Astronomy 330 Lecture 3

10 Sep 2010

Outline

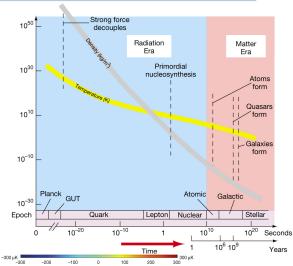
- Review & a little more on reionization
- Stellar Classification
 - Photometry/classification
- Stellar Evolution
- Interpreting H-R diagrams
- ▶ Reading: "Old Main Sequence Turnoff Photometry in the Small Magellanic Clouds" Noël et al. (2007, AJ, 133, 2037)
 - What is the data they use?
 - Compare Figures 3 and 7 to some of the CMDs in the lecture notes – what are the similarities and differences?

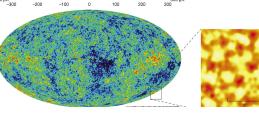
Review: Big Bang / Creation of Matter

- Expansion & evolution: GR and Friedman equations: R=I/I+z, R,R
- Early Universe

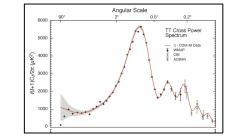
 $rad^{n} \\$

- ▶ Inflation (10⁻³⁴ sec)
- dom.
- ▶ Particle genesis (10⁻¹⁵ to 1 sec)
- ▶ BBNS (3 minutes) → Cosmic He abundances
- ► Recombination $(4 \times 10^5 \text{ yr})$ → CMBR
- Dark Ages (?)
- Reionization and onward

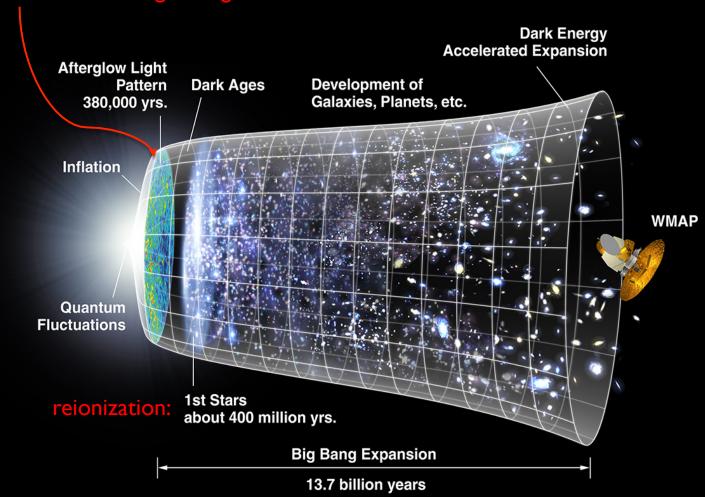

matter

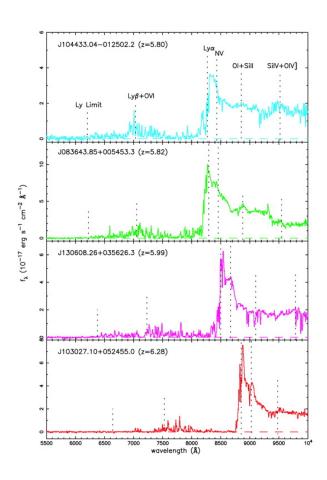

dom.

- When the first stars and AGN formed (z=12?)
- Galaxy formation
- Evolution of galaxies, their stars and planets

