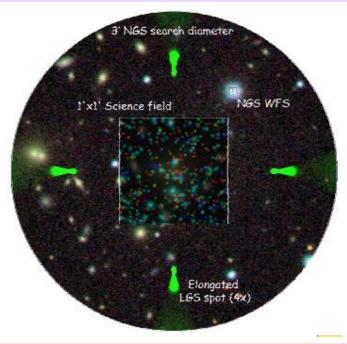


Astro 500

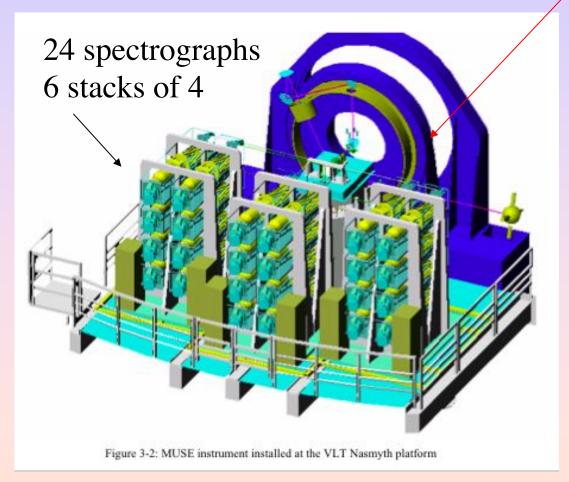
stro 50

Techniques of Modern Observational Astrophysics

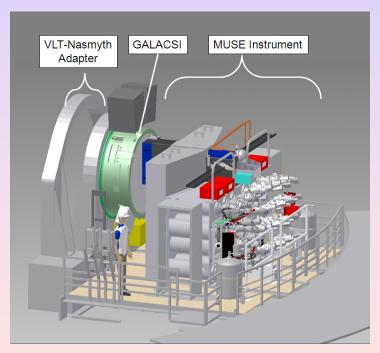
Matthew Bershady
University of Wisconsin


Lecture Outline

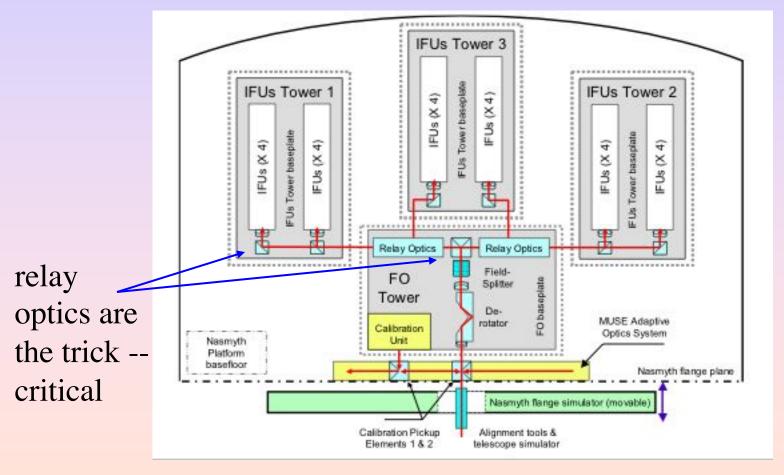
- 5. Cutting-edge and future OIR instruments
 - a. Ground-based instruments on 10m telescopes
 - i. MUSE, VIRUS, MOS
 - b. Space-based instruments: JWST
 - c. Ground vs space
 - i. Backgrounds
 - ✓ Why build bigger telescopes?
 - d. Ground-based instruments on 30-100m telescopes:
 - i. AO-driven designs
 - ii. Specific examples of TMT instrumentation
 - e. Unexplored options: a brief list


Cutting-edge Instruments Ground-based instruments on 10m telescopes

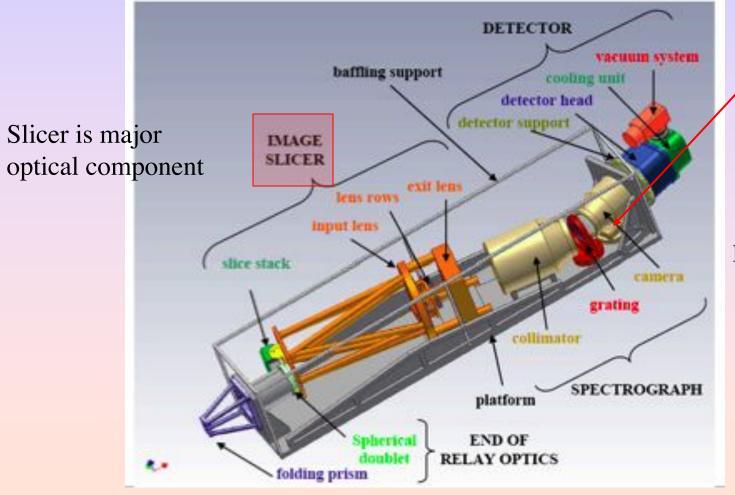
- State-of-the-art spectroscopic instruments
 - > MUSE
 - > VIRUS
 - > KMOS
- Common themes:
 - object multiplexing
 - instrument multiplexing


- Science goals
 - > Detailed study of high-redshift galaxies, structure formation, discovery.
- Technical approach
 - ➤ Replicate 24 modest-resolution spectrographs fed with advanced (catadioptric) images slicers.
 - > Premium on image quality and information.
 - ➤ Ground-layer AO (GLAO) assisted.
- Instrument capabilities
 - > VLT 8m
 - > Two scales:
 - o 1 arcmin² FoV, (0.04 arcsec² elements)
 - o 56 $\operatorname{arcsec^2} FoV$, $(6.3 \times 10^{-3} \operatorname{arcsec^2})$
 - > integrally sampled
 - > 0.465-0.93 nm range (one shot)
 - > ~2000 spectral elements (R~3000)
 - $\geq \epsilon \sim 0.24$

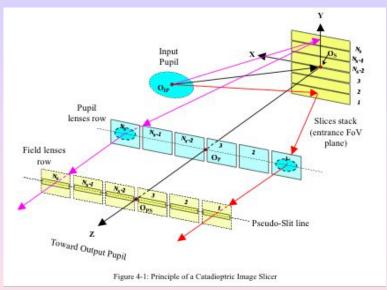
The instrument - wow!



