

Astro 500

stro 50

Techniques of Modern Observational Astrophysics

Matthew Bershady
University of Wisconsin

Lecture Outline

Part II. Detectors continued

- S/N formulation
- S/N regimes
- DQE
- Photon propagation method
- NIR detectors
- MIR & FIR detectors

Signal

- Point source
 - > We are measuring photon flux
 - $\geq E(\gamma) = f(\gamma)A t$
- Resolved source
 - > We are measuring surface brightness

$$\geq E(\gamma) = I(\gamma) A \Omega t$$

A is telescope collecting area; t is exposure time

This ignores any inefficiencies in the measurement process

Signal-to-Noise (S/N)

total system efficiency • Signal = S_{obj} • ϵ • ϵ • $t = f_{obj}$ • A • ϵ • ϵ `exposure time detected e-/second: $S_{obj} = S_{DET} \bullet \text{ gain}$ Consider the case where we count all the detected sky level, I_{sky} _ e- in a circular aperture

Aside: how big an area do we want to integrate over?

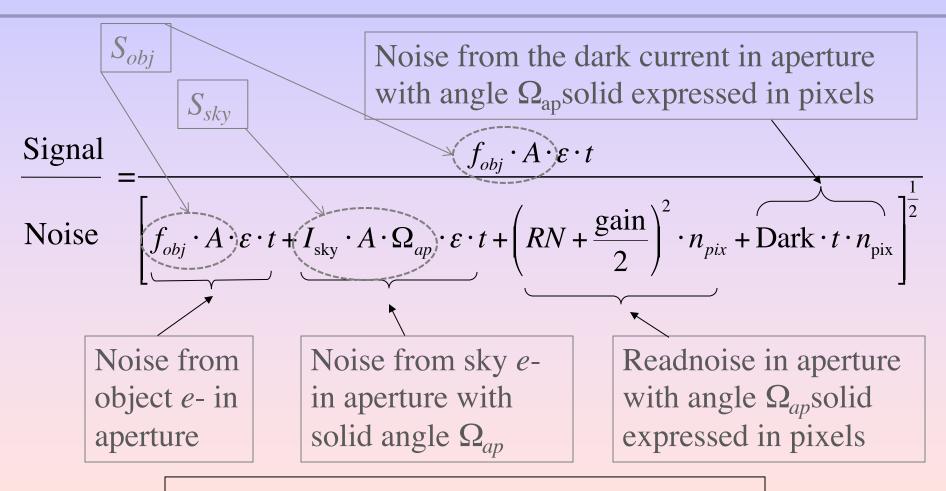
with radius θ . In this case $\Omega_{an} = \pi \theta^2$

Noise Sources

$$\frac{\pi\theta^{2} \text{ must be in units that match }}{I_{sky} \text{ (e.g., flux per unit solid angle)}} \sqrt{S_{obj} \cdot \varepsilon \cdot t} = \sqrt{f_{obj} \cdot A \cdot \varepsilon \cdot t} \implies \text{shot noise from source} \\
\sqrt{S_{obj} \cdot \varepsilon \cdot t} = \sqrt{f_{obj} \cdot A \cdot \varepsilon \cdot t} \implies \text{shot noise from sky in aperture of circular radius } r \\
\sqrt{RN^{2} \cdot \pi\theta^{2} \cdot \varepsilon \cdot t} \implies \text{readout noise in aperture of circular radius } r$$

$$\sqrt{RN^{2} \cdot \pi\theta^{2}} \implies \text{more general RN} \\
\sqrt{RN^{2} \cdot (0.5 \times gain)^{2}} \cdot \sqrt{\pi\theta^{2}} \implies \text{more general RN} \\
\sqrt{Dark \cdot \pi\theta^{2} \cdot t} \implies \text{shot noise in dark current in aperture of circular radius } r$$

In general: replace $\pi\theta^2$ with Ω_{ap} where Ω_{ap} is the solid angle of your measurement aperture.


$$S_{obj} \cdot \varepsilon = e^{-}/\operatorname{sec}$$
 from the source If I_{sky} is in units of photon flux per pixel, then $I_{sky} \cdot \varepsilon = e^{-}/\operatorname{sec}/\operatorname{pixel}$ from the sky and $S_{sky} = I_{sky} \cdot A \cdot \pi \theta^2 = I_{sky} \cdot n_{pix}$ If I_{sky} is in units of photon flux per unit solid angle $d\Omega$ (e.g., $\operatorname{arc} \operatorname{sec}^{-2}$), then $S_{sky} = I_{sky} \cdot \pi \theta^2$ but express $\pi \theta^2$ in the same units of solid angle. $RN = \operatorname{read} \operatorname{noise}$ (as if $RN^2 = e^-$ had been detected) $\operatorname{Dark} = e^-/\operatorname{sec}/\operatorname{pixel}$

 $NB \longrightarrow$

 Ω_{ap} must have suitable units (pixels for RN and Dark and typically arcsec² for I_{sky}).

