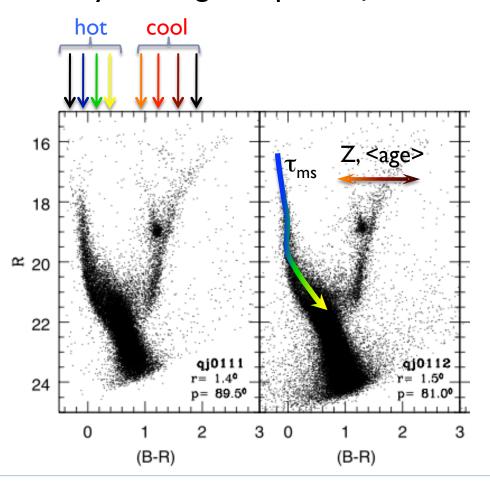
Astronomy 330


Lecture 21 19 Nov 2010

Outline

- Review:
 - Stellar populations continued
 - Simple models
 - Disk heating in the solar neighborhood
 - Parenago's discontinuity
 - Scale-height velocity-dispersion relation for disk stars
- Disk heating models
- Dwarf galaxies
 - Context of galaxy formation
 - Content of Local Group

CMD for the SMC at 60 kpc OMG

Why we might expect a *flexible* 2-star model will work:

- OWhat's flexible?
- How many total stars (taken two at a time) are needed to describe a composite stellar population over time?
- What does composite mean?

For a disk in equilibrium the Virial theorem implies $σ_z^2/h_z$ ought to be a constant for any given stellar-population age in the disk

tracer	h _z (pc)	σ_z (km/s)	σ_z^2/h_z
OV	50	6	0.7
BV	60	6	0.8
AV	120	9	0.7
FV	190	13	0.9
G۷	350	17	0.8
KV	340	14	0.6
K III	270	16	1.0

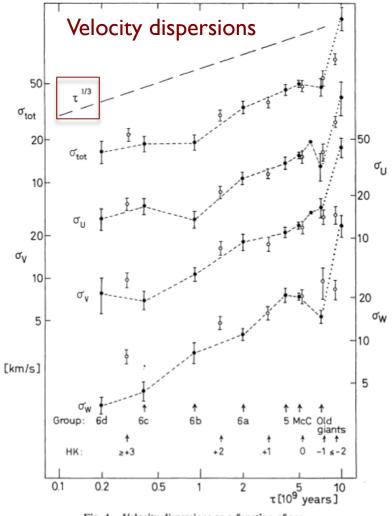


Fig. 4. Velocity dispersions as a function of age.

How are disk stars heated?

- ▶ A number of options.... but:
- Limited constraints
 - Scale-height & vertical velocity dispersion of stars in the solar neighborhood only
 - Shape of velocity dispersion ellipsoid:
 - \bullet $\sigma_{R}:\sigma_{z}:\sigma_{\varphi}$ $\leftarrow \bullet$ $< u^{2}>^{1/2}:< v^{2}>^{1/2}:< w^{2}>^{1/2}$
 - Constant thickness with radius of external disks
 - Very limited data on a handful (<6) external galaxies: young stars are predominantly near the mid-plane (Seth et al. 2006)

Disk heating options: 1 of 2

- Options I: Monolithic collapse scenario: early gas disk was thicker
 - This isn't heating!
 - ▶ Recent evidence may suggest early disks (z~2) were
 - comprised of very large gas clumps (Elmegreen & Elmegren 2006)
 - highly chaotic (smaller V/σ; Förster-Schreiber et al. 2009)
 - Progenitors of today's disk systems or progenitors of today's massive spheroidals?
- More fundamentally: disk heating in MW occurs most rapidly for young ages (recent times). This requires disks to have been a lot thicker in the recent past. Not observed.
 - ▶ Thicker gas disks may be relevant for some thick-disk component.TBD!

