

Astro 500

stro 50

Techniques of Modern
Observational Astrophysics

Matthew Bershady
University of Wisconsin

Lecture Outline

Spectroscopy from a 3D Perspective

- ✓ Basics of spectroscopy and spectrographs
- ✓ Fundamental challenges of sampling the data cube
- Approaches and example of available instruments
 - ➤ I: Grating-dispersed spectrographs
 - > Echelles
 - Bench Spectrograph
 - ➤ II: Fabry-Perot interferometry
 - ➤ III: Spatial heterodyne spectroscopy

Spectral Resolution

- $R = \lambda/\Delta\lambda$
- For slit spectra, depends on slit width and grating choice.

What is the effective slit-width of a circular fiber?

What is the effective slit-width of a tilted slit?

LRIS (Keck Obs WWW page)

Typical information provided:

Grating					
Name	Grooves	Blaze Wave	Dispersion	Spectral coverage	
	(l/mm)	(Å)	(Å/pix)	(Å/2048 pix)	
150/750	0 150	7500	4.8	9830	
300/500	0 300	5000	2.55	5220	
400/850	0 400	8500	1.86	3810	
600/500	0 600	5000	1.28	2620	What order?
600/750	0 600	7500	1.28	2620	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
600/100	00 600	10000	1.28	2620	
831/820	0 831	8200	0.93	1900	
900/550	0 900	5500	0.85	1740	
1200/75	00 1200	7500	0.64	1310	

What else do you need to know in order to calculate resolution?

Spectral Resolution

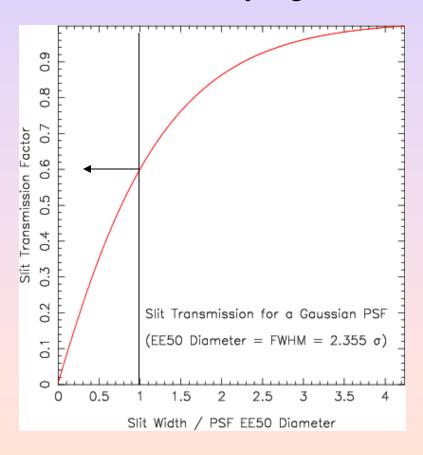
• Examples:

- \triangleright V filter: 5500Å/1000Å = 5.5
- ➤ LRIS-R: 1" ~4 pixels FWHM
 - o 150 l/mm grating: $R \sim 6500/20 \sim 325$
 - o 600 1/mm grating: $R \sim 6500/5 \sim 1300$
 - o 1200 l/mm grating: $R \sim 6500/2.6 \sim 2600$

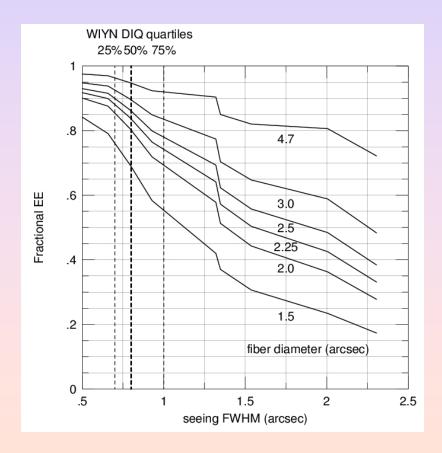
Spectrometer Throughput

• Spectrometer throughput ranges from a few percent to ~50%. The losses accumulate fast. Dispersing elements are usually a big hit, then the losses at multiple surfaces go like (transmission)ⁿ where n is the number of surfaces in the collimator and camera elements (n can be pretty big).

$$0.98^8 * 0.7 * 0.8 = 0.47$$
Camera/coll grating ccd


with 8 surfaces

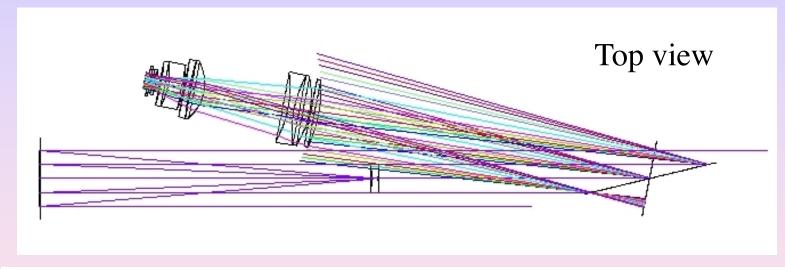
(often more)

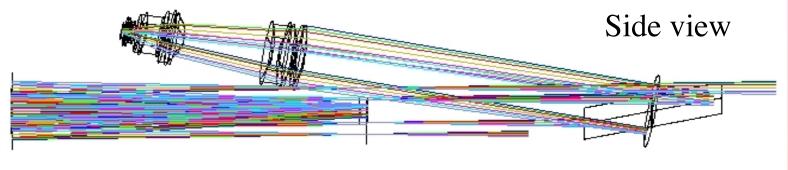

What's missing?