S/N for object measured in aperture with radius θ :

 $n_{\rm pix}$ = # of pixels in the aperture = $\pi\theta^2$

All the noise terms added in quadrature

Note: always calculate in *e-why?*

What is ignored in this S/N eqn?

Telescope
/ diameter

- Explicit inclusion of collecting aperture (i.e., $A \propto D_{tel}^2$)
- Break-out of terms that go into total system efficiency (starting from the top of the atmosphere)
- Bias level/structure correction and errors
- Flat-fielding correction and errors
- Charge Transfer Efficiency (CTE) 0.99999/pixel transfer
- Non-linearity when approaching full well
- Scale changes in focal plane
- Interpolation errors and correlation

S/N regimes

- Two basic regimes:
 - 1. Photon-limited (shot-noise from source+sky photons)
 - 2. Detector-limited (read-noise)
- In photon-limited case, two important sub-regimes
 - a. Source-limited
 - b. Sky-limited

S/N regimes: limiting cases

Let's assume CCD with Dark=0, well sampled read noise.

$$S/N = \frac{f_{obj} \cdot A \cdot \varepsilon \cdot t}{\left[f_{obj} \cdot A \cdot \varepsilon \cdot t + I_{sky} \cdot A \cdot \Omega_{ap} \cdot \varepsilon \cdot t + (RN)^{2} \cdot n_{pix} \right]^{\frac{1}{2}}}$$

Note: seeing or source-size comes in with Ω_{ap} and n_{pix} terms

<u>1a. Bright Sources:</u> $(S_{obj} \varepsilon t)^{1/2}$ dominates noise term

$$S/N \approx \frac{S_{obj} \, \varepsilon \, t}{\sqrt{S_{obj} \, \varepsilon \, t}} = \sqrt{S_{obj} \, \varepsilon \, t} \propto t^{\frac{1}{2}}$$

S/N limiting cases (contd)

$$S/N = \frac{f_{obj} \cdot A \cdot \varepsilon \cdot t}{\left[f_{obj} \cdot A \cdot \varepsilon \cdot t + I_{sky} \cdot A \cdot \Omega_{ap} \cdot \varepsilon \cdot t + (RN)^{2} \cdot n_{pix} \right]^{\frac{1}{2}}}$$

 $I_{sky,pix} = I_{sky} \Omega_{ap} / n_{pix},$ i.e., this is the sky flux per pixel

1b. Sky Limited:

$$(\sqrt{I_{sky,pix}} \varepsilon t + 3 \times RN)$$

S/N
$$\propto \frac{S_{obj} \varepsilon t}{\sqrt{I_{sky} A\Omega_{ap} \varepsilon t}} \propto t^{\frac{1}{2}}$$

Note: seeing comes in with Ω_{ap} or n_{pix} term

2. Read-noise Limited:
$$(\sqrt{I_{sky,pix} \varepsilon t} < 3 \times RN)$$

$$S/N \propto \frac{S_{obj} \varepsilon t}{RN \sqrt{n_{pix}}} \propto t$$

What does this imply about exposure time?

*Why 3? How about 1?

S/N regimes: limiting cases

Again, let's assume CCD with Dark=0, well sampled read noise.

$$S/N = \frac{f_{obj} \cdot A \cdot \varepsilon \cdot t}{\left[f_{obj} \cdot A \cdot \varepsilon \cdot t + I_{sky} \cdot A \cdot \Omega_{ap} \cdot \varepsilon \cdot t + (RN)^{2} \cdot n_{pix}\right]^{\frac{1}{2}}}$$

But now let's take into account the explicit dependencies not just on time but on collecting area A and measurement aperture Ω_{ap} .

