Astronomy 330 Lecture 5

17 Sep 2010

Outline

- Review & conclude: ISM
- Review: Stellar Nucleosynthesis
- Chemical Evolution of Galaxies

Review

Gas content of disk galaxies

- Note the table → phases of the ISM, filling factors, major diagnostics
- ► Example → ionized H

Neutral Hydrogen

- Spin-flip transition → 1.4 GHz
- Radiative transfer → intensity of radiation field is a function of optical depth and temperature → optical depth is a function of number of atoms
- ► M = $2.36 \times 10^5 \,\mathrm{D}^2 \,\mathrm{J}\,\mathrm{S}(\mathrm{V})\,\mathrm{dV}$, where $\mathrm{S}(\mathrm{V})$ is in Jy km s⁻¹

Star-formation rates continued

- Recall Stellar IMF
 - ▶ $N_o \int dM M \xi(M) = total mass of burst/episode, \xi(M) goes as <math>(M/M_o)^{-2.35}$
- Young, massive stars (on MS) producing nearly all ionizing radiation
- On MS there is a mass-T relationship
- Integrate IMF weighted by ionizing luminosity per star of mass M to get N_{Lyc}
- Extrapolate integral over full mass of IMF to get total mass
- Current best estimates: K98
 - ▶ SFR $(M_{\odot} \text{ year}^{-1}) = 7.9 \times 10^{-42} \text{ L}(H\alpha) \text{ (ergs s}^{-1}) = 1.08 \times 10^{-53} \text{ Q}(H^0) \text{ (s}^{-1})$ ▶ Case B for $T_e = 10,000 \text{ K}$
 - ► SFR $(M_{\odot} \text{ year}^{-1}) = (1.4\pm0.4) \times 10^{-41} \text{ L[OII]}_{\lambda 3727}) \text{ (ergs s}^{-1})$
 - empirical
 - In all cases, must correct for extintcion

Can extend to Paschen series where extinction is smaller; see Calzetti et al. (2005)

- Why not measure N_{Lyc} directly?
- What about UV continuum at wavelengths longer than the Lyman limit?
- What about the FIR (what heats the dust)? Radio continuum?
- See: Kennicutt et al.: 1983 1984, 1989, 1998, 2003, 2009; Lee et al. 2009

Line diagnostics

Redenning:

- Use recombination coefficients for different lines compared to measured flux ratios, e.g., $H\alpha/H\beta$
 - ▶ Recombination coefficients depend in detail on knowing T_e and n_e
 - Must correct emission for stellar photospheric absorption which is, e.g. larger in H β than $H\alpha$

► Temperature: T_e

- Flux ratios of forbidden-lines from ions with different ionization potentials, e.g.,
 - ▶ H+,S+,N+,O+,O++
 - Metallicity and shock-heating effects

Density: n_e

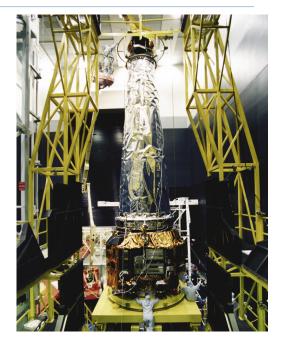
- Flux ratios of some forbidden-line doublets, e.g.,
 - [OII]λλ3726,3727 , [SII]λλ6717,6731
 - Limited sensitivity to large dynamic range in density

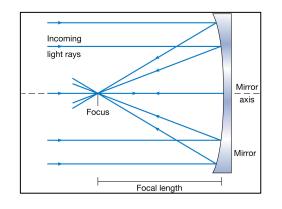
Hot Gas

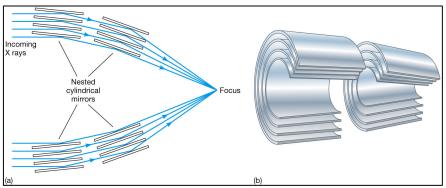
- ▶ Gas heated to 10⁶ K (probably by SNe)
 - Powerful probe of mass distribution in galaxy clusters
- Detected via X-ray emission
 - Point source population
 - Diffuse hot gas
- ▶ Emission via
 - Brehmstrahlung
 - Emission lines of highly ionized species

