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}  Galactic dynamics 
}  Potentials & energetics (3-25) 

}  Characteristics of dynamical systems 

}  Rotation curves and Tully-Fisher 
}  Disk-halo degeneracy (26-40) 

}  Dynamics of collisionless systems (41-70) 
}  Collisionless Boltzman Equation 
}  Disk mass, heating and stability 
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Galactic Dynamics 

}  Basic morphology of galaxies (and parts of galaxies) is 
determined by the orbits of stars  
}  disk galaxies are disk-like because most of the stars orbit in 

nearly circular orbits in a flattened plane. 

}  What determines the stellar orbits? The gravitational 
potential: Φ(r,θ,z). 

}  What determines the gravitational potential? The 
distribution of mass, ρ(r,θ,z). 



Fundamentals: Gravitational Potentials 
}  Newton’s gravitational force law for a point-mass M 

}  d(mv)/dt = −GmMr/r3   

                      = −m▼Φ(r) 
}  v,r vectors;  r scalar;  ▼ the gradient 
}  Φ is the gravitational potential, Φ = −GM/r 

}  Thus,  F(x) = −▼Φ  
}  the force is determined by the gradient of the potential. 
 

}  Gravitational potential generalized: 
}  Φ(x) ≡ −G ∫ (ρ(x’)/|x’-x|) d3x’ 
}  F(x) = G ∫ [(x’-x)/|x’-x|3] ρ(x’)d3x’ 

}  Force on a unit mass at position, x, from a distribution of mass ρ(x). 

}  Take the divergence of F(x) [▼�F(x) = -▼2Φ(x)] to get Poisson’s equation: 
     
    ▼2Φ(x)  =  4πGρ(x) 

 
}  Directly related to Gauss’s law: 

}  In the absence of sources: ▼�F(x) = 0 
}  Laplace equation: ▼2Φ(x)  = 0 

 

See S&G and divergence theorem for 
derivation. Think:  

 What does “divergence” mean? 



Fundamentals: Divergence theorem 

}  Divergence theorem states that for some vector F 
 

}  ∫ ▼�F dV  = ∫ F �dS 

}  Consider volume to be subdivided into a large number of small cells with 
volume ΔVi.  

}  For the cell-walls bounded by the surface, the sum of the surface-integrals for 
these cell-walls equals the surface-integral for the volume.  
¨  Σi ∫ F �dSi = ∫ F �dS 

}  For the remainder of surfaces, since the outward surface-normal of one cell is 
opposite that of the surface of the adjacent cell, the surface integrals cancel. 

}  We can also write: 
¨  Σi [ (1/ΔVi) ∫ F �dSi ] ΔVi  = ∫ F �dS 

}  In the limit where ΔViè0, the sum of the surface-integrals becomes an 
integral over V  

}  the ratio of the surface-integrals to ΔVi as ΔViè0 is the divergence of F. 



Divergence theorem corollary 

}  For scalar and vector functions g and F: 
}  ∫ g▼�F dV  = ∫ gF �dS −	∫ (F �▼)g dV 



Application of potentials to galaxies 

}  Here’s the process: 
}  We start by looking at some very simple geometric cases 
}  Define a few terms that help us think about and characterize the 

potentials 
}  Become more sophisticated in the form of the potential to be more 

realistic in matching galaxies 

}  Concepts:  
}  circular and escape velocities 
}  Time scales: dynamical, free-fall 
}  Potential (W or PE) and kinematic energy (K or KE) 
}  Energy Conservation and Virial Theorem 
}  Angular momentum 

}  Example: rotation curves of galaxies 
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Energy considerations 

}  Recall:               
}  d(mv)/dt = - m▼Φ(x) ,           

}  Take the scalar product with v 
}        v�d(mv)/dt + mv�▼Φ(x) = 0 
}  è  d/dt [ ½mv2 + mΦ(x) ]     = 0 

   where dΦ(x) / dt = v�▼Φ(x) 

}  Total energy defined:      
}  E = KE + PE = ½ mv2 + mΦ(x) 

}  This means E is constant for closed system 
}  e.g., an unperturbed orbit of a star 
}  This is true for static potentials.  
}  If there is a time varying potential (i.e. in a cluster) only the total 

energy is conserved (not the energy of an individual star) 
}  For an external force add the summation of Fext·x 



Kinetic energy and escape velocity 

}  If E is constant for closed system 
}  and by definition: KE ≥ 0 

}  Implications: 
}  As  x    è ∞ (far from potential)     Φ(x)   è  0. 
}  If E > 0 at x=∞  then v > 0 
}  i.e., the object has escaped the potential 

}  Escape velocity for critical energy (E=0): 
}          ve(x) = (2|Φ(x)|)1/2 



Potential Energy 

}  Work (W) done in assembling a mass distribution is the 
potential energy.  

}  Start with initial portion of mass ρ(x) which generates potential 
Φ(x) 

}  Add an increment of mass δm: the work done is δmΦ(x) 
}  The work per unit mass over a distance x is 

}   F � x = −x �▼Φ(x) 
}  Integrating the work from x=∞ to some finite distance, where  

 Φ  (   xè∞)   è 0 
 implies Φ  (  x) as the total work (potential energy) per unit mass. 

}  Think of δm  as equivalent to a change in density  over the 
assembled volume:  
}  ∫δρ(x) d3x.    

}  Then work done, δm Φ( x) is:   
}  δW = ∫δρ(x) Φ(x) d3x. 