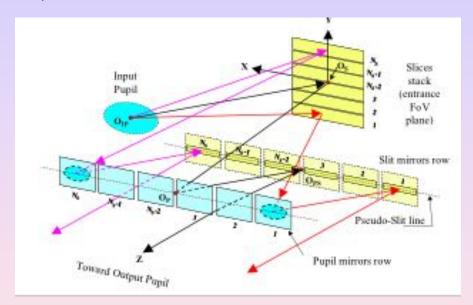
Light path from telescope


Henault et al. '04

• The instrument - wow!

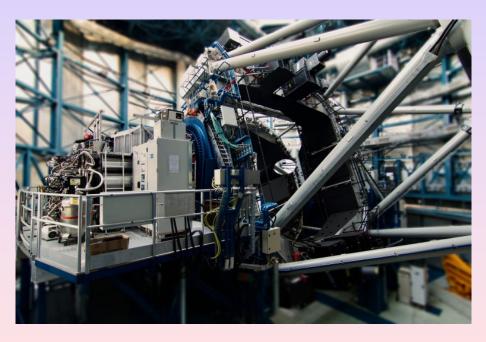

• Slicer + spectrograph unit

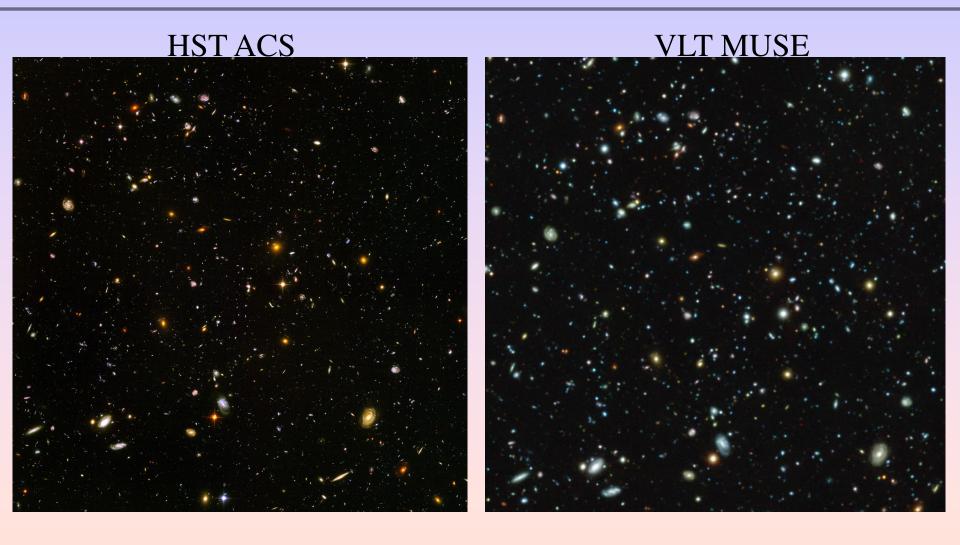
Articulated camera for VPH gratings



Henault et al. '04

• Catadioptric Image Slicer (CIS) for MUSE




Henault et al. '03

MUSE – the Medusa

MUSE – Hubble Ultra Deep Field

Cutting-edge Instruments HETDEX: VIRUS-156

Science goals

Measure baryon (acoustic) oscillations in power spectrum of large-scale structure of Lyα-emitting galaxies 1.8<z<3.7.

Technical approach

➤ Replicate, small, cheap, low-resolution bare-fiber fed spectrographs

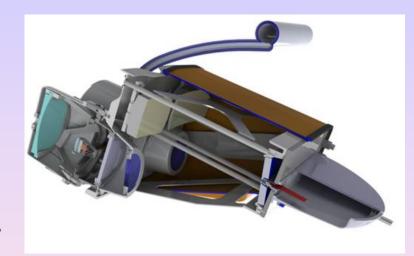
Instrument capabilities

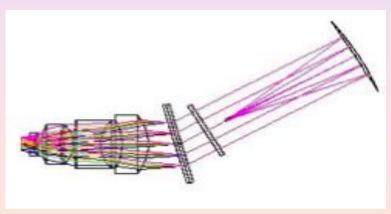
- ➤ HET 9.2m + new corrector (16' field)
- ➤ 215 arcmin² FoV, sparsely sampled
- ➤ 32604 spatial elements (1 arcsec² each)
- ➤ 340-570 nm range (one shot)
- ➤ 410 spectral elements (R~800)
- \geq $\epsilon \sim 0.15$

1 of 3 29" fibers sampled 11

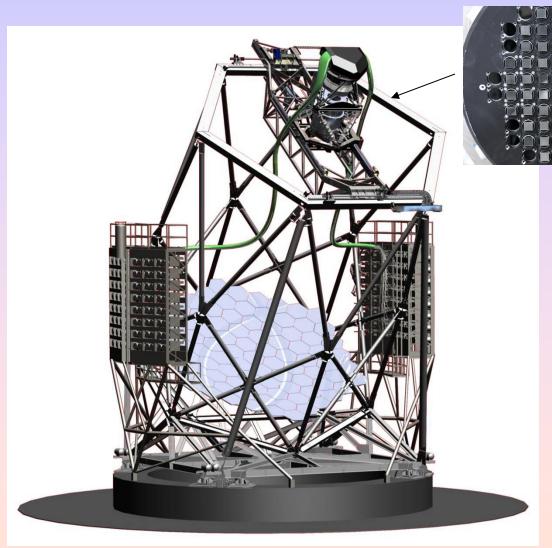
Cutting-edge Instruments HETDEX: VIRUS-156

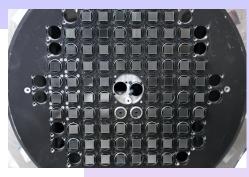
Science goals

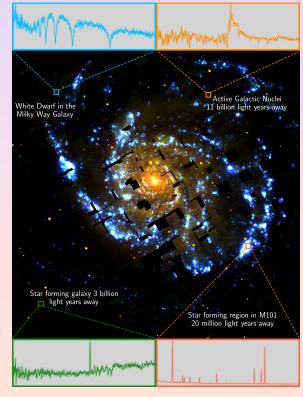

Measure baryon (acoustic) oscillations in power spectrum of large-scale structure of Lyα-emitting galaxies 1.8<z<3.7.