Diffuse Hot Gas: Soft X-Ray Background

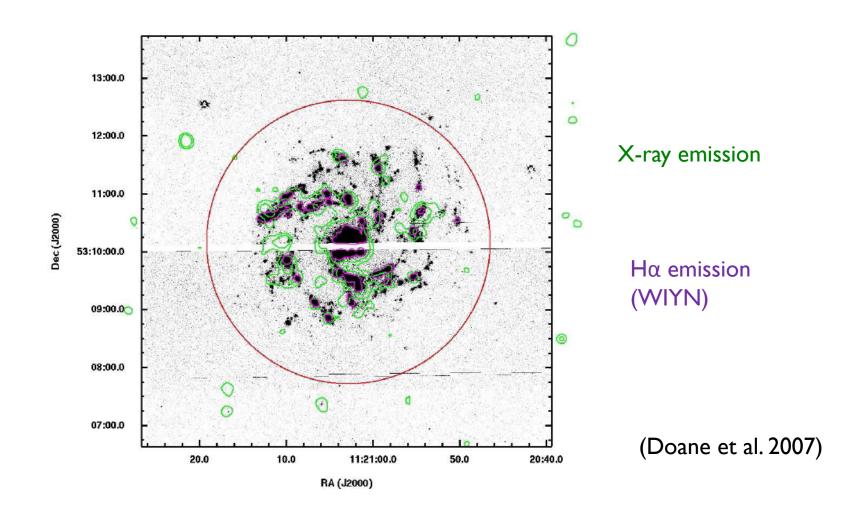
- McKee & Ostriker (1977): diffuse hot phase of the ISM with a filling factor of ~100%
- Early detection of X-ray emitting "superbubbles" in the Milky Way: Sco-Cen, Orion-Eridanus (McCammon et al. '83, McCammon & Sanders '90)
- Origin of Soft X-Ray background
 - MWG: local ISM + hot galactic halo
 - Local Group: hot intergalactic medium
 - Extragalactic: (un)resolved AGN + E galaxies


The Local Bubble


- Radius: 100-200 pc
- ▶ Temperature: \sim 2 x 10⁶ K
- Thermal pressure: $p/k = 10^4$ cm⁻³ K
- N(HI) = 6×10^{18} cm⁻² (derived from soft X-ray absorption)
- Origin of the Local Bubble
 - hot gas w/ 100% filling factor?
 - diffuse gas reheated by recent SNe?
 - a series of 2-5 SNe a few million years ago?
 - an extension of nearby superbubble?


Comparison of X-Ray Observatories

- ▶ Einstein: I' resolution
 - MI01 (McCammon & Sanders 1984)
 - $L_{\rm X}({\rm diffuse}) \sim 10^{38} 10^{40} {\rm erg \ s^{-1}}$
- ▶ ROSAT (PSPC): I.'8 resolution, 0.1-2 keV
 - M101, N3184, N4395, N5055, N4736 (Cui et al. 1996)
- ► CXO (Chandra): <1" over 8 arcminutes
- XMM/Newton: 15" over 30 arcminutes



Mirrors: ←Optical X-ray→

X-ray vs HII region comparison NGC 3631

Temperature Comparison (10⁶K)

► LMC Superbubbles: I.7-9 ► NGC3631: 1,3

▶ Orion-Eri.: 3.3 ► NGC6946: 2, 7

N. P. Spur: 3.0 ► M101: 2,8

Sco-Cen: 4.6 ► N253(halo): 4

▶ M82(halo): 3, 4

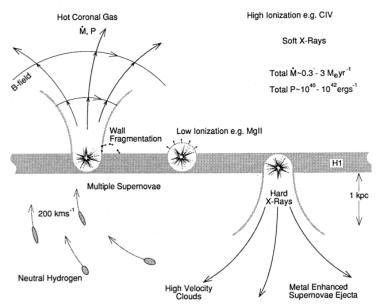
Spirals are best fit with two temperature models of hot gas, but there is variation in the high temperature and surface brightness.