Potential Energy (continued) 

}  Apply Poisson’s equation on δρ                                  yields 
}  δW = (1/4πG) ∫Φ(x) ▼2(δΦ) d3x. 

}  Use the divergence theorem to write: 
}  δW = (1/4πG) ∫Φ(x) ▼(δΦ) � dS − (1/4πG) ∫▼Φ(x) �▼(δΦ) d3x 

}  The surface-integral vanishes because: 
}   Φ(r)  and |▼(δΦ)|1/2 go as r-1 as r è∞  
}  i.e, the integrand goes as r-3 while the surface area goes as r2 

}  Also there is this identify:   ▼Φ(x) �▼(δΦ) = ½ δ|(▼Φ)|2  

}  From which it follows:  

}  δW = −(1/8πG) δ[ ∫ |▼Φ|2 d3x ] 

}  Sum over all δW to get 
}  W = −(1/8πG) ∫ |▼Φ|2d3x 

}  Again apply Divergence theorem and Poisson equation to arrive at 
 

}  W =  ½	∫ ρ(x) Φ(x) d3x 

Why is 
this ok? 

✔ 



Why we might care about potential energy 

 
}  ~5% of the energy-density 
}  ~17% of the mass in the universe  
}  Only ~3% of the baryons are bound in 

galaxies; the rest are presumably a very 
hot gas (cosmic web and halos) 
•  Stellar Mass Fraction ~ 0.5% - not well known! 

72% 

28% 

energy matter 

83% 
16% 

0.5% 

dark matter 
gas 
stars 

WMAP (e.g., Bennett et al. ’13) 

We lucky few… 

Where are the baryons? 

Lyα and OVI doublet (103.2, 103.8 nm; primary 
coolant for T=3e5K near solar gas, Otte+’03) 



Do this problem: 
}  A galaxy forms, starting at t = tform, out of matter initially at rest and dispersed over very 

large separations, rform→∞. At tform, the matter begins to collapse into a bound structure 
in dynamical equilibrium with total mass Mg and circular speed vc. The galaxy virializes on 
a time-scale comparable to a few × tdyn. In terms of these parameters: 

a.  What is the total energy, kinetic energy, and potential energy of the system before 
collapse occurs?  

b.  What is the total energy, kinetic energy, and potential energy of the system after it 
virializes? How do you account for differences in the total energy?  

c.  Estimate the characteristic size of the galaxy, and state what assumptions you have 
made to form this estimate.  

d.  Convert any total energy differences you find into the equivalent mass of hydrogen (in 
units of Mg) that can be ionized and heated to 106 deg (K) assuming all of the “missing 
energy” goes into this heating (hint: take a look at Problem 7.2 in Sparke & Gallagher). 
Also compute the numerical fraction of Mg for vc = 200 km s-1.  

Adopt vc =200 km s-1 for the next three questions: 
e.  Assuming the material out of which the galaxy forms is representative of the universe 

on average (see the lectures), what fraction of the galaxy’s baryons does your answer 
in (c) represent?  

f.  Assuming the galaxy is depleted of a fraction of its baryons, such that its baryon mass-
fraction is 10% today, what is the temperature of the expelled gas? 

g.  What might these calculations tell us about the origin of the warm-hot ionized 
medium (WHIM) in the cosmic web and the fraction of the total baryons in it?  



Angular Momentum,Torque & Integrals of Motion 

}  L  ≡  x × mv 
}  N ≡  torque = x × F = dL/dt = −mx ×▼Φ 

}  Torques is rate of change of angular momentum 

}  For a spherically symmetric galaxy, L is constant. For an 
axisymmetric galaxy (most galaxies), only the component parallel 
to the symmetry axis is constant 

}  Integrals of motion: 
}  Any function of phase-space coordinates (x,v) that is constant along 

an orbit 
}  In static potentional Φ(x):  

}  E(x,v) = ½mv2 + mΦ(x) is an integral of motion 
}  If Φ(R,z,t) is axisymmetric about z-axis: 

}   Lz is an integral of motion 
}  In spherical potential Φ(R,t):

}  all three components of L are integrals of motion. 



Virial Theorem 
}  In an isolated system composed of multiple mass units, these 

masses can change (and exchange) their kinetic and potential 
energy as long as  
}  the sum is constant (E is conserved overall):  

}  <KE>+<PE> = constant 
¨  where <> are averages over the system 

}  If the system is in equilibrium, the kinetic energy must balance 
the potential energy, e.g., an object in a circular orbit around a 
fixed mass. 

}  This equilibrium configuration is referred to as “virialization”, 
and implies: 
}  2<KE> + <PE> = 0 

}  For an external force add the summation of Fext� x: 
}  2<KE> + <PE> + Fext·x = 0 



Virial Theorem in practice 

}  This is a primary tool for inferring masses of dynamical 
systems in astronomy, so it is important. Here’s how it is 
applied: 
}  Measure the velocity dispersion of some spherical system  

}  (e.g., a star cluster). 
}  We observe Vr, from which we can derive: σr = <Vr>1/2 

}  If we assume motions are isotropic, then V�V = ΣiVi
2 ~ 3σr

2. 
}  Kinetic energy = (3/2) Mσr

2 
}  Potential energy looks something like:  −GM2/2frc  

}  rcis a “core radius” at which point the surface brightness is ½ of 
its central value. 

}  f is a fudge-factor or order unity that accounts for the details of 
the mass distribution in the integral ∫ρ(x) Φ(x) d3x. 