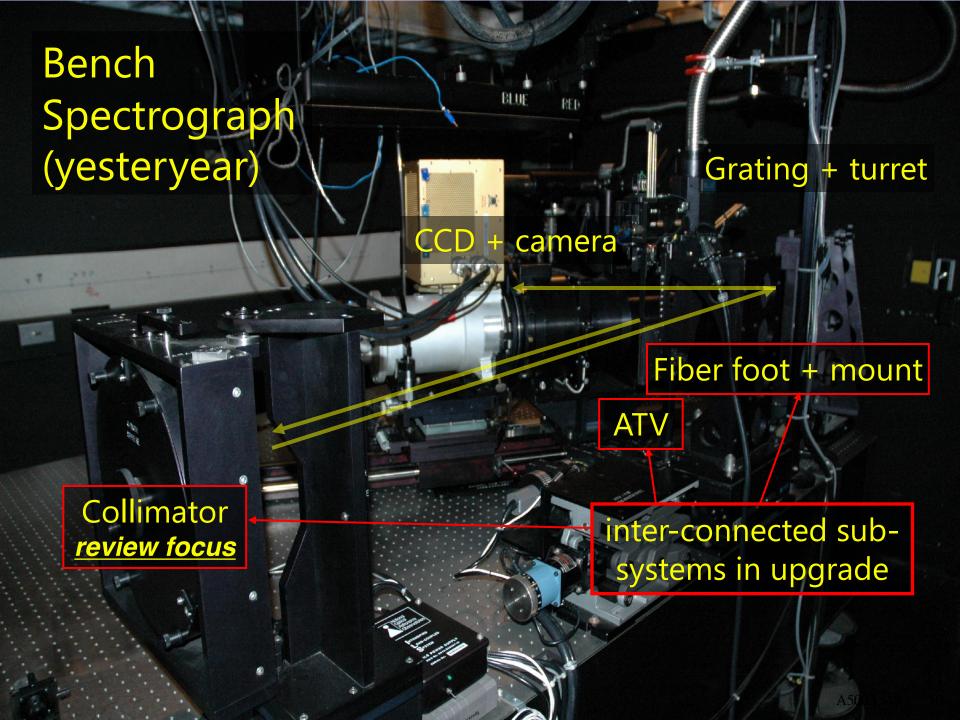
Slit Losses

Another throughput issue: slit losses can be very significant!

Applies to fibers too.


Other Losses

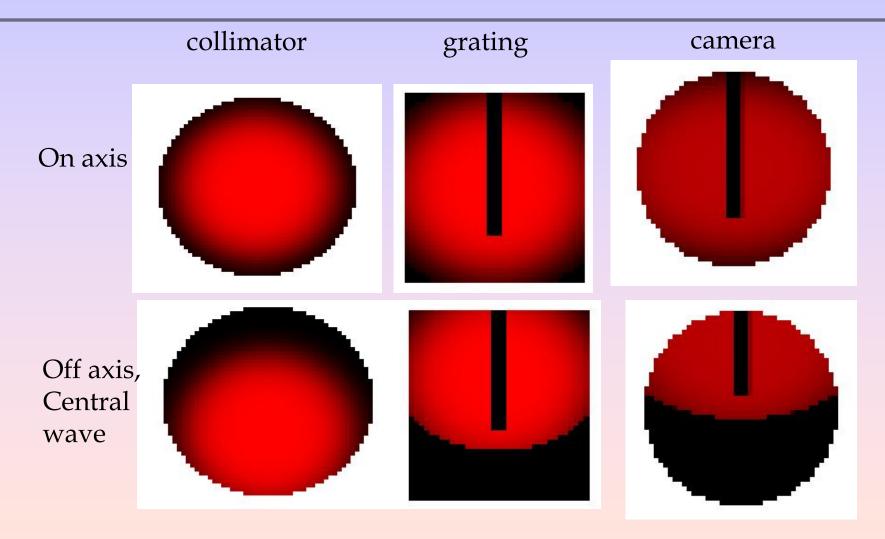

- Lens absorption (particularly in blue/NUV)
- Beam over-fill or blockage (vignetting)
- Fiber losses (transmission and surfaces)
- Slicer losses (optical surfaces)
- Telescope losses (mirrors)
- ADC losses
- Atmospheric absorption


Other???

An Example: The Old WIYN Bench

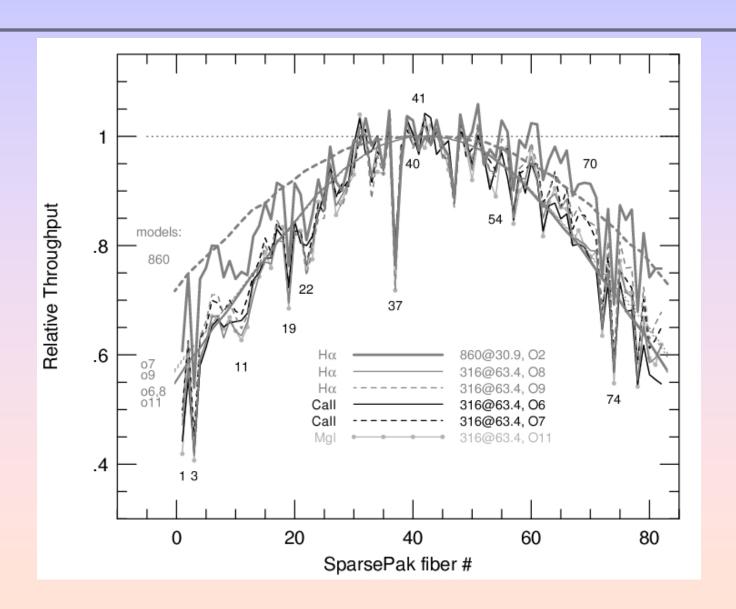
Echelle setup

Spectrograph characteristics


- Fiber feeds: 75 mm slit, 80-100 fibers
 - \triangleright Hydra (200 μ ,300 μ), (DensePak, 300 μ), SparsePak (500 μ)
- Collimator: on-axis parabola, 1021 mm fl old system
- Grating suite:
 - > SRg echellettes (316-1200 l/mm), R2 echelle, VPHg (740, 3300 l/mm); camera-collimator angles of $11^{\circ} < \theta_{cc} < 150^{\circ}$
 - \triangleright Delivered instrumental resolutions 500 < $\lambda/\delta\lambda$ < 25,000
- Cameras:
 - ➤ BSC (all-refractive, 285 mm fl), Simmons (catadioptric)
- CCD: $T2KC/T2KA (24\mu) \rightarrow STA 1042 (12\mu)$
- System demagnification: 3.58 (BSC) + anamorphic factors
 - \triangleright Re-imaged fiber sizes (spatial): 56 μ , 84 μ , 140 μ
 - ➤ Re-imaged fiber sizes (spectral): down to 2/3 spatial
 - \triangleright Re-imaged fiber separation: 112 μ (edge-to-edge)