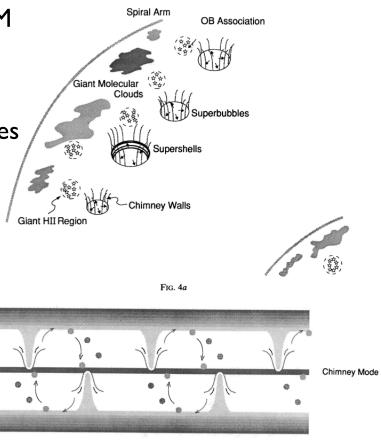
Summary of X-Ray Results

- Diffuse emission is highly correlated with both spiral arms and HII regions
- Bulk of the diffuse emission arises from less than 25% of the area of the disk
- X-ray spectra are best fit with a two temperature model
- There is variation in the surface brightnesses between galaxies and variation in the temperature of the hot component
- Diffuse X-rays in Galaxies
 - Related to SNe production

Feedback: Impact of Massive Stars

Stellar winds + SNe dump 10^{53.5} ergs into ISM


Creates hot bubble surrounded by swept up ISM and circumstellar matter


gas heated by inward moving shock

X-ray emission should be aligned with HI holes

growth of chimneys

means of getting hot gas into the halo

Norman & Ikeuchi 1989

Feedback: Bubbles

- Stellar winds/SNe drive expanding bubbles into ISM
 - $R_s \sim 100 (N_*E_{51}/n_0)^{1/5}t_7^{3/5} pc (McCray & Kafatos 1987)$
 - $V_s = L_W^{1/5} n_0^{-1/5} t_7^{-2/5} \sim 6 (N_* E_{51} / n_0)^{1/5} t_7^{3/5} \text{ km s}^{-1}$
 - ▶ Reverse shock heats bubble to 10^6 - 10^7 K → X-ray emitting
 - Shell includes swept up ISM, dense neutral gas, possibly accelerated particles

- Ultimate fate
 - Shell/bubble expands until P_{bubble} = P_{ISM+IGM}
 - Breaks out of disk if

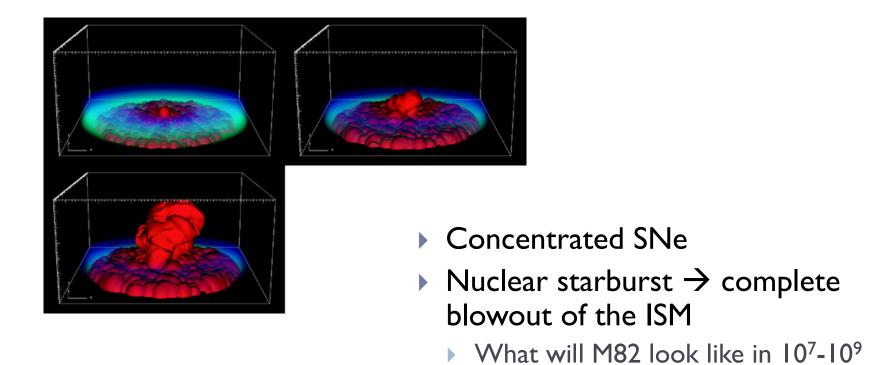
$$P_{bubble} > P_{ambient}, V_{shell} > V_{escape}$$

> Shell accelerates in density gradient

 R_s – shell size

N_{*} - number of stars formed with M>7M_©

 T_7 – time-scale in 10^7 yr


E₅₁ - SN energy / 10⁵¹ ergs

 n_0 – intial electron density cm⁻³

V_s – shell speed

L_W - mechanical luminosity of winds

Extreme "Feedback"

years?

Bursting dwarfs?

Nucleosynthesis

- Hydrogen Burning (main sequence)
 - P-P chain:
 - ► H + H → 2 D + e⁺ + v + 0.42 MeV
 - \rightarrow ²D + H \rightarrow ³He + γ
 - \rightarrow ³He + ³He → ⁴He + 2H + 12.86 MeV
 - Or step through ⁸Be (only 14% of the time)
 - CNO bi-cycle (if T > 20 million K)
 - 12 C+ H → 13 N + γ
 - 1⁴N + H → 1⁵O.....¹⁷O + H → 1⁴N + ⁴He
 - N can be brought to surface via dredge-up; majority of ¹⁴N is produced this way → "secondary" product
- ▶ Giant Branch (T ~ 10⁸ K)
 - ▶ 2α → 8 Be; 8 Be + α → 12 C
 - ▶ Causes core expansion for $M > 2M_{\odot}$