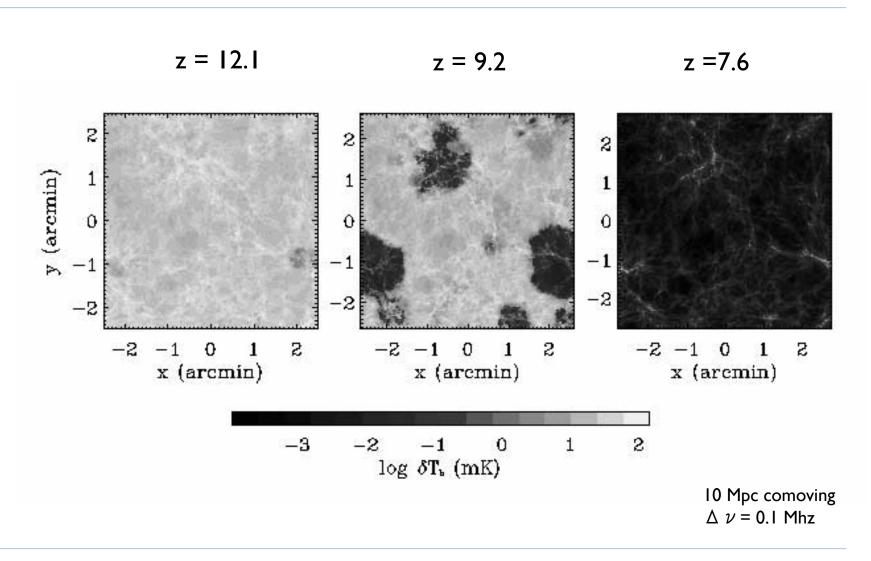

Structure grows via gravity in matter dominated era

& first glimpse of structure

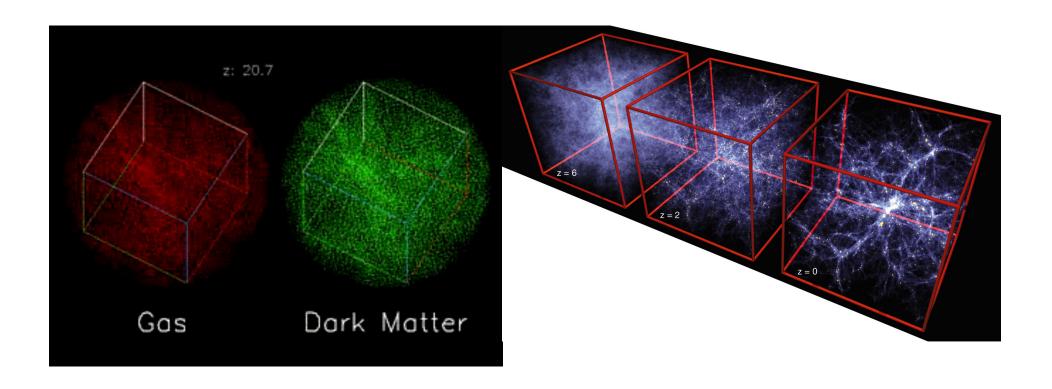




Structure starts growing here

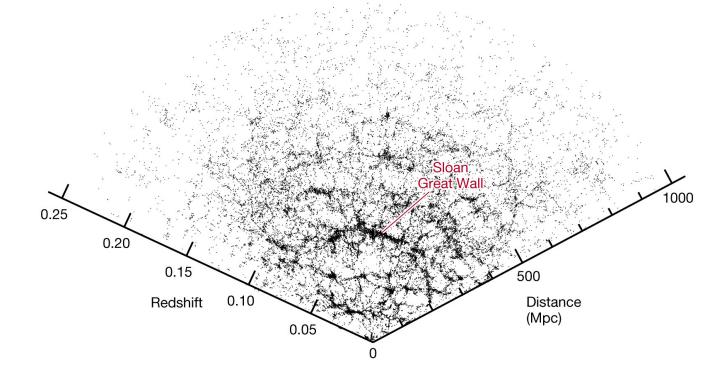

Epoch of Reionization

- Somehow, somewhere stars formed...
- ...and ionized the surrounding IGM and the Universe emerged out of the "Dark Ages"
- ▶ WMAP says somewhere near z~12...
 - But possibly two phases, one early (z>12, and incomplete)
- ▶ When did the Ist stars/galaxies form?
 - Gunn-Peterson trough in quasar absorption
 - Directly observing Ist stars (NGST,TMT)
 - 21 cm line absorption/redshifted emission (SKA)
 - High redshift objects (VLA, GMRT, SKA)
 - Primordial, high redshift black holes (SKA)

