain

Stellar populations Y.. depends on SFH, IMF, and detailed
knowledge of all phases of stellar evolution.

ISM
Gas

Atomic: straightforward to measure
Molecular: harder to measure

Dust: probably insignificant
Dark matter?

Non-circular motions

» However, it is possible to set upper-limits on the disk
(so-called maximum disks)



The Disk-Halo Degeneracy: Best case

» Rotation curve decomposition constraints:

Maximum disk - yes

Minimum disk - NO
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T T T T I T T T T ] T T T T I

150 < : k
R
Q ZAANNN | v, Z
€ 100 [ /\\\\\\\ - .
~ r ,/\ K i 1
K i * ——itf:i___‘ M./ Ly
>’ l$6~ e, T T — 1.9 4
50 =S 1.1 -

i Fieeee-emm-mmemmRETEEESsTEEEtAL 07

e — 0.1

1 1 1 1 l 1 1 1 1 l
20 30
Radius (kpc)

50 | T 1 T I | 1 1 ] T I 1 1 14 I i
: ? NFW pseudo—isothermal / ]
40 —
. OF 3
< 2
20 - 3
- cC
C 3 ]
10 - a7

a

n Ll

Dec. (1950)

€ Degenerate
solutions...

|
1
I
1

1
16"50°
R.A.(1950)

Begeman’89

|
10M6™0°

SDSS gri

...it doesn’t get
better than this

€Hl velocity field



Vc'rc (km/s)

The Disk-Halo Degeneracy: Best case

» Formal %2 not meaningful at level of AV

circ

<5 km/s

non-axisymmetric structure: gas-flows, arms, winds, etc.
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Tully-Fisher relationship: Scatter

» Small! e
0.5-0.3 mag in blue (B,0.44  m) } Why this :

0.1 mag in near-IR (H, 1.6 1 m) trend?

0 mag (!) intrinsic: K-band for subset
’ of galaxies with rotation curves and
83sP*  flatV(R) (Verheijen 2001)

Too small?

» Source of dispersion
» Measurement errors (random)
» Measurement errors (systematic)
Extinction

Shape of light-distribution (oblateness)=inclination
Shape of rotation curve=>V_ :
-20
- l l

» Cosmic variance Bl sagiays
Sy . . 2.4 2.6 2.8
Variations in M/L with galaxy type log W (20%)




Surrogates measures of rotation

||
» Spatial information vs sensitivity: =L -
4. Single dish (fiber): . 15 N -
Line widthW ~ 2V_ l. Interferometer/IFU: £l ".
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Tully-Fisher relation: Implications

» Why is M/L so constant from galaxy to galaxy?

Here we're talking about M/L of the entire galaxy:
Mass is dominated by dark halo
Luminosity is dominated by disk

Total mass: M proportional to [V?__ h;]
Total luminosity: L proportional to [l hg?] (ignoring bulge)
> L proportional to [V* [ (M/L)?1,]

A universal M/L implies remarkable constancy of the ratio of dark to
luminous matter

Or worse, a fine-tuning of the dark-to-luminous mass ratio as the stellar
MI/L varies.

» What does this tell us about galaxy formation and feedback!?



Tully-Fisher relation: diagnostic tool

» Standard candle: V is distance-independent

Mass-dependent
luminosity evolution

» Structural probe: slope and scatter

Mass-independent

Since L is proportional to [V*__ / (M/L)?1,] luminosity evolution
= M vs log(V) should have slope of 10 R . /
and should depend on surface-brightness dlope
Slope is < 10, varies with wavelength ,+ break
N ioh |Og L burst @ A ” . shallower
o dependence on surface-brightness consiant " dope
» Evolutionary probe AL M]L
Changes in M/L with time i/ depends
4 on
Assume M roughly constant T
00 Secular changes in L: star-formation history 5

measure V

0 Stochastic changes in L (star-formation bursts)
Scatter increases with burst duty-cycle logV.



Dynamics of collisionless systems

» Motivation:
Circular rotation is too simple and v_ gives us too
little information to constrain ® and hence o
(e.g., rotation curves)
Without @ and hence © we can’t understand how
mass has assembled and stars have formed

We can’t even predict how the Tully-Fisher relation
should evolve

Gas is messy because it requires understanding
hydrodynamics, and likely magneto-hydrodynamics.

At are disposal are stars, nearly collisionless
tracers of @!