}  Solve for mass, M 



Recap: Energy considerations 

}  Recall:               
}  Newton:  d(mv)/dt = − m▼Φ(x) ,     
}  Poisson:   ▼2Φ(x)  =  4πGρ(x)       
}  Total energy defined:     E = KE + PE = ½ mv2 + mΦ(x) 
}  PE = W =  ½	∫ ρ(x) Φ(x) d3x 
}  Escape velocity (E=0):    ve(x) = (2|Φ(x)|)1/2 

}  Virial Theorem:  KE = −½ PE  for systems in 
equilibrium 
}  In practice: this is the way we measure masses for 

astronomical objects because KE measured independent of 
potential and PE is proportional to M. 



Recap: Virial Theorem 

}  Why is KE = −½ PE for equilibrium? 
}  Define moment of inertia 

}  I = m x�x 
}  Then it follows: 

}  ½ d2(I)/dt2 = m d/dt ( x�dx/dt )  
}                  = m d/dt (x�v) 
}                  = m [ dx/dt�v + x � dv/dt ] 
}                  = m v�v + d/dt(mv)�x 

}  For a system in equilibrium: d2(I)/dt2 = 0  
}  I is time-independent 
}  Is dI/dt interesting? 

2 KE = mv2 −m▼Φ(x)�x = PE 



Spherical mass distributions 

}  Start simple….  
}  Newton showed: 
}  A body that is inside a spherical shell of matter experiences no 

net gravitational force from that shell. 
}  Mass contained in solid-angleδΩof shell as seen by body depends on 

distance to shell: 
}  δm = ΣδΩ× r2, where Σ is the mass-surface-density of the shell.
}  Hence in any two directions: 

¨  δm1/δm2 =  (r1/r2)2     è δF1 = - δF2 
¨  particle is attracted equally in opposite directions 

}  ▼Φ= −F = 0 
}  The gravitational force on a body that lies outside a closed 

spherical shell of matter is the same as it would be if all the 
shell’s matter were concentrated into a point at its center.  
}  Φ= −GM/R 



Spherical distributions: characteristic velocities 

}  The gravitational attraction of a density distribution, 
ρ(r’), on a particle at distance, r, is: 
}  F(r) = −(dΦ/dr) = −GM(r)/r2 

}  M(r) = 4π∫ρ (r’)r’2dr’ 
}  Circular speed: 

}  In any potential dΦ/dr is the radial acceleration 
}  For a circular orbit, the acceleration is v2/r 
}  è               vc

2 = r(dΦ/dr) = GM(r)/r 
 

}  outside a spherical mass distribution, vc goes as r1/2 

¨  Keplerian 

}  Escape speed:  ve(r) = (2|Φ(r)|)1/2 = [2 ∫GM(r)dr/r2 ] 1/2 
 



Homogeneous Sphere: characteristic time-scales 

}  M(r) = (4/3)πr3ρ 
}  ρis constant 

}  For particle on circular orbit, vc= (4πGρ/3)1/2r  
}  rises linearly with r.  
}  Check out the Galaxy’s inner rotation curve. 
}  What does this say about the bulge? 

}  Orbital period:  T = 2πr/vc= (3π/Gρ)1/2 

}  Now release a point mass from rest at r: 
}  d2r/dt2  = −GM(r)/r2 = −(4πGρ/3)r 
}  Looks like the eqn of motion of a harmonic oscillator with frequency 

= 2π/T 
}  Particle will reach r = 0 in 1/4 period (T/4), or  

}  tdyn≡ (3π /16Gρ)1/2 



Isochrone Potential 

}  Since nothing is really homogeneous… 
}  Φ(r) = -GM/[b+(b2+ r2)1/2] 

}  b is some constant to set the scale 
}  vc

2(r) = GMr2/[(b+a)2a]  è  (GM/r) ½ at large r 
}  a ≡ (b2+r2) ½ 

}  This simple potential has the advantage of having constant 
density at small r, falling to zero at large r 
}  ρ0 = 3M / 16πGb3 

}  Similar to the so-called Plummer model used by Plummer 
(1911) to fit the density distribution of globular clusters: 
}  Φ(r) = -GM / (b2+ r2)1/2 
}  ρ(r) = (3M / 4πGb3) (1+r2/b2)−5/2 



Singular Isothermal Sphere 

}  Physical motivation: 
}  Hydrostatic equilibrium: pressure support balances gravitational 

potential 
}  dp/dr = (kB T/m) dρ/dr = −ρ GM(r)/r2

}  ρ(r) = σ2/2πGr2 

¨  where σ2 = kB T/m 

}  Singular at origin so define characteristic values: 
}  ρ’ = ρ/ρ0 
}  r’ = r/r0 
}  r0 ≡ (9σ2 / 4πGρ0)1/2 

}  Φ(r) is straight-forward to derive given our definitions:  
}  Φ(r) = Vc

2 ln(r/r0)
}  vc = 4πρ0 r0

2  

}  A special class of power-law potentials for α=2 
}  ρ(r) = ρ0 (r0/r)α

}  M(r) = 4πρ0 r0
α r(3-α)/ (3-α)

}  vc
2(r) = 4πρ0 r0

α r(2-α)/ (3-α) 

Look what happens to 
V(r) when α=2 



Pseudo-Isothermal Sphere 

}  Physical motivation: avoid singularity at r=0, but stay 
close to functional form. Posit: 
}  ρ(r) = ρ0[1 + (r/rc)2]-1 

}  Φ(r) is straight-forward to derive given our definitions 
}  V(r)   =  (4πGρ0rc

2 [1-(rc/r)arctan(r/rc)])1/2 

}  This gives a good match to most rotation curves within the optical 
portion of the disk. 

