A500 / Problem Set #1 / Solutions

1. From Table 2.1 (Lecture 2) we have the flux zeropoint in the J band is 1600 Jy in the Johnson system (J), and by definition the zeropoint is 3631 Jy in the AB system (J_{AB}) . So

$$J - J_{AB} = -2.5 \log(3631/1600) = -0.89 \text{ mag.}$$

Generically,

$$m_{\rm AB} = m_{\rm Johnson} + m_{AB}$$
 [Vega]

2. From Lectures 2 we have

$$m_{AB} = -2.5 \log f_{\nu} - 48.60,$$

 \mathbf{SO}

$$(g' - J)_{AB} = -2.5 \log(f_{\nu}(g')/f_{\nu}(J)).$$

We have f_{λ} is constant, but we need to know the conversion from f_{ν} to f_{λ} . Since the integral of the flux over a given band-pass is the same for frequency and wavelength, it follows: $f_{\nu} d\nu = f_{\lambda} d\lambda$. This yields $\nu f_{\nu} = \lambda f_{\lambda}$, or $f_{\nu} \propto \nu^{-2} \propto \lambda^2$ for constant f_{λ} , and hence

$$(g' - J)_{AB} = -5 \log(0.48/1.26) = 2.096 \max_{ab}$$

i.e., the source is red.

3. (Lecture 2) Since $(B - V)_0 = 0$ in the Vega system by definition we have

$$(B-V) = -2.5 \log\{ [f_{\nu}(B)/f_{\nu,0}(B)] / [f_{\nu}(V)/f_{\nu,0}(V)] \}$$

where the "0" subscript refers to the magnitude system reference standard. With $f_{\nu} \propto \nu^{\alpha}$ and a little manipulation,

$$\alpha = \{ \log [f_{\nu,0}(B)/f_{\nu,0}(V)] - 0.4(B-V) \} / \log(\lambda_B/\lambda_V).$$

Plugging in B and V flux zeropoints and B - V = 0.43 in Vega system for an F6 dwarf we have $\alpha \sim -1$. This means $\nu f_{\nu} = \lambda f_{\lambda}$ is roughly constant, which is precisely the motivation for using F6 stars as flux standards. From the generic result in problem (1) we have

$$(B - V)_{AB} = B - V + (B - V)_{AB}$$
[Vega],

where the AB color of Vega comes from the flux zeropoint definitions,

$$(B - V)_{AB}$$
[Vega] = $-2.5 \log(4260/3640)$.

Alternatively, we can work from the definition of AB magnitude to find

$$(B - V)_{AB} = -2.5 \log[f_{\nu}(B)/f_{\nu}(V)].$$

Either yields $(B - V)_{AB} = 0.26$ for BD+17°4708.

4. Since we are calculating photons per arcsec^2 and we are given a surface-brightness in mag $\operatorname{arcsec}^{-2}$, we can ignore solid angle in the calculation. V = 29 mag corresponds to

$$f_{\nu} = 3640 \times \text{dexp}(-0.4 \times 29) \text{ Jy} = 9.14 \text{ nanoJy}$$

while 1 μ Jy = 15.1 photons sec⁻¹m⁻² neper⁻¹. The problem didn't state the magnitude system; here we adopt Johnson, but note that Johnson and AB area nearly identical in V band by construction. Multiplying by the band-width in nepers of 0.16 and the collecting area of 0.0182 m² yields $f_{\gamma} = 4 \times 10^{-4}$ photons s⁻¹ arcsec⁻² at the top of the atmosphere. This is equivalent to the faintest surface-brightness currently detectable. (Note corrected statement in problem.)

5. (Lecture 2) At 550 nm (V band), $L_{\nu,\odot} = 5.30 \times 10^{18} \text{ erg sec}^{-1} \text{ Hz}^{-1}$. Since 1 pc = 3.086×10^{18} cm, then 1 Jy = 9.52×10^{13} erg sec⁻¹ pc⁻² Hz⁻¹, so that $L_{\nu,\odot}$ pc⁻² = 55672 Jy. Converting this to a surface-brightness over 4π sterad gives $L_{\nu,\odot}$ pc⁻² sterad⁻¹ = 4430 Jy sterad⁻¹ = 0.104 μ Jy arcsec⁻² (1 arcsec = 206265^{-1} radians). Using the result from problem 4 we have: $\mu_V = 29$ mag arcsec⁻² = 9.14 nano-Jy arcsec⁻² = 0.087 L_{\odot} pc⁻². A more intuitive solution is to consider placing the Sun at a distance such that 1pc subtends an arcsec on the sky. This corresponds to d = 206265 arcsec. The same result follows using the distace modulus and the absolute V-band magnitude of the Sun (4.83, Vega mag).