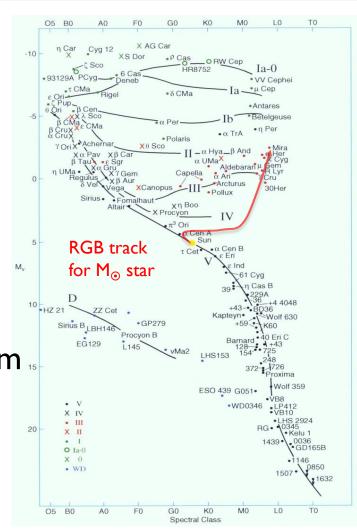
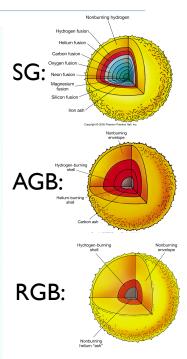
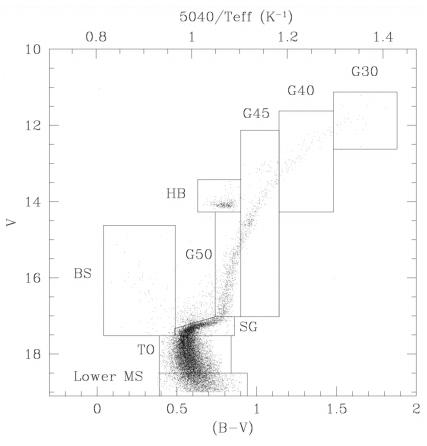
Astronomy 330 Lecture 4