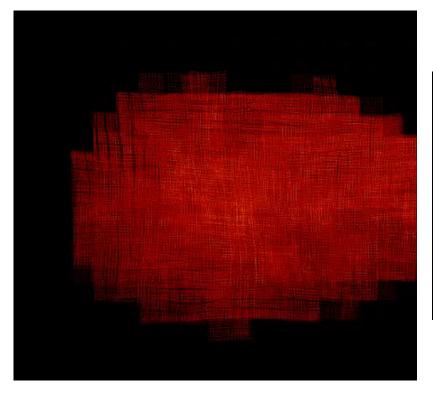


21 cm Observations: Emission

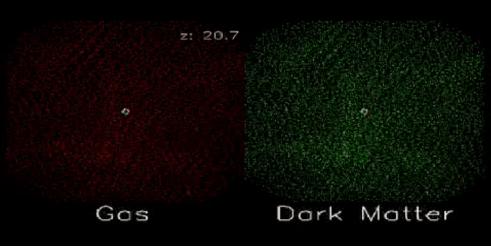
Large scale structure: simulated


▶ Fly-through of the Cosmic Web

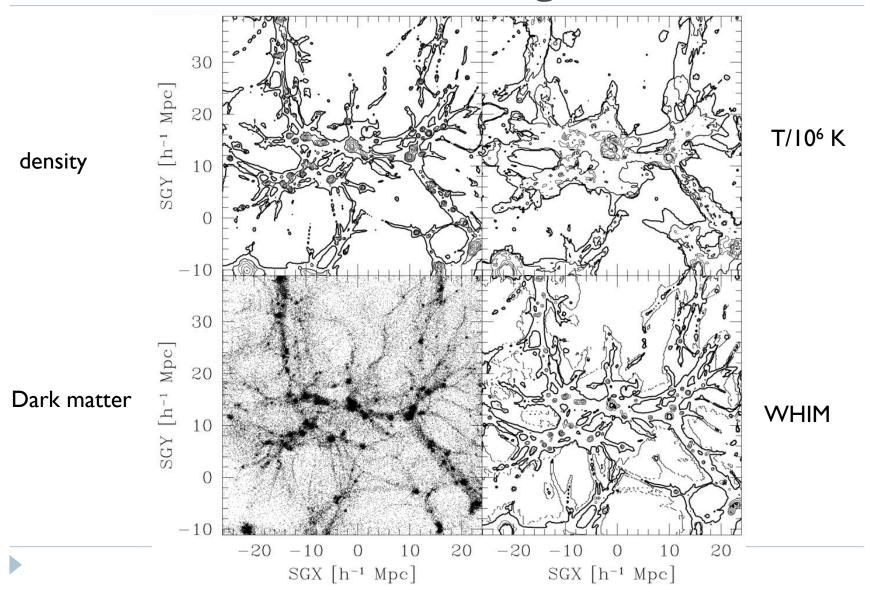
Large Scale Structure: observed


▶ Filaments and voids

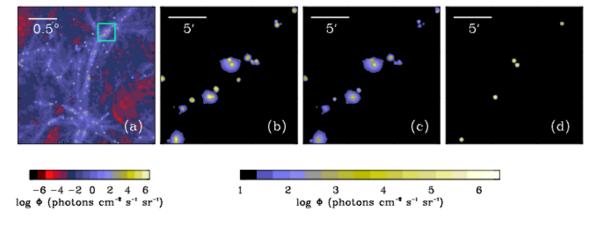
- Great Attractor
- Characteristic scales: 40-120 Mpc



Large scale structure of the Universe


Structure and Galaxy Formation elliptical

The WHIM: Warm-Hot Intergalactic Medium


Physical Processes in the Cosmic Web

- Large scale shocks as baryons accrete onto collapsing structures
- ▶ Gas is shock-heated to 10⁵-10⁷ K
 - WHIM origins, or AGN and star-formation too?
- ► Shock accelerate particles (cosmic ray ions) to 10¹⁸–10¹⁹eV
- ▶ Inter-cluster B-fields: 10⁻⁷–10⁻¹² G
 - Origin and amplification?

