Astro 500 Spectrograph Design Project #2

[your name]

1. Summary narrative:

Here you will describe the problem you are trying to solve, your solution (in words), and what led you to this solution. Specifically, what kind of spectrograph have you designed to meet the performance requirements? What size optics and number of channels do you need? What grating types do you use? What are your camera and collimator focal-lengths and speeds? Where is the pupil in your system? If you are cross-dispersing, describe that as well and how it is done. If you are image-slicing, describe that as well. Finally summarize the performance in terms of achieved spectral resolution and summary score.

Show all work. You can discuss the problem with your classmates but your write up needs to be your own work.

2. Spectrograph geometry

Provide a simple figure of your spectrograph (using block drawings, e.g., in PowerPoint as shown in class). While everything does not need to be to scale you should point out the overall critical lengths between entrance aperture, collimator, grating(s), camera(s) and detector(s), and estimate the overall envelop of the instrument (ignoring what you don't know about, say, how large the detector cryostat is, etc.). Provide a short narrative as a caption to explain your drawing as needed.

If you are cross-dispersing consider adding two views that show both the primary and cross-dispersion planes.

If you are image-slicing consider adding a sketch of what that slicing looks like, e.g., you are reformatting some entrance aperture of a certain size and shape from the telescope into another shape of equivalent size to serve as the entrance slit. What are the shapes and dimensions?

3. Spectrograph critical design parameters

Provide information in the following Table 1 accompanied by a narrative as needed, e.g., describing motivation for pupil placement (and how this is done) as well as image slicing (and how this is done). Give all wavelengths in nm.

Table 1: Spectrograph Critical Design Parameters								
Slit height	mm	arcsec						
Slit width	mm	arcsec						
Collimator	Focal	Diameter	<i>f</i> /#					
	length mm	mm						
Pupil	Distance from collimator mm							
Beam size	mm							
Number of	N	λ range	λ range	Etc.				
channels		channel 1	channel 2					
		$(\lambda_{blue} - \lambda_{red})$	$(\lambda_{blue} - \lambda_{red})$					
Dichroic		Break λ	Etc.					
breaks		(ch. 1-2)						

Grating 1	α	β	Height mm	Width	Line	Blaze	Order(s)	type	Distance
_	deg	deg		mm	density	angle			from
					l/mm	deg			collimator
Camera 1	Focal length mm	Diameter mm	f/#	Angle from		Distance grating			
CCD 1	Pixel size microns	Number of pix	ls along slit Number of pixels along dispersion axis						
Etc. (Grating, Camera, CCD) for other N channels									
Cross	Information as required for each channel								
Dispersion									

4. Spectrograph performance

Provide information in the following Table 2 accompanied by a narrative as needed. Give all wavelength units in nm.

Table 2: Spectrograph Performance					
	Ch	Etc. for other			
1-Slit loss ¹			chanels		
System	spatial	spectral			
Demagnification					
Dispersion	angular	linear			
	(nm/rad)	(nm/mm)			
Monochromatic	microns	pixels			
slid-width					
Spectral	@ start	@ end wave			
Resolution	wave				
Number of	spatial	spectral			
pixels ²					
Relative	On axis	End			
throughput ³		wavelengths			

Notes -

- 1) Slit losses refer to the amount (%) of light lost at the spectrograph entrance slit because it was smaller than the image aperture containing all of the light. Express as a percentage: (100 loss %)
- 2) The number of pixels required to cover the full spectrum in a given channel over the full slitlength for a single object (including slicing)
- 3) The amount of light reaching the detector counting for vignetting from spectrograph optics (do not consider diffraction efficiency or optical surface transmission).

5. Evaluation

Assuming you have met the objectives in wavelength coverage the final performance metric is based on the information you will compile in the following Table 3. In this scheme bigger numbers are worse.

In addition, argue for any aspect of your design that you think is novel.

Table 3: Evaluation Rubric					
	weight	Common factors			
1) slit loss	0.05	(100 / % (1-slit-losses))			
2) Collimator size	0.05	$(diameter / 150 \text{ mm})^2$			

	weight	Channel 1 factors	Etc. for other channels
3) Grating size	0.1	(width / 250 mm) x (height / 150 mm)	
4) Camera	0.1	$(diameter / 150 \text{ mm})^2$	
diameter			
5) Camera speed	0.1	1.2 / (camera f/#)	
6) Detector size	0.05	(mm / 96)	
7) Number of	0.05	(spatial / 10) x Ispectral / 5)	
unbinned pixels			
8) Vignetting	0.05	(100 / % on-axis) x (70 / % off-axis) x	
		(100 / % slit losses)	

Compute your final score (this is the score of your spectrograph not the score of your project which include other factors!):

Sum the product of each item 1-8 with its weight in column-2. There is only one collimator and a one-time slit-loss penalty for the system, but your sum should include N products of each item 3-8 where N is the number of channels.

Conclude in the context of Table 3 and your summary with a brief discussion of what elements contributed most to this summary score and hence what led you to your system design?