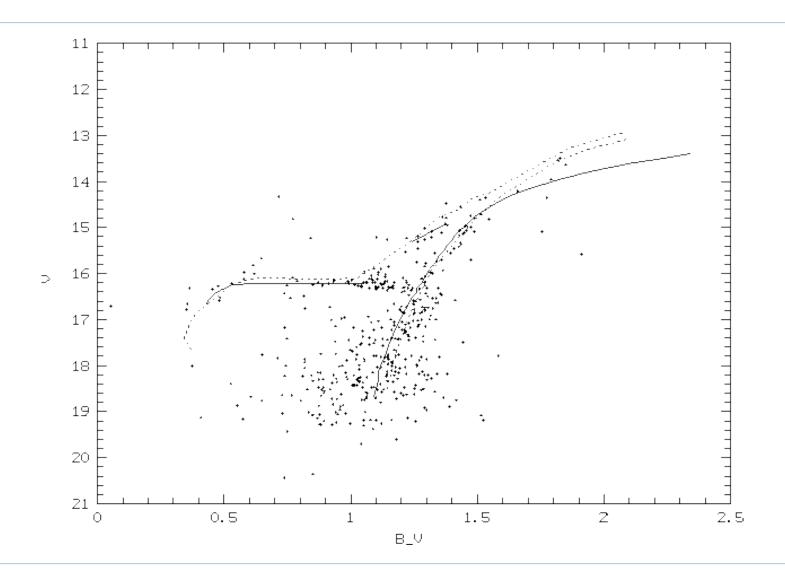

15 Sep 2010


Outline

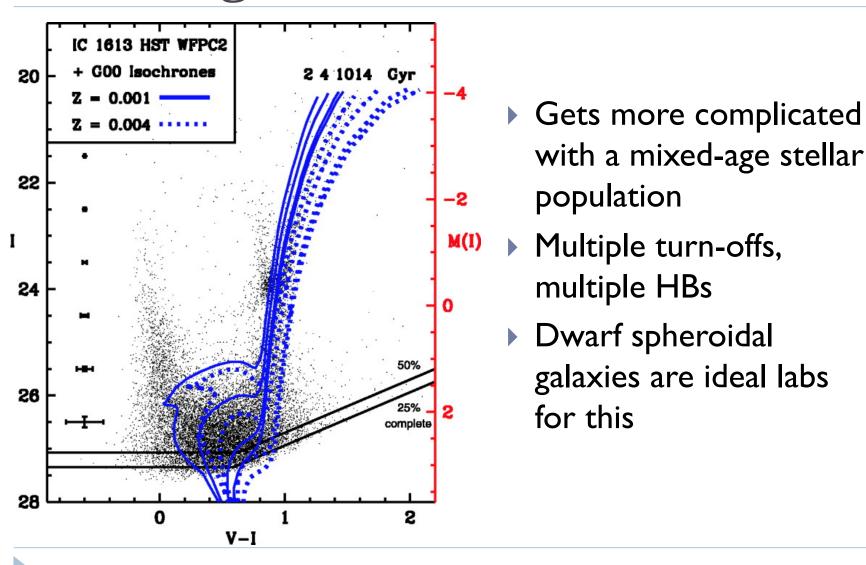
- Review
 - Stellar evolution/nucleosynthesis/H-R diagrams
 - Reading: "Old Main Sequence Turnoff Photometry in the Small Magellanic Clouds" Noël et al. (2007, AJ, 133, 2037)
 - □ What is the data they use?
 - □ Compare Figures 3 and 7 to some of the CMDs in the previous lecture notes what are the similarities and differences?
- Phases of the Interstellar Medium
- Star-formation & Feedback


Review

- Stellar types:
 - Classification photometry & spectroscopy
 - T MS
- Stellar evolution:
- Burning phases
- Paths in the HR diagram 15 (tracks)
- Elemental yields
- Metrics of evolution



Review



H-R diagram for 47 Tuc

- Evolution + nucleosynthesis– each box is a differentburning stage
- Could you sketch the H-R diagram of this cluster and label all of the major burning stages?

H-R Diagram

Statistical Stellar Astrophysics

Stellar initial mass function

- $Mb(M) = N_0 \xi(M) dM$
- N_o \int dM M ξ (M) = total mass of burst/episode
- Dbservationally: $\xi(M)$ goes as $(M/M_{\odot})^{-2.35}$
 - "Salpeter IMF"
 - ▶ Slight variation with mass (time? environment?), according to some
 - ▶ Upper mass limit in the 80-120 M_☉
 - □ but note small-number statistics become important
 - ▶ Turn-over likely below 0.1 M_☉

Stellar Populations

Integrated Colors

- Population I "Disk Population" open clusters, circular orbits, confined to a disk, "blue"
- ▶ Population II "Halo Population" globular clusters, large random velocities, elliptical orbits, spherical distribution, "red"
- ▶ Population III extremely metal poor, not yet detected
 - Cosmic Mystery #2:Where are the Pop-III stars?

Correlations

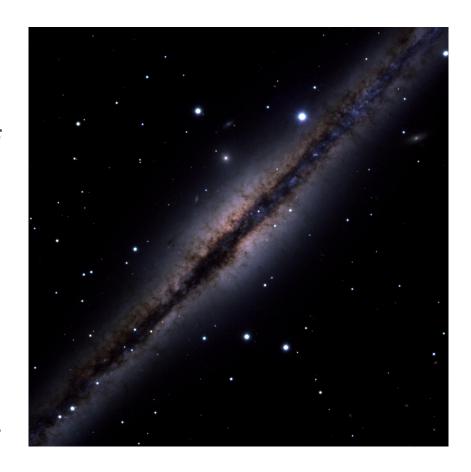
- Color vs kinematics
 - Blue stars are disk-like
- Color vs metallicity
 - Red stellar populations tend to be metal poor, strong Galactic correlation between kinematics and metallicity



Interpretting CMDs

- Density of any locale on a CMD is a function of IMF, SFR, mass, and age
 - ► $C(M_V, V-I) = \iint \xi(\log m, t) \times SFR(t) dt dlogm$
 - Small mass bin (i.e. single mass)
 - Constant IMF (ξ)
 - Can recover star formation history from a complex CMD
- Statistical Approach
 - What is the probability that a certain distribution of points on the CMD came from one particular set of stellar evolution models (Tolstoy & Saha 1996)

