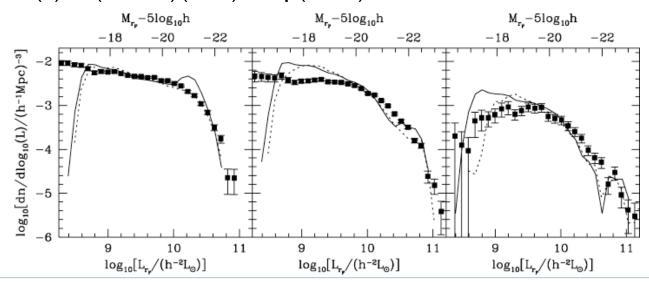
Astronomy 330 Lecture 2


8 Sep 2010

Outline

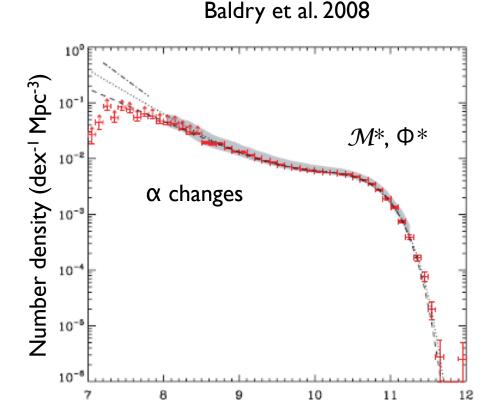
- Review
- Sloan Digital Sky Survey
- ▶ A Really Brief History of the Universe
 - ▶ Big Bang/Creation of the Elements
 - Recombination/Reionization
 - Galaxy Formation

Review

- Salient points of the Curtis-Shapley Debate
- Galaxy Morphologies (see tuning-fork diagram)
 - ▶ Today, "on average":
 - ▶ Ellipticals(13%), Spirals (61%), Lenticulars(22%), Irr(4%)
- Galaxy Luminosity Function
 - $\Phi(L) = (\Phi^*/L^*)(L/L^*)^{\alpha} \exp(-L/L^*)$

Low-mass

environment

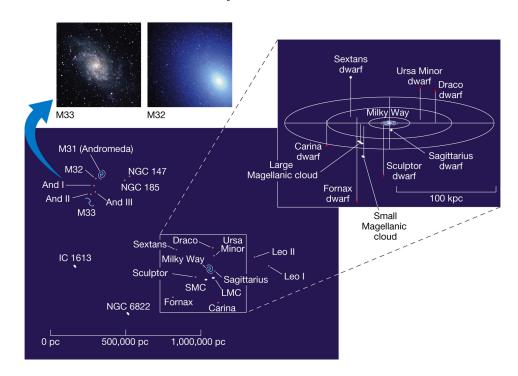

High-mass

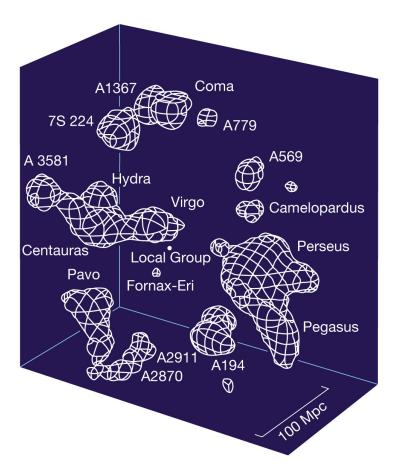
Stellar mass function

Stellar mass estimated from red/near-infrared light assuming a mass-to-light ratio (M/L or Y), which depends on stellar populations (colors), assumptions about:

- the stellar mass function (IMF)
- o neutral and molecular gas content,
- o dark-matter

We will discuss these issues.


stellar mass: $\log (M/M_{\odot})$


In this case, stellar mass function is modeled as composite of two Schecter functions with different α and φ *.

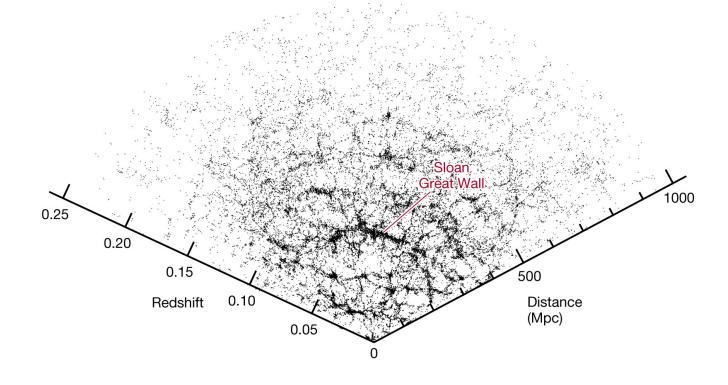
Large Scale Structure

- What's bigger than a galaxy?
- Groups: where most galaxies live
 - ▶ Local Group:

Large Scale Structure

- Bigger still: Clusters
 - Giant Clusters
 - > 1000 galaxies
 - ▶ D ~ I-2 Mpc
 - I-3 giant elliptical galaxies residing at the center

- High fraction of elliptical galaxies
- Most have copious diffuse X-ray emission
 - ☐ Most of the observed mass in clusters is in hot gas
- Huge M/L ratios (~100) → dark matter dominated
 - ☐ Gravitationally bound


Abell 98 nearly next door

MS0415 at z = 0.54

Large Scale Structure

- ▶ Filaments and voids
 - Great Attractor
 - Characteristic scales: 40-120 Mpc

Surveys

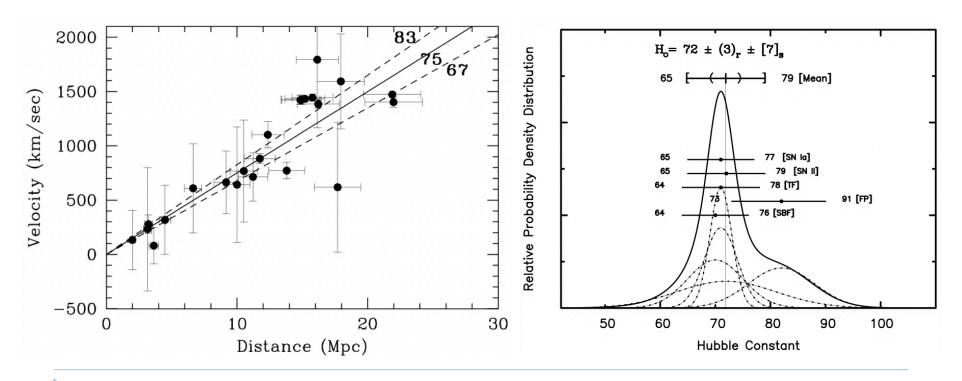
- Palomar Sky Survey (POSS) blue/red photographic imaging (all sky)
 - digitized version (DSS)
- ▶ Sloan Digital Sky Survey (SDSS) modern multi-band optical CCD imaging and spectroscopy
 - www.sdss.org
- 2-Micron All-Sky Survey (2MASS) J,H,K band imaging (all sky)
 - http://www.ipac.caltech.edu/2mass/
- ▶ GALEX UV all-sky survey
 - http://www.galex.caltech.edu/
- ▶ IRAS all sky survey (old satellite: http://irsa.ipac.caltech.edu/IRASdocs/iras.html)
- FIRST/NVSS
 - http://sundog.stsci.edu
 - www.cv.nrao.edu/nvss}
- Arecibo Surveys (ALFALFA)
 - egg.astro.cornell.edu/alfalfa}
- Various "Deep Fields"
 - Hubble Deep Fields (HDF): north and south
 - Chandra (X-ray), Spitzer (IR) have deep fields and various surveys of galaxies
 - ATCA is doing a radio deep field
- Ever-increasing chunks of sky, multiple wavelengths

Adopt-A-Galaxy

- ▶ I Zw 18 Matthew K.
- NGC 4449 Nick M.
- ▶ NGC 6166 Ali B.
- ▶ NGC 4594 Megan J.
- ▶ NGC 5128 Nick P.
- ▶ NGC 3115 Elise L.

- ▶ NGC 1300 Cody G.
- ▶ NGC 3370 Sara S.
- ▶ NGC 7742 Hanna H.
- ▶ NGC 1512 Capri P.
- ▶ NGC 1569 Rob G.
- ▶ NGC 3949 Justin S.

Big Bang / Creation of Matter


The Expansion

- Hubble (1929) discovered correlation between recessional velocity and distance
 - $V = H_0 \times D$ (distance in Mpc, V in km s⁻¹, H_0 in km s⁻¹ Mpc⁻¹)
 - We measure the "redshift", z, as $I + z = (\lambda_{obs} / \lambda_{em})$
 - ▶ Best fit from Cepheid data (HST):
 - \Box H₀= 72 km s⁻¹Mpc⁻¹ (Freedman et al 2001)
- But is the expansion static?

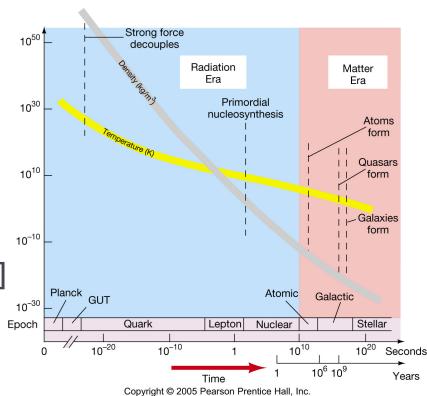
Measuring H₀: the Hubble "Constant"

- Freedman et al. 2001, ApJ, 553, 47
 - Recall large-scale structure: GR notion of constant expansion (in space) at given time requires assumption of isotropy and homogeneity to be valid.

Big Bang / General Relativity

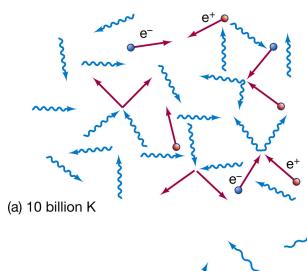
Einstein's Field Equation:

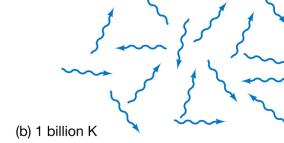
$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi T_{\mu\nu} + \Lambda g_{\mu\nu}$$


- G_{uv} is the Einstein tensor
- R_{uv} is the Ricci tensor, R is the Ricci scalar
- ightharpoonup T_{$\mu\nu$} is the stress–energy tensor
- In words, think of the field equation as a gravitational analogue of Poisson's equation describing how the space-time ("field") responds to the presence of sources terms (matter, energy, pressure) in T_{uv}.
- Very difficult to do anything without some simplifying assumptions.

Big Bang / World Models

- Friedman equations: isotropic, homogeous universe
 - $\dot{R}^2 = [(8\pi G \rho)/3]R^2 (c^2/R^2) + [(1/3) \Lambda R^2]$
 - $R = -4\pi G/3 R(\rho + 3p/c^2) + [(1/3) Λ R]$
 - ightharpoonup R is the scale factor (i.e., dimensionless size): R = I/(I+z)
 - $\triangleright \mathcal{R}$ is the radius of curvature,
 - \[
 \rho \] is the density of matter and energy
 - ↑ is the cosmological constant invoked originally to make universe static, and this now looks like "dark energy"
- H(t) = R/R by definition, i.e., H varies with time (R = dR/dt)
- ▶ Distances: evluate D = \Re sin(r/ \Re), where dr = -c dt/R(t)
- Times: evaluate the integral of dz/dt

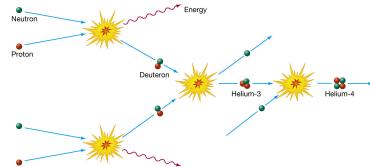

The Early Universe


- Run the movie backwards...get one big fireball
 - → the "Big Bang"
- Universe goes from being radiation dominated to matter dominated; expanding and cooling along the way
 - $\rho_r/\rho_m = \sigma T^4(z)/[\Omega_o \rho_{crit}(1+z)^3c^2]$
 - for z > 4000, the Universe is radiation dominated
- Milestones along the way....

Particle Genesis

- ▶ Boltzmann equation: rate change in the abundance of a given particle is difference between rates for producing and destroying particle. Production is energy dependent, destroying depends on ratio of particle to anti-particle. When Universe cooled below kT = 13 MeV, proton production ceased, annihilation got rid of anti-protons, and we're left with protons....
- ...ditto for neutrons
- ... and for electrons, except kT = 0.5 MeV
- What about neutrinos?
 - Cosmic Mystery #1:Why were there slightly more protons than anti-protons?

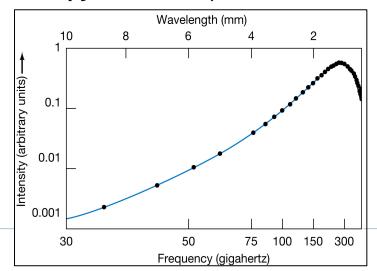
Big Bang Nucleosynthesis (BBNS)


Weak interactions control proton/neutron ratio via following

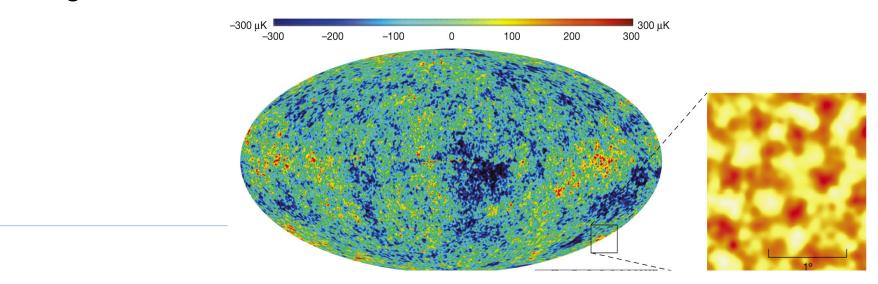
reactions

$$p+\nu \leftrightarrow n+e+$$

$$p+e-\leftrightarrow n+\nu$$


▶ n
$$\leftrightarrow$$
 p+e-+ ν - beta decay

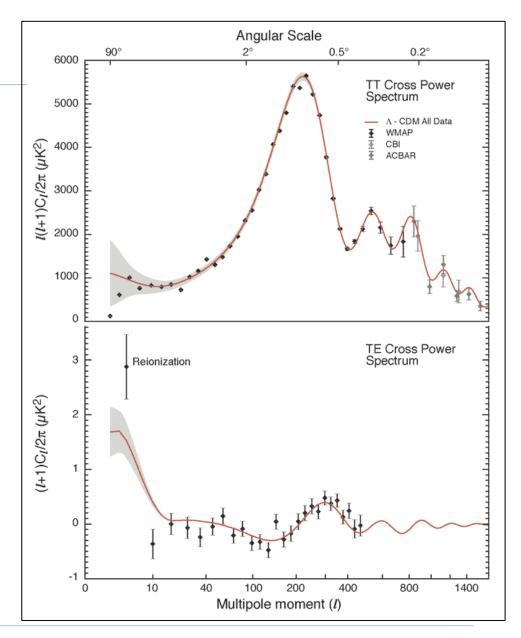
- ▶ n/p = $e^{-Q/kT}$ where Q = $(m_n m_p)c^2 = 1.3 \text{ MeV}$
- Once kT is below 0.8 MeV, n/p is set...
- If all the neutrons get together with a proton, we get the primordial He abundance, which is about 24% by mass → key test of Big Bang cosmology


Recombination

- T = $T_o(1+z)$. At $z\sim1500$, T<4000 K, photons can no longer ionize H, so H recombines... (Saha equation)
- ...the Universe becomes transparent to radiation ("surface of last scattering")
- If its 4000 K at z~1500, the temperature now should be 2.7 K → microwave background. Detected by Penzias & Wilson (1965), shown in exquisite detail by the COBE satellite (e.g. Mather et al. 1990 ApJ, 354, L37)

Structure Formation

- Is the MWB really smooth?
- No, there is structure (acoustic peaks) the say a lot about the Universe.
 - Power spectrum of primordial fluctuations
 - Cosmological model
- WMAP was launched to measure the fluctuations in the microwave background...


WMAP

- Spergel et al. (2003,2007)
- Dunkley et al. (2009)

TABLE 1 Power-Law Λ CDM Model Parameters: WMAP Data Only

Parameter	Mean (68% Confidence Range)	Maximum Likelihood
Baryon density, $\Omega_b h^2$	0.024 ± 0.001	0.023
Matter density, $\Omega_m h^2$	0.14 ± 0.02	0.13
Hubble constant, h	0.72 ± 0.05	0.68
Amplitude, A	0.9 ± 0.1	0.78
Optical depth, τ	$0.166^{+0.076}_{-0.071}$	0.10
Spectral index, n_s	0.99 ± 0.04	0.97
$\chi^2_{ m eff}/\nu$		1431/1342

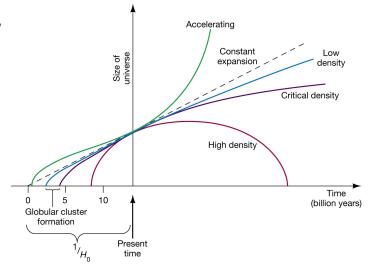
Nоте.—Fit to WMAP data only.

WMAP

WMAP FIRST-YEAR RESULTS: PARAMETERS

TABLE 2 DERIVED COSMOLOGICAL PARAMETERS

Parameter	Mean (68% Confidence Range)	
Amplitude of galaxy fluctuations, σ ₈	0.9 ± 0.1	
Characteristic amplitude of velocity fluctuations, $\sigma_8 \Omega_m^{0.6}$	0.44 ± 0.10	
Baryon density/critical density, Ω_b	0.047 ± 0.006	
Matter density/critical density, Ω_m	0.29 ± 0.07	
Age of the universe, t ₀	$13.4 \pm 0.3 \text{Gyr}$	
Redshift of reionization, a zr	17 ± 5	
Redshift at decoupling, z _{dec}	1088^{+1}_{-2}	
Age of the universe at decoupling, t_{dec}	$372 \pm 14 \text{kyr}$	
Thickness of surface of last scatter, $\Delta z_{\rm dec}$	194 ± 2	
Thickness of surface of last scatter, $\Delta t_{\rm dec}$	$115 \pm 5 \mathrm{kyr}$	
Redshift at matter/radiation equality, zeq	3454^{+385}_{-392}	
Sound horizon at decoupling, r _s	$144 \pm 4 \mathrm{Mpc}$	
Angular diameter distance to the decoupling surface, d_A	$13.7 \pm 0.5 \mathrm{Gpc}$	
Acoustic angular scale, ${}^{\rm b}\ell_A$	299 ± 2	
Current density of baryons, n _b	$(2.7 \pm 0.1) \times 10^{-7}$ cm $^{-3}$	
Baryon/photon ratio, η	$(6.5^{+0.4}_{-0.3}) \times 10^{-10}$	


Note.—Fit to the *WMAP* data only. ^a Assumes ionization fraction, $x_e = 1$.

b $l_A = \pi d_C/r_s$.

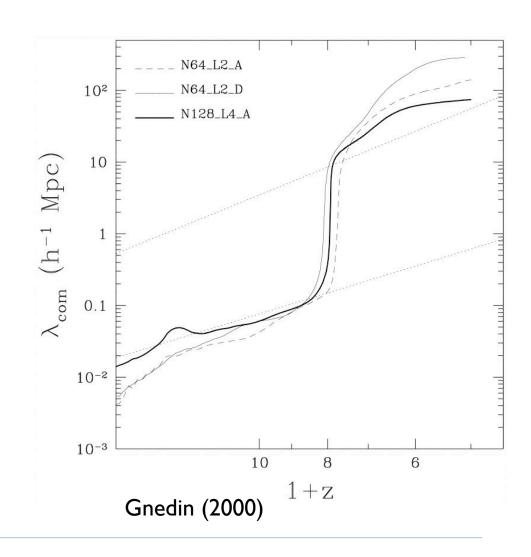
Cosmological Conclusions (delusions?)

ΛCDM is the best viable model:

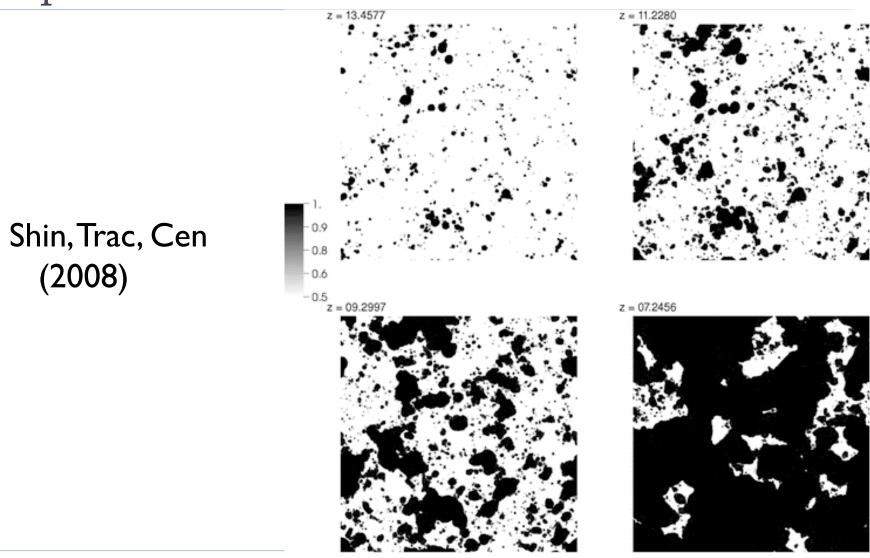
- The Universe is, and always was, spatially flat $(\Omega=1)$, but temporally open $(\Omega_{\wedge}=0.7)$.
- Universe of *matter* today is **dark-matter** dominated (Ω_{DM} =0.25, Ω_{b} =0.05)
 - ▶ And its probably cold...(CDM)
- There's something that behaves like "Dark Energy", maybe.
 - Since z = 1 to 0.7 it has dominated the total mass-energy budget of the Universe, and growing.
- Reionization happened somewhere between a redshift (z_r) of ~7 and a redshift of ~10-12.

WMAP

Hi-z QSOs

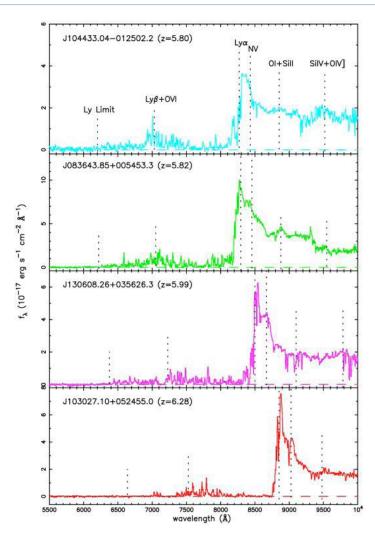

Epoch of Reionization

- Somehow, somewhere stars formed...
- ...and ionized the surrounding IGM and the Universe emerged out of the "Dark Ages"
- ▶ WMAP says somewhere near z~12...
 - But possibly two phases, one early (z>12, and incomplete)
- When did the Ist stars/galaxies form?
 - Gunn-Peterson trough in quasar absorption
 - Directly observing Ist stars (NGST,TMT)
 - ▶ 21 cm line absorption/redshifted emission (SKA)
 - High redshift objects (VLA, GMRT, SKA)
 - Primordial, high redshift black holes (SKA)



Classical Reionization

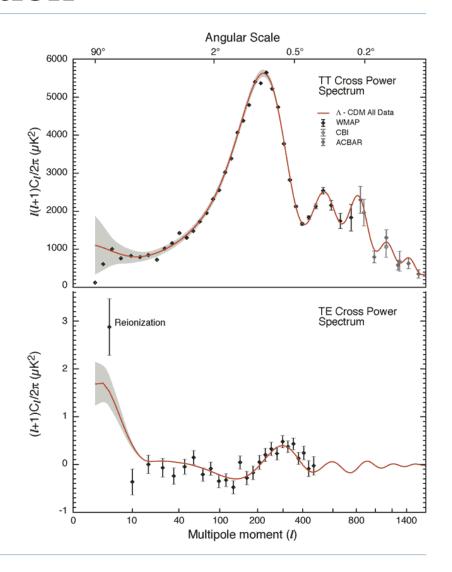
- Individual HII regions overlap → mean free path of ionizing photon increases
- ▶ Fast phase transition
- ▶ Depends on...
 - Number of sources
 - lonizing efficiency
 - Clumpiness of IGM



Epoch of Reionization: Simulated

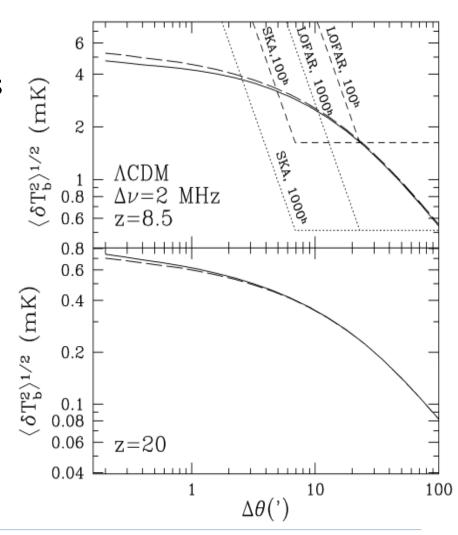
The High-Redshift IGM

- Neutral between recombination and reionization → hard to study!
- Does a Gunn-Peterson trough imply reionization?



WMAP and Reionization

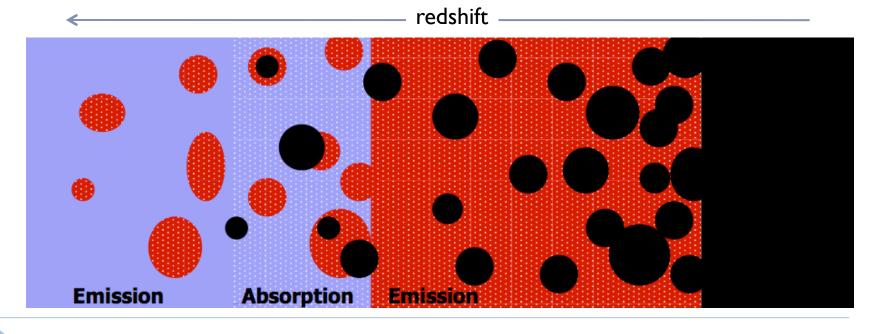
- ▶ Ionized gas → Thomson scattering
- WMAP results imply 14 $< z_r < 20$


Are these results compatible?

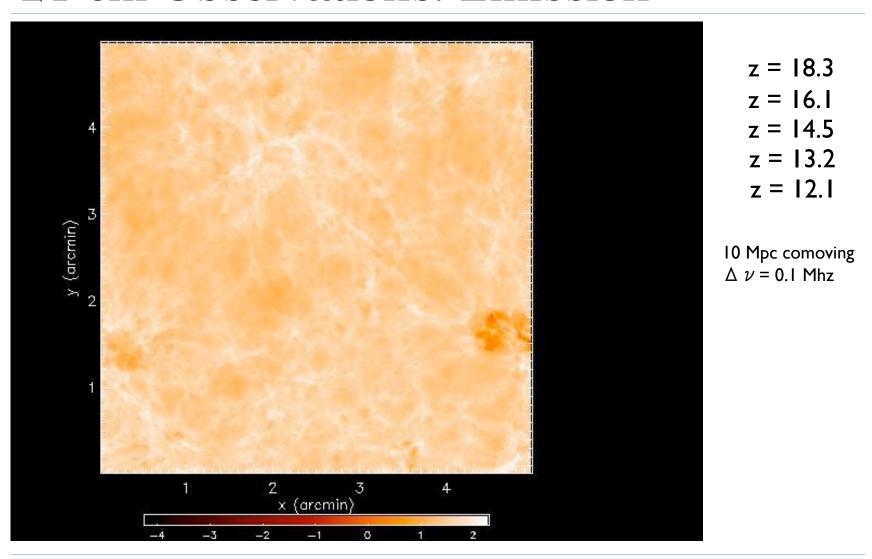
Spergel et al. 2003

Dark Ages: Emission from Over-dense Neutral Gas

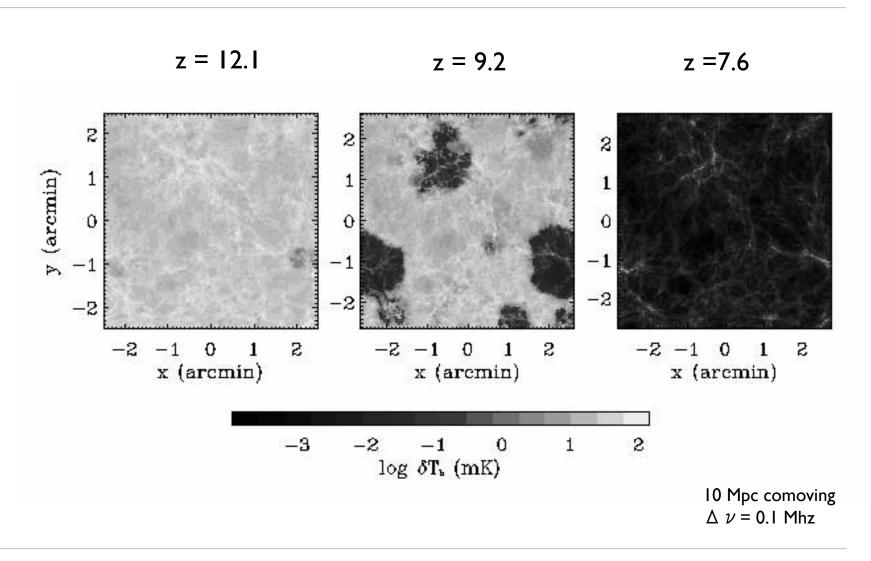
- Signal proportional to projected HI mass-variations between beams
- Sensitivity curves in top panel are 3σ in 100 hours
- Extremely hard at z=20 because signal decreases rapidly and T_{sky} increases rapidly
- Perhapsa few stronger because of collapsing gas! (Furlanetto & Loeb, in prep)


21 cm Toolbox

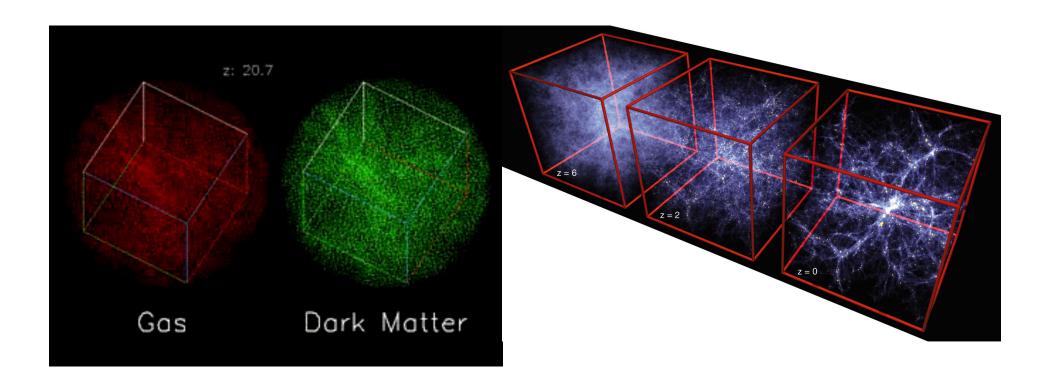
- \blacktriangleright X-rays heat diffuse IGM to $T_K > T_{CMB}$
 - \rightarrow signal independent of T_K
- \blacktriangleright Brightness variations from δ only
- lonized regions grow


Blue: Cold IGM Red: Hot IGM

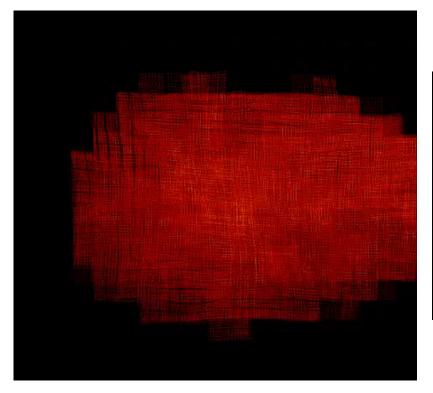
Black: Ionized IGM


Hatch: T_S~T_K

21 cm Observations: Emission



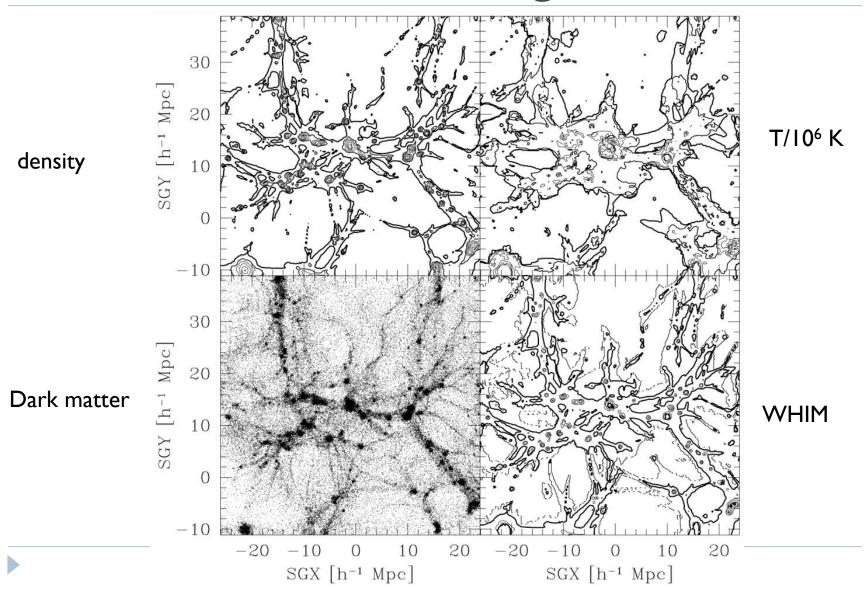
21 cm Observations: Emission


Large scale structure of the Universe

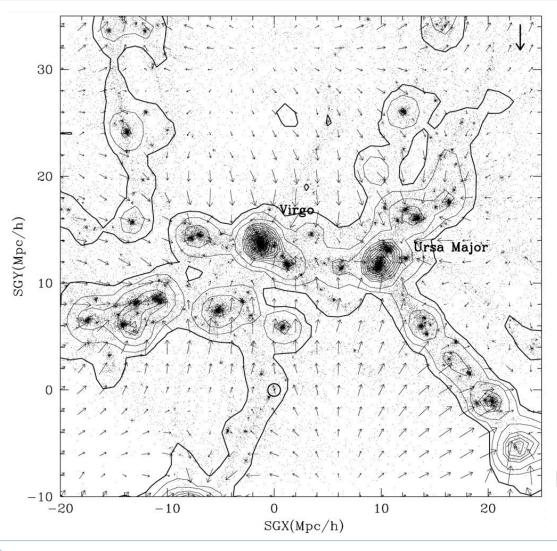
▶ Fly-through of the Cosmic Web



Large scale structure of the Universe


Structure and Galaxy Formation elliptical

The WHIM: Warm-Hot Intergalactic Medium



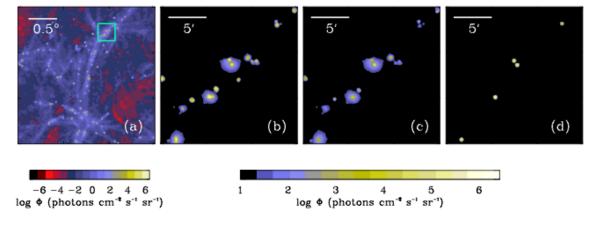
Physical Properties of the WHIM

- QSO absorption line (HST,FUSE)
 - Limited to individual sightlines FUSE has < 200 usable sightlines
 - Unknown: ionization fraction, abundance, temperature, filling factor
 - Any measure of the physical conditions in the WHIM are dependent on these
 - Claimed to contain the bulk of normal matter (baryons) in the universe
- How was the WHIM produced?
- Is there cold gas too? (how do you detect it?)

Cosmic Streaming

- What does H₀ mean?
 - Over what scales (spatial)?
 - What kinematic scales?

Klypin et al. 2003


Physical Processes in the Cosmic Web

- Large scale shocks as baryons accrete onto collapsing structures
- ▶ Gas is shock-heated to 10⁵-10⁷ K
 - WHIM origins, or AGN and star-formation too?
- ► Shock accelerate particles (cosmic ray ions) to 10¹⁸–10¹⁹eV
- ▶ Inter-cluster B-fields: 10⁻⁷–10⁻¹² G
 - Origin and amplification?

Mapping the Cosmic Web

- Galaxies are only the high density islands in the web
- Most of the web is in the form of diffuse WHIM
 - Detected primarily via QSO absorption sightlines
 - Fraction of kinetic power converted to radiative energy
- Diffuse emission should be detectable in the optical (nebular line emission, e.g., redshifted Ly α) but suitable instrumentation has yet to be built.
- Diffuse synchotron emission (radio) another possibility
 - Parameters:
 - Infall velocity
 - Density of in-falling baryonic gas
 - Magnetic field strength
 - Efficiency of shock acceleration
 - Fraction of kinetic power converted to radiative energy

Furlanetto et al. 2003: Ly α surface-brightness