Disk heating options: 2 of 2

- Option 2: Gravitational encounters (two-body relaxation)
 - Energy equipartition → star-star encounters not interesting
 - $m_1 v_1^2 = m_2 v_2^2$
 - ▶ → requires objects much more massive than single stars:
 - ▶ Star—GMC (giant molecular clouds)
 - ☐ Encounters naturally due to differential galactic rotation
 - \square Produces isotropic scattering $\rightarrow \sigma_R: \sigma_z: \sigma_{\varphi}$ of order unity
 - Star—spiral wave

What is seen in solar Encounters naturally due to differences between pattern-speed and rotation (what happens at co-rotation?)

neighborhood \rightarrow \Box Produces scattering primarly in plane: $\sigma_z < \sigma_R$ and σ_{Φ}

- Star—halo object
 - □ globular clusters
 - □ black holes
 - satellites

Outcome depends in detail on orbits (radial or tangential), masses, and spatial distribution (N vs radius)

Apparently cannot account for all of the heating observed in solar neighborhood

Disk heating via diffusion

- ▶ Each encounter delivers an impulse $(\Delta \mathbf{v})$ to a star's velocity \mathbf{v}
- Over many (random) encounters $\langle \Delta \mathbf{v} \rangle = 0$

 - But the sum of the squares does not (direction is randomized, but accelerations are cumulative in an energy sense):
 - $\sum_{i=1,n} (\Delta \mathbf{v}_i)^2 = D t$
 - D is a diffusion coefficient that may, in general depend on t and v

Disk heating via diffusion – Model 1

▶ Model I:

> assume diffusion is isotropic, independent of a star's orbit:

$$\Box$$
 d(v²)/dt = D t

For constant
$$D = D_0$$

$$\Box$$
 $v^2 = D_0 t + c$

$$\rightarrow$$
 $v_{rms}(t) = v_{rms}(0)[1 + t/\tau]^{1/2}$

$$v_{rms} = \sigma = \langle v^2 \rangle 1/2$$

T is something we measure

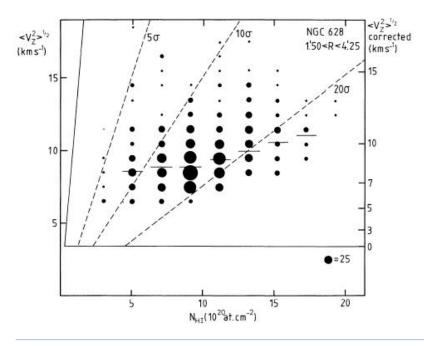
What about $v_{rms}(0)$?

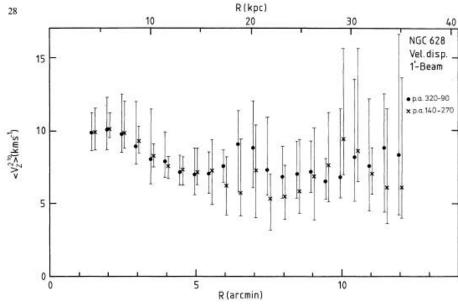
Disk heating via diffusion – Model 2

Model II:

- From theory of binary encounters (see S&G Ch. 3) D is inversely proprtional to v, i.e., $D(v) = D_0/v$
- ▶ From our initial formulation of diffusion it follows:
 - \Box d(v²)/dt = D t
 - $v^3 = 3/2 D_0 t + c$
 - $= v_{rms}(t) = v_{rms}(0)[1 + t/\tau]^{1/3}$