Nucleosynthesis – later stages

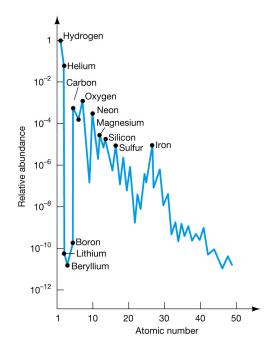
▶ Higher mass stars → past He burning

$$\rightarrow$$
 ¹²C + α → ¹⁶O + energy (M < 8M_☉)

▶ ¹⁶O +
$$\alpha$$
 → ²⁰Ne + energy (M > 8M_☉)

▶
20
Ne + α → 24 Mg + energy

More complex reactions:


►
$$^{14}N$$
 → ^{18}F → ^{18}O → ^{22}Ne → $^{25}Mg + n$ (α reactions)

- 12 C + 12 C → 23 Mg + n
 - Free neutrons!

Highest mass stars

$$\rightarrow$$
 ²⁴Mg + $\alpha \rightarrow$ ²⁸Si

Leads to Fe peak → Type-II SNe (core collapse, bounce)

Dispersing the Elements

- Intermediate mass stars
 - ▶ M < 2.5 M_{\odot} → CO degenerate core, PN, some He output
 - $> 2.5 M_{\odot} < M < 8 M_{\odot}$
 - Convective overshoot → dredge-up of CNO cycle products (e.g., ¹⁴N)
 - ▶ Dredge-up can reach He-burning products on AGB → C, O
 - ▶ Pulses drive mass loss (10^{-7} to 10^{-5} M_☉yr⁻¹)
 - □ PN enriched in C,O,N,"s-process"
 - □ AGB shells good place to form molecules (CO)
- High mass stars
 - Dispersal via SNe
 - \triangleright Primary products are α elements
 - Some "r-process"

Neutron Capture Elements

- Certain elements are rich in neutrons
- ▶ Formation can't be explained by standard nucleosynthesis
- Neutron capture
 - ► $(t_{1/2})^{-1} \sim \sigma \Phi$ (cross section x neutron flux)
 - \rightarrow (Z,A) + n \rightarrow (Z,A+I); is this stable?
 - Yes: sits around and waits for another n
 - No: decays to (Z+I,A+I); is this stable?
 - Stable isotopes have higher abundances
- "Valley of Stability"