Technical approach

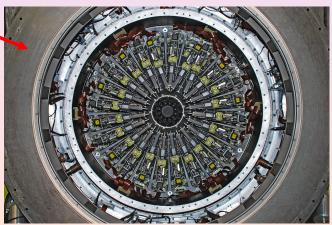
➤ Replicate, small, cheap, low-resolution bare-fiber fed spectrographs


Instrument capabilities


- ➤ HET 9.2m + new corrector (16' field)
- ➤ 215 arcmin² FoV, sparsely sampled
- ➤ 32604 spatial elements (1 arcsec² each)
- ➤ 340-570 nm range (one shot)
- ➤ 410 spectral elements (R~800)
- $\geq \epsilon \sim 0.15$



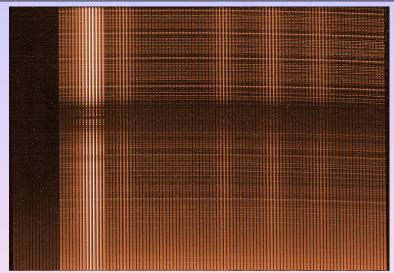
Cutting-edge Instruments HETDEX: VIRUS-156

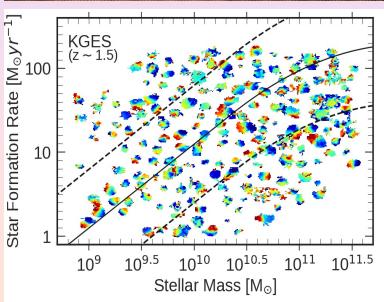


- Science goals
 - ➤ Investigate physical properties driving galaxy formation/evolution; measure comoving star-formation rate.
- Technical approach
 - ➤ Multi-object image slicer feeding cryogenic spectrographs (3).
- Instrument capabilities
 - > VLT 8m
 - ➤ 24 MOS probes, 2.8x2.8 arcsec each, sampled at 0.2 arcsec (14 slices)
 - ➤ 4704 spatial elements total (188 arcsec²)
 - > 7.5 arcmin diameter patrol field
 - > 1-2.5 μm range
 - ➤ 1000 spectral elements (R~3600)
 - $\triangleright \varepsilon = ?$

Sharples et al. '04

[See also: Thatte et al. '00]

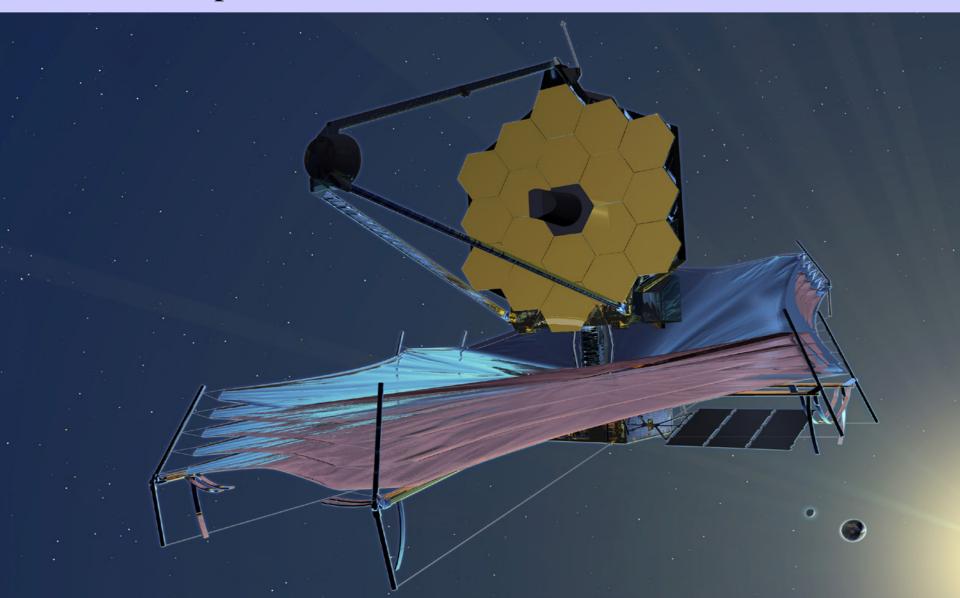




- Science goals
 - ➤ Investigate physical properties driving galaxy formation/evolution; measure comoving star-formation rate.
- Technical approach
 - ➤ Multi-object image slicer feeding cryogenic spectrographs (3).
- Instrument capabilities
 - > VLT 8m
 - ➤ 24 MOS probes, 2.8x2.8 arcsec each, sampled at 0.2 arcsec (14 slices)
 - ➤ 4704 spatial elements total (188 arcsec²)
 - > 7.5 arcmin diameter patrol field
 - \triangleright 1-2.5 µm range
 - ➤ 1000 spectral elements (R~3600)
 - $\geq \varepsilon = ?$

Sharples et al. '04

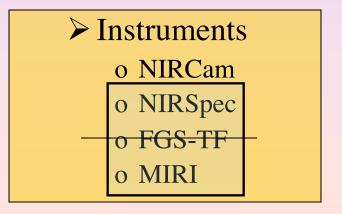
[See also: Thatte et al. '00]



Cutting-edge Instruments Ground-based instruments on 10m telescopes

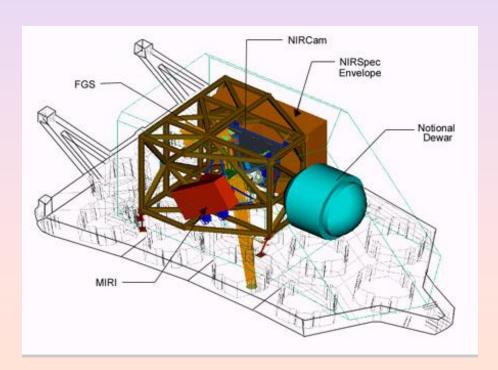
Recap:

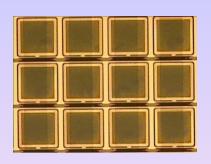
- State-of-the-art instruments (only some of them!)
 - > MUSE
 - > VIRUS
 - > KMOS
- Common themes:
 - \triangleright All have large A Ω by virtue of instrument multiplex
 - \triangleright None have large specific grasp Ad Ω
 - > object multiplexing: science-driven
 - o Science cases are varied; KMOS and MUSE are similar, but VIRUS is a departure both in science case (dedicated cosmology survey) and technical approach (bare fibers).
 - instrument multiplexing: cost-driven
 - o Looking for economies of scale
 - o Instrument cost go as D^{x}_{optic} , where x>2 (~2.2)


JWST

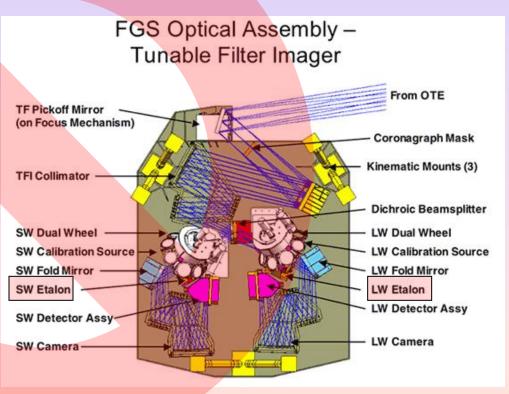
- ➤ 6.5m telescope (25 m²)
- \triangleright 0.6-29 µm coverage
- ➤ 0.1 arcsec resolution or better
- > opertating temperature < 50° K
- > 5-10 year lifetime
- ➤ Launch 2013 or later into 1.5 Mkm orbit at L2

> Science mission

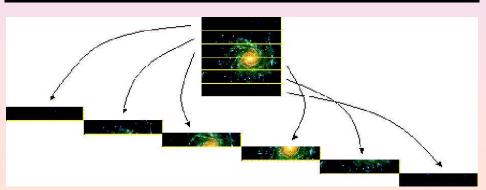

- o first light
- o galaxy assembly
- o birth of stars and proto-planets
- o planetary systems / origins of life

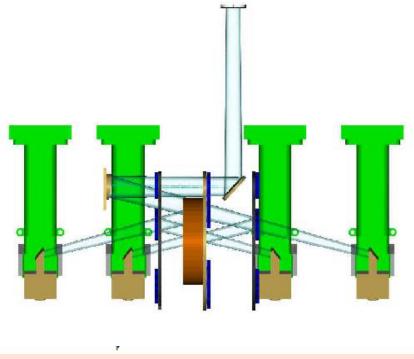


IFU capability


NIRSpec

- ➤ 3.5x3.5 arcmin field for MOS using MEMS devices
- \triangleright IFU mode: 3x3 arcsec at R = 3000
- ➤ advanced slicer: 40 3x0.075 arcsec slices feeding 2x2048² arrays
- $> 0.8-5 \; \mu m$


- FGS-TF: Fine-Guidance Sensors -Tunable Filter
 - ➤ Dual Fabry-Perot imaging cameras covering 1-5 mm
 - > 2.3 x 2.3 arcmin field
 - \triangleright R ~ 100
 - Two cameras: short $(1.2-2.1 \mu m)$, $(2-4.8 \mu m)$



Future instruments Space-based instruments: JWST

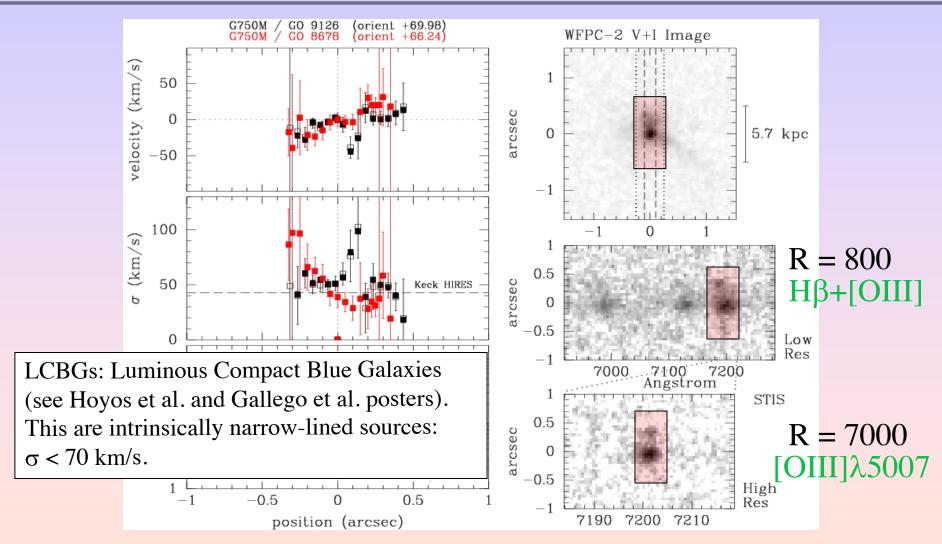
- MIRI: Mid-InfraRed camera and spectrometer
 - > 5-28 μ m
 - ➤ 4 simultaneous image slicers

channel	1	2	3	4
Wavelength (μu)	5-7.7	7.7-11.9	11.9-18.3	18.3-28.3
Slice width (")	0.17	0.28	0.39	0.64
Pixel (")	0.2	0.2	0.24	0.27
FoV (")	3x3.9	3.5x4.4	5.2x6.2	6.7x7.7
R	~3000	~3000	~3000	~2200