S/N limiting cases (contd)

1a. Bright Sources:

$$S/N \approx \frac{S_{obj} \varepsilon t}{\sqrt{S_{obj} \varepsilon t}} \propto (A \varepsilon t)^{\frac{1}{2}} \propto (\varepsilon t)^{\frac{1}{2}} D_{tel}$$

1b. Sky Limited:

$$S/N \propto \frac{S_{obj} \varepsilon t}{\sqrt{I_{sky} \Omega_{ap} \varepsilon t}} \propto \left(A \varepsilon t / \Omega_{ap} \right)^{\frac{1}{2}} \propto \left(\varepsilon t \right)^{\frac{1}{2}} D_{tel} / \theta_{ap}$$
Could choose 1

2. Read-noise Limited: $(\sqrt{I_{sky} \varepsilon t} < 3 \times RN)$

S/N
$$\propto \frac{S_{obj} \varepsilon t}{\sqrt{n_{pix} RN^2}} \propto \varepsilon t \left(D_{tel}^2 / \theta_{ap}\right)$$

 D_{tel} : telescope diameter θ_{ap} : measurement aperture radius

DQE

• DQE is often defined as the *effective quantum efficiency* of a CCD relative to an ideal detector with no read-noise. In the source-limited regime, ignoring dark-current:

$$DQE = QE / \left[1 + \frac{RN^2}{QE \cdot S_{obj} \cdot t} \right]$$

where QE is the CCD quantum efficency.

- This can be generalized for any noise-regime, and including dark-current.
- A related concept is the *effective system efficiency*, DQE_{sys}, of which CCD QE is only one part.

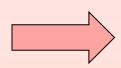
How are these quantities formulated?

S/N regimes (recap)

$$S/N = \frac{S_{obj} \cdot \varepsilon \cdot t}{\left[S_{obj} \cdot \varepsilon \cdot t + I_{sky} \cdot \Omega_{ap} \cdot \varepsilon \cdot t + (RN)^{2} \cdot n_{pix}\right]^{\frac{1}{2}}}$$

1. Photon Limited:

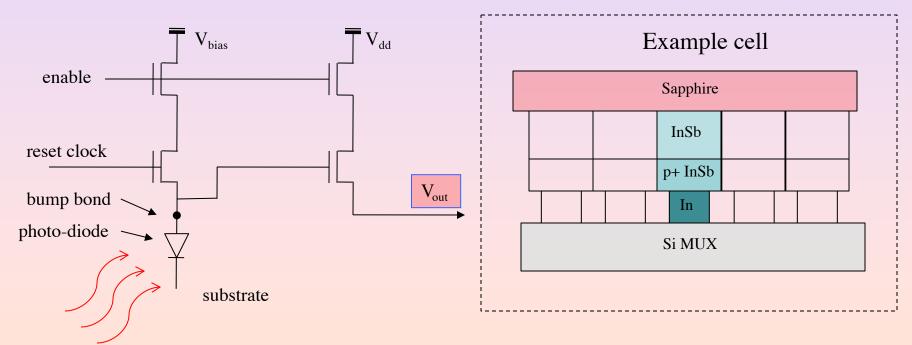
$$S/N \propto t^{\frac{1}{2}}$$


2. Read-noise Limited:

What does this imply about exposure time?

$$S/N \propto t$$

Photon propagation


- Gain and read-noise of a detector can be determined empirically from a set of data taken
 - ➤ With constant source over a range of exposures
 - ➤ With constant integration with a range of source flux
- Noise definition:
 - \triangleright g = gain = e⁻/DN
 - \triangleright R = detector noise (e⁻)
 - ightharpoonup p = photon noise (e⁻) = [counts(DN) g]^{1/2}
 - $ightharpoonup Noise^2 (e^-) = p^2 + R^2$
 - Noise/g)² (DN) = $(p/g)^2 + (R/g)^2$ = counts (DN) • $g^{-1} + (R/g)^2$

A relation existing between mean counts and standard deviation (in DN) that yields the gain (e-/DN) and read-noise (e- rms)

Near-Infrared Detectors

- Hybride photo-diode or photo-voltaic arrays
 - ➤ InSb or HgCdTe semi-conductors, grown on polished sapphire substrate: this is what converts photons to electrons
 - ➤ Bump-bonded with In (a conductor) to Si read-out structure (MOSFET or CMOS multiplexer)