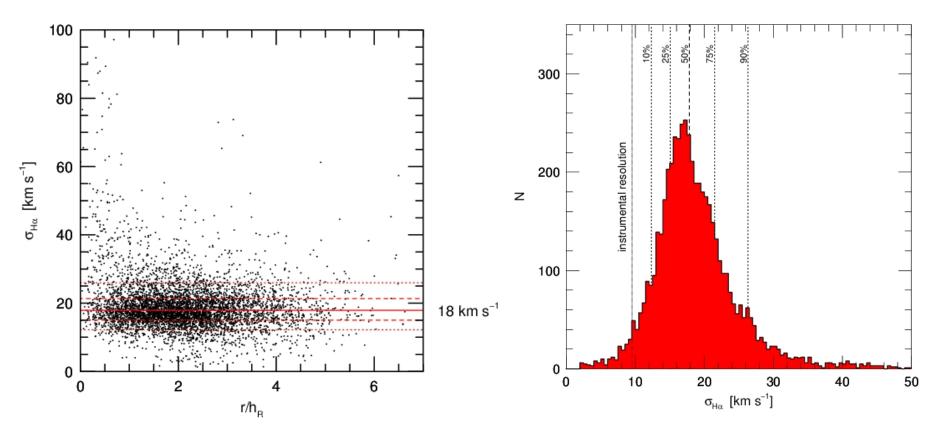
Disk heating via diffusion: conclusions


- From these two models we expect an increase is σ to go as $t^{1/n}$, with 2 < n < 3
 - Assuming $v_{rms}(0) = 10 \text{ km s}^{-1}$, Wielen (1977) estimated from solar neighborhood:
 - $T = 2 \times 10^8 \text{ yr for } n = 2$
 - $\tau = 5 \times 10^7 \text{ yr for n} = 3$
 - □ if GMCs \rightarrow M_{GMC} ~ 2×10⁶ M_☉, roughly as observed (a bit high)
 - $\sigma_R: \sigma_{\phi}: \sigma_z \sim 1.0:0.64:0.53$, roughly as observed
 - □ even for isotropic diffusion (don't need spiral arms!)



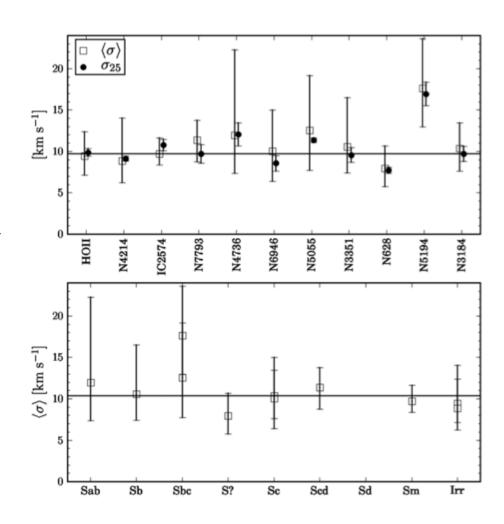
Disk heating: initial conditions circa 1980

Vertical velocity dispersions in cold gas


van der Kruit & Shostak (1982, 1984): $\sigma_{\rm HI} = 6\text{-}12~{\rm km/s}$ Combes & Bequaert (1997): $\sigma_{\rm CO} = 6\text{-}9~{\rm km/s}$

- ~constant with radius -- some density dependence
- Thermal values should be in the 6-8 km/s range

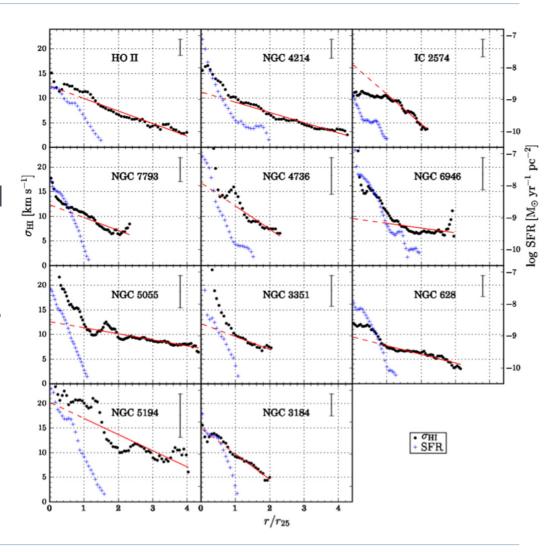
Disk heating: ionized gas (not "initial")



- Median $\sigma_{H\alpha}$ = 18 km/s, appears constant with radius.
- Significant dispersion and galaxy-galaxy variations.

Initial conditions updated:

▶ The good news:


The mean σ_{HI} appears very uniform from galaxy to galaxy and across galaxy types.

Initial conditions updated:

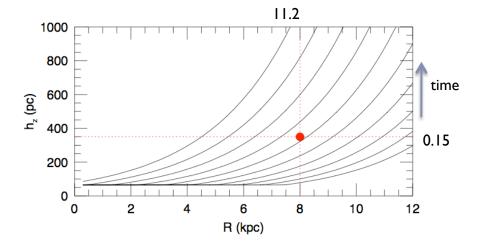
▶ The bad news:

- Almost all galaxies show radial gradients with values of σ_{HI} well above thermal values for warm HI
- Likely input from starformation in the form of wind-driven shocks and SNe

While we have a plausible model for how stars heat in the solar neighborhood

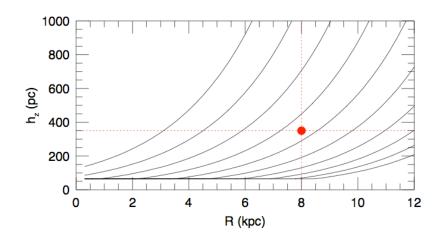
(via diffusion and equipartition from many two-body encounters with massive objects)