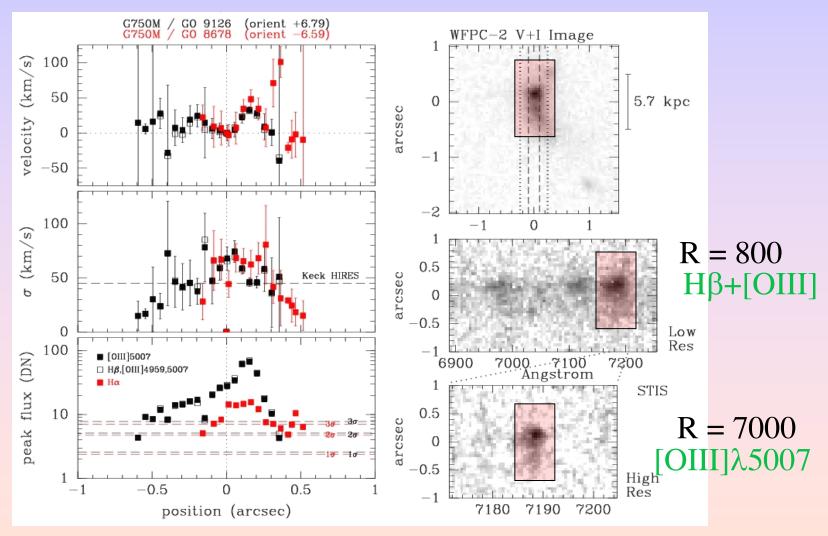
- JWST has IFUs with (typically)
 - \triangleright 3x3 arcsec fields mapped with image slicers
 - > 0.15 arcsec sampling -- lower than TMT
 - \triangleright 100 < R < 3000 -- lower-to-comparable to TMT
 - ➤ Optical to mid-infrared coverage *with low backgrounds*
- One near-infrared FP offers narrow-band imaging over a 2.3 arcmin field.
- There are no large-grasp systems that take advantage of the low backgrounds of space.
- There are no high- (or even medium) resolution spectrographs.

Table 6. Future Space-Based Integral Field Instruments										
Instrument	Coupling Method	Telescope	D_T (m)	Ω (arcsec ²)	$d\Omega$ (arcsec ²)	N_{θ}	$\Delta \lambda / \lambda$	R	N_R	ϵ
MIRI NIRSpec		JWST JWST	6.5 6.5	51.8 9.	0.30 0.0056	173 1600	1.48 0.34	2800. 3000.	4096 1024	

A warning about space-based measurements of galaxy kinematics

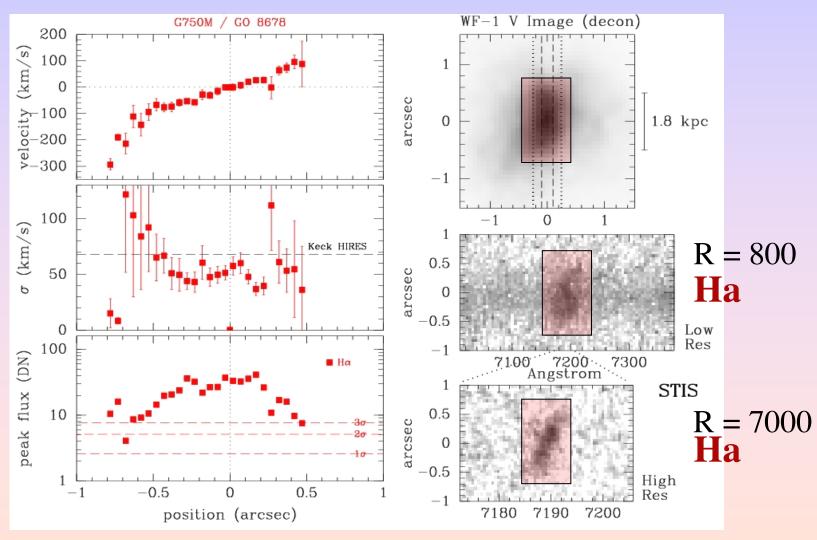

- Remember: Your spectrum is a continuum of monochromatic images of your slit.
- An unresolved emission-line will appear as a slit image,
 - ➤ i.e., the detailed structure of the line profile is just the (demagnified) image formed on your slit.
- This occurs at "low" spectral resolution.
 - > "low" depends on the intrinsic internal velocities of your source.
- This applies to any data where the PSF is significantly smaller than the slit width *and* instrinsic image structure is of order the scale of the slit width or smaller.
- Such data will have artificial "kinematic" features which have to be interpreted with prior information about the spatial distrution of flux within the slit.

Slit width (angle)


- The solution is "trivial:"
 - \triangleright Observe at higher spectral resolution: R >> λ / $\theta_{\rm w}$ * γ

Angular dispersion

An example: STIS Spectra of LCBGs



...We didn't just get "lucky"...

H313088, z=0.44, $V/\sigma \sim 0.45$ Bershady, Vils, Hoyos, Guzman, Koo '04

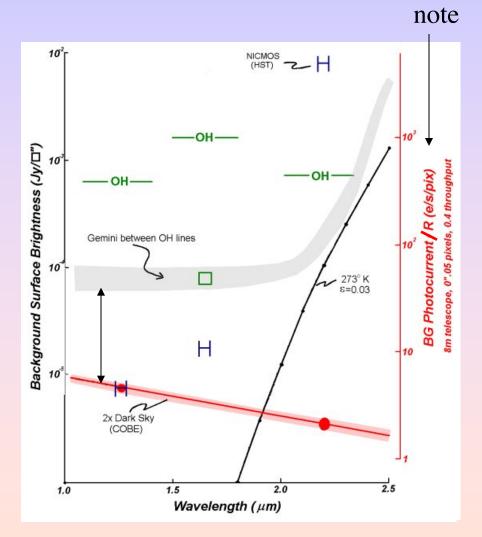
Here's another:

H313385, z=0.10, $V/\sigma \sim 3.4$ Bershady, Vils, Hoyos, Guzman, Koo '04

Take-home message

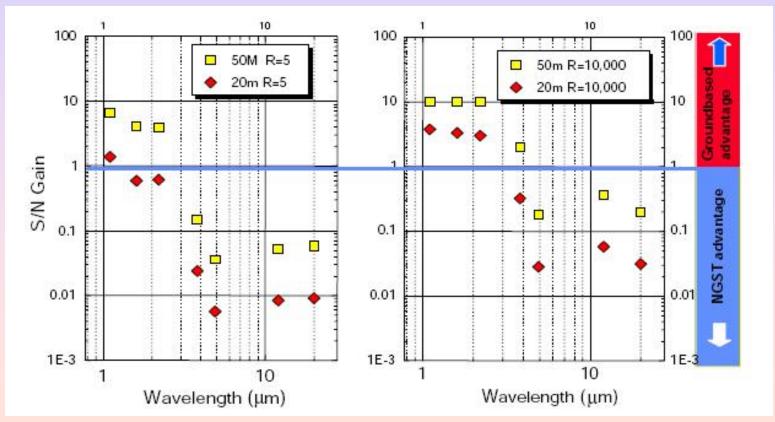
Be very careful with high-angular resolution data which is observed at low dispersion.