}  But it does not give a good description of the light distribution of 
disks. 



Characteristics of dynamical systems - 1 

}  Summary: 
}  vc≡ √(r dΦ/dr) = √(GM(r)/r), circular velocity 

}  ve≡ (2|Φ|)1/2,   escape velocity 
}  tdyn ≡  √(3π/16Gρ) 
}  tff ≡  √(1/Gρ),   free-fall time  ~ tdyn 
}  tcross ≡ R/v,  use characteristic radius and velocity 



Characteristics of dynamical systems - 2 

}  Relaxation from N-body encounters of stars: 
}  ts≡ v3 / (4π G2 m*

2 n),  …time-scale for strong encounters 
}  ~ 4×1012 yr (v/10 km s-1)3(m*/M¤)-2 (n/1pc-3)-1 

}  è unimportant except in very dense star systems 

}  However, many weak encounters cumulate such that after a 
time trelax, the amplitude of the perturbed motion of the star is 
comparable to its initial motion: 

}  trelax≡ ts / 2 lnΛ 
}  ~ 2×1012 yr (v/10 km s-1)3(m*/M¤)-2 (n/1 pc-3)-1 (lnΛ)-1 
}  whereΛ = bmax/bmin ~  R/rs = N/2 for isolated system of N stars 

¨  when ½ Nm*v2 ~ G(Nm*)2/2R  and rs = 2Gm*/V2 

}  trelax/tcross ~ N / 6 ln N/2 
}  Still very large for realistic N (1010 to 1011 for galaxies) 



Characteristics of dynamical systems - 3 

}  Instabilities to collapse: the Jean’s length 
}  cs ≡ √(kB T /μmH) 

}   sound-speed for temperature T and mol. mass μmH 

}  λJ≡ cs√(π/Gρ) ~ cs tff 

}  MJ ≡ (π/6) λJ
3ρ =  20 M¤(T/10K)3/2(100cm-3/n)1/2 

}  What this basically says is that regions smaller than the sound-
crossing time have time to re-arrange their density structure in 
response to gravity, and hence are stable against gravitational 
collapse; larger structures are unstable to collapse. 

}  It is relevant for setting the mass-scales for star-formation and 
galaxy formation. 



Flat rotation curves: the Milky Way 

Nakanishi & Sofue (2003, PASJ, 55,191) 

Best fit yields VC~ 220±10 km/s, and its flat! 



Flat rotation curves: external galaxies 

Verheijen 2005, ApJ, 563, 694 

Which looks most like the MW? 
Why different shapes and extents? 



Flat rotation curves: external galaxies 

Verheijen 2005, ApJ, 563, 694 

Van Albada et al. 
1986, Phil. Trans. 
Royal Soc. London, 
320, 1556, 447 



Flat rotation curves: the disk 

}  Disk component 
}  Σ(r) = Υ × μ(r) 

}  Σis the mass surface-density 
}  Υ is the mass-to-light ratio (M/L)
}  μ is the surface-brightness 
}  Surface mass density (M¤ pc-2) is just the mass to light ratio 

times the surface brightness (L pc-2) 

}  Mass è potential è circular velocity 
}  The trick here is to deal with the non-circular density 

distibution. 



Flat rotation curves: the exponential disk 

}  Σ(r) = Σ0 exp(-r/hR) 
}  Mass: 

}  M(r) = 2π∫Σ(r’)r’ dr’ = 2πΣ0hR
2[1−exp(−r/hR)(1+r/hR)] 

}  è potential 
}  Φ(r,z=0) = −πGΣ0 r [I0(y)K0 (y) –I1(y)K1 (y)] 

}  y = r/2hR 
}  I, K are modified Bessel functions of the 1st and 2nd kinds. 

}  è circular velocity 
}  Vc

2(r) = r dΦ/dr = 4πGΣ0 hR y2 [I0(y)K0 (y) –I1(y)K1 (y)] 

}  Note: This is for an infinitely-thin exponential disk. In 
reality, disks have a thickness with axis ratios hR:hz 
between 5:1 and 10:1 

A bit of work; see 
Freeman (1970) and 
Toomre (1963) 



Rotation from an exponential disk 

Disk oblatness: 
q= hz/hr 
 ç It isn’t flat 

ê  It is pretty flat 



Flat rotation curves: the halo 

}  “Halo” component – we need V(r) to be constant 
at large radius (the bulge helps only at small r). 

}  One option is the singular isothermal sphere, here V(r) is 
constant at all radii. 
}  Is that plausible given observed rotation curves (e.g, MW)? 

}  Another option: the pseudo-isothermal sphere 
}  ρ(r) = ρ0[1 + (r/rc)2]-1 

}  V(r)   = (4πGρ0rc
2 [1-(rc/r)arctan(r/rc)])1/2 

}  This gives a good match to most rotation curves within the optical 
portion of the disk. 