Performance Quantification

Detector:	T2KC		Collimator:	WIYN@1023 ▼	Camera:		BSC
pixel number: 2,048							
pixel size (um): 24			Focal Length:	1,023.6	,023.6 Focal Length:		285
gain:	1.7		Focal Ratio:	4.345	Focal Ratio:		1.383
Rdnoise:	4.3		Diameter:	225.6	mana ha	4: 20	206
Chip Size:	49.15	2		235.6	235.6 mono. bea		206
Cables :	Red	-	Grating:	316@7 ▼	Alpha:		19.691
Diameter:	0.2		Lines per mm:	316.000	Beta : Cam-Coll Angle:		-10.309
J. Lineten	0.2		Grating Order: Blaze:	1			10.303
Diam (arcsec):	1.877			7.000			30
Fiber Ratio:	4.75		Dgc	390	Pupil Dist	ance:	1,023.6
Central wavelength(4): Low wavelength(4):		5,000		dispersion(A/mm)):	109.245	
		2,336.29		. , , , , ,		2.622	
_	• •					1,329.51	9
High waveleng	tn(A):	7,705.89				953.517	.517
Blaze Wave(A)	:	7,450.42	7			3.592	
Order for CW:		1.49		Spectral Demagnification: 3.7		3.753	3
	mm	pix	Angstroms				
Spatial diam	0.056	2.32	6.083		alculate Exp		_
Spatial FWHM	0.036	1.499	3.93		Calculate th it wave v. h		
•	-	1-11-1		Plot wav <u>e</u> v. blaze effici Plo <u>t</u> cam-coll. v. total effi			
Spectral diam		2.22	5.822		Plot cam-coll. v. <u>R</u> esolution		
Spectral FWHM 0.034		1.434	3.761 Plot ca		am-coll angle v. <u>b</u> lazewave		zewave


Setup optimization - written by Steve Crawford - go to www.astro.wisc.edu/~crawford/Spectrograph/intro.html

Bench GUI Vignetting Model

Echelle order 8 (8.41), cwl 669nm

It works!

14

Photon Budget-1: Top End

TABLE A1. BENCH Setu	SPECTROGRAPH THROUGH p: Echelle, order 8, cwl=66	75 (¹⁷ ¹⁷ 17 17 17 17 17 17 17 17 17 17 17 17 17				
COMPONENT	ESTIMATE QUALITY	ON-AXIS OFF-AXIS				
Top-End "Feed"						
atmosphere						
transmission	reasonable estimate: 1.12 airmass at 6687A	0.90				
telescope (3 mirrors)						
reflectance	rough estimate / variable: assume 0.88-0.89 per surface	0.69				
fiber						
throughput	good estimate in lab	0.88				
``slit losses"	high-fidelity aperture correction	n 0.91				
Top-End subtotal		0.50				

Photon Budget-1a

- Half the light is lost before the spectrograph!
- Over-coating secondary and tertiary (LLNL-type) will yield significant gains -- 16%.
 [RECOMMEND but not done]
- More frequent re-aluminization may pay for itself in total photons collected per year. Explore?
- AR coating fibers gains 4% -- a lot of effort.

Photon Budget-2: Spectrograph

TABLE A1. BENCH SPECTROGRAPH THROUGHPUT BUDGET

Setup: Echelle, order 8, cwl=669nm, BSC, SPK

COMPONENT ESTIMATE QUALITY ON-AXIS OFF-AXIS

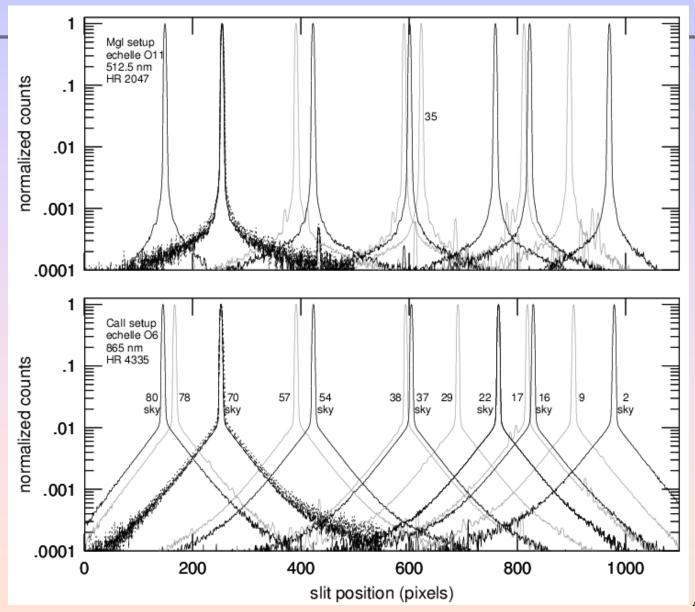
Spectrograph		On-axis	Off-axis
toes			
filter transmission	good estimate? (X19)		0.90
vignetting	good estimate from model	1.0	1.0
collimator			
reflectance	ok estimate		0.89
vignetting	good estimate from model	0.98	0,89
pupil obstructions (foot)		
vignetting	good estimate from model	0.93	0.92
grating			
efficiency	peak from Hydra Manual times theoretical blaze fnc for 6687A	0.32	(0.50x0.63)
vignetting	good estimate from model	0.93	0.86
camera			
transmission	unknown		TCem
vignetting	good estimate from model	0.81	0.54
ccd system			
window & det. QE	Hydra Manual		0.80
Spectrograph subtotal		0.14 T _{Ca}	0.078 T _{Cam}

17

Photon Budget-2a

• Vignetting accounts for most of losses in spectrograph.

➤ On-axis: 69% throughput


➤ Off-axis, central wave: 38% throughput

➤ Off-axis: 20% throughput

• Grating efficiency 2nd largest loss (35-60%)