SMC: Noel et al. 2007


Interstellar Matter (ISM)

Optically visible components

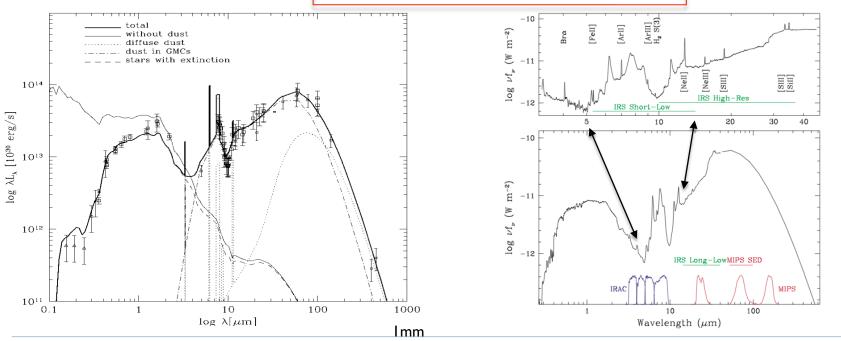
- Dark band through center of the MW (absorption)
- Diffuse emission regions
- Reflection nebulae

Verification

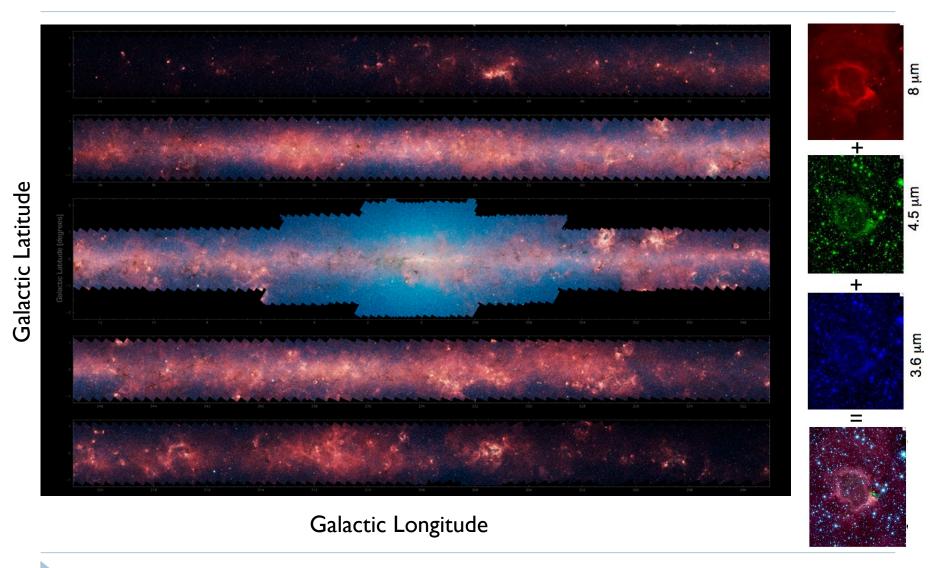
- Cluster diameter vs luminosity distances
- Non-varying absorption lines in binaries

NGC 891 – viewed edge-on

Phases of the ISM


Phase	Temp (K)	N (cm ⁻³⁾	Filling factor	Diag.
Cold	10	10 ⁴	low	CO, mid-IR
Cool	10 ² -10 ³	10 ³	low	HI
Warm	10 ³ -10 ⁴	10 ²	high	HI
Warm	104	10	high	Ηα
Hot	10 ⁵ -10 ⁶	1	high	X-ray/FUV
Relativistic	?	?	High	Synch.