Dynamics of collisionless systems

» How we’ll proceed:
Start with the Continuity Equation (CE)

Use CE to motivate the Collissionless Bolztmann
Equation (CBE), like CE but with a force term
(remember V¥ @ (x)!)

Develop moments of CBE to relate v and 0 and
higher-order moments of velocity to @ and 0.

» Applications to realistic systems and real
problems
Velocity ellipsoid

Asymmetric drift

Disk heating g
Disk mass

Disk stability

Don’t be
intimidated by
moment-integrals
of differential
equations in
cylindrical
coordinates:
follow the terms,
and look for
physical intuition.




Example: Breaking the Disk-Halo Degeneracy

* Rotation provides the total mass within a given radius.
* Vertical oscillations of disk stars provides disk mass within given height

Rotation velocity
projected, coherent +200 km/s
L R e
BV
Vertical oscillation velocity - < / -
unprojected, incoherent i ; #.

+/— 10 km/s

=200 km/s

Vertical oscillations: a direct, dynamical approach



The kinematic signal

Rotation velocity

projected, cohe_rent . +200 km/s }\,/ 6)\. = I I,OOO

Vertical oscillation velocity - = b fas ; : : LA LA N B N

unprojected, incoherent %) Ll TP PP —— |
proj , inco j £ mm 'p”, ﬁ' :wmn PT‘W{'MW[\ m,wm

0 \ ‘ .

o Ko Illf I | N

: o \ -

+- 10 km/s Z 5 ’ | Call —
© AOV | Paschen series_]

= R I Y N e N

ol Lo b v by —

840 860 880
h wavelength (nm)

=200 km/s

»  Young stars

Hot: weak or intrinsically
broad lines

Dyamically cold, thin layer
(extinction)

f, (relative counts)

Old S - Call triplet region

b stars _
IC‘Zool: many strong, narrow | N . 1 1
ines 0
Dynamically warm, thick layer 500 510 520 400 500 700 1000

wavelength (nm) wavelength (nm)



Disk Mass formula
Use statistical measure of
from edge-on galaxies .. / //

D =100( ) M_, pc™
3/2 444 pc/) \30 km/ S

...and apply relation to|face-on galaxies where the
of stars can be measured.




Edge-on or Nearly Face-on ?

Rotation projected v Rotation accessible at high
Vertical dispersion inaccessible spectral resolution
except via statistical kinematic 7 Vertical dispersion projected

correlations
Vertical height projected

= Vertical height inaccessible
except via statistical photometric
correlations

Rotation velocity
projected, coherent +200 km/s

Vertical oscillation velocity
unprojected, incoherent

+— 10 km/s

-200 km/s




The problem

4

If you look at completely face-on galaxies you can’t measure
rotation =¥ can’t estimate total mass (total potential)

Even if you look at moderate inclination (i~30°) galaxies, you
get components of the stellar velocity dispersion (0) which
are not vertical (0,) but radial (Og) or tangential (7).

In other words, O is a vector — the velocity ellipsoid
From the solar neighborhood we expect: 0y > 04> O,

But we can only observe 2 spatial dimensions:
How do we solve for 0, !

And how do we solve for O, which

turns out to be interesting for

understanding disk heating?

? -.
2 morme Vlos o -

2" moment: 0,2 = Oy2sin i, 0,2 cos?i

L . [s* moment: V=0
los = line of Slght 2" moment: 0,2 = Og2sin?i, 0,2 cos?i



Measuring the 27¢ velocity moment

Tue Feb 6 11:08:30 2007

08J: N3982_Mg.p1.ncont.ms_log.fits(52) TPL: HR6817_K1lll_Mg.vs.ncont.log.fits
T T T T T T ]
ol s 4
(=
g
o
e
5
o
3 FIT PARMETERS (s=fixed):
I
5 10: 0.693 +-0.012
o2,
8 Vi 1145.28+- 1.63
SIG: 68.089 +- 1.713
CHI: 88.206
1 RCHI:2.005
WINP:2176 2222
% WINV:967.14 1314.71
I
2
o
Q.
£
@
o

1 L
5000 5050 5100 5150 5200

Wavelength (A)



Continuity Equation

» The mass of fluid in closed volumeV, fixed in
position and shape, bounded by surface S at time t
» M(t) = ] 0 (x,t)d3x

» Mass changes with time as

NB: d = partial derivative

» dM/dt = | (d 0 Idt)d3x = =] p ved?S
» mass flowing out area-element d?S per unit time is 0 ved’S
» The above equality allows us to write
» [(doldydx +] pved?S =0 w 5eence
» J[[dolde+ We(ov)]d3x=0 theorem
» Since true for any volume
V dpldt+ We(pv) =0 This is CE

In words: the change in density over time (15t term) is a result of a net
divergence in the flow of fluid (2"d term). Stars are a collisionless fluid.