s-Process Valley of Stablity

Se (82) +4+6-2 78-96	Se65	Se66	Se67 60 ms	Se68 35,5 s 0+	Se69 27.4 s (3/2-)	Se70 41.1 m 0+	Se71 4.54 m 3/2-5/2-	Se72 8.40 d 0+	Se73 7.15 h 9/2+	Se74 0+	Se75 119,779 d 5/2+	Se76	Se77	Se78	Se79 1,7956 y 172+ #	Se80	Se81 18,45 m 1/2-	Se82 1.08E+20 y 0+ 8-8	Se83 22.3 m 9/2+
	ECp	ASS	ECp A-66	EC An67	ECp	EC A = 60	EC	EC A-71	EC A =72	0.89	EC A-74	9.36	7.63	23.78	β-A-79	49.61	p.	6.75	B 4.02
As63	As64	As65 0.19 x	95.77 ms	As67 42.5 s	As68 151.6 s	As69 15.2 m	As70 52.6 m	As71 65.28 h	As72 26.0 h	As73 80.30 d	As74 17.77 d	As75	As76 19778 d	As77 38.83 h	As78 90.7 m	As79 9.01 m	As80 15.2 s	As81	As82 19.1 s
		ne:	re.	(5/2-)	34	5/2*	4(+)	5/2-	20	3/2+	2e recu.	3/2	0.	3/2+	2*	3/2+	10	3/2=	(1+)
Ge62	Ge63	Ge64	Ge65	Ge66	Ge67	Ge68	Ge69	Ge70	Ge71	Ge72	Ge73	100 Ge74	Ge75	Ge76	Ge77	Ge78	Ge79	Ge80	Ge81
0+	95 ms	63.7 x	30.9 x (3/2)+	2.26 h	18.9 m 1/2+	270.8 d	39.05 h 5/2-	0+17	11.43 d				82.78 m	0+	11.30 h 7/2+	88.0 m 0+	18.98 x (1/2)=	29.5 s 0+	7.6 s (9/2+)
EC	EC	EC	ECp	EC	EC	EC	EC	21.23	EC *	27.66	7.73	35.94	₽ #	7.44	В-	В	B #	Br.	8
Ga61	Ga62	Ga63	Ga64	Ga65	Ga66	Ga67	Ga68	Ga69	Ga70	Ga71	Ga72	Ga73	Ga74	Ga75	Ga76	Ga77	Ga78	Ga79	Ga80
0.15 s (3/2-)	116,12 ms 0+	3/2-,5/2-	2.627 m 0+	15.2 m 3/2-	9.49 h 0+	3.2612 d 3/2•	67.629 m 1+	3/2	2h14 m		N.10 h	4.86 h 3/2•	8.12 m (3-)	126 s 3/2-	32.6 s (2+.3+)	13.2 s (3/2•)	5.09 s (2+)	2.847 k (3/2-)	1.697 s (3)
EC	EC	EC	EC	EC	EC	EC	EC	60.108	EC.B	39.892	β.	β-	#	p-	β-	β-	β-	βn	Bin
Zn60 2.38 m	Zn61 89.1 s	Zn62 9.186 h	Zn63 38.47 m	Zn64	Zn65 244.26 d	Zn66	Zn67	Zn68	Zn69	Zn70	Zn71 8.45 m	Zn72 46.5 h	Zn73	Zn74 95.6 s	Zn75 10.2 s	Zn76	Zn77 2.08 s	Zn78 1.47 s	Zn79 995 ms
0+	3/2	3+	3/2-	0.0	5/2=	01	1/2	00	01- a		21 16	0+	(1/2)*	0+	(7/24)	0+	(7/2+)	0+	(9/2+)
7.70	EC	EC	EC	48.6	EC	27.9	4.1	18.8	(t-	0.6	β-	β-	β-	<u> </u>		β-	β.	β-	βn
Cu59 81.5 s	Cu60 23.7 m	Cu61	Cu62 9.74 m	Cu63	Cu64	Cu65	Cu66	Cu67	Cu68	Cu69 2.85 m	Cu70 4.5 s	Cu71 19.5 s	Cu72	Cu73	Cu74	Cu75	Cu76	Cu77 469 ms	Cu78 342 ms
3/2-	2÷	3/2+	1+	3/23	14	3/17	1+	3/2-	1+	3/2-	(I+) ∗	(3/2-)	(1+)	osar-	(1+,3+)	(Lievershield)	*		States
EC	EC	EC	EC	69.17	EC.B	30.83	β-	B	Sir-	β	β-	β	B	p.	B	βn	B·n	β/n	β
Ni58	Ni59 7.6E/4y	Ni60	Ni61	Ni62	Ni63	Ni64	Ni65 26172 h	Ni66 54.6 b	Ni67	Ni68	Ni69	Ni70	Ni71	Ni72 2.1 s	Ni73 0.90 s	Ni74	Ni75	Ni76	Ni77
.04:	3/2-	34	3/2-	0+	172-	Trin		0+	(1/2-)	0+	18.880025	0.	Tistine:	0+	WARAN S	0+		04	
68.077	EC	26.223	1.140	3.634	B	0.926	8-	8	0	β-	B-	E 19	8	1	B-	B	1 19		4 8

Slow Neutron Capture

- "s-process"
 - ► Neutron densities ~ 10⁵cm⁻³
 - Neutrons originate in minor He-burning reactions
 - 13 C + α → 16 O + n 22 Ne + α → 25 Mg + n
 - Where?
 - ▶ H, He shells where burning takes place
 - Example elements (Tc, Ba, La, Zr)
 - Tc is the lightest element with no stable isotopes; lifetime < stellar lifetime so presence of Tc implies in situ production and confirmation of s-process
- Nice review: Busso et al 2001, ApJ, 557, 802

Rapid Neutron Capture

"r-process"