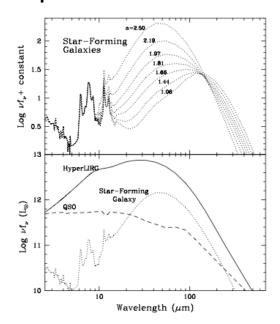
Molecular Gas

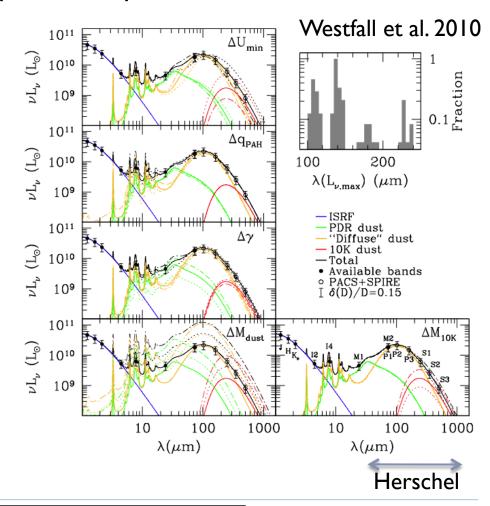

- ▶ Cold molecular line spectroscopy with radio/mm wave telescopes.
 - ▶ H₂ most common molecule, but no dipole moment, so hard to detect
 - ▶ CO next most common molecule; has a dipole moment, transitions due to angular momentum quantum number (e.g. $J=I \rightarrow 0$ at 2.6mm)
 - $I_{CO} = \int dv T_A \quad (2.6 \text{mm line of } ^{12}CO)$
 - ightharpoonup T_A is the antenna temperature so that P = kT_A
 - Conversion to H_2 :
 - $X_{CO} \equiv N(H_2)/I_{CO} \sim 2.3 \times 10^{24}$ (The infamous X factor)
 - (is this really the same everywhere???)
 - Other methods include UV spectroscopy to get H₂, even more complex molecules (e.g. HCN)

Dust: The Mid to Far Infrared Window

- What' the difference between dust and molecules?
- Key components:
 - multiple thermal components from 10 to 300 K (cool and cold)
 - ▶ 30 microns I mm
 - molecular (PAH) emission
 - > 3-30 microns
- Key instruments: IRAS, ISO, Spitzer, and Herschel satellites, SOFIA

GLIMPSE 3.6 to 8 microns: Stars vs PAH




regions (PDRs), shocks

Spitzer Galactic Plane Survey: PI E. Churchwell (U. Wisconsin)

Dust continued

- What drives the detailed shape of the spectrum?
- Radiation field: U
- ▶ Composition:
 - ▶ PAH abundance q_{PAH}
- Dust Masses: diffuse, PDR
- ► Temperatures: diffuse, PDR