Three primary NIR detectors

- HgCdTe: 0.5-5 micron sensitivity, QE up to 80%.
 - ➤ Blue sensitivity requires substrate thinning. Red cut-off determined by Hg:Cd mix (out to 17 micron, but saphire only transmits to 6.5 micron). NIR spectrograph for SALT uses mix that cuts off at 1.7 microns.
- InSb: typically 0.9-5 micron, again depends on doping.
- InGaAs: 0.8-1.7 micron, possible extension to 2.2 micron. Much lower cost.
 - (Also PtSi, but different physical principle and low QE 2-3%)
 - ➤ Both semiconductors overlap with CCD wavelength sensitivity.
 - ➤ HgCdTe vendor has pushed short wavelength sensitivity.
 - InSb vendor pushed long wavelength sensitivity into the thermal IR. Implications for instrument design: blocking, cooling, backgrounds, performance, etc.
 - ➤ Historically InSb's had 30% higher QE (80 vs 60), but this appears no longer to be true.

Near-Infrared Detectors

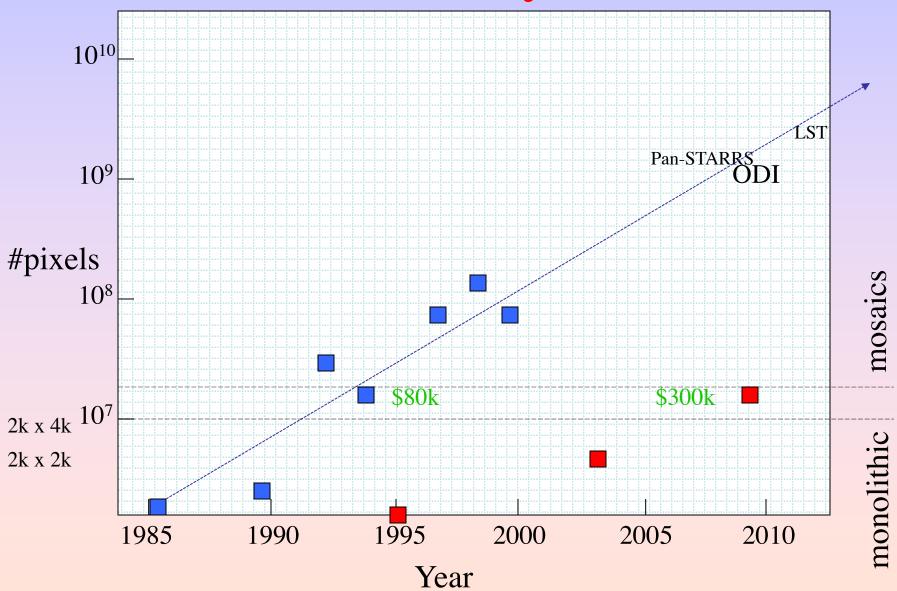
• Format:

- ► 64x64 in 1988
- > 256x526 by 1990 (HST/NICMOS)
- > 1048x1048 in 1995
- > 2048x2048 early 2000's
- vendors taking orders for 4096x4096

• Pixel size:

originally 76 micron/pix; now typically 18-27 micron/pix (CCDs have 3-24 micron/pix)

• Dynamic range:

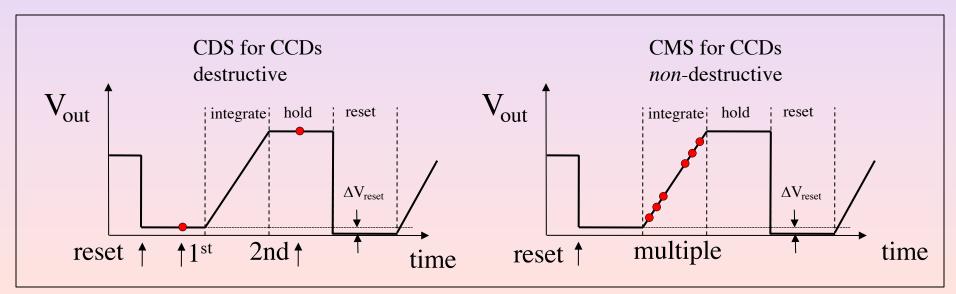

- \rightarrow 3x10⁵ to 10⁶ e- full well comparable to CCDs.
- **QE:** comparable to CCDs
- **Dark current:** typically much higher than for CCDs

• Read-noise:

- > 400 e- circa 64x64
- ➤ 40 e- by mid-90's 1024x1024 arrays
- ➤ 15-20 e- with correlated multiple sampling