- Backgrounds
 - background or detector limitedo Wavelength and resolution dependent
- Cost and flexibility
 - ✓ ground-based telescopes always win
- ✓ Why build bigger telescopes?

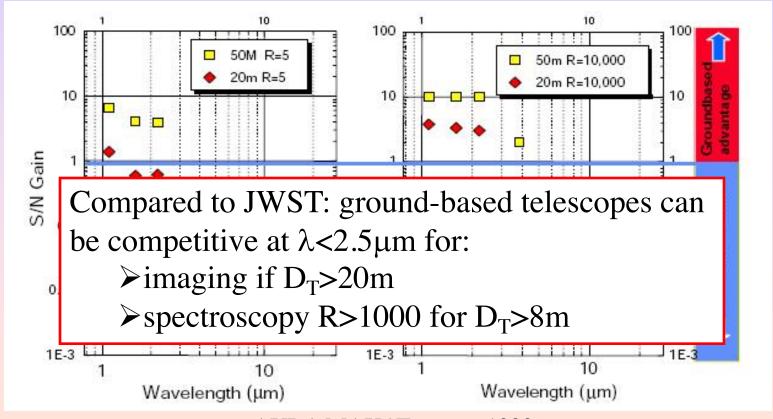

• Backgrounds:

➤ a cooled space-craft has significantly lower background compared to the ground even at high spectral resolution.

o dramatic for $\lambda > 2.5 \mu m$


➤ Above R~1000, 8m-class space telescopes are detector-limited (0.05" apertures).

Gillet & Mountain '97 MAXAT


• Competiveness:

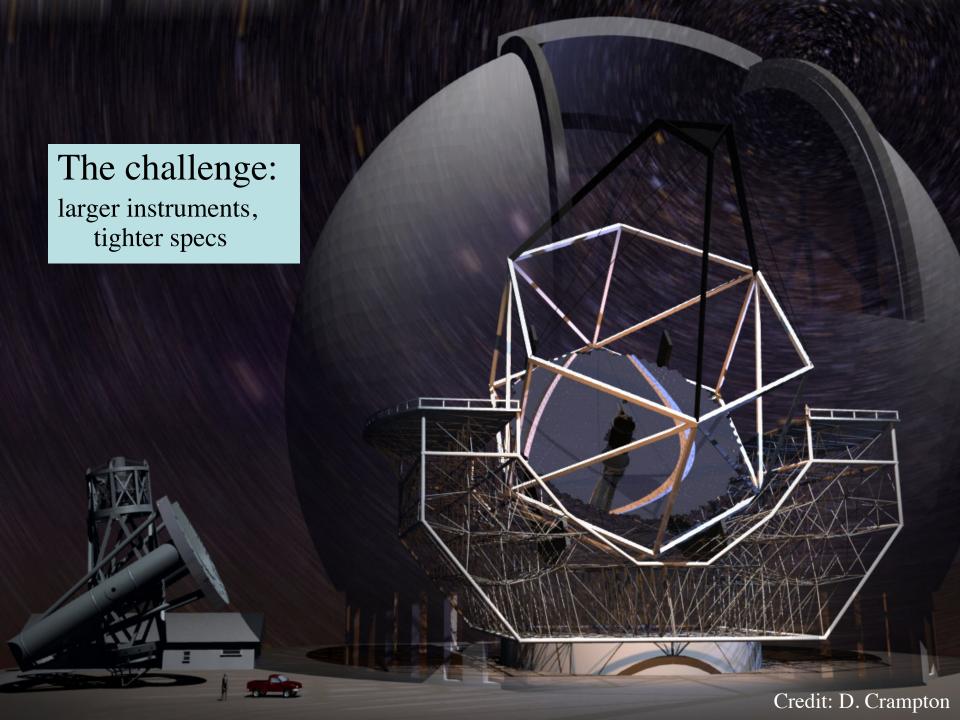
> assumes diffraction-limited performance for stellar spectroscopy.

• Competiveness:

> assumes diffraction-limited performance for stellar spectroscopy.

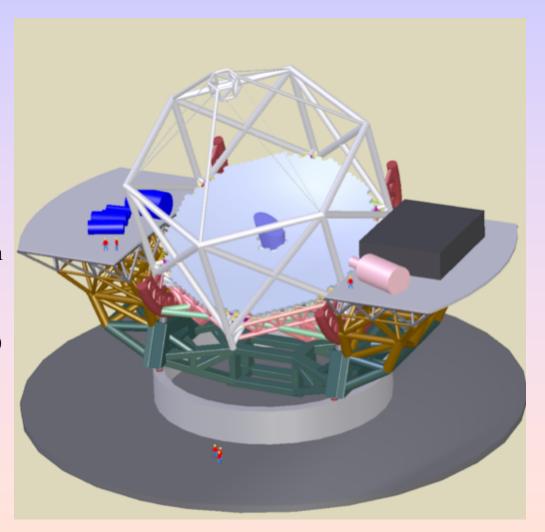
- The horror challenge of large telescopes
 - instrument size at the diffraction limit
 - ➤ AO-driven designs
 - > unique parameter space: the photon limit at high resolution
- Specific examples of TMT instrumentation
 - (D. Crampton)
 - > different kinds of AO
 - > WFOS seeing-limited
 - > IRIS NIRFAOS, diffraction limited
 - > IRMOS MOAO, multi-object

ELT: See also Eisenhauer et al. '00, Russell et al. '04


- Why the challenge?
 - \triangleright A Ω is conserved
 - \triangleright If you want field (Ω) , you are going to have to pay for it by building a massive instrument.
 - ➤ Only one way out: work at the diffraction limit since

$$\theta \sim \lambda / D_T$$

The instrument entrance aperture (and hence the instruments size itself) for diffraction-limited sources is independent of telescope diameter.