• Camera throughput ok, but scattering in red

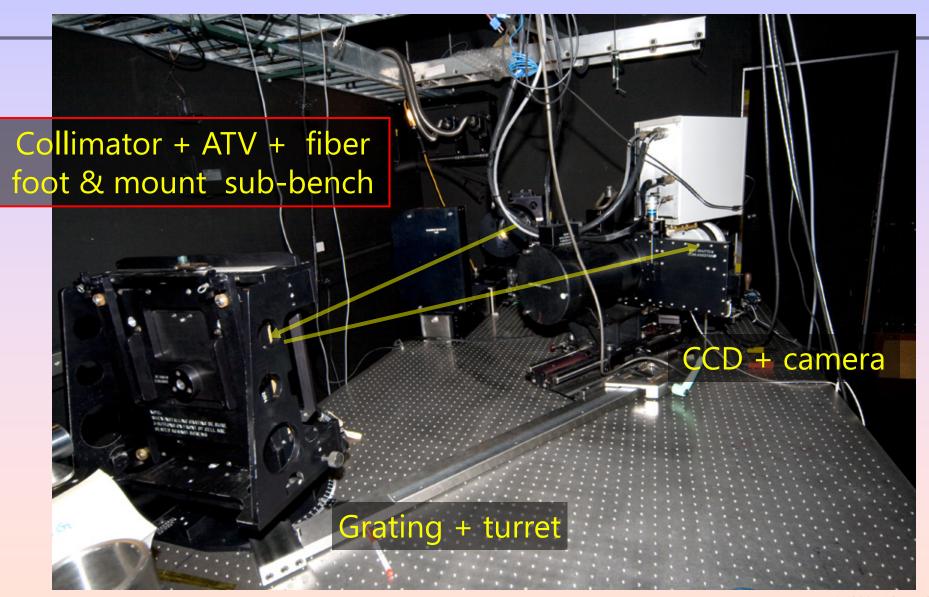
Scattered light in the red

Photon Budget Summary

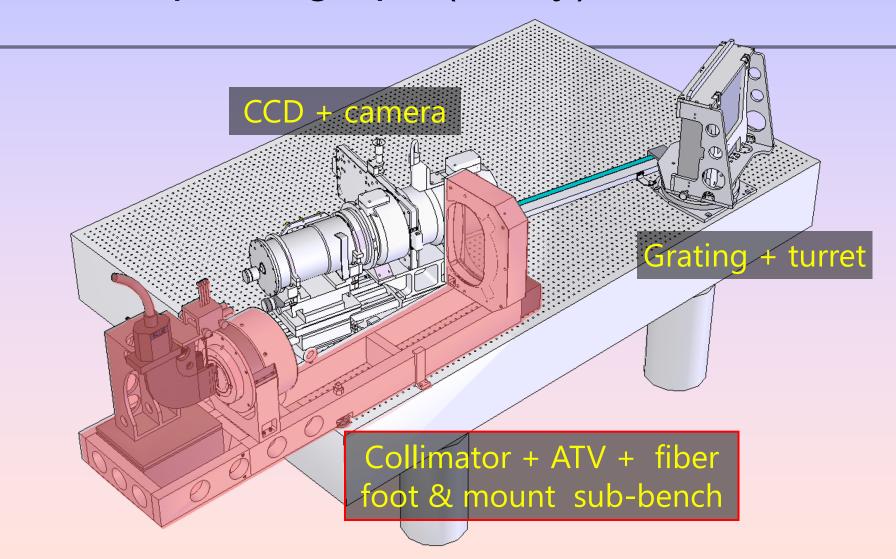
TABLE A1. BEN	CH SPECTROGRAPH THRO	UGHPUT BUDGET
S	etup: Echelle, order 8, cv	vl=669nm, BSC, SPK
COMPONENT	ESTIMATE QUALITY	ON-AXIS OFF-AXIS
Top-End subtotal		0.50
Spectrograph subtotal		0.14 T _{Cam} 0.078 T _{Cam}
Spectral Extraction	high fidelity measurement	
Total		$0.069~\mathrm{T_{Cam}}0.038~\mathrm{T_{Cam}}$
Measurement		0.054 0.028
Implied T _{Cam}		0.78 0.74

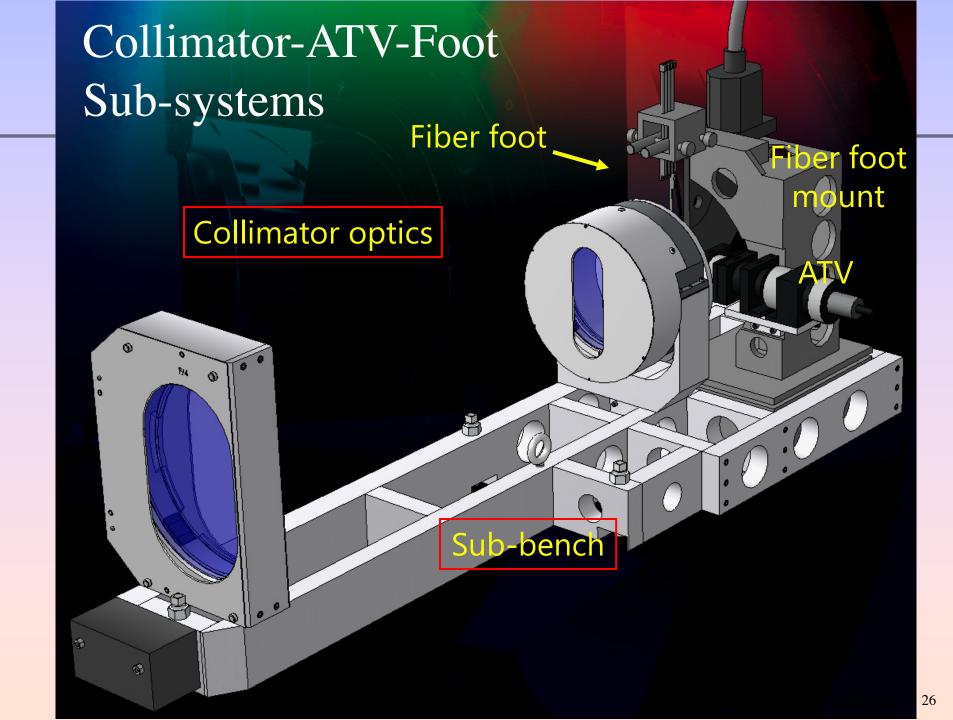
Motivation for Upgrade

- Spectrograph had very low throughput (3-5%).
- Generically uncompetitive by standards of 1980/1990's cutting-edge systems (e.g., CryoCam).
- Read-noise-limited performance for many science-applications (background-limited work above $\lambda/\Delta\lambda$ of a few thousand).
- ➤ Could we fix it with a modest-cost "upgrade" instead of starting from scratch? (ubetcha)