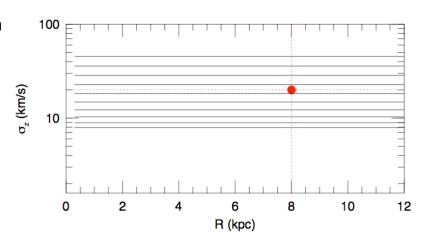
the picture is incomplete:


- Diffusion theory doesn't give a good prediction for the time-scale T
- ▶ GMCs and spiral arms don't appear to heat disk enough
 - Solution: add globular clusters and ubiquitous dark-matter dominated satellites (subhaloes) predicted by ΛCDM structure-formation theory. Ok, but...
- There has been a lot of work on looking at disk-heating from minor mergers but this tends to lead to disk-flaring in the vertical direction
 - Limits have been placed on the total amount of merging / accretion, e.g., Toth & Ostriker (1992, ApJ, 389, 5)
- There hasn't been a study done which includes all of the ingredients
 - Awesome thesis topic!

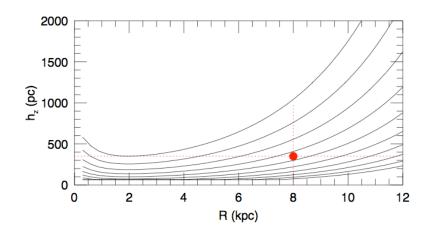
- How well does the model, calibrated in the solar neighborhood match the expectations for the MW and external galaxies overall?
 - Specifically, do we get constant scale-height disks?
- Let's try a few simple calculations for the MW:
 - $t_0 = II Gyr (age of disk today)$
 - $R_{\odot} = 8 \text{ kpc}$
 - $\Sigma = \Sigma_0 \exp(-R/h_R z/h_z)$
 - $h_R = 3 \text{ kpc}$
 - old stars in thin disk in the solar neighborhood:
 - $h_z(R_{\odot}, t_0) = 350 \text{ pc}$
 - $\sigma_z(R_{\odot},t_0) = 20 \text{ km/s}$
 - Generic assumptions:
 - \blacktriangleright Disk mass surface-density Σ and scale-length R independent of time

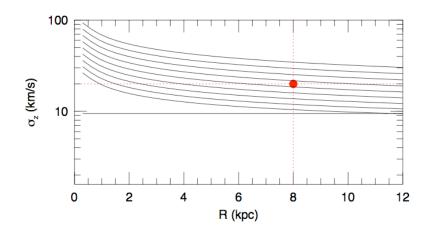
Model I:


- Initial conditions:
 - $\sigma_z(t=0) = 6 \text{ km/s}$, independent of radius
 - $h_z(t=0) = 65$ pc, independent of radius
- Final conditions:
 - ► $h_z(R_{\odot},t_0) = 350 \text{ pc}$
- Other conditions:
 - ightharpoonup Disk mass surface-density Σ and scalelength R independent of time
- Fixed parameters:
 - \rightarrow n = 2
 - τ = 0.2 Gyr
- Free parameters: none



▶ Model 2:


- Initial conditions:
 - $\sigma_z(t=0) = 6 \text{ km/s}$, independent of radius
 - $h_z(t=0) = 65$ pc, independent of radius
- Final conditions:
 - ► $h_z(R_{\odot},t_0) = 350 \text{ pc}$
 - $\sigma_{z}(R_{\odot},t_{0}) = 20 \text{ km/s}$
- Other conditions:
 - \blacktriangleright Disk mass surface-density Σ and scale-length R independent of time
- Fixed parameters:
 - \rightarrow n = 3
 - τ = 0.05 Gyr
- Free parameters: none



▶ Model 3:

- Initial conditions:
 - $\sigma_{z}(t=0) = 6 \text{ km/s}$, independent of radius
 - h_z (t=0) = 65 pc, independent of radius
- Final conditions:
 - ► $h_z(R_{\odot},t_0) = 350 \text{ pc}$
- Other conditions:
 - \blacktriangleright Disk mass surface-density Σ and scalelength R independent of time
- Fixed parameters:
 - \rightarrow n = 3
 - $\tau = t_{dyn} = 2\pi R/V_c$
 - $\nabla_{c} = V_{flat} \tanh(R/h_{rot})$
 - \Box V_{flat}= 220 km/s
 - $h_{rot} = h_R/10$
- ▶ Free parameters: none

Model 4:

** 1 **

Initial conditions:

$$\sigma_z(R_{\odot},t=0) = 6 \text{ km/s}$$

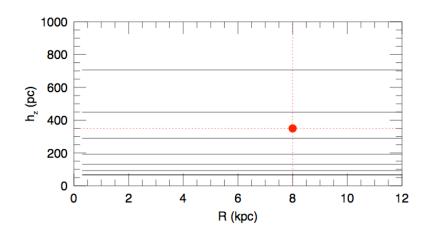
$$h_z(R_{\odot},t=0) = 65 \text{ pc}$$

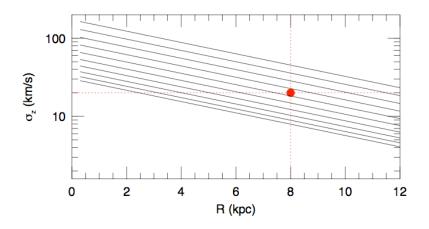
 $\sigma_z(R,t=0) =$

 $\sigma_z (R_{\odot}, t=0) \exp(-R/2h_R) / \exp(-4/h_R)$

Final conditions:

$$h_z(R_{\odot},t_0) = 350 \text{ pc}$$


$$\sigma_{z}(R_{\odot},t_{0}) = 20 \text{ km/s}$$

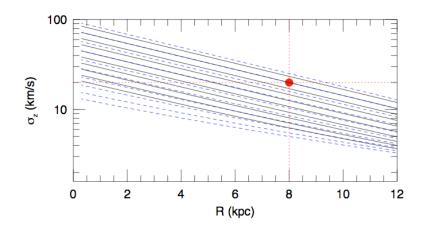

- Other conditions:
 - \blacktriangleright Disk mass surface-density Σ and scale-length R independent of time
- Fixed parameters:

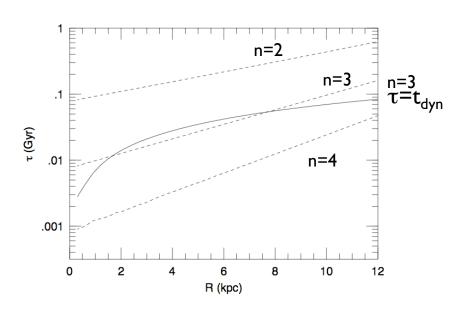
$$\rightarrow$$
 n = 3

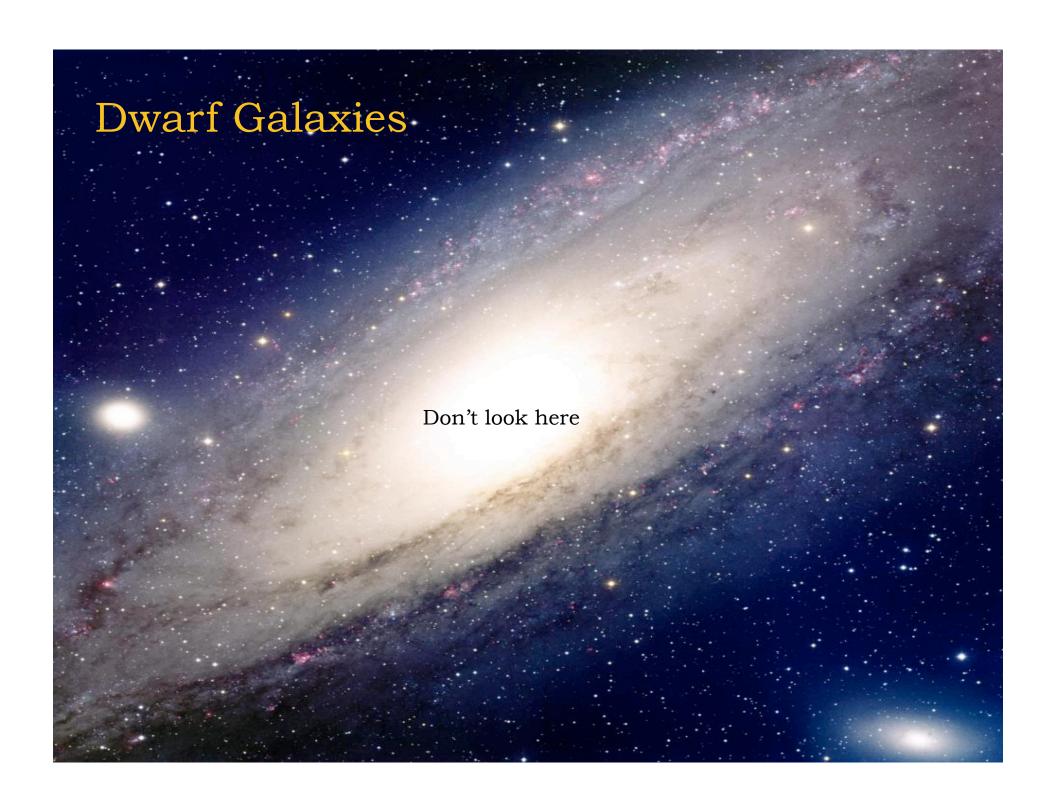
$$\tau$$
= 0.05 Gyr

▶ Free parameters: none




Other models:


- So far we have held n and τ fixed, or held n fixed and set $\tau = t_{dyn}$. The latter looked promising.
- It is straightforward to find relationships between n and τ such that the final conditions are met for any age population, e.g.,
 - $h_z(R_{\odot},t_0) = 350 \text{ pc}$
 - $\sigma_{z}(R_{\odot},t_{0}) = 20 \text{ km/s}$
 - $t_0 = 11$ Gyr (what might be better for old, thin disk?) even assuming the initial σ_z and h_z are independent of radius.
- In this class of models, keeping either n or τ fixed forces the other parameter to change with radius.
- In all reasonable cases, this yields disks with nearly constant scaleheight with radius
- In the case where n is fixed, $\tau(R)$ is close to t_{dyn} .



Here're examples for fixed n:

Dwarf Galaxies: Galaxy formation context

Galaxy Formation I

- Begin with some fluctuations...
 - Max. scale: $\lambda_j = 2\pi/k_j = c_s(\pi/G \rho)^{1/2}$
 - Freq. of perturbations: $ω = [4πG ρ (λ | ^2/λ | ^2) I]^{1/2}$
 - ▶ For perturbations smaller than Jeans length
- Imagine a sphere with the Jeans length
 - $M_J = (\pi \lambda_J^3/6) \rho$
 - ▶ In radiation dominated era: $M_J = 10^{11} M_{\odot}$
 - ▶ In matter dominated era: $M_J = 10^6 M_{\odot}$

Cold Dark Matter

- Ist structures are low mass halos
- Larger structures form via hierarchical merging

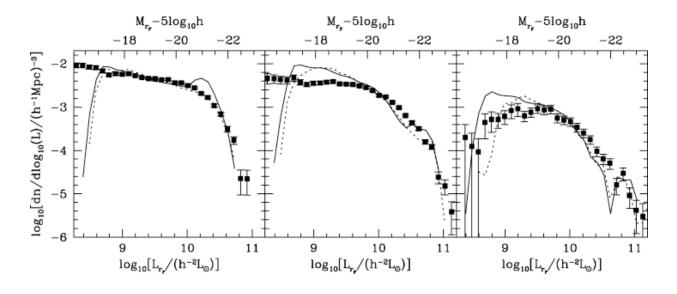
Galaxy formation (continued)

Cooling

- Initial fluctuations are warm post-recombination (1000's of degrees)
- What does the cooling?
 - No metals, so it must be some form of H
 - ▶ In situ formation of H₂
- Results (e.g. Hutchings et al. 2002)
 - ▶ I^{st} structures to cool have M_{virial} ~ 9 x $I0^5M_{\odot}$

Simulations/Semi-Analytic Models

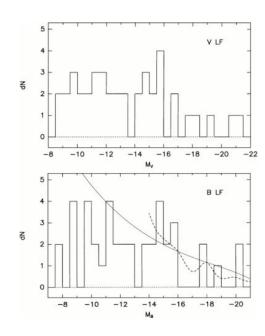
- Remember "cosmology" yields a spectrum of density fluctuations
- Fluctuations = regions of overdensity → growth of dark matter halos
 →baryon infall → make stars → feedback → result is a prediction of the distribution/population of galaxies at high redshift

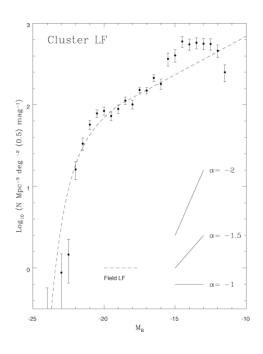

Why Dwarf Galaxies are so important

Dwarfs

- are Ist to form and the most numerous objects in the early Universe;
- dominate faint galaxy counts in any deep survey;
- should dominate local galaxy luminosity function;
- Are the building blocks of larger galaxies.

▶ But...


They do not contain most of the stars and baryonic matter



Luminosity function

Galaxy luminosity function

- LF varies a bit with environment
 - Virgo: faint end slope is steep → dEs are > 50% of all galaxies (Trentham et al)
 - Local Group: steeply rising at low luminosities (Mateo)
- HI mass function is similar

Dwarf Census in the Local Group

- Mateo (1998) ARAA, 36, 435
- ▶ Total number of dwarfs: ~40
 - Magnitude limits: (fainter than ~ -18)
 - ▶ Ursa Minor ~ -7.6
 - NGC 205 ~ −16.0
 - Mass (dynamical)
 - \triangleright DDO 210 ~ 5.4 \times 10⁶M $_{\odot}$
 - ► M32 ~ 2.1 × 10^9 M_☉
 - M_{HI}/M_{TOT}
 - ▶ Several < 0.001
 - ▶ Leo A ~ 0.72
- Morphology Distribution Correlation

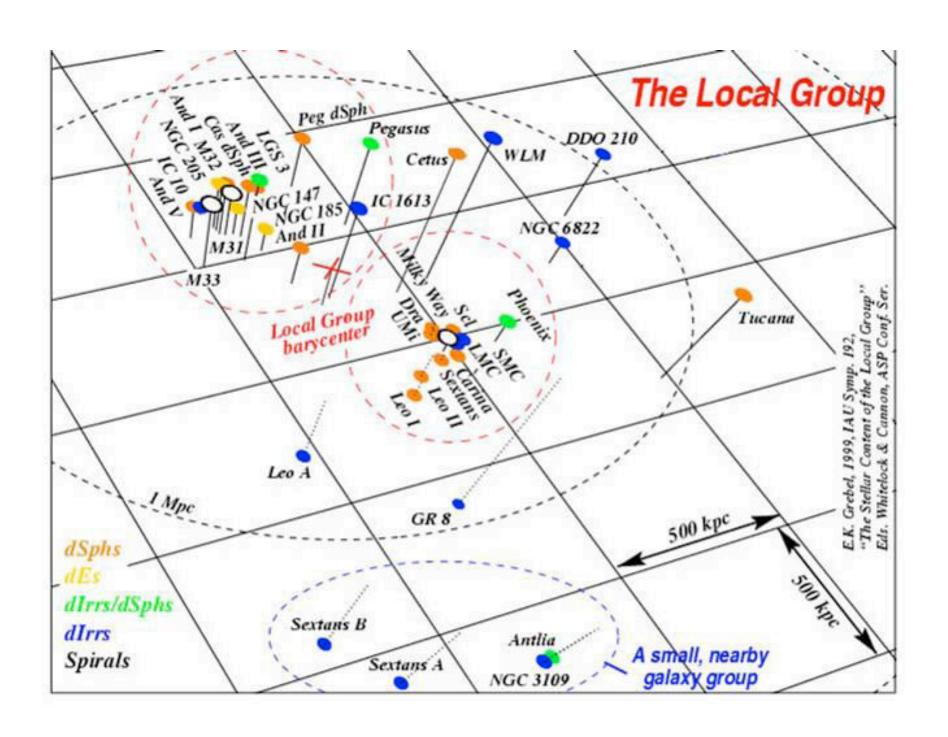
Distribution of Dwarfs in the Local Group

Dwarf Ellipticals

- concentrated around M31
- M32, N147, N205, N185
- Little gas, old stellar pops
- N147, N185, N205 rotationally supported

Dwarf Irregulars

- All over, even at outskirts
- Lots of gas (HI), mixed stellar pops
- Rotationally supported


Intermediate/Transition

- Some gas, some SF, some with very few old stars
- Probably not rotationally supported

Dwarf Spheroidal (dSphs)

- Satellites of MWG, M31
- Complex SFH
- gas?
- Glorified globular clusters, but with dark matter
- \blacktriangleright High $\sigma/Vrot$