- Neutron capture rate $> \beta$ -decay rate (hours)
- Neutron densities $\sim 10^{23} \text{cm}^{-3}$ only see this in SNe
- Same fundamental process n capture to stable nuclei
- Example products: Eu, Ur, etc

Mixed origins

- ▶ Rb, Pr, Nd → 50/50 s/r
- ▶ Ba, La, Ce → 85/15 s/r
- ► Eu → 3/97 s/r

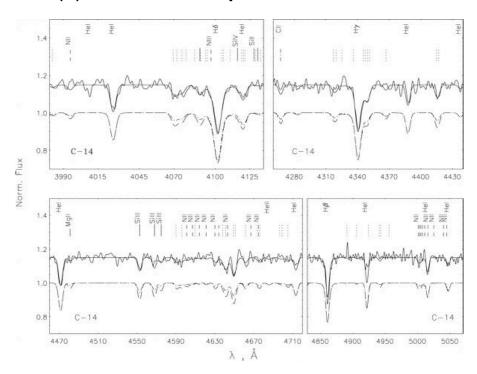
Type Ia Supernovae (SN Ia)

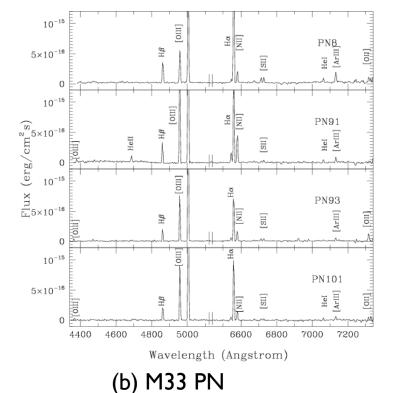
- CO white dwarf + companion
- Companion fills Roche lobe, dumps matter onto WD until electron degeneracy is overwhelmed:
 - ► Chandrasekhar mass = 1.4 M_☉
- Collapse and deflagration:
 - ► Explosive nucleosynthesis → whole thing goes
- Produces burning up to iron:
 - Mg, Si, Cr, Ni, Fe (main production of Fe)

Abundance patterns in galaxies

- SFH reflected in abundances...
- Stellar lifetimes

```
    M > 20 M<sub>☉</sub>
    I.5M<sub>☉</sub> < M < 5M<sub>☉</sub>
    M > I.4 > t > 0.1 Gyr
    M > I.5 M<sub>☉</sub>
    t > I.4 Gyr
```


- Single massive stars produce
 - Little Fe (it's locked up)
 - Lots of α -elements, r-process elements
 - ▶ 40 M_{\odot} star produces 7 M_{\odot} of O
- Intermediate mass stars produce
 - O,C,N, plus s-process elements
 - ▶ 0.1 M_☉ of N


What are the implications for the SFH for finding stars and gas that is α - element rich?

Measurement Techniques

- (a) Stellar spectra: bright stars
- ▶ (b) Emission line spectra: HII regions and Planetary Nebulae (PN)
- (c) QSO absorption lines

(a) NGC 300

Extragalactic Abundances: Definitions

Relative Abundances

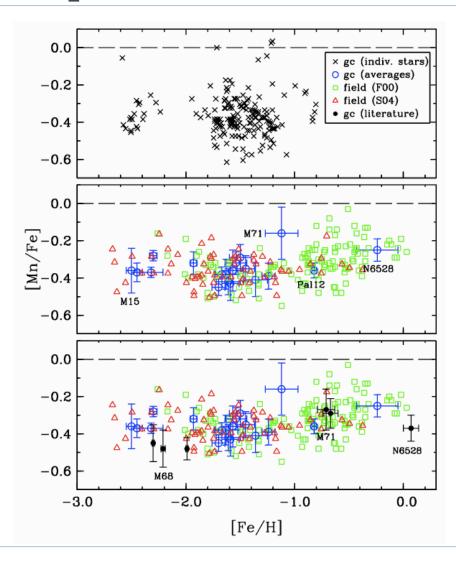
- $[X/H] = log_{10}(n(X)/n(H)) log_{10}(n(X)/n(H))_{\odot}$
 - where X is any element
- Doesn't have to be H
 - ► $[O/Fe] = log_{10} (n(O)/n(Fe)) log_{10} (n(O)/n(Fe))_{\odot}$

Absolute abundances

 \triangleright 12 + log₁₀ (O/H) (small numbers!)