Mapping the Cosmic Web

- Galaxies are only the high density islands in the web
- Most of the web is in the form of diffuse WHIM
 - Detected primarily via QSO absorption sightlines
 - Fraction of kinetic power converted to radiative energy
- Diffuse emission should be detectable in the optical (nebular line emission, e.g., redshifted Ly α) but suitable instrumentation has yet to be built.
- Diffuse synchotron emission (radio) another possibility
 - Parameters:
 - Infall velocity
 - Density of in-falling baryonic gas
 - Magnetic field strength
 - Efficiency of shock acceleration
 - Fraction of kinetic power converted to radiative energy

Furlanetto et al. 2003: Ly α surface-brightness

Role of Stars in Extragalactic Astronomy

Dynamics

- Stars are point masses
 - collisionless tracers of the potential
- Distinctions between stars irrelevant
 - But, which stars most accurately trace the "true" morphology and dynamics of a galaxy?

Chemical evolution

Stars are responsible for producing and distributing the elements

Metric of evolution

- Star formation rate (SFR)
- Star formation history (SFH)
 - ▶ H-R diagram are all diagnostics of evolution

Feedback

 evolution/organization of ISM in galaxies driven by gravity, hydrodynamics, and input of energy from stars

Digression & Review: Flux Units

- Flux (f_v) : measured in Janskys
 - $1 \text{ Jy} = 10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1} = 10^{-23} \text{ erg sec}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1}$
- Flux (f_{λ}) : measured in ergs s⁻¹ cm⁻² A⁻¹ (cgs units)
- Photon flux (f_{γ}) is useful for calculating signal-to-noise (counting statistics):
 - Define $neper = \Delta \lambda / \lambda = \Delta v / v = \Delta \ln v$
 - The photon flux is:
 - ▶ photons sec⁻¹ cm⁻² neper-1 = f_v/h
 - \rightarrow where h=6.6256 x 10⁻²⁷ erg sec
 - Useful identify:

1 microJy = μ Jy = 15.1 photons sec⁻¹ m⁻² neper⁻¹

Apparent magnitudes

$$m_1 - m_2 = -2.5 \log_{10} \left(\frac{f_1}{f_2}\right) = -a \ln \left(\frac{f_1}{f_2}\right)$$

 $a = 2.5 \log_{10} e = 1.08574$

 f_n : the apparent flux of object n.

$$m = -2.5\log_{10}\left(\frac{f_1}{f_0}\right) + m_0$$

Pogson's ratio (MNRAS, 1856, 17, 12)

Will drop "10" here on out.