}  Also the NFW* profile, motivated by cold-dark-matter 
(CDM) structure-formation simulation (see S&G p.117): 
}  ρNFW(r) = ρn(r/an) -1[1 + (r/an)]-2 

}  VNFW (r)   = (4πGρnan
2  [ ln(1 + (r/an))/(r/an) − 1/(1 + (r/an))])1/2 

*Navarro, Frenk & White 1996 



The Disk-Halo Degeneracy 
}  Q: Is it possible to decompose the rotation curve of 

a spiral galaxy into disk, bulge, and halo components? 
}  Mass decomposition: 

}  Recall vc
2 = r(dΦ/dr) 

}  Φ = Σi Φi, i = bulge, disk, halo, kitchen sink 
}  For spherical mass distribution 

}   r(dΦ/dr) = GM(r)/r 
}  For a flattened mass distribution define fi such that  

}  r(dΦ/dr) = fiGM(r)/r 
}  vc

2 = Σi fiGMi(r)/r = Σi vc,i
2 

}  Measure vc
2 

}  Estimate individual components vc,i
2 constrained by vc

2 = Σi vc,i
2 

}  Can it be done with any reasonable fidelity? 



The Disk-Halo Degeneracy 
}  Q: Is it possible to decompose the rotation curve of a 

spiral galaxy into disk, bulge, and halo components? 
}  A: No; Solutions are degenerate 
}  Degeneracies: 

}  Unconstrained fitting functions for halo:  
}  e.g., pseudo-isotherm. vs NFW  

}  Disk M/L (Υdisk) uncertain 
}  Stellar populations Υ*: depends on SFH, IMF, and detailed 

knowledge of all phases of stellar evolution. 
}  ISM 

¨  Gas
¨  Atomic: straightforward to measure 
¨  Molecular: harder to measure 

¨  Dust: probably insignificant 
}  Dark matter? 

}  Non-circular motions 
}  However, it is possible to set upper-limits on the disk 

(so-called maximum disks) 



}  Rotation curve decomposition constraints: 
}  Maximum disk - yes  Minimum disk - NO 

 

…it doesn’t get 
better than this 

SDSS gri 

Begeman’89 Bershady et al. 2010 

The Disk-Halo Degeneracy: Best case 

çHI velocity field 

ç Degenerate 
solutions… 

Van Albada et al. (1985) find a halo-
only (no disk!) works  just as well...            

            ….OOOPS! 



}  Formal χ2 not meaningful at level of  ΔVcirc<5 km/s  
}  non-axisymmetric structure: gas-flows, arms, winds, etc. 

 

Begeman’89 

The Disk-Halo Degeneracy: Best case 

Radius 

è So we need another dynamical probe of mass 



Tully-Fisher relationship: Scatter 
}  Small! 

}  0.5-0.3 mag in blue (B, 0.44 μm) 
}  0.1 mag in near-IR (H, 1.6μm) 
}  0 mag (!) intrinsic: K-band for subset 

of galaxies with rotation curves and 
flat V(R) (Verheijen 2001) 
}  Too small? 

Why this 
trend? 

}  Source of dispersion 
}  Measurement errors (random) 
}  Measurement errors (systematic) 

}  Extinction 
}  Shape of light-distribution (oblateness)èinclination 
}  Shape of rotation curveèVc 

}  Cosmic variance 
}  Variations in M/L with galaxy type 

gasp! 



Surrogates measures of rotation 
}  Spatial information vs sensitivity: 

4. Single dish (fiber): 
Line width W ~ 2 Vc 

1. Interferometer/IFU: 

è Velocity field 
2D map of velocities, 
or data cube 

+ 

− 

− 

+ 

Major axis 

Major axis 

2. Position-velocity diagram (PVD): 
Equivalent to long-slit spectrum 
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Flip (in V) and fold (in x) 

3. Rotation curve 
Integrate in x (and y) 

W50 

W20 
20% max 

50% max 

max 

Slice down the 
major axis 



Tully-Fisher relation: Implications 

}  Why is M/L so constant from galaxy to galaxy? 
}  Here we’re talking about M/L of the entire galaxy: 

}  Mass is dominated by dark halo 
}  Luminosity is dominated by disk 

}  Total mass:         M  proportional to  [V2
maxhR] 

}  Total luminosity:  L proportional to   [I0hR
2]         (ignoring bulge) 

}  è                      L proportional to   [V4
max / (M/L)2 I0] 

}  A universal M/L implies remarkable constancy of the ratio of dark to 
luminous matter 
}  Or worse, a fine-tuning of the dark-to-luminous mass ratio as the stellar 

M/L varies. 

}  What does this tell us about galaxy formation and feedback? 



Tully-Fisher relation: diagnostic tool 

}  Standard candle:  V is distance-independent 

}  Structural probe: slope and scatter  
}  Since L is proportional to [V4

max / (M/L)2 I0] 
}  è M vs log(V) should have slope of 10 
}  and should depend on surface-brightness 

}  Slope is < 10, varies with wavelength 
}  No dependence on surface-brightness 

}  Evolutionary probe 
}  Changes in M/L with time 

}  Assume M roughly constant 
¨  Secular changes in L: star-formation history 
¨  Stochastic changes in L (star-formation bursts) 

¨  Scatter increases with burst duty-cycle log Vc 

log L 

L ~ V4 

slope 
break 
shallower 
slope 

burst @ 
constant 
mass 

� 
M/L 
depends 
on V 

Mass-independent 
luminosity evolution 

Mass-dependent 
luminosity evolution 

¢ 

measure V 

infer L 



Dynamics of collisionless systems 

}  Motivation:  
}  Circular rotation is too simple and vc gives us too 

little information to constrain Φ and hence ρ 
(e.g., rotation curves) 

}  Without Φ and hence ρwe can’t understand how 
mass has assembled and stars have formed 
}  We can’t even predict how the Tully-Fisher relation 

should evolve 

}  Gas is messy because it requires understanding 
hydrodynamics, and likely magneto-hydrodynamics. 