Collisionless Boltzmann Equation

» Generalize concept of spatial density p to phase-
space density f(x,v,t) d3x d3v, where f(x,v,t) is the
distribution function (DF)

f(x,v,t) d°x d3v gives the number of stars at a given time
in a small volume d3x and velocities in the range d3v

The number-density of stars at location x is the integral
of f(x,v,t) over velocities:

/7 n(x,t) = J f(x,v,t) d*v ——— v(x) = / fd3v
-

he mean velocity of stars at

quantities
you can

location x is then given by

N <v(x,t)> = | v fixv,t) dv /] fixvt) v | T = ! / fuid3v

Y,

S&G notation Notation we’ll adopt



CBE continued

» Goal: Find equation such that given f(x,v,t;) we can
calculate f(x,v,t) at any t, ...

....and hence our observable quantities n(x,t), <v(x,t)>, etc.

f(x,v,t,) is our initial condition
The gravitational potential does work on f(x,v,t)

» Introduce some useful notation and relate to the potential
Let w = (x,v) = (W,...w,)
W = dw/ dt=(x,V) = (v,— VD) = (w,...w;,~ VD)



CBE continued

» Recall CE gives: dp/dt+ We(0v)=0
» Replace p(X,t) =2 f(x,v,t)
» CE gives:
df I de + Z._, , d(fw/)/dw; = 0 ....but:
dv/dx. =0  x,v. independent elements of phase-space

dv'ldv.=0 v =—V¥®,and the gradient in the potential
does not depend on velocity.

—

df I de+ .., o w(df /dw) = 0

c[f/ At + zi=l,3 [Vi(C[f/&i)—(c[dD/cﬁ(i)(O[f/c[x,-)] =0 ~ CBE

yldf I dt + veWf— Wdedf/ dv=0

notation




()

Getting something useful out of CB]

» CBE is the fundamental equation of stellar dynamics

» It is a special case of Liouville’s theorem:
the flow of particles in phase space is incompressible, i.e.

phase-space density is constant.
» Unfortunately, general solutions to CBE are impractical.

» However, integral moments of the CBE and velocity provide
useful dynamical relationships between components of the
velocity vector, v, the velocity ellipsoid, 0, and the potential, P.

» This will look messy (it is), but very powerful results emerge.



CBE Integrals: warm up to learn tricks

» Start by integrating CBE over all velocities (0" moment)

L (dfide) v + 3 [v(dffde)~(d/ d;)(dfidv)] = 0}
We adopt summation convention
AB=3_,AB 9 =AB | We assume the potental i

independent of velocity v,

i.e., repeated indices are implicitly summed over

» J(dfide) d3v + ] vi(dfldx) dPv = (d®/dx;) | (dfidv) d3v =0

range of velocities does not depend on v; range does not depend on x;so

time so d/dt comes outside integral and... dfldx, comes outside integral and... Apply divergence theorem and the fact
that f(x,v,t)=0 for sufficiently large |v|,
i.e., at the surface of |v| =

%/fvidBV 0

» dv/ dt + d(vw) dx, =0 < this is the continuity equation!

Recall: v(x) E/fd3v and | 7;



Next: CBE in cylindrical coordinates

df | dt + veVWf— Wdedf/ dv=0

| \\

of , 8f  vsdf  Of (¢ X

RoR T Rog T V7or T E‘a—R aT‘z—z VRYs ¥ a¢ 6v¢ 92 v,

ot TURaR R 8¢ /

(3) The divergence theorem allows
us to drop all integrals of velocity
derivatives unless the moment is
w.r.t. that velocity, in which case
vdfidv, = fiand:| = / fddy

f In what follows:

(1) The disk is in steady-state, so we can
drop the first term

(2) we will assume the galaxy is azimuthally
symmetric (e.g., a nice, circular, smooth
disk) we can ignore all derivatives w.r.t.
the azimuthal coordinate ¢.




