
A500 / Problem Set #2 / Solutions

1. Dragonfly

(a) ε = Tatmos × εtelescope × εfilter × εCCD = dexp(−0.4 AV,atmos) × 0.9958 × 0.9 × 0.55 =

0.48 Tatmos, where Tatmos = dexp(−0.4 AV,atmos) is the transparency of the atmosphere in the V

band. You may have found that AV,atmos ∼ 0.2X mag where X is the number of airmasses of

observation, or about 17% loss per airmass.

(b) We will use the criteria from Lecture 4 (slide 33), namely that shot-noise from sky-photons

should be 3 times larger than detector noise. This means that σphotons ∝
√
Nphotons ≥ 3 σRN.

In this case the photon shot-noise all comes from the sky. (If you chose some other definition of

“sky-limited,” that’s fine within reason, as long as you defined it. The definition here leads to a

<5% increase in noise over the pure sky shot-noise case.) Assuming we do not bin the CCD pixels,

with σRN = 10e− the sky must contribute 900 e− pix−1 per exposure, t.

Dark sky conditions yield µ(V ) = 21.5 mag arcsec−2, which corresponds to

Nγ = ε × (15.1 photons/µJy) × 0.16 × 3640 Jy × dexp(−0.4×21.5) photons m−2 arcsec−2 s−1

= ε × 22.1 photons m−2 arcsec−2 s−1, where ∆λ/λ = 0.16. Taking ε = 0.48 from (a), a pixel

size of 7.84 arcsec2, and a telescope area (per detector) of 0.0182 m2 yields Nγ = 1.5 pix−1s−1.

This requires an exposure time of roughly 600 sec, or 10 min. Refering to, e.g., arXiv:1401.5473v1,

this is just the exposure time Abraham & can Dokkum use in g and r bands, which both have

significantly larger band-widths (∆λ/λ).

(c) An hour yields 6 times more counts than the above calculation, so the band width can be

reduced by the same factor: ∆λ/λ = 0.027.

2. SALT focal-plane scales

(a) An 11m effective entrance pupil and corrected f -ratio of 4.3 yields a plate scale of 47.3 ×
103/206265 = 0.2293 mm arcsec−1 (4.36 arcsec mm−1). So 1 arcsec corresponds to 0.0526 mm2.

(b) For a given beam size (telescope or instrument optical diameter) a shorter f -ratio yields a

smaller magnification. The reasoning, which you can demonstrate with a simple sketch, is that

a change in angle of a collimated beam will result in a larger displacement of the focused image

for a longer focal length. In the case of RSS the collimator takes the f/4.3 beam from the SALT

aberration-corrected focus, collimates it, and then refocuses it at a “faster” speed, i.e., a smaller

f -ratio. This means the camera focal length is shorter than the collimator focal length, so the

magnification is less. In other words, the camera de-magnifies the SALT corrected focal-plane scale

by the ratio of the f -ratios, or 1.9/4.3 = 0.442. Now 1 arcsec corresponds to 0.101 mm, which is

6.75 pixel lengths at 15 microns per pixel. There are 45.6 pixels per arcsec−2.
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3. SALT effective area

The equivalent circular aperture diameter of a 69.19% filled 11m aperture diameter is just
√

0.6919×
11 = 9.15 m. The collecting area is 65.8 m2 (compared to 95.0 m2 of an completely filled system).

Taking into account the telescope efficiency εT = 0.75× (0.80)4 = 0.31, the total effective efficiency

of the telescope (surface-losses and obstructions) 0.6919 × 0.31 = 0.21. The equivalent circular

aperture diameter of a perfect telescope (εT = 1, 100% filling factor) is 5.1 m.

Next taking into account the spectrograph efficiency, from inspection we have εi = (0.96)23×0.90×
0.974 × 0.85 = 0.23 for the total RSS efficiency assuming a single etalon pair and order blocking

filter. Often two pairs of etalons are used, plus an order blocking filter. If you assumed this your

answer here would be 0.21 rather than 0.23.