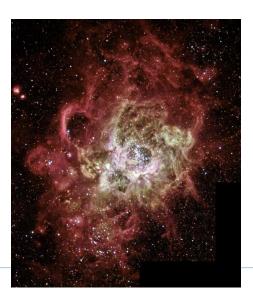
Dale et al 2001

Models: Draine & Li 2007

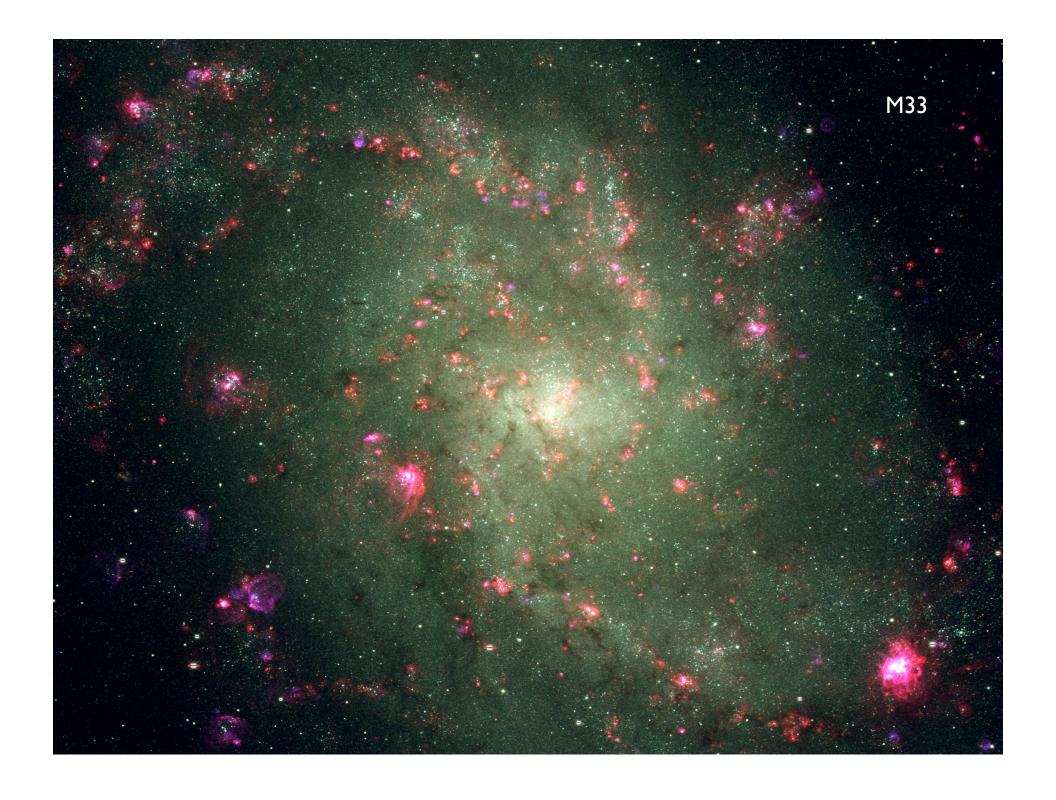
Dust and Molecules

- Can we estimate molecular gas content from studying the dust?
 - Unsurprising to find tight correlation between I_{CO} and MIR flux, e.g., $I_{24\mu m}$
 - Higher degree of correlation likely to be found by considering broader range of MIR and FIR colors
- Why would we want to do this?
 - CO measurements are hard
 - ▶ The conversion from CO to H₂ is frought
 - Detailed modeling of 3-300 micron SEDs* should yield molecular/ chemical composition and radiation field:
 - ▶ Link to CO measurements to understand X_{CO}
- Research project waiting to happen

Neutral Hydrogen: 21 cm HI line


- Hyperfine transition in the ground state from the interaction between the spins of the electron and proton.
 - ▶ $\Delta E = 6 \times 10^{-6} \text{ eV} \rightarrow \nu = 1.4204 \text{ GHz}$
 - Lifetime of excited level is long (10⁷ yr) so collisional excitation and deexcitation is fast compared to spontaneous decay. Level populations depend only on kinetic temperature of the gas.
- Useful relationships:
 - $N_{H} = 1.82 \times 10^{22} \int dV T_{B}$ (if optically thin)
 - ► $M_H = 2.36 \times 10^5 M_{\odot} \times D^2 \int S(V) dV$, where S(V) is in Jy km s⁻¹

Warm Ionized Gas


Emission from

- Photoionization
 - We largely see H emission lines via recombination into various primary quantum levels. e.g.,
 - \Box H α (656.3nm) arises from transition from n=3 to n=2.
 - □ See example from M33
- Collisional excitation
 - Forbidden lines
 - ▶ C, N, O, Ne, S, Si, Fe

- Line-strengths of H
 - → star-formation rates
- ► Line-ratios of H and forbidden lines → estimates of
 - redenning
 - metallicity
 - T_e = electron temperature
 - $n_e = electron density$
 - Shocks vs photo-ionization

HII regions: ionizing radiation from OB stars

Estimating Star-formation rates

Assume:

- \triangleright All ionizing photons, Q(H⁰), produced by stars
- Each ionizing photon ionize an atom
- The rate of ionization is balanced by the rate of recombination (Osterbrock):