Solar/Orion Context

Sun


- $\log_{10}(He/H) = -1.0$
- $\log_{10}(O/H) = -3.1$
- $\log_{10}(C/H) = -3.4$
- $\log_{10} (Fe/H) = -4.5$
- $\log_{10} (Ne/H) = -3.9$
- NH = -4.0
- |Z/H| = -8.5

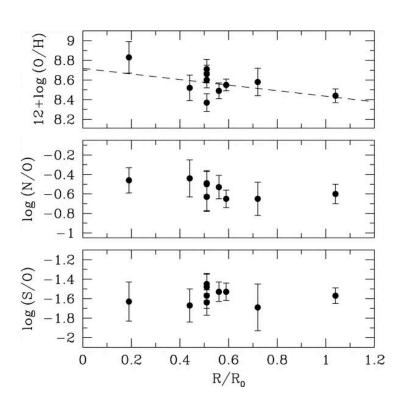
Orion

- $\log_{10}(O/H) = -3.3$
- $\log_{10} (C/H) = -3.5$
- $\log_{10} (Fe/H) = -4.52$

- Sun is slightly more metal rich than Orion!
 - (remember the local bubble?)
- ▶ LMC is 50-70% solar
 - | O/H | = -0.3 to -0.15
- SMC ~ 20-25% solar
 - [O/H] = -0.7 to -0.65

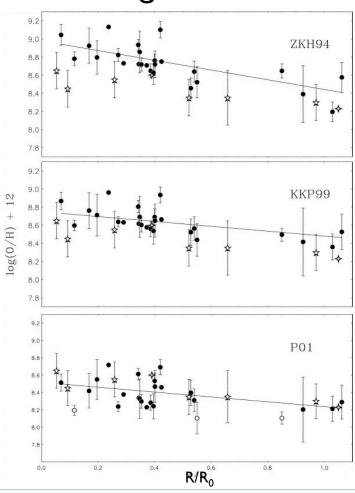
Sample Abundance Patterns: MW Stars

What does this tell us? (Mn produced in massive stars)


Abundance Patterns in the Milky Way

- Solar neighborhood
 - ▶ [Fe/H]-age relationship
 - ▶ [O/Fe] vs [Fe/H] correlation
 - Decreases with [Fe/H]
 - Similar for Mg, Si (α process)
 - ▶ [Ni/Fe], [Ba/Fe] flat with [Fe/H]
 - [s-process/Fe] correlates with [Fe/H]
 - e.g., [Ni/Fe], [Ba/Fe]
 - Why?

- Halo stars generally metal poor
 - ► [Fe/H] ~ -1.6 → -2.4
 - \sim [α /H] \sim 0.25-0.30
 - [Fe/H] decreases with R (0.07 dex kpc⁻¹)
- Thick disk
 - ▶ [O/Fe], [Mg/Fe] enhanced
 - Eu enhanced
 - [α /Fe] enhancement decreases with [Fe/H]
 - Looks like metal-poor halo, but kinematics of a disk


Abundance Gradients in Disk Galaxies

▶ HII regions in M51

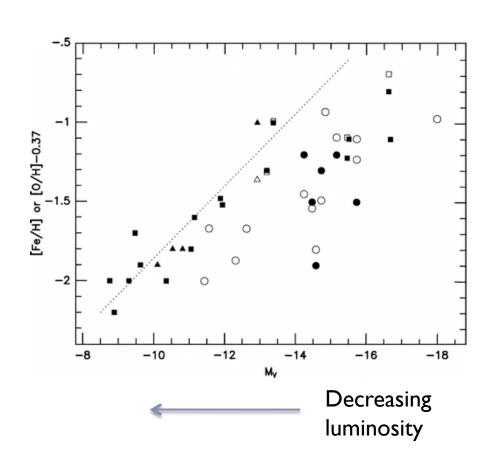
$$log(O/H)_{\odot} = -3.1$$
 \rightarrow 12 + $log(O/H)_{\odot} = 8.9$

▶ HII regions in N300

Disk Gradients (continued)