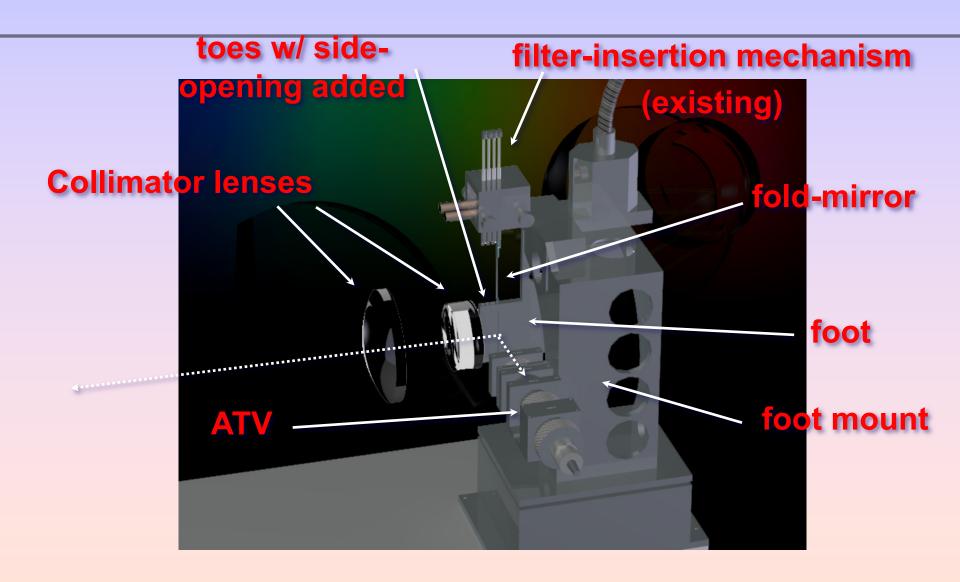

Problems to Solve

- Spectrograph not designed to handle fiber-output f-ratio.
 - Collimator too slow to capture fiber exit-beam (collimated beam too large; vignetted down-stream)
 - \triangleright Toes vignette beam faster than f/5.7 (internal baffles)
- Entrance pupil is not re-imaged to minimize slitfunction.
- > Can be solved with proposed collimator design

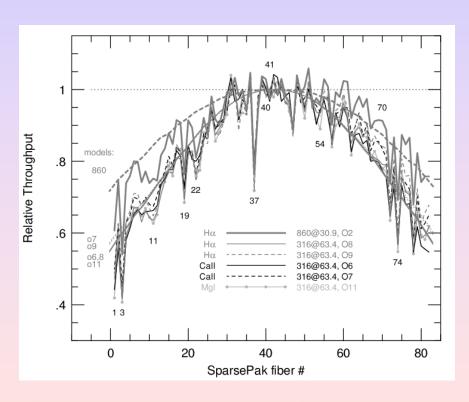

History: Options Considered


- Off-axis parabolic collimator + corrector
 - ➤ 3 tilted, all sph., FS lenses (C. Harmer)
 - o Insufficient image quality; 7 surfaces
 - ➤ 4 tilted all sph., FS lenses (C. Harmer)
 - o Good image quality; 9 surfaces; difficult to build
 - ➤ 3 displaced all sph., FS lenses (D. Blanco)
 - o Good image quality; 7 surfaces; easier to build
- On-axis all-refractive collimator (M. Liang)
 - ➤ 4 all sph., one flint-glass, 3 FS -- 3 groups
 - o Superior image quality; 6 surfaces; easiest to build

Bench Spectrograph (today)

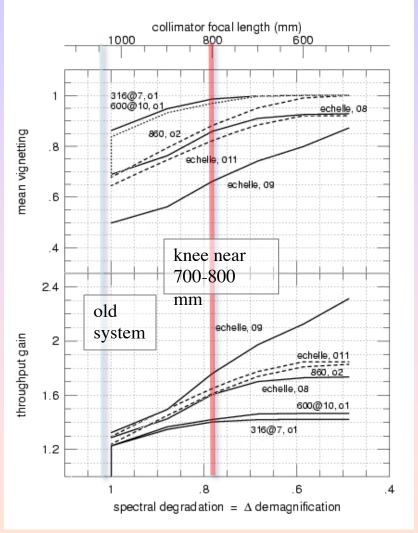


Bench Spectrograph (today)



ATV-Foot Sub-systems

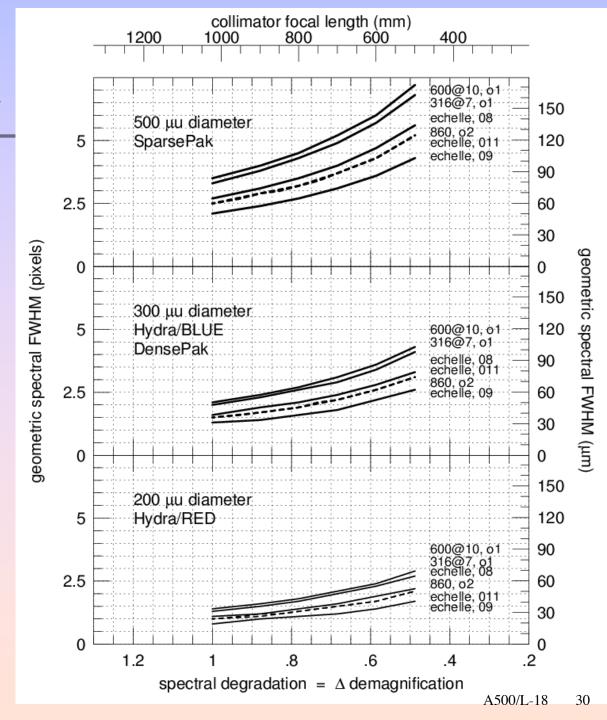
Preliminary Analysis


- Use custom beamtrace code. (Crawford)
- Examine throughput vs magnification trade as function of collimator fl.
- Find optimum pupil placement.