▶ Then:

$$Q(\mathbf{H}^0) = \int_0^{r_s} N_p N_e \alpha_B(T) dV$$

- N_e = number of electrons
- $N_p = number of protons$
- $\triangleright \alpha_B$ is recombination coefficient (Case B)*
- $r_s = Stromgren sphere$
- If $N_e = N_p$ and we take the Ha luminosity to be:

$$L(H\alpha) = h \nu_{H\alpha} \cdot \int_0^{r_s} N_p N_e \alpha_{H\alpha}(T) dV$$

Then the number of Lyman continuum photons is:

$$N_{\rm Lyc} = L_{\rm H\alpha} \times 7 \times 10^{11}$$

^{*} Gas is optical thick to ionizing (Lyman continuum) photons

Star-formation rates continued

- Recall Stellar IMF
 - ▶ $N_o \int dM M \xi(M) = total mass of burst/episode, \xi(M) goes as <math>(M/M_o)^{-2.35}$
- Young, massive stars (on MS) producing nearly all ionizing radiation
- On MS there is a mass-T relationship
- Integrate IMF weighted by ionizing luminosity per star of mass M to get N_{Lyc}
- Extrapolate integral over full mass of IMF to get total mass
- Current best estimates: K98
 - ► SFR $(M_{\odot} \text{ year}^{-1}) = 7.9 \times 10^{-42} \text{ L}(H\alpha) \text{ (ergs s}^{-1}) = 1.08 \times 10^{-53} \text{ Q}(H^0) \text{ (s}^{-1})$ ► Case B for $T_e = 10,000 \text{ K}$
 - ► SFR $(M_{\odot} \text{ year}^{-1}) = (1.4\pm0.4) \times 10^{-41} \text{ L[OII]}_{\lambda 3727}) \text{ (ergs s}^{-1})$
 - empirical
 - In all cases, must correct for extintcion

Can extend to Paschen series where extinction is smaller; see Calzetti et al. (2005)

- Why not measure N_{Lyc} directly?
- What about UV continuum at wavelengths longer than the Lyman limit?
- What about the FIR (what heats the dust)? Radio continuum?

Line diagnostics

Redenning:

- Use recombination coefficients for different lines compared to measured flux ratios, e.g., $H\alpha/H\beta$
 - ▶ Recombination coefficients depend in detail on knowing T_e and n_e
 - Must correct emission for stellar photospheric absorption which is, e.g. larger in H β than $H\alpha$

► Temperature: T_e

- Flux ratios of forbidden-lines from ions with different ionization potentials, e.g.,
 - ▶ H+,S+,N+,O+,O++
 - Metallicity and shock-heating effects

Density: n_e

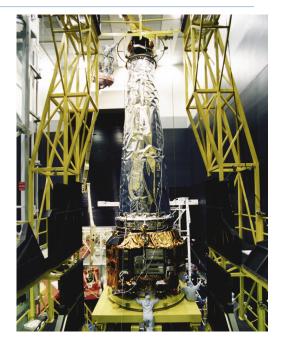
- Flux ratios of some forbidden-line doublets, e.g.,
 - [OII]λλ3726,3727 , [SII]λλ6717,6731
 - Limited sensitivity to large dynamic range in density

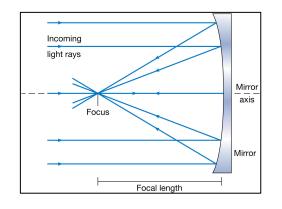
Hot Gas

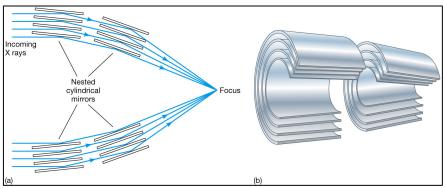
- ▶ Gas heated to 10⁶ K (probably by SNe)
 - Powerful probe of mass distribution in galaxy clusters
- Detected via X-ray emission
 - Point source population
 - Diffuse hot gas
- ▶ Emission via
 - Brehmstrahlung
 - Emission lines of highly ionized species