 m_0 : zeropoint of the magnitude system

$$f = f_0 \text{ dexp}[-0.4(m-m_0)]$$

how to get your money back

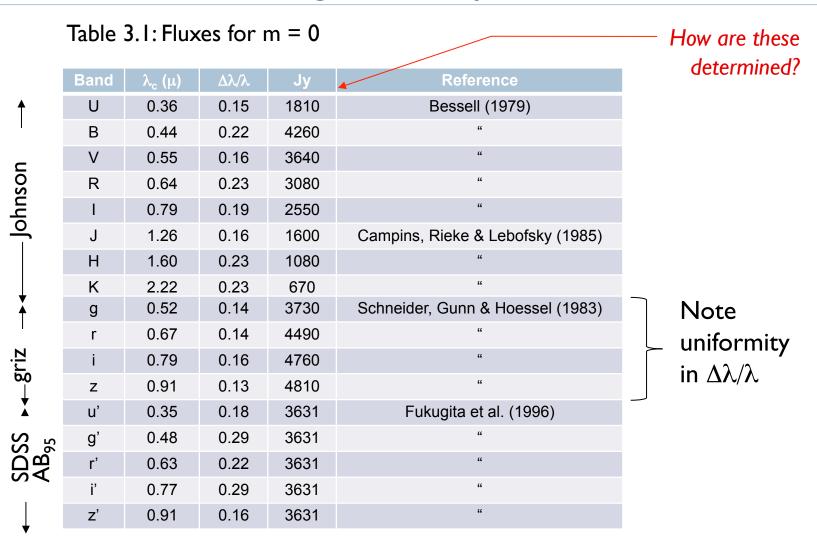
Absolute Magnitudes

$$m_{\lambda} - M_{\lambda} = 5\log_{10} d - 5 + A_{\lambda}$$

$$\therefore \quad \frac{f_1}{f_2} = \left(\frac{d_2}{d_1}\right)^2$$

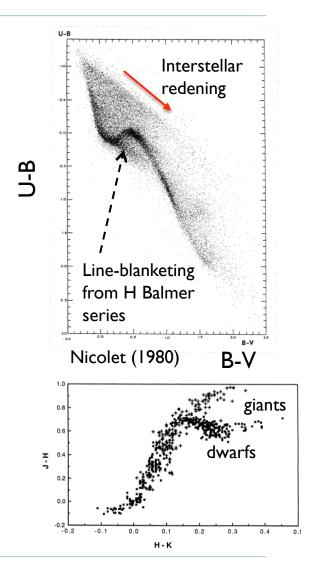
- Absolute magnitude is the apparent magnitude that would be observed if the object were at a distance, d, of 10 pc.
- A_{λ} is the total extinction due to interstellar dust, in magnitudes, typically take to be only the Galactic foreground screen (Burstein & Heiles 1982, AJ, 87, 1165; Schlegel et al. 1998, ApJ, 500, 525):
 - $f = f_0 \exp(-\tau_{\lambda}),$
 - $A_{\lambda} = 1.086 \ \tau_{\lambda} = -2.5 \log(f/f_0)$

Absolute Magnitudes


- For extragalactic observers: d in Mpc, plus the so-called k-correction, κ , which accounts for effects of the cosmological expansion
 - effects of redshifting the rest-frame spectrum in the observed band-pass; and
 - 2) photon dilution.

$$m_{\lambda} - M_{\lambda} = 5\log_{10} d + 25 + A_{\lambda} + \kappa_{\lambda}$$

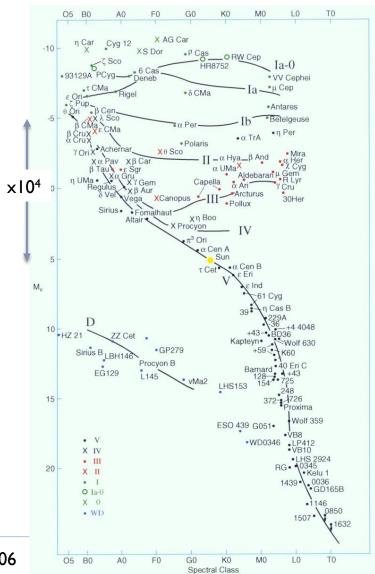
See, e.g.: Schneider, Gunn & Hoessel (1983, ApJ, 264, 337)



Astronomical Magnitude Systems

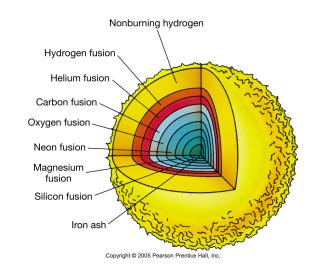
Stellar Classification

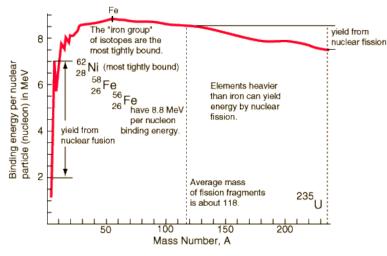
- Photometry: Based on optical and nearinfrared (NIR) colors
 - First order: stars are blackbodies, so any two flux-points constrain temperature
 - Combination of two bands yield "color" = temperature
 - Second-order: stars have line-blanketing, so e.g., colors are degenerate for massive stars
 - Need observations in at least three bands.
 - NIR can break degeneracy between cool giants and dwarfs.
- Spectroscopy: individual line ratios very tightly constrain temperature, surface gravity, etc.
 - Yields the OBAFGKM classification
 - ▶ Further sub-classification is the luminosity class



Bessell & Brett (1988)

Basic Properties of Stars (chapter 1.1)