Bershady et al 200, ApJSupp, 156, 311

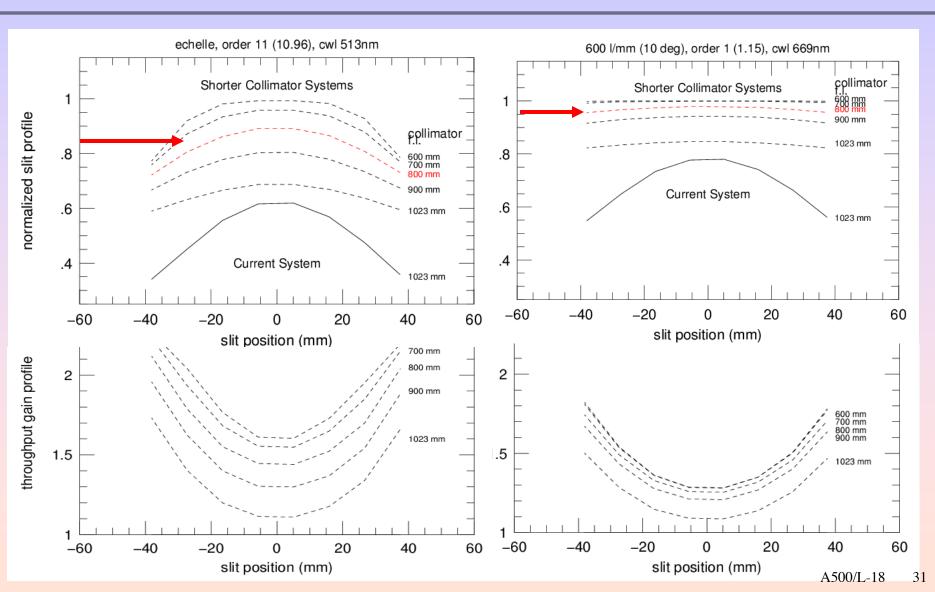
Preliminary Analysis

- Use custom beamtrace code. (Crawford)
- Examine throughput
 vs magnification trade
 as function of
 collimator fl.
- Find optimum pupil placement.

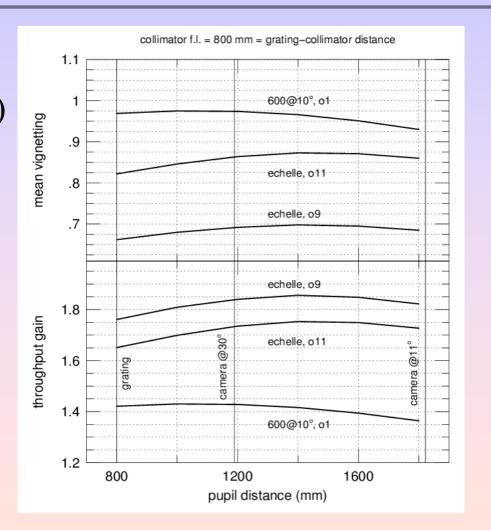


Tradeoffs: throughput vs resolution

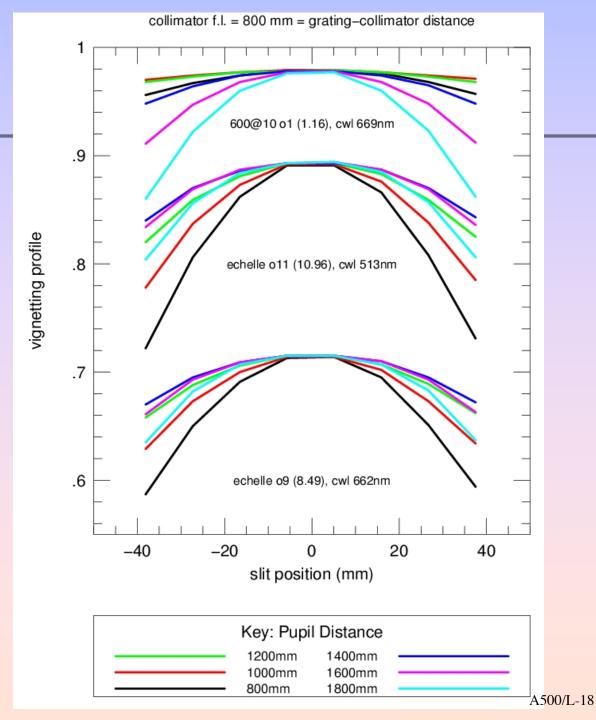
Changes in geometric slit-width:


Decreased collimator f.l. *expands* image-size

At 800mm, smallest fibers still under-sampled

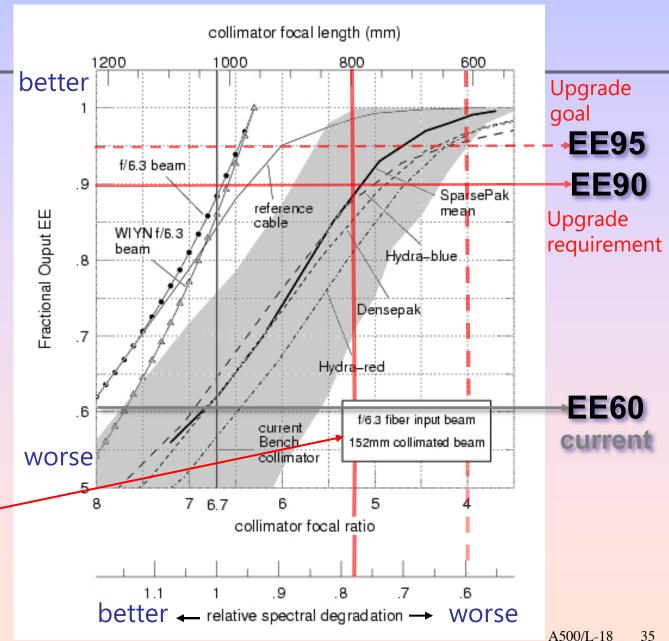

Preliminary Analysis

Estimated improvements in slit function



Preliminary Analysis

- Use custom beamtrace code. (Crawford)
- Examine throughput vs magnification trade as function of collimator fl.
- Find optimum pupil placement.


Effects of pupil placement on vignetting profile

Analysis Conclusions

- Collimator focal length:
 - > decrease from 1021 mm to 800 mm.
- Pupil location:
 - increase from 1021 mm beyond collimator to 450 mm beyond first grating turret (over 1800 mm beyond collimator).
- Toes:
 - ➤ shorten and widen to accommodate f/5 with option for f/4.