Diffuse Hot Gas: Soft X-Ray Background

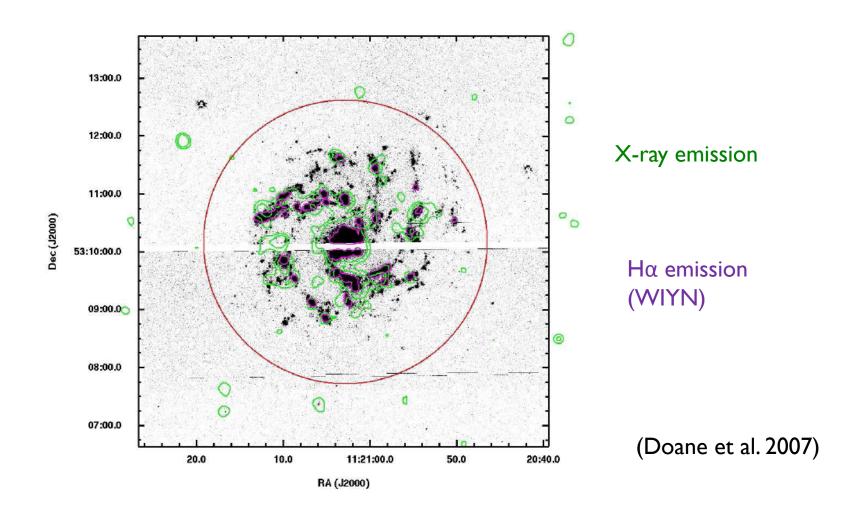
- McKee & Ostriker (1977): diffuse hot phase of the ISM with a filling factor of ~100%
- Early detection of X-ray emitting "superbubbles" in the Milky Way: Sco-Cen, Orion-Eridanus (McCammon et al. '83, McCammon & Sanders '90)
- Origin of Soft X-Ray background
 - MWG: local ISM + hot galactic halo
 - Local Group: hot intergalactic medium
 - Extragalactic: (un)resolved AGN + E galaxies


The Local Bubble


- Radius: 100-200 pc
- ▶ Temperature: \sim 2 x 10⁶ K
- Thermal pressure: $p/k = 10^4$ cm⁻³ K
- N(HI) = 6×10^{18} cm⁻² (derived from soft X-ray absorption)
- Origin of the Local Bubble
 - hot gas w/ 100% filling factor?
 - diffuse gas reheated by recent SNe?
 - a series of 2-5 SNe a few million years ago?
 - an extension of nearby superbubble?


Comparison of X-Ray Observatories

- ▶ Einstein: I' resolution
 - MI01 (McCammon & Sanders 1984)
 - $L_{\rm X}({\rm diffuse}) \sim 10^{38} 10^{40} {\rm erg \ s^{-1}}$
- ▶ ROSAT (PSPC): I.'8 resolution, 0.1-2 keV
 - M101, N3184, N4395, N5055, N4736 (Cui et al. 1996)
- ► CXO (Chandra): <1" over 8 arcminutes
- XMM/Newton: 15" over 30 arcminutes



Mirrors: ←Optical X-ray→

X-ray vs HII region comparison NGC 3631

Temperature Comparison (10⁶K)

► LMC Superbubbles: I.7-9 ► NGC3631: 1,3

▶ Orion-Eri.: 3.3 ► NGC6946: 2, 7

N. P. Spur: 3.0 ► M101: 2,8

Sco-Cen: 4.6 ► N253(halo): 4

▶ M82(halo): 3, 4

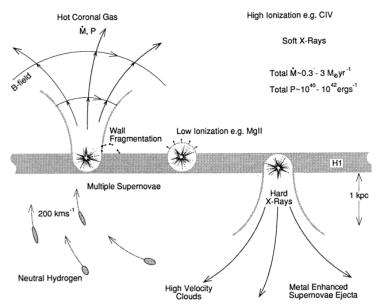
Spirals are best fit with two temperature models of hot gas, but there is variation in the high temperature and surface brightness.