Spec. type	Absorption lines	T _{eff} (K)	M _v (V, I)	(B-V)
0	He II, C III	40-50,000	-6,-8	<-0.33
В	He I, S III, H	12-30,000	-1.5, -7	-0.2
А	H, Mg II	7-9,000	1.0, -7	0
F	Ca II	6-7,000	3.0,-7	0.4
G	Ca II, CH	5.5-6,000	5.0,-7	0.6
K	CH, CN	4-5,500	6.0,-7	1.2
М	TiO	2.5-4000	9.0,-7	1.6



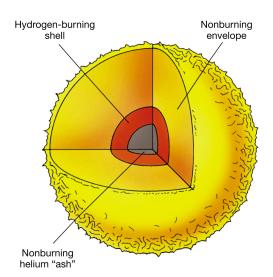
Fundamentals of Stellar Evolution

- History: BBNS cannot account for the abundances of all the elements; Burbridge, Burbridge, Fowler, & Hoyle laid out the model for stellar nucleosynthesis.
- Main sequence: H to He fusion via protonproton chain & CNO bi-cycle
- Post-MS: H depletion in core, interior pressure decreases, collapse of core and interior, H shell burning ignites, envelope expands and star becomes a red giant.
- Later phases: repeat with heavier and heavier elements via α-processes, faster and faster rates (more energy production per unit time), more and more shells.
- Fusion ends depending on mass sufficient to overcome core degeneracy, or when core burns to Fe.

MS Stellar Lifetimes

- Because H burning lifetime depends on mass there is a nice correlation between turn-off mass and age
 - Spectral types are determined by surface-temperature (T_{eff})
 - T_{eff} set by mass on the main sequence:
 - more mass burns brighter and hotter

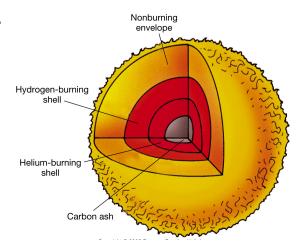
```
► L_{MS}/L_{\odot} \sim (M/M_{\odot})^{2.14} (M/M_{\odot} > 20)


► L_{MS}/L_{\odot} \sim (M/M_{\odot})^{3.5} (2 < M/M_{\odot} < 20)

► L_{MS}/L_{\odot} \sim (M/M_{\odot})^{4.8} (M/M_{\odot} < 2)
```

So:
$$\tau_{MS} = 10 (M/M_{\odot})(L/L_{\odot})^{-1} Gyr$$

Post-MS Stellar Evolution


- ▶ RGB to Horizontal Branch (HB)
 - Core contraction/core mass increases
 - T~ 10^8 K, ρ ~ 10^4 g cm $^{-3}$ get He burning
 - ▶ $2\alpha \rightarrow {}^{8}\text{Be}, {}^{8}\text{Be} + \alpha \rightarrow {}^{12}\text{C}$
 - ▶ In stars w/ M > $2M_{\odot}$, its not degenerate and we get core expansion
 - Essentially a He-burning main sequence
 - In more massive stars get $^{12}C + \alpha \rightarrow$ ^{16}O ; for stars with M up to 8 M $_{\odot}$ we're left with a degenerate CO core (white dwarf)
 - ▶ He-burning lifetime ~10⁸ years
- Evolution to Asymptotic Giant Branch (M > 8 M_☉)
- ▶ Further Burning Stages...

Fundamentals of Stellar Evolution

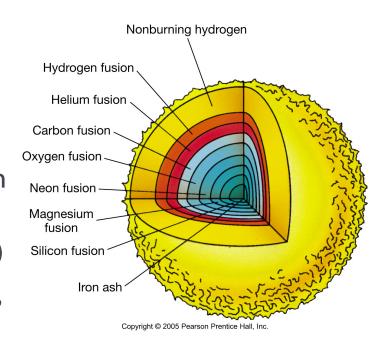
Evolution to AGB

- He-burning, growing CO core
 - Low mass stars can't lift degeneracy, end up as planetary nebula + white dwarf
- Eventually get He shell burning that drives expansion of envelope and luminosity increases (plus unburned H, H shell burning)
 - Occurs with a series of "dredge-ups" that produce chemically bizarre stars (convection)
 - Site of "s-process" nucleosynthesis

