Astronomy 330

Lecture 14 20 Oct 2010

Project Groups

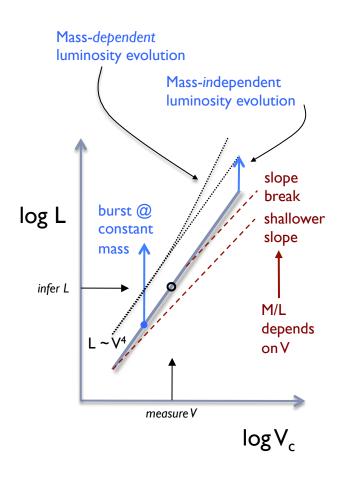
- Group: _____
 - Ali Bramson
 - Cody Gerhatz
 - ▶ Elise Larson
 - Justin Schield

- Group: _____
 - Megan Jones
 - Nick Pingel
 - Sara Stanchfield
 - Peter Vander Velden

- Group:_____
 - ▶ Hanna Herbst
 - Matthew Kleist
 - Nick Mast
 - Capri Pearson

Outline

- Review:
 - Scaling relations
 - ► Tully-Fisher:
 - □ Why so good?
 - An evolutionary diagnostic and cosmological tool
- Continue with:
 - Dynamics of collisionless systems



Recall: Dynamics of collisionless systems

Motivation:

- Circular rotation is too simple and v_c gives us too little information to constrain Φ and hence ρ (e.g., rotation curves)
- Without Φ and hence ρ we can't understand how mass has assembled and stars have formed
 - We can't even predict how the Tully-Fisher relation should evolve
- Gas is messy because it requires understanding hydrodynamics, and likely magneto-hydrodynamics.
- At are disposal are stars, nearly collisionless tracers of Φ!

Recall: Dynamics of collisionless systems

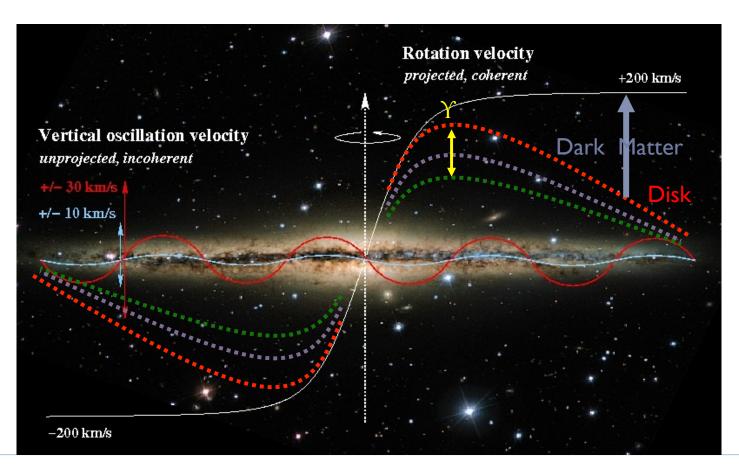
- How we'll proceed:
 - Start with the Continuity Equation (CE)
 - Use CE to motivate the Collissionless Bolztmann Equation (CBE), like CE but with a force term (remember $\nabla \Phi(\mathbf{x})!$)
 - Develop moments of CBE to relate v and σ and higher-order moments of velocity to Φ and ρ .
- Applications to realistic systems and real problems
 - Velocity ellipsoid
 - Asymmetric drift