CBE-v, moment: Surface-mass density 2 ;.

» Multiplying CBE by v, , integrating over all velocities,
assuming steady state, azimuthal symmetry, and using the

divergence theorem yields:
0 0 0 0 0

bl
of" of _f of (v 0@\ of 1 gfi_a_d?a_f }
JVZdV 6t+RBR+R6¢+Z +(R azz)avR R \VR 3¢ c%d, 8200, 0

8(um)+8(z/@) VURU; = OD

OR 5. T R Vg =V




CBE-v, moment: 2, continued

» Istand 3rd terms are smaller than 2" and
4t by factors of (z/R)?, and can be dropped.

X o X
O(vogv;) O(wv?) vugv, 0P
6R " 6 TR TV T

» We also substitute the definition

2 _ .9 =2

0

Where <v> (second term) is zero for a system in
steady state

oo o0 _
0z Yoz

0 (1) CBE




CBE-v, moment: 2, continued

» Now use Poisson’s equation to define the potential ® in
cylindrical coordinates assuming azimuthal symmetry (no
dependence of vand ® on ¢):

4MGV(x) = V2O (x) = 2D /dz?2 + (1/R) d [R(ADP/dR)] / dR

Remember: p = v, m; = <v><m> ;we drop <> notation here

» For d®/dR = v3(R)/R and V(R) constant, the last term vanishes

» In general, in a highly flattened system near the mid-plane the
2" term on the r.h.s. is much smaller than [t term.

0%® .
— 2) P
W — 471G v (2) Poisson




CBE-v, moment: 2, continued

» Next, integrate Poisson over z and relate to CBE:

920
J 022

symmetry

-5 dz = 4nG _JZV dz

0P _
Notea—o 2 6@
atz =0 by : -
0z

/Plug in to CBE

€ Indefinite integral
WV Definite integral

o(

0z

+z

Vo) = —nG Vv j Vv dz

-Z

+o0

Jv dz = 4nG Zdisk

—o0

(3) CBE+ Poisson

To complete the calculation to find 0, integrate one more time in z.



CBE-v, moment: 2, continued

» To do this last step (integrate [3] in z), let’s assume something
about the mass distribution function in the vertical direction.

Based on what we know from light profiles of external galaxies:
V(R,z) = Vv, exp(-z/h,-R/hg)
» Suggest a general vertical density function:
V(z) = 22" v, sech?"(nz/2h))
n=1 = v(z) = (Vy/4) sech?(z/2h))  isothermal case
n=2 =>» V(z) = (Vy/2) sech (z/h) intermediate
n=c =» V(z) =V, exp(z/h,) what’s observed (maybe)

» The surface-density 2 ., follows from direct integration:
n=l = 2., =V,h,
n=2 > I, =(2) Vg h,
n=e D I, =2V, h

A



CBE-v, moment: 2, continued

» The gradient of the potential follows from the
corresponding indefinite integral:

0P J'
52 =21G J vdz
Z
= 211GV h, tanh(z/2h,), n=|
= 21MGV,yh, arctan[ sinh(z/h,)], n=>2
= 2nGVyh, [I-exp(z/h))], n=3

» Lastly, we integrate the gradient of the potential 0P

. 0
and divide by Vv to solve for 0% ©
02=2nGh, 2 ., n=|
G2= 17051 TGh T, n=2

02=3m2Gh3 n=3



CBE-v, moment: 2, continued

» If the disk is locally isothermal,d 0 _%/dz = 0

Why is this? What does isothermal mean in terms

of kinematic motion?

-2.5 log [V (z2)/V(]

0

Am

(mag)| n=

2 4= 80 Mg pc2,h, =325 pc

1 1 | T 1 ) Ll T T 1 T T LI
-

(kms™) | .

10

I
|

| I L 1 1 | 1 1 1 L L ) I

05 10 15
z(kpc)

van der Kruit 1988, A&A, 192, | |7



Finally....the Disk Mass formula

Use statistical measure of
from edge-on galaxies .. / //
Y =100 ( ) M_, pc™
3/2 444 pc/) \30 krn/s

....and apply relation to|face-on galaxies where the
of stars can be measured.