Neutron capture processes

- S-process ("slow") yields elements like Ba and Tc largely in AGB stars (all those free n from previous burning processes)
- R-process ("rapid") yields very heavy elements like Ur, usually in SNe

Fundamentals of Stellar Evolution

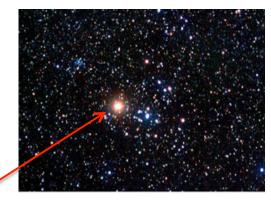

Further Burning Stages

$$\rightarrow$$
 ¹²C + ¹²C \rightarrow ²⁰Ne + α

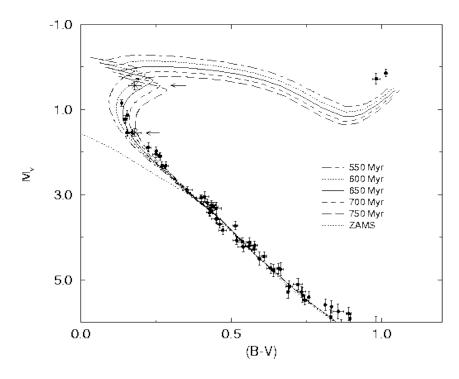
16
O + 16 O → 28 Si + α

▶
20
Ne + 4 He \rightarrow 24 Mg + γ

- Leads ultimately to the production of ⁵⁶Fe, core collapse, and supernova explosion (Type II SNe)
- Can also get n production via, e.g., $^{12}C + ^{12}C \rightarrow ^{23}Na + n$



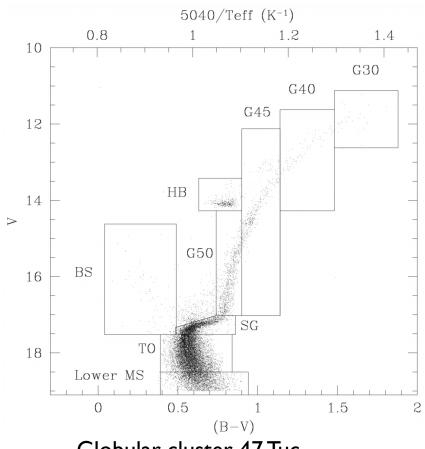
Understanding Stellar Populations


- ▶ Color temperature mass lifetime relationships mean the observed "color-magnitude" diagram (CMD) can tell us something about the age/evolutionary status of a stellar population (especially if it's a single age)
- CMD can also hint at the production of metals

H-R Diagram

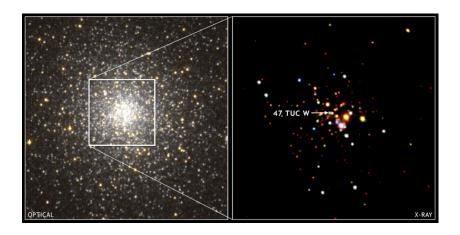
- Stars spend most of their lives on the "main sequence"
- "turn-off" age is primary indicator of the age of a stellar population