Disk heating Disk mass Disk stability

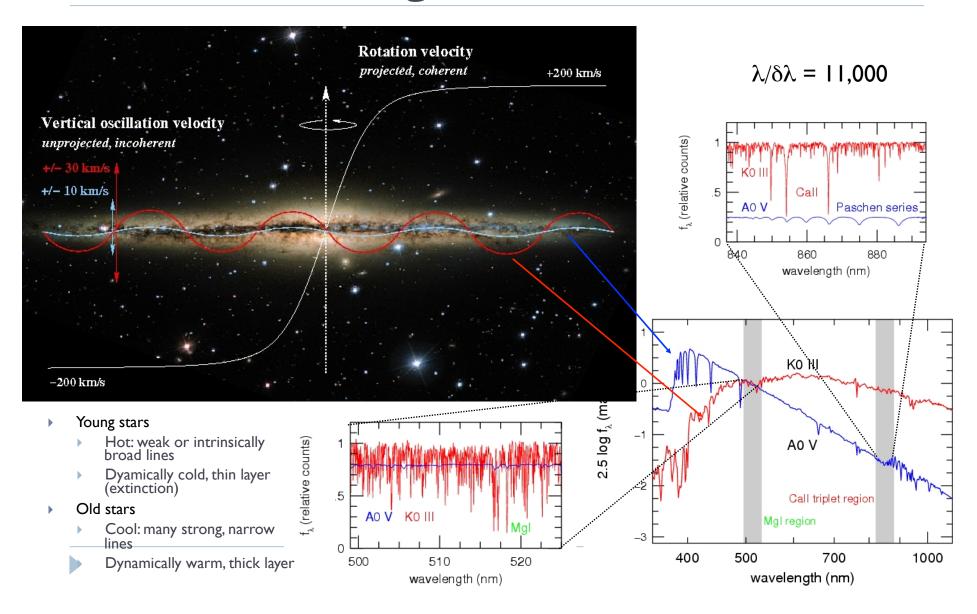
Don't be intimidated by moment-integrals of differential equations in cylindrical coordinates: follow the terms, and look for physical intuition.

Example: Breaking the Disk-Halo Degeneracy

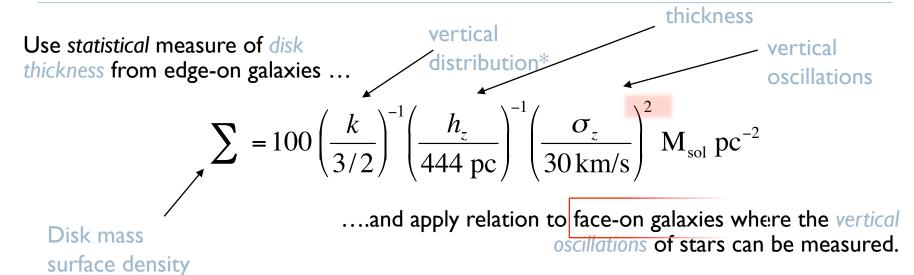
- Rotation provides the total mass within a given radius.
- Vertical oscillations of disk stars provides disk mass within given height



The kinematic signal



Disk Mass formula

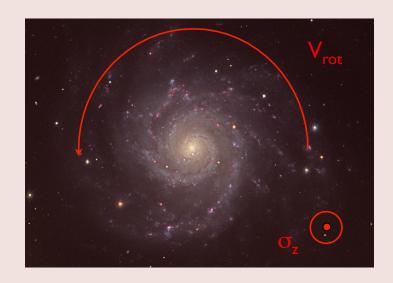


Edge-on or Nearly Face-on?

- Rotation projected
- Vertical dispersion inaccessible except via statistical kinematic correlations
- √ Vertical height projected
- Rotation velocity
 projected, coherent
 +200 km/s

 Vertical oscillation velocity
 unprojected, incoherent
 +/- 30 km/s
 +/- 10 km/s

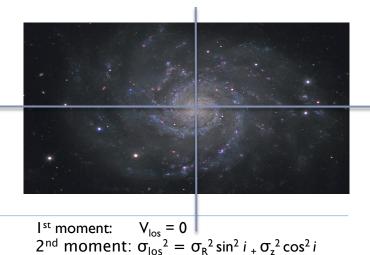
- Rotation accessible at high spectral resolution
- √ Vertical dispersion projected
- Vertical height inaccessible except via statistical photometric correlations



The problem

- If you look at completely face-on galaxies you can't measure rotation → can't estimate total mass (total potential)
- Even if you look at moderate inclination (i~30°) galaxies, you get components of the stellar velocity dispersion (σ) which are not vertical (σ_z) but radial (σ_R) or tangential (σ_{ϕ}).
- In other words, σ is a vector the velocity ellipsoid
- From the solar neighborhood we expect: $\sigma_R > \sigma_{\phi} > \sigma_z$
- But we can only observe 2 spatial dimensions:
 - How do we solve for σ_z ?
- And how do we solve for σ_R, which turns out to be interesting for understanding disk heating?