/




CBE-viand vivymoments:

» Multiplying CBE by vpv,, , integrating over all velocities,
assuming steady state, azimuthal symmetry, and using
the divergence theorem yields:

O(vviug) N O(Vorvvg) Vv (3 0P
OR 0z R

V5 — Vg @—2@21@) =0
» Multiplying CBE by v, integrating over all velocities, and
assuming azimuthal symmetry (@-derivatives=0) yields:

R ' oR

O(vog)  O(vv3)  O(vU;uR) LA
5  8mr 1 8, 1V =0



CBE-vpand vgvymoments: Epicycle approximation

» The CBE-vg and vpvgymoments combined with this identify
(valid when ellipsoid is aligned with the potential
andsymmetric about v):

— Y . 9
(vp — Tg)3 = (v — Tgu3) — 20g(v3 — V") =0
yield 7 (9% Vo) _ 23 oy _ |
r\or T R) R e =
» Which can be rearranged to give: This is powerful because
it gives us another piece
0(29 1 (9an_¢ of information to
— = +1 uncover all of the
op 2 OlnR ellipsoid components
Og : 0y : 0,




CBE-v, moment: Asymmetric drift

» Eliminating time derivatives and assuming there are no streaming
motions (<v,>2=0) yields:

0(0,15)
v OR 0z

Collisionless particles have tangential velocities smaller than the circular

speed of the potential, in quadrature proportion (think: energy) to their
velocity dispersion.

This is powerful because it relates the velocity dispersion ellipsoid
components to tangential velocities, thereby giving us another piece of
information to uncover all of the ellipsoid components 0} : 0, : T,

» Now the problem is over constrained, i.e., O, O, Plus two
dynamical relations (epicycle approx. and asymmetric drift).
A good thing because there are a lot of assumptions.



Asymmetric drift

UGC 6918
 Assumethegss  fw[TEm T | T
. . . %‘ i & : PPak .,Rééggu ]
tangential velocity is $ 1oof K :
close to v, Y

8 < ! Oa
Why is this ool . ]
reasonable!’ ﬁ:% A inc = 32.7, 6] < 30
g —200 R > 6 arcsec for [OllI] ]
. . © S I S M B B

» V,, is the tangential o m o o  Two T W
eprojecte 1Istance from center (arcsec
velocity of the stars e T
200 F o stars .
@ 150 [ —
§ ]
JE 100 [ .
50 E— -
Bershady et al.2010 :

T R

Radius (orcsec)



Wrapping up:

» If we make some assumptions

about the distribution function V(R,z), namely a double exponential
in R and z,

that the ellipsoid tilt yields a last term between 0 and G2
and we substitute in the epicycle approximation to eliminate O,

1 aln'U 2R R 0'2
y — 2 ¢ z
Ve — ~ O + — 1 _+_ %
c Y R (2 BlnR he hp ) 2

» This formula, plus direct measurments of
Ves Vo, Omap Trmin
are our best-bet combination for
directly measuring 2 .
decomposing rotation curves,
determing disk M/L, and

the dark-mater density distribution.



(t)

Summary: CB]

» Continuity equation:
» doldt+ We(pv)=0

Change in density over time (15t term) is a result of a
net divergence in the flow of fluid (2" term). Stars are a
collisionless fluid.

» Collisionless Boltzmann equation

Fundamental equation of stellar dynamics. Special case
of Liouville’s theorem: Flow of particles in phase space
is incompressible, i.e. phase-space density is constant.

» df 1 dt + ve W f— Wdedf/ dv =10

» General solution to CBE impractical but velocity-moments
yield key relations between observables (v, 0') and the
potential (P) for highly-flattened, axisymmetric systems:

» v, moment: disk-mass surface density

-1 -1 2
> =100( : ) - % | M, pe”
3/2) \444 pc) \30km/s

» vg & vgv, moments: epicycle approx.
‘7_3 1 (6lnv—¢ 1) é 150
0% 2\ OlnR + 100
» vg moment: asymmetric drift
2 _ 2.2 (1000 2R £_> o3
e~ NaR(281nR b The t) T2 0

[ e : gos

L o : stars
200 ~

Stellar tangential speed is slower
- than gas = larger random motions

PR S S SR TR (N S SN U U N S ST TR SH SN S

20
Radius (crcsec)

30 40




Summary: CBE applications

» These formulae, plus direct measurements of
Ves Vo, Omair Ormin best-bet combination

=> velocity ellipsoid O = (0R,04,0,)
directly measuring 2 4.

...............

decomposing rotation curves,
determing disk M/L A
the dark-mater density distribution |
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