}  At are disposal are stars, nearly collisionless 
tracers of Φ!  



Dynamics of collisionless systems 
}  How we’ll proceed: 

}  Start with the Continuity Equation (CE) 
}  Use CE to motivate the Collissionless Bolztmann 

Equation (CBE), like CE but with a force term 
(remember ▼Φ(x)!) 

}  Develop moments of CBE to relate v and σ and 
higher-order moments of velocity to Φ and ρ. 

}  Applications to realistic systems and real 
problems 
}  Velocity ellipsoid 
}  Asymmetric drift 

Don’t be 
intimidated by 
moment-integrals 
of differential 
equations in 
cylindrical 
coordinates: 
follow the terms, 
and look for 
physical intuition. 

Disk heating 
Disk mass 
Disk stability 



Disk 

Dark  Matter 

ϒ 

Example: Breaking the Disk-Halo Degeneracy 

•  Rotation provides the total mass within a given radius. 
•  Vertical oscillations of disk stars provides disk mass within given height 

Vertical oscillations:  a direct, dynamical approach 



The kinematic signal 

λ/δλ = 11,000 

}  Young stars 
}  Hot: weak or intrinsically 

broad lines 
}  Dyamically cold, thin layer 

(extinction) 
}  Old stars 

}  Cool: many strong, narrow 
lines 

}  Dynamically warm, thick layer 



Disk Mass formula 

….and apply relation to face-on galaxies where the vertical 
oscillations of stars can be measured. Disk mass 

surface density 

vertical 
oscillations 

thickness 
Use statistical measure of disk 
thickness from edge-on galaxies … 
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 Edge-on   or   Nearly Face-on ? 

ü  Rotation accessible at high 
spectral resolution 

ü  Vertical dispersion projected 
û  Vertical height inaccessible 

except via statistical photometric 
correlations 

ü  Rotation projected 
û  Vertical dispersion inaccessible 

except via statistical kinematic 
correlations 

ü  Vertical height projected 

Vrot 

σz 



The problem 
}  If you look at completely face-on galaxies you can’t measure 

rotation è can’t estimate total mass (total potential) 
}  Even if you look at moderate inclination (i~30o) galaxies, you 

get components of the stellar velocity dispersion (σ) which 
are not vertical (σz) but radial (σR) or tangential (σϕ).  

}  In other words, σ is a vector – the velocity ellipsoid 
}  From the solar neighborhood we expect:   σR > σϕ> σz 
}  But we can only observe 2 spatial dimensions: 

}   How do we solve for σz ?    ê 

1st moment:       Vlos = V sin i 
2nd moment: σlos

2 = σϕ2
 sin2 i + σz

2
 cos2 i 

  

1st moment:       Vlos = 0 
2nd moment: σlos

2 = σR
2
 sin2 i + σz

2
 cos2 i  

}  And how do we solve for σR, which 
turns out to be interesting for 
understanding disk heating? 

los = line of sight 



Measuring the 2nd velocity moment 



Continuity Equation 
}  The mass of fluid in closed volume V, fixed in 

position and shape, bounded by surface S at time t 
}  M(t) = ∫ρ (x,t)d3x 

}  Mass changes with time as  
}  dM/dt = ∫ (dρ/ dt)   d3x = −∫ ρv�d2S  
}  mass flowing out area-element d2S per unit time is ρv�d2S 

}  The above equality allows us to write  
}  ∫ (dρ/ dt)  d3x + ∫ ρv�d2S = 0 
}  ∫ [ dρ/ dt  + ▼�(ρv) ] d3x= 0 

}  Since true for any volume 
}  dρ/ dt  + ▼�(ρv) = 0  This is CE 

Divergence 
theorem 

In words: the change in density over time (1st term) is a result of a net 
divergence in the flow of fluid (2nd term). Stars are a collisionless fluid. 

NB: d = partial derivative 



Collisionless Boltzmann Equation 
}  Generalize concept of spatial density ρ to phase-

space density f(x,v,t) d3x d3v, where f(x,v,t) is the 
distribution function (DF) 
}  f(x,v,t) d3x d3v gives the number of stars at a given time 

in a small volume d3x and velocities in the range d3v 
}  The number-density of stars at location x is the integral 

of f(x,v,t) over velocities: 
}  n(x,t) = ∫ f(x,v,t) d3v 

}  The mean velocity of stars at  
 location x is then given by  
}  <v(x,t)> = ∫ v f(x,v,t) d3v /∫ f(x,v,t) d3v 

quantities 
you can 
measure 

S&G notation Notation we’ll adopt 



CBE continued 

}  Goal: Find equation such that given f(x,v,t0) we can 
calculate f(x,v,t) at any t, … 
 …. and hence our observable quantities n(x,t), <v(x,t)>, etc. 