- This is ok for individual stars or planetary systems, but galaxies are extended, and everybody wants "field" for survey work.
- ➤ Science case driven to high-angular resolution because technical case is achievable and attractive.
 - o Dangerous?

- AO-driven designs
 - Different kinds of AO
 - o Level of correction (from tip-tilt to extreme AO)
 - o Area which is corrected
 - o Single or multiple areas
 - ➤ What instrument you build depends on what AO you think you can deliver.
 - o Is this backwards? What's the *a priori* science goal?
- Unique parameter space:
 - ➤ The photon limit at high resolution
 - o High spectral or spatial resolution?
 - ➤ The diffraction limit...
 - o ...especially at long wavelength requires large aperture.
 - o But this is where you win in space, so focus on near-infrared.

Single TMT Reference Design

- 30m filled aperture, highly segmented (738)
- Aplanatic Gregorian (AG) telescope
- f/1 primary
- f/15 final focus
- Field of view 20 arcmin
- Wavelength coverage $0.31 28 \mu m$
- Operational zenith angle range 1° thru 65°
- Instruments (and their AO systems) are located on large Nasmyth platforms, addressed by an articulated tertiary mirror.
- Both seeing-limited and adaptive optics observing modes

SRD Science Instruments

- Adaptive Optic systems defined
 - > NFIRAOS (Narrow Field facility AO system) for first light
 - ➤ MOAO ("Multi-Object Adaptive Optics" ~20 positionable, 5" compensated patches in 5")
 - ➤ **MIRAO** (MidIR AO)
 - ➤ MCAO (wide field AO, optimized for photometric and astrometric goals)
- Eight Instruments identified
 - ➤ IRIS, a NIR imager and integral field spectrograph working at the diffraction limit, fed by NFIRAOS
 - > WFOS, a wide field, seeing-limited optical spectrograph
 - > IRMOS, a NIR multi-object integral field spectrograph fed by MOAO
 - ➤ MIRES, a mid-IR echelle spectrograph fed by MIRAO
 - > **PFI**, a "planet formation instrument", which combines a high contrast AO system and an imaging spectrograph.
 - ➤ NIRES, a NIR echelle spectrograph, also fed by NFIRAOS
 - ➤ **HROS**, a high spectral resolution optical echelle spectrograph
 - ➤ WIRC, a wide field NIR camera fed by multi-conjugate AO

IRIS: Infrared Imaging Spectrograph

Integral Field Spectrograph and Imager working at the diffraction limit

- Wavelength range: $0.8-2.5\mu$ m; goal $0.6-5\mu$ m
- **Field of view:** < 2 arcsec for IFU, up to 10" for imaging mode
- **Spatial sampling:** 0.004 arcsec per pixel (Nyquist sampled) over 4096 pixels for IFU; over 10x10 arcsec for imaging
 - ➤ Plate scale adjustable 0.004, 0.009, 0.022, 0.050 arcsec/pixel
 - ightharpoonup 128x128 spatial pixels with small ($\Delta\lambda/\lambda \le 0.05$) wavelength coverage

Spectral resolution

- > R=4000 over entire J, H, K, L bands, one band at a time
- \triangleright R=2-50 for imaging mode
- Low background (increase inter-OH sky + tel by no more than 15%)
- Detector: Dark current and read noise ≤ 5% of background for t=2000s
- Throughput: as high as practical

IRMOS: Infrared Multi-Object Spectrograph

MOAO/Deployable IFU spectrometer

- Wavelength range: $0.8-2.5\mu$ m
- **Field of View:** IFU heads deployable over 5 arcmin field
- Wavefront quality: preserve that delivered by AO system
- Image quality: diffraction-limited images, tip-tilt ≤0.015 arcsec rms
- Spatial sampling
 - \triangleright 0.05x0.05 arcsec pixels, IFU head 2.0 arcsec, \ge 10 IF units
- Spectral resolution
 - \triangleright R=2000-10000 over entire J, H, K bands, one band at a time
 - \triangleright R=2-50 for imaging mode
- Low background (increase inter-OH sky + tel by no more than 15%)
- Detector: Dark current and read noise ≤ 5% of background for t=2000s
- Throughput: as high as practical

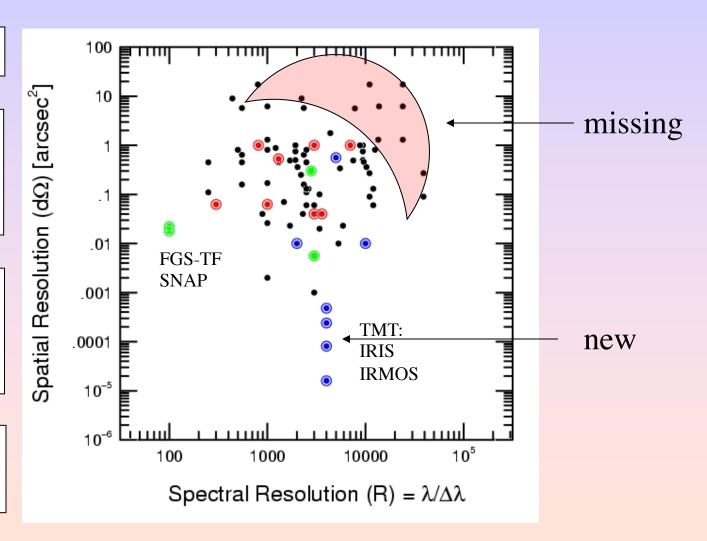
WFOS: Wide Field Optical Spectrograph

Multi-object spectroscopy over as much of 20' field as possible

- Wavelength range: $0.31-1.1\mu$ m ($0.31-1.6\mu$ m goal). ADC required
- Field of view: 75 arcmin²; goal: 300 arcmin²
- Total slit length \geq 500 arcsec
- Image quality: ≤ 0.2 arcsec FWHM over any 0.1μ m
- Spatial sampling: ≤ 0.15 arcsec per pixel, goal ≤ 0.10 arcsec
- **Spectral resolution:** R=5-5000 for 0.75" slit; goal: 150-6000
- Throughput: $\geq 30\%$
- Sensitivity: photon noise limited for all exposures > 60s
- Background subtraction systematics must be negligible compared to photon noise for total exposure times as long as 100 Ks
- Stability: Flexure < 0.1 pixel at the detector is required
- Desired: cross dispersed mode, IFU option, narrow band imaging, enhanced image quality using adaptive optics