Ist moment: $V_{los} = V \sin i$ 2^{nd} moment: $\sigma_{los}^2 = \sigma_{\phi}^2 \sin^2 i + \sigma_z^2 \cos^2 i$



los = line of sight

Continuity Equation

- The mass of fluid in closed volume V, fixed in position and shape, bounded by surface S at time t
 - $M(t) = \int \rho(\mathbf{x}, t) d^3 \mathbf{x}$
- Mass changes with time as
 - $dM/dt = \int (d\rho /dt) d^3x = -\int \rho v \cdot d^2S$

NB: d = partial derivative

- ▶ mass flowing out area-element d^2S per unit time is $\rho \mathbf{v} \cdot d^2S$
- The above equality allows us to write

$$\int (d\rho \, l dt) d^3 \mathbf{x} + \int \rho \, \mathbf{v} \cdot d^2 \mathbf{S} = 0$$

$$\int \left[d\rho \, l dt + \, \mathbf{\nabla} \cdot (\rho \, \mathbf{v}) \, \right] d^3 \mathbf{x} = 0$$
Divergence theorem

Since true for any volume

$$\int d\rho \, dt + \nabla \cdot (\rho \, \mathbf{v}) = 0 \qquad \text{This is CE}$$

In words: the change in density over time (Ist term) is a result of a net divergence in the flow of fluid (2nd term). Stars are a collisionless fluid.

Collisionless Boltzmann Equation

- Generalize concept of spatial density ρ to phase-space density $f(\mathbf{x}, \mathbf{v}, t)$ d³ \mathbf{x} d³ \mathbf{v} , where $f(\mathbf{x}, \mathbf{v}, t)$ is the distribution function (DF)
 - $f(\mathbf{x}, \mathbf{v}, t)$ d³**x** d³**v** gives the number of stars at a given time in a small volume d³**x** and velocities in the range d³**v**

The number-density of stars at location \mathbf{x} is the integral of $f(\mathbf{x}, \mathbf{v}, t)$ over velocities:

The mean velocity of stars at location **x** is then given by

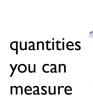
$$> \langle \mathbf{v}(\mathbf{x},t) \rangle = \int \mathbf{v} f(\mathbf{x},\mathbf{v},t) d^3\mathbf{v} / \int f(\mathbf{x},\mathbf{v},t) d^3\mathbf{v}$$

$$u(\mathbf{x}) \equiv \int f d^3 \mathbf{v}$$

$$\overline{v}_i \equiv rac{1}{
u} \int f v_i d^3 {f v}_i$$

S&G notation

Notation we'll adopt



CBE continued

- ▶ **Goal**: Find equation such that given $f(\mathbf{x}, \mathbf{v}, t_0)$ we can calculate $f(\mathbf{x}, \mathbf{v}, t)$ at any t, ...
 - and hence our observable quantities n(x,t), $\langle v(x,t) \rangle$, etc.
 - $f(\mathbf{x}, \mathbf{v}, \mathbf{t}_0)$ is our initial condition
 - The gravitational potential does work on $f(\mathbf{x}, \mathbf{v}, t)$

- Introduce some useful notation and relate to the potential

 - $\mathbf{w}' \equiv d\mathbf{w} / d\mathbf{t} = (\mathbf{x}', \mathbf{v}') = (\mathbf{v}, -\mathbf{\nabla}\Phi) = (\mathbf{w}_1 ... \mathbf{w}_3, -\mathbf{\nabla}\Phi)$

CBE continued

- ► Recall CE gives: $d\rho/dt + \nabla \cdot (\rho \mathbf{v}) = 0$
- Replace $\rho(\mathbf{x},t) \rightarrow f(\mathbf{x},\mathbf{v},t)$
- CE gives:
 - - $\int dv_i/dx_i = 0$ x_i,v_i independent elements of phase-space
 - ▶ $dv_i'/dv_i = 0$ $v' = -\nabla \Phi$, and the gradient in the potential does not depend on velocity.

CBE

Vector notation

Getting something useful out of CBE

- ▶ CBE is the fundamental equation of stellar dynamics
- It is a special case of Liouville's theorem:
 - the flow of particles in phase space is incompressible, i.e.
 - phase-space density is constant.
- Unfortunately, general solutions to CBE are impractical.
- Nowever, integral moments of the CBE and velocity provide useful *dynamical* relationships between components of the velocity vector, \mathbf{v} , the velocity ellipsoid, $\mathbf{\sigma}$, and the potential, $\mathbf{\Phi}$.
- This will look messy (it is), but very powerful results emerge.