}  f(x,v,t0) is our initial condition 
}  The gravitational potential does work on f(x,v,t) 

}  Introduce some useful notation and relate to the potential  
}  Let w ≡ (x,v) = (w1…w6) 
}  w’ ≡ dw / dt = (x’,v’) = (v, −▼Φ) = (w1…w3,−▼Φ) 



CBE continued 
}  Recall CE gives:   dρ/ dt  + ▼�(ρv) = 0 
}  Replace   ρ(x,t) è f(x,v,t) 
}  CE gives:  

}  df / dt + Σi=1,6 d(fwi’)/dwi’ = 0          ….but: 
}  dvi/dxi = 0     xi,vi independent elements of phase-space 
}  dvi’/dvi = 0     v’ = −▼Φ, and the gradient in the potential 

does not depend on velocity. 

}  df / dt + Σi=1,6 wi’(df /dwi) = 0 

}  df / dt + Σi=1,3 [vi(df /dxi)−(dΦ/dxi )(df /dxi)] = 0 

}  df / dt  + v�▼f − ▼Φ�df / dv = 0 Vector 
notation 

CBE 



Getting something useful out of CBE 

}  CBE is the fundamental equation of stellar dynamics 
}  It is a special case of Liouville’s theorem:  

}  the flow of particles in phase space is incompressible, i.e. 
}  phase-space density is constant. 

}  Unfortunately, general solutions to CBE are impractical. 
}  However, integral moments of the CBE and velocity provide 

useful dynamical relationships between components of the 
velocity vector, v, the velocity ellipsoid, σ, and the potential, Φ. 

}  This will look messy (it is), but very powerful results emerge. 



CBE Integrals: warm up to learn tricks 

}  Start by integrating CBE over all velocities (0th moment) 
}   ∫ {  (df/dt) d3v + Σi=1,3 [vi(df/dxi)−(dΦ/dxi )(df/dvi)] = 0  }  

}  We adopt summation convention 
¨  A�B =  Σi=1,3 AiBi   è =  AiBi   , 

¨  i.e., repeated indices are implicitly summed over 
 

}   ∫ (df/dt) d3v + ∫ vi(df/dxi) d3v −	(dΦ/dxi ) ∫ (df/dvi) d3v = 0 

}  dν / dt + d(ν   )/ dxi  = 0   ç  this is the continuity equation! 

range of velocities does not depend on 
time so d/dt comes outside integral and… 

Recall: and 

vi  range does not depend on xi so 
df/dxi comes outside integral and… 

We assume the potential Φ is 
independent of velocity vi 

0 

Apply divergence theorem and the fact 
that f(x,v,t)=0 for sufficiently large |v|,  
i.e., at the surface of |v|è∞ 



Next: CBE in cylindrical coordinates 

df / dt  + v�▼f − ▼Φ�df / dv = 0 

(3) The divergence theorem allows 
us to drop all integrals of velocity 
derivatives unless the moment is 
w.r.t. that velocity, in which case 
vidf/dvi è f, and: 

      In what follows: 
(1)  The disk is in steady-state, so we can 

drop the first term 
(2) we will assume the galaxy is azimuthally 

symmetric (e.g., a nice, circular, smooth 
disk) we can ignore all derivatives w.r.t. 
the azimuthal coordinate ϕ. 



CBE-vz moment: Surface-mass density Σdisk 

}  Multiplying CBE by vz , integrating over all velocities, 
assuming steady state, azimuthal symmetry, and using the 
divergence theorem yields: 

∫  vzd3v{ } 
0 0 0 0 0 



CBE-vz moment: Σdisk continued 

}  1st and 3rd terms are smaller than 2nd and 
4th by factors of (z/R)2, and can be dropped. 

 
}  We also substitute the definition 

}  Where <vi> (second term) is zero for a system in 
steady state 

x x 

(1) CBE 
σz

2) 



CBE-vz moment: Σdisk continued 

}  Now use Poisson’s equation to define the potential Φ in 
cylindrical coordinates assuming azimuthal symmetry (no 
dependence of ν  and Φ on ϕ): 

 
}  4πGν(x) = ▼2Φ(x)  =  d2Φ/dz2 + (1/R) d [R(dΦ/dR)] / dR

}  Remember:  ρ = νi mi = <ν><m> ; we drop <> notation here 

 
}  For dΦ/dR = v2(R)/R and V(R) constant, the last term vanishes 
}  In general, in a highly flattened system near the mid-plane the 

2nd term on the r.h.s. is much smaller than 1st term. 

ν (2) Poisson 



CBE-vz moment: Σdisk continued 
}  Next, integrate Poisson over z and relate to CBE: 

}  To complete the calculation to find σz, integrate one more time in z. 
 

∫      dz  =        ∫ ν dz 
 

= 2 

= −2πG  ν ∫ ν dz 

Plug in to CBE 

Note       = 0 
 
at z = 0 by 
symmetry 

(3) CBE+ Poisson σz
2) 

∫ ν dz  ≡  4πGΣdisk  

-z -z 

+z +z 

+∞ 

−∞ 

çIndefinite integral 
ê Definite integral 

+z 

-z 



CBE-vz moment: Σdisk continued 

}  To do this last step (integrate [3] in z), let’s assume something 
about the mass distribution function in the vertical direction. 
}  Based on what we know from light profiles of external galaxies:  

}  ν(R,z) = ν0 exp(-z/hz-R/hR) 

}  Suggest a general vertical density function: 
}  ν(z) = 2-2/n ν0 sech2/n(nz/2hz) 

}  n=1  è  ν(z) = (ν0/4) sech2 (z/2hz)     isothermal case 
}  n=2  è  ν(z) = (ν0/2) sech (z/hz)   intermediate 
}  n=∞ è  ν(z) = ν0 exp(z/hz)     what’s observed (maybe) 