TMT SUMMARY

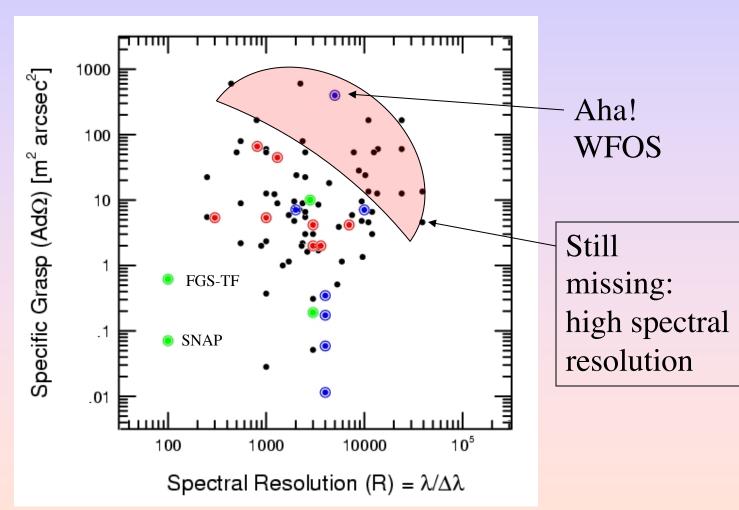
- High-priority IFS is in the near-infrared
 - ➤ High angular resolution (< 0.1 arcsec)
 - ➤ Small fields of view (< 7 arcsec)
 - ➤ Modest spectral resolution for an ELT (<10000, more like 2-4000)
- WFOS has potential for modest-grasp IFU with good spectral power, but modest spectral resolution (<6000)


			Table 5. Future TMT Integral Field Instruments							
Instrument	Coupling Method	Telescope	D_T (m)	Ω (arcsec ²)	$\frac{d\Omega}{(arcsec^2)}$	N_{θ}	$\Delta \lambda / \lambda$	R	N_R	ϵ
IRIS	slicer	TMT	30.	0.26	1.6e-5	16384	0.05	4000.	200	-1.
IRIS	slicer	TMT	30.	1.33	8.1e-5	16384	0.05	4000.	200	-1.
IRIS	slicer	TMT	30.	7.93	4.8e-4	16384	0.05	4000.	200	-1.
IRIS	slicer	TMT	30.	41.0	2.4e-4	16384	0.05	4000.	200	-1.
IRMOS	slicer	TMT	30.	40.	0.01	4000	0.25	2000.	500	-1.
IRMOS	slicer	TMT	30.	40.	0.01	4000	0.25	10000.	2500	-1.
WFOS	fiber+lens	TMT	30.	810.	0.56	1440	1.37	5000.	6850.	0.3

New Ground 2-10m

Future Ground 30m

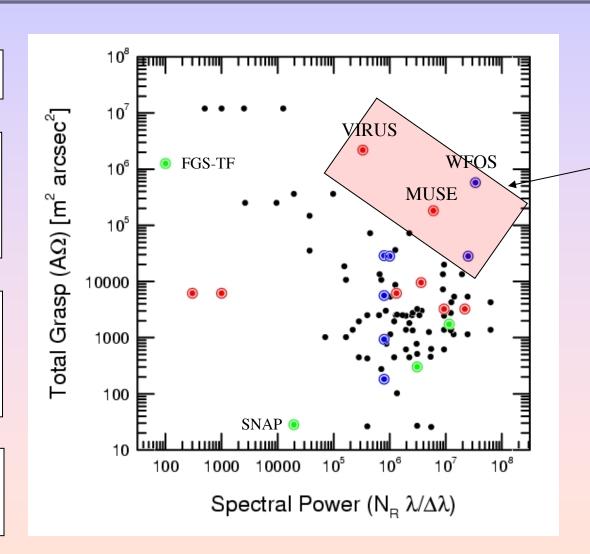
JWST Space



New Ground 2-10m

Future Ground 30m

JWST Space

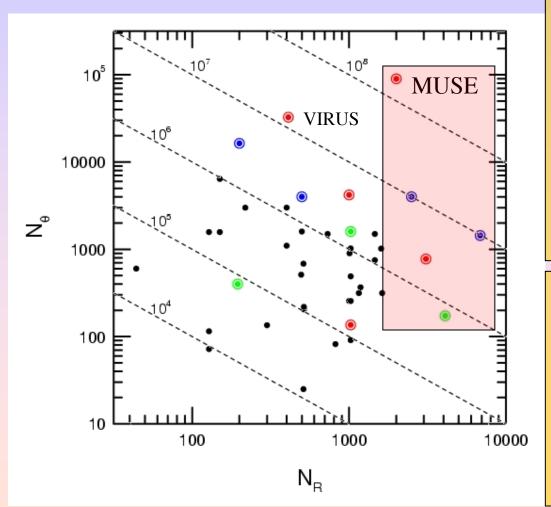


Existing

New Ground 2-10m

Future Ground 30m

JWST Space


Added AΩ at high spectral power.

Existing

New Ground 2-10m

Future Ground 30m

JWST Space

New instruments are adding total resolution elements and spectral resolution elements.

10m-class instruments appear more ambitious than 30m-class instruments... ... stay tuned!

Future instruments Unexplored options: some examples

- Notch and double gratings on existing or new grating-dispersed 3D spectrographs
- large-grasp IFUs at high spectral resolution
 - multiplexed "conventional" grating-dispersed spectrographs
 - > SHS fed with fiber or lenselet array
 - > FP options?