Aldeberan – not part of cluster

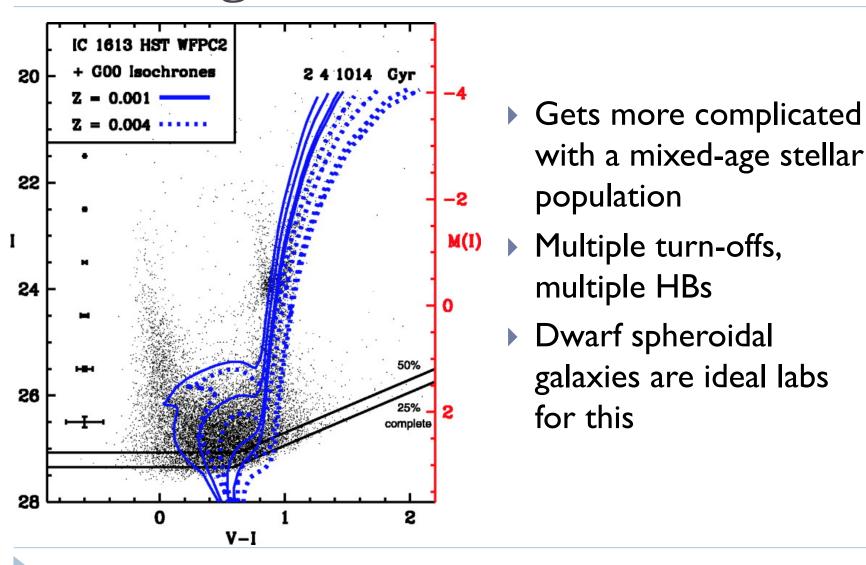


Hyades open cluster; Perryman et al. 1998

ZAMS = zero-age main sequence



H-R Diagram continued


Globular cluster 47 Tuc (Edmonds et al. 2002)

- Tracing evolution of a stellar population
- ► (B-V) → temperature
- V → luminosity

H-R Diagram

Statistical Stellar Astrophysics

Stellar initial mass function

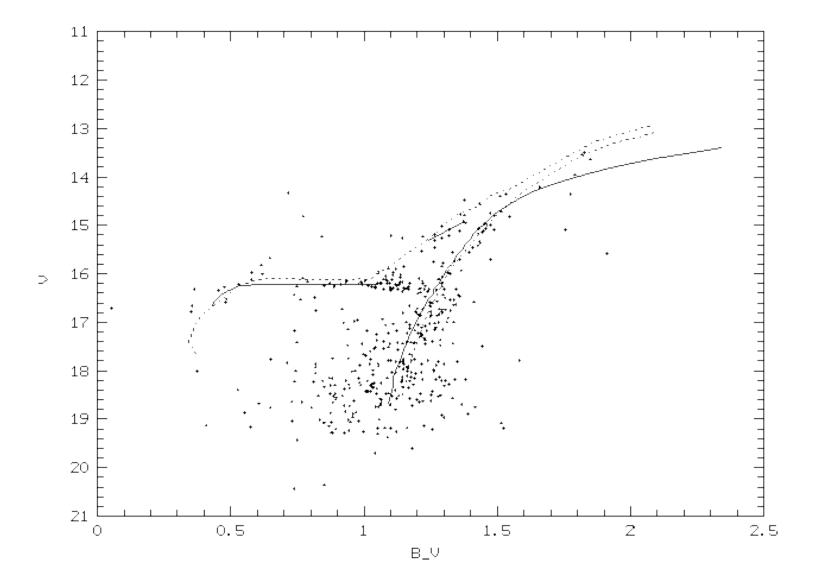
- $Mb(M)\xi(M) = N_0\xi(M)dM$
- N_o \int dM M ξ (M) = total mass of burst/episode
- Dbservationally: $\xi(M)$ goes as $(M/M_{\odot})^{-2.35}$
 - "Salpeter IMF"
 - ▶ Slight variation with mass (time? environment?), according to some
 - ▶ Upper mass limit in the 80-120 M_☉
 - □ but note small-number statistics become important
 - ▶ Turn-over likely below 0.1 M_☉

Stellar Populations

Integrated Colors

- Population I "Disk Population" open clusters, circular orbits, confined to a disk, "blue"
- ▶ Population II "Halo Population" globular clusters, large random velocities, elliptical orbits, spherical distribution, "red"
- Population III extremely metal poor, not yet detected
 - Cosmic Mystery #2:Where are the Pop-III stars?

Correlations


- Color vs kinematics
 - Blue stars are disk-like
- Color vs metallicity
 - Red stellar populations tend to be metal poor, strong Galactic correlation between kinematics and metallicity

Interpretting CMDs

- Density of any locale on a CMD is a function of IMF, SFR, mass, and age
 - ► $C(M_V, V-I) = \iint \xi(\log m, t) \times SFR(t) dt dlogm$
 - Small mass bin (i.e. single mass)
 - Constant IMF (ξ)
 - Can recover star formation history from a complex CMD
- Statistical Approach
 - What is the probability that a certain distribution of points on the CMD came from one particular set of stellar evolution models (Tolstoy & Saha 1996)