}  The surface-densityΣdisk follows from direct integration: 
}  n=1  è  Σdisk = ν0 hz 
}  n=2  è  Σdisk = (π/2) ν0 hz 
}  n=∞ è  Σdisk  = 2ν0 hz 



CBE-vz moment: Σdisk continued 

}  The gradient of the potential follows from the 
corresponding indefinite integral: 

}         = 2πG ∫ ν dz 

}  = 2πGν0hz tanh(z/2hz),     n = 1 
}  = 2πGν0hz arctan[ sinh(z/hz)],   n = 2 
}  = 2πGν0hz [1-exp(z/hz)],    n = 3 

}  Lastly, we integrate the gradient of the potential 
and divide by ν to solve for σz

2: 
}  σz

2 =  2πG hzΣdisk   n = 1 

}  σz
2 = 1.7051 π G hzΣdisk    n = 2   

}  σz
2 = 3π/2 G hzΣdisk    n = 3 



CBE-vz moment: Σdisk continued 

}  If the disk is locally isothermal, dσz
2/dz = 0   

}  Why is this? What does isothermal mean in terms 
of kinematic motion? 

σz   

Σdisk = 80 M¤ pc-2, hz =325 pc 

-2
.5

 lo
g 

[ν
 (

z)
/ν

0]
 

z/hz 

van der Kruit 1988, A&A, 192, 117 



Finally….the Disk Mass formula 

….and apply relation to face-on galaxies where the vertical 
oscillations of stars can be measured. Disk mass 

surface density 

vertical 
oscillations 

thickness 
Use statistical measure of disk 
thickness from edge-on galaxies … 
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CBE-vR and vRvϕmoments: 

}  Multiplying CBE by vRvϕ , integrating over all velocities, 
assuming steady state, azimuthal symmetry, and using 
the divergence theorem yields: 

}  Multiplying CBE by vR, integrating over all velocities, and 
assuming azimuthal symmetry (ϕ-derivatives=0) yields: 



CBE-vR and vRvϕmoments: Epicycle approximation 

}  The CBE-vR and vRvϕmoments combined with this identify 
(valid when ellipsoid is aligned with the potential 
andsymmetric about vϕ):

 
 yield 

 
}  Which can be rearranged to give: This is powerful because 

it gives us another piece 
of information to 
uncover all of the 
ellipsoid components 
σR : σϕ : σz 
 



CBE-vR  moment: Asymmetric drift 

}  Eliminating time derivatives and assuming there are no streaming 
motions (<vr>2=0) yields: 

 

 
}  Collisionless particles have tangential velocities smaller than the circular 

speed of the potential, in quadrature proportion (think: energy) to their 
velocity dispersion. 

}  This is powerful because it relates the velocity dispersion ellipsoid 
components to tangential velocities, thereby giving us another piece of 
information to uncover all of the ellipsoid components σR : σϕ : σz

}  Now the problem is over constrained, i.e., σmaj, σmin plus two 
dynamical relations (epicycle approx. and asymmetric drift). 
}  A good thing because there are a lot of assumptions. 



Asymmetric drift 

}  Assume the gas 
tangential velocity is 
close to vc 

}  Why is this 
reasonable? 

}  Vϕ is the tangential 
velocity of the stars 

Bershady et al. 2010 

UGC 6918 



Wrapping up: 
}  If we make some assumptions  

}  about the distribution function ν(R,z), namely a double exponential 
in R and z,  

}  that the ellipsoid tilt yields a last term between 0 and σz
2 

}  and we substitute in the epicycle approximation to eliminate σϕ

}  This formula, plus direct measurments of 
}  vc, vϕ, σmaj, σmin   

 are our best-bet combination for 
Ø  directly measuring Σdisk 
Ø  decomposing rotation curves,  
Ø  determing disk M/L, and  
Ø  the dark-mater density distribution. 



Summary: CBE 

}  Continuity equation: 
}  dρ/ dt  + ▼�(ρv) = 0   

}  Collisionless Boltzmann equation 
}  df / dt  + v�▼f − ▼Φ�df / dv = 0 

}  General solution to CBE impractical but velocity-moments 
yield key relations between observables (v,σ) and the 
potential (Φ) for highly-flattened, axisymmetric systems: 
}  vz moment:  disk-mass surface density 

}  vR & vRvϕ moments:  epicycle approx. 

}  vR moment:  asymmetric drift 

Change in density over time (1st term) is a result of a 
net divergence in the flow of fluid (2nd term). Stars are a 
collisionless fluid. 

Fundamental equation of stellar dynamics. Special case 
of Liouville’s theorem:  Flow of particles in phase space 
is incompressible, i.e. phase-space density is constant. 
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Stellar tangential speed is slower 
than gas è larger random motions 



Summary: CBE applications 
}  These formulae, plus direct measurements of 

}  vc, vϕ, σmaj, σmin    best-bet combination  
}  è velocity ellipsoid σ = (σR,σϕ,σz) 

Ø  directly measuring Σdisk 
Ø  decomposing rotation curves,  
Ø  determing disk M/L
Ø  the dark-mater density distribution 

Vlos = V sin i 
 

σlos
2 = 

  σϕ2
 sin2 i         

     +    

   σz
2
 cos2 i 

  

Vlos = 0 
σlos

2 = σR
2
 sin2 i + σz

2
 cos2 i  