Bench Input Beam

f/5 160mm collimated beam

Project Goals

- Increase spectrograph throughput by 60% while minimizing resolution loss (< 20%).
 - Capture f/5 input beam (EE80 to EE90) into 160 mm collimated beam (collimator fl of 800 mm);
 - ➤ Minimize vignetting by optimizing pupil placement and opening toes and collimator optics to f/4 (EE95)
 - Tune image quality to BSC and commonly used and wide range of configurations.
- Accommodate new suite of VPHg
 - Restructure spectrograph layout to handle gratings at $10^{\circ} < \alpha < 70^{\circ}$ (incidence angle).

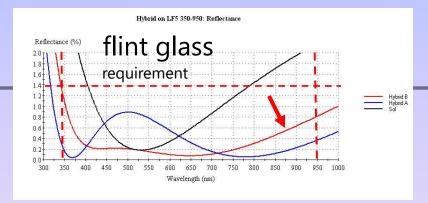
Specific Requirements

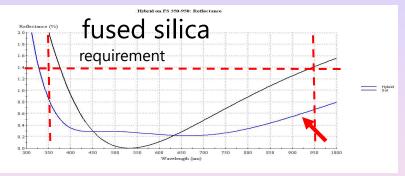
- Collimator efficiency as good or better than single Alcoated mirror (~92% reflectivity) between 350-950 nm (defined as "core" usable wavelength range).
 - \triangleright AR coatings good to ~1.4% or better (feasible).
- Overall system throughput as good or better in full range 320-1000 nm.
- Delivered image-quality as good or better than existing rms spot-size in same range.
- Layout must prevent parasitic light entering camera.
- Ghosting must be <1e-4.

AR Coatings

- Collimator lens coatings must deliver < 1.4% reflectivity per surface from 350-950 nm (match/exceed existing collimator throughput).
- Coatings must be durable, with performance longevity in excess of 10 years (useful lifetime of instrument).
- Two options considered:
 - ➤ Multi-layer broad-band AR coatings (Infinite Optics) proven on QUOTA (OTA mosaic CCD -- ODI precursor) fore-optics on WIYN.
 - ➤ Hardened Sol Gel (hybrid) AR coatings (Cleveland Crystals).
- Both options meet requirements.
 - ➤ Sol Gel hybrid significantly superior in performance.
 - ➤ Hardened Sol Gel (hybrid) deemed robust enough for Bench Spectrograph room environment (will require formal ISO spec met in accepted bid).
- Hardened Sol Gel hybrid preferred.
- Cleveland Crystals is capable of handling our optics (size and material) and interested to bid
- Lick Observatory could be alternative hardened Sol Gel vendor.

ISO 9211-4-01-01 4-02-02 3-05-02 3-06-03


AR Coatings


Prefered

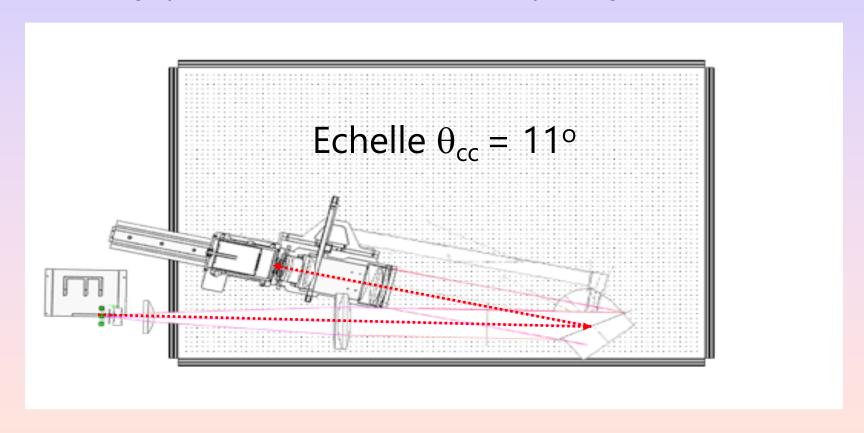
Hardened Sol Gel hybrid (Cleveland Crystals):
ammonia-bath hardened
Sol Gel over thin-film dielectric predicted performance

Alternative

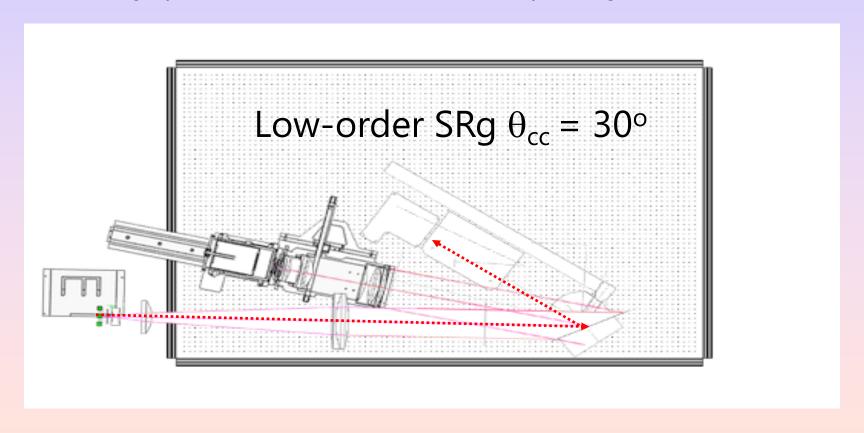
multi-layer broad-band (Infinite Optics): measured performance

Collimator-Doublet Cementing

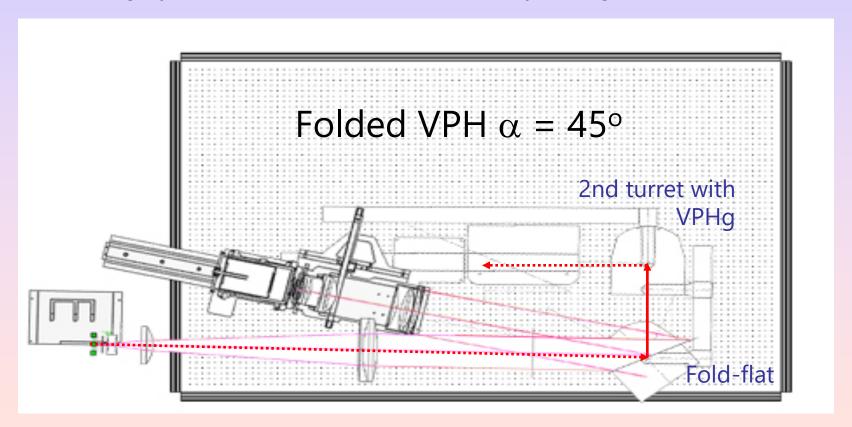
- Collimator doublet (objective) consists of fused-silica plus flint glass (PBL25Y, an LF5 equivalent)
- NOAO has capacity to carry out cementing (Gary Poczulp)
- Sylgard 184 used in past with success
- Expect to coat optics first and then cement in-house
 - > Ended up having bonding done by lens-polishing vendor (SESO)