Combining the factors from the telescope (pupil fill factor and reflectivity losses) and the spectro-

graph losses the total effective system efficiency is 0.21 × 0.23 = 0.044. This corresponds to an

equivalent circular aperture diameter of a perfect telescope and instrument of 2.4m (2.3m with two

etalon pairs).

Factors we have not considered include losses from the atmosphere.

4. SALT RSS Observations in FP mode

4a. Since R = λ/∆λ, R has units of neper−1. The resolution and the band-pass are inversely

related.

4b. The number of detected photo-electrons from the sky (Ne) will depend on the product of the

sky brightness (expressed in units of photons sec−1 m−2), the total collecting area of the telescope

(AT , in m2), and the product of the efficiencies of the telescope (εT ), the instrument (εi), and the

detector (εd). The latter is the quantum efficiency. Since the sky brightness is a surface brightness,

Ne will have units of electrons sec−1 arcsec−2. The sky brightness, Nsky can be expressed as a

function of the msky (the surface brightness in mag), the magnitude zeropoint of the system, m0,

the flux zeropoint of the system, f0, in µJy, and the band-width ∆λ/λ = 1/R:

Nsky = 15.1 R−1 f0 dexp[−0.4(msky −m0)] [photons sec−1m−2arcsec−2]

From this it follows:

Ne = Nsky AT εT εi εd [electrons sec−1 arcsec−2]

The total number of photo-electrons collected in some time, t over some solid-angle Ω is Ne t Ω.

4c. The question was intended to ask how many detected photo-electrons are there per arcsec per

second in the RSS detector from the sky. If you interpreted these as simply the number of photons

per arcsec per second onto the detector, that’s fine; your answer will differ by the factor of the

detector QE.
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In the V band (centered at 550 nm), µsky = 21.5 mag arcsec−2, with a band-pass zeropoint of

3640 Jy in the Vega system and a band-width of 0.16 nepers (Lecture 2). For calculating photo-

electrons from the sky, all factors in Problem 2 are relevant. Therefore we can equate the product

of AT εT εi εd with the product of the telescope obscuration, telescope efficiency, and instrument

efficiency. The effective aperture diameter is 2.3m in this case, so AT εT εi εd = π(2.3/2) = 4.15m2.

Next, we haveNsky = 15.1R−1 3640×106 dexp(−0.4×21.5) = 138.06R−1 [photons sec−1m−2arcsec−2].

Hence Ne = 625 R−1 [electrons sec−1 arcsec−2]. The number decreases to 573 for two etalon pairs.

4d. Define N ′e in units of electrons sec−1 pix, where it is understood that the pixel unit corresponds

to the binned value in terms of solid angle. We can take the result for Ne from (4c) and factor in the

solid-angle per un-binned pixel determined in (2b) to findN ′e = 13.7 nxny R
−1 [electrons sec−1 pixel]

in all generality, where nx and ny are the integer-pixel binning factors in x and y dimensions on

the detector (e.g., RA and DEC on sky). For two etalon pairs 13.7 goes to 12.6.

If you interpret the 10%-rule as given in the problem, this implies
√
N ′e t = 10 RN , where RN is

the rms read-noise in electrons. If you used the class notes, then
√
N ′e t = 3 RN – we’ll call this

3:1 rule. Either is fine (but quite different); in practice, the latter is sufficient. For RN = 2.5e−

solving for t we tabulate the results below, using 2× 2 binning.

Background-limited Exposure Times for SALT FP Imaging

binning R t (sec)

(nxny) 9e−/Ne 100e−/Ne

4 500 1314 14599

4 2500 6569 72992

4 12500 35714 396825

What you see is that in a single track of 45 min (2700 sec) it is impossible to become background

limited other than for the lowest resolution FP mode with the more conservative (3:1) estimate.

With higher efficiencies this would change.

4e. For two resolution elements sampling a FWHM of 2.5 arcsec, we want the binned pixels to

be roughly 1.25 arcsec. Since each unbinned pixel is rouhgly 0.15 arcsec, we want close to 8 × 8

binning (if you chose 9× 9 that’s fine). Exposure times for these binnings simply scale by factors

of 4/64 or 4/81 for the 8 × 8 or 9 × 9 binning, respectively. This brings the 3:1 estimates within

reach for a single track for all resolutions.