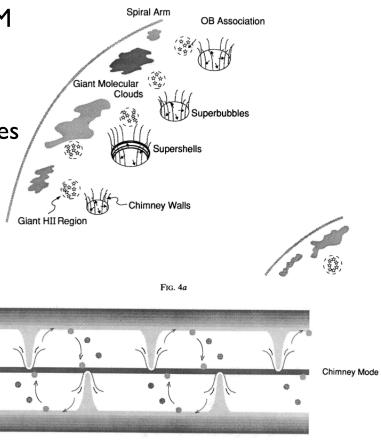
Summary of X-Ray Results

- Diffuse emission is highly correlated with both spiral arms and HII regions
- Bulk of the diffuse emission arises from less than 25% of the area of the disk
- X-ray spectra are best fit with a two temperature model
- There is variation in the surface brightnesses between galaxies and variation in the temperature of the hot component

Feedback: Impact of Massive Stars

Stellar winds + SNe dump 10^{53.5} ergs into ISM


Creates hot bubble surrounded by swept up ISM and circumstellar matter


gas heated by inward moving shock

X-ray emission should be aligned with HI holes

growth of chimneys

means of getting hot gas into the halo

Norman & Ikeuchi 1989

Feedback: Bubbles

- Stellar winds/SNe drive expanding bubbles into ISM
 - $R_s \sim 100 (N_*E_{51}/n_0)^{1/5}t_7^{3/5} pc (McCray & Kafatos 1987)$
 - $V_s = L_W^{1/5} n_0^{-1/5} t_7^{-2/5} \sim 6 (N_* E_{51} / n_0)^{1/5} t_7^{3/5} \text{ km s}^{-1}$
 - ▶ Reverse shock heats bubble to 10^6 - 10^7 K → X-ray emitting
 - Shell includes swept up ISM, dense neutral gas, possibly accelerated particles

- Ultimate fate
 - ightharpoonup Shell/bubble expands until $P_{bubble} = P_{ISM+IGM}$
 - Breaks out of disk if

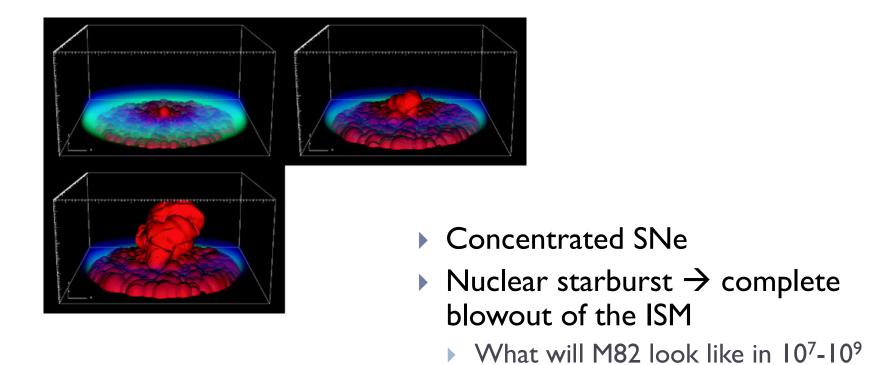
$$P_{bubble} > P_{ambient}, V_{shell} > V_{escape}$$

> Shell accelerates in density gradient

 R_s – shell size

N_{*} - number of stars formed with M>7M_©

 T_7 – time-scale in 10^7 yr


E₅₁ - SN energy / 10⁵¹ ergs

 n_0 – intial electron density cm⁻³

V_s – shell speed

L_W - mechanical luminosity of winds

Extreme "Feedback"

years?

Bursting dwarfs?