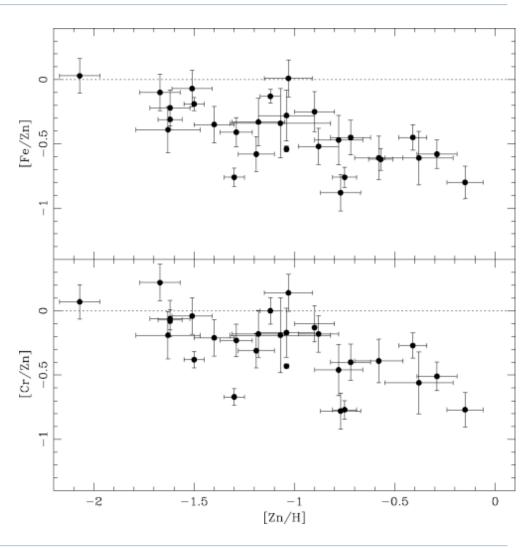
General characteristics

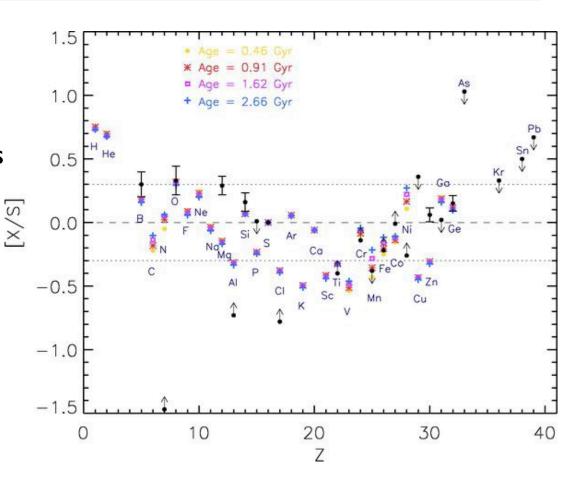
- $I2 + log(O/H) + I2 = 8.58 0.32 R/R_0$
- ▶ Generally: -0.04 to -0.07 dex/kpc
- Flatter in late-types, steep in barred galaxies


Why are there gradients?

- Radial dependence on SFR/SFH?
- Radial gas flows?
- Radial dependence on yield?
- Radial dependence on infalling gas?

Extragalactic Abundances: Dwarfs


- ▶ LMC is 50-70% solar
 - O/H = -0.3 to -0.15
- ▶ SMC ~ 20-25% solar
 - | O/H | = -0.7 to -0.65
- Some dwarfs extremely metal poor (1/10 solar)
- Why?


QSO Absorption Lines

- Absorption line systems detected against background quasars
- Gas phase abundances can be measured via absorption lines
- Most metal-poor gas systems ever found
- Enrichment histories vary from solar

QSO Absorption Lines

- Damped Ly- α systems have high column, high velocities → correlated with galaxies
- Thought to be progenitors of today's massive galaxies
- Consistent with:
 - young ages
 - ▶ I/3 solar
 - Enrichment dominated by massive stars
 - few Type Ia Sne

Fenner, Prochaska, & Gibson 2004 ApJ

Chemical Evolution of Galaxies

Simple models

- $M_g(t) = gas mass$
- $M_r(t) = remnant mass$
- M_s = mass in stars
- $M_h(t) = mass in heavy elements$
- $Z(t) = M_h/M_g = metallicity$
- \land M = change in mass
- p = fractional yield of heavy elements

$$\Delta M_h = p \Delta M_s - Z \Delta M_s$$

$$= (p-Z) \Delta M_s$$

$$\Delta Z = \Delta (M_h/M_g)$$

$$= [p \Delta M_s - Z(\Delta M_s + \Delta M_g)]/M_g$$

- In a closed box $\Delta M_s + \Delta M_g = 0...$
 - $> Z(t) = p ln [M_g(t)/M_g(0)]$
 - Implies gas-rich things should have lower Z
 - ► Also: $M_s(<Z(t))=M_g(0)[1-e^{-Z(t)/p}]$ →
 - We should see lots of really low metallicity G stars
 - ▶ Something like 50% of G dwarfs should have $z < 0.25Z_{\odot}$!
 - ▶ But we don't: closer to 25% for Fe and <1% for O
 - → so-called G-dwarf problem