Requires more cooling *Why?*

CCD and NIR array size and \$\$\$


Differences with optical CCDs

- Aside from *cost*, *size* (no longer really an issue), *read-noise* and *dark current*....
- Detectors are not charge buckets or corrals, but diodes: charge is collected, but fixed (until reset).
 - ➤ No shifting of charge along rows or columns
- Charge on each pixel is addressed via the Si multiplexer and sampled directly.
 - ➤ (Multiple) sub-arrays can be directly (and efficiently) addressed for read-out, even at different rates.
- Sampling of this charge (as a voltage) is *non*-destructive.
- Detectors are fundamentally non-linear

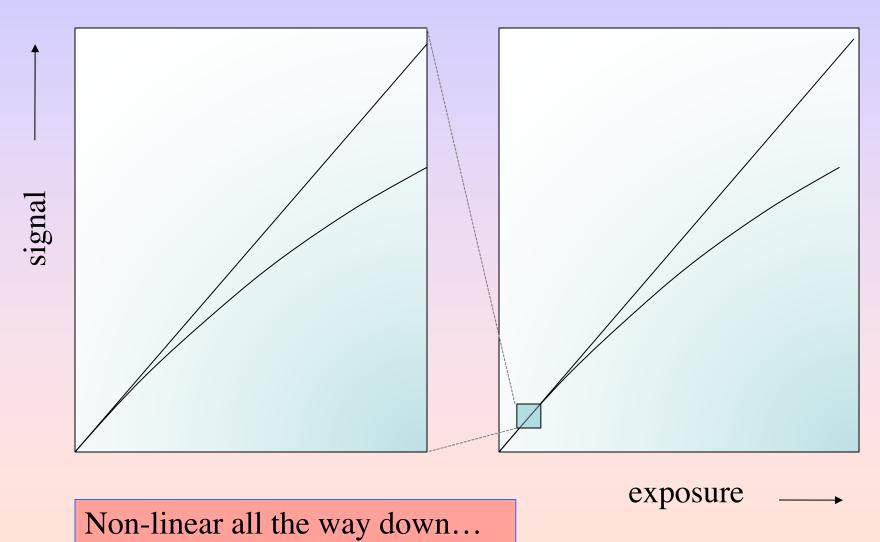
What does this imply for sampling, performance, and observing modes?

IR Array read-out modes

- As with CCDs, voltage produced by photoelectrons is sampled with an integrating circuit and digitized.
- Again, there is kTc noise associated with charge-injection when resetting the sample and integration circuitry voltages.
- Non-destructive reads allow for more than correlated double-sampling (CDS).
- Now correlated multiple sampling (CMS or *Fowler* sampling)

• Note where the voltage is sampled in CMS. Why is this possible? Why is it advantageous? How many samples are ideal? What is the ideal temporal spacing?

Detector non-linearity


- Photo-diodes operate by having a capacitance at their pn (detector) junction.
- This capacitance depends on the (reverse) voltage across the junction.
- This voltage depends on the total number of electrons in the conduction band of the photo-diode (either thermal or photoelectrons)

- ➤ Non-linearity must be calibrated
- Adds dimension to data gathering, reduction and calibration

Question: If NIR detectors require non-linearity corrections, how come we worry about CCD non-linearity?

Detector non-linearity

Mid- and Far-Infrared Detectors

- It's all about tuning the band-gap for the right photon energy level, and then suffering the consequences of the material-sciences headaches
- (Blocked) Impurity band conductors (IBC, or BIB):
 - doped Si using Ga, As, or Sb:
 - > 5-28 micron wavelength sensitivity up to 1024x1024 array size
- Extrinsic Ge semiconductors, Ga doped
 - Large photon diffusion requires large pixels (500-700 microns)
 - Examples:
 - > Spitzer/MIPS (32x32 array) 70 micron sensitivity
 - ➤ Herschel/PACS same
 - ➤ AKARI satellite: 160 micron sensitivity

Find values for WIYN & SALT instr.

- Detector gain, read-noise, system efficiency
 - WIYN
 - > WHIRC
 - Bench Spectrograph
 - > ODI
 - > NEID
 - SALT
 - > SALTCAM
 - > RSS
 - > HRS

Assignment:

- **❖** Work as a team
- Tabulate information
- Assess availability, ease of access
- **❖**Bring to class to present