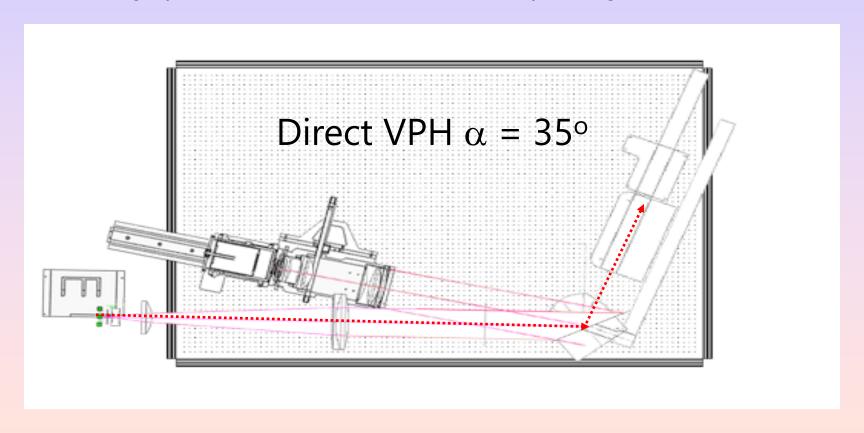

Boundary Conditions

- Use existing camera(s), cables, room, and bench: modest-cost "Upgrade", not new system
- Maintain 11° off-Littrow echelle configuration and low-order SRg with $20^{\circ} < \theta_{cc} < 45^{\circ}$.
- Maintain use of order-blocking filters
- Maintain or improve ergonomics:
 - ➤ Configuration changes & operations
- Maintain or improve ATV system
 - ➤ Source acquisition and fiber rear-illumination system.


Layout and Operation

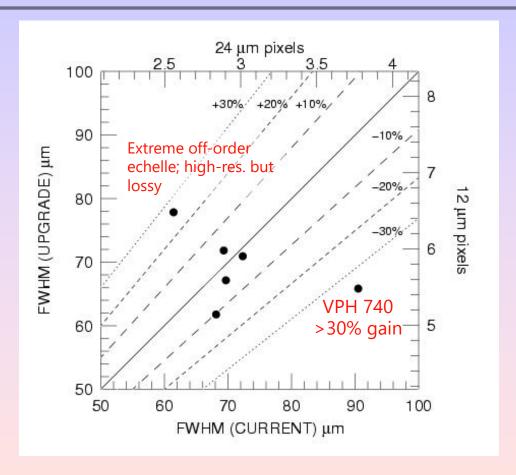
- Allow for full range of used and anticipated spectrograph configurations.
 - \geq Echelle: $\theta_{cc} = 11^{\circ}$
 - \triangleright SRg: 20° < θ_{cc} < 45°
 - \triangleright VPHg: 10° < α < 70°
 - o folded or direct with 10-20° overlap
- Keep moving parts on table
- Make ergonomic to reconfigure


• Highly versatile instrument used in many configurations


Highly versatile instrument used in many configurations

• Highly versatile instrument used in many configurations

• Highly versatile instrument used in many configurations



Additional Knowledge of "as built" System

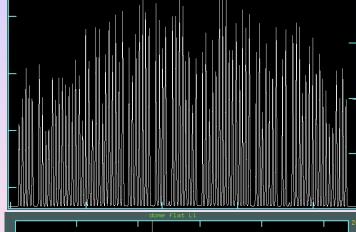
- Image-quality well documented
 - reproduced by optical model in multiple configurations.
- No significant parasitics in standard setups.
- Low scattered light in visible
 - Fincreases significantly $\lambda > 750$ nm; likely due to BSC coatings.

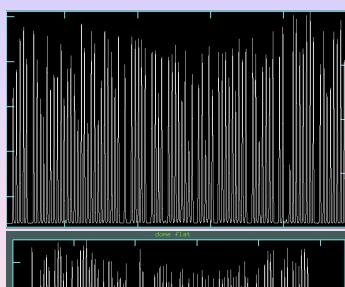
Expected Performance: Achieved

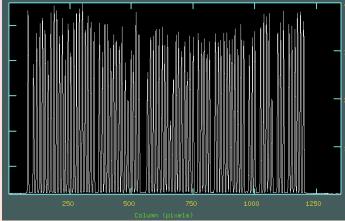
- Image quality:
- Modest image magnification
 - > +28%
- Improved image quality
 - ➤ 12-20% improvement typical;
 - > as high as 3x improvement;
 - ➤ 30% degradation in one case
- Better pixel sampling
 - \triangleright x2 -- 24 to 12 μ m
- No loss in instrumental resolution for typical configurations with smallest (200µm) fibers
 - ➤ 0-15% loss 300µm fibers
 - ➤ 10-20% loss 500µm fibers

200 micron fibers

Expected Performanc: Achieved


- Throughput gains: x2-3.5
- Fiber transmission curves + end reflection losses
- BBAR estimates for Sol Gel for refractive collimator
- Collimator glass transmission (LF5
- Fresh Al for the current collimator
- Relative vignetting:
 - > + faster collimator
 - > + optimized pupil location
 - > + removal of fiber foot from beam (9%)
 - > + opening of toes to let out f/4 (up to 30%)
- Relative CCD QE:T2KC vs STA
- Assumptions include a camera throughput of 74%, grating + filter throughput of 45% (estimated based on measurements of other components and total system throughput), and 3-mirror telescope efficiency of 69%. No atmosphere is included.


Delivered Performance


One example: field-dependent vignetting is gone

Loworder SRg

echelle

old