CBE Integrals: warm up to learn tricks

- Start by integrating CBE over all velocities (0th moment)
- $\int \{ (df/dt) d^3v + \sum_{i=1,3} [v_i(df/dx_i) (d\Phi/dx_i)(df/dv_i)] = 0 \}$
 - We adopt summation convention
 - $\Box \mathbf{A} \bullet \mathbf{B} = \sum_{i=1,3} A_i B_i \rightarrow = A_i B_i$
 - □ i.e., repeated indices are implicitly summed over

We assume the potential Φ is independent of velocity v_i

 $\int (df/dt) d^3\mathbf{v} + \int v_i(df/dx_i) d^3\mathbf{v} - (d\Phi/dx_i) \int (df/dv_i) d^3\mathbf{v} = 0$

range of velocities does not depend on time so d/dt comes outside integral and...

 v_i range does not depend on x_i so $dfl dx_i$ comes outside integral and...

Recall:

$$u({f x}) \equiv \int f d^3{f v} \qquad {
m and} \qquad \overline{v}_i \equiv rac{1}{
u} \int f v_i d^3{f v}.$$

Apply divergence theorem and the fact that $f(\mathbf{x}, \mathbf{v}, t) = 0$ for sufficiently large $|\mathbf{v}|$, i.e., at the surface of $|\mathbf{v}| \rightarrow \infty$

0

▶ $dv / dt + d(v \overline{v_i}) / dx_i = 0$ ← this is the continuity equation!

Next: CBE in cylindrical coordinates

$$\frac{\partial f}{\partial t} + v_R \frac{\partial f}{\partial R} + \frac{v_\phi}{R} \frac{\partial f}{\partial \phi} + v_z \frac{\partial f}{\partial z} + \left(\frac{v_\phi^2}{R} - \frac{\partial \Phi}{\partial R}\right) \frac{\partial f}{\partial v_R} - \frac{1}{R} \left(v_R v_\phi + \frac{\partial \Phi}{\partial \phi}\right) \frac{\partial f}{\partial v_\phi} - \frac{\partial \Phi}{\partial z} \frac{\partial f}{\partial v_z} = 0.$$
In what follows:

- (I) The disk is in steady-state, so we can drop the first term
- (2) we will assume the galaxy is azimuthally symmetric (e.g., a nice, circular, smooth disk) we can ignore all derivatives w.r.t. the azimuthal coordinate ϕ .
- (3) The divergence theorem allows us to drop all integrals of velocity derivatives *unless* the moment is w.r.t. that velocity, in which case $v_i df/dv_i \rightarrow f$, and: $v(x) \equiv \int f d^3 v$

CBE- v_z moment: Surface-mass density Σ_{disk}

Multiplying CBE by v_z , integrating over all velocities, assuming steady state, azimuthal symmetry, and using the divergence theorem yields:

$$\int_{\mathbf{V_z}} \mathbf{d}^3 \mathbf{v} \left\{ \begin{array}{c} 0 & 0 & 0 & 0 \\ \frac{\partial f}{\partial t} + v_R \frac{\partial f}{\partial R} + \frac{v_\phi}{R} \frac{\partial f}{\partial \phi} + v_z \frac{\partial f}{\partial z} + \left(\frac{v_\phi^2}{R} - \frac{\partial \Phi}{\partial R} \right) \frac{\partial f}{\partial v_R} - \frac{1}{R} \left(v_R v_\phi + \frac{\partial \Phi}{\partial \phi} \right) \frac{\partial f}{\partial v_\phi} - \frac{\partial \Phi}{\partial z} \frac{\partial f}{\partial v_z} = 0. \end{array} \right\}$$

$$\frac{\partial(\nu\overline{v_Rv_z})}{\partial R} + \frac{\partial(\nu\overline{v_z^2})}{\partial z} + \frac{\nu\overline{v_Rv_z}}{R} + \nu\frac{\partial\Phi}{\partial z} = 0$$

Ist and 3rd terms are smaller than 2^{nd} and 4^{th} by factors of $(z/R)^2$, and can be dropped.

$$\frac{\partial(\nu\overline{v_Rv_z})}{\partial R} + \frac{\partial(\nu\overline{v_z^2})}{\partial z} + \frac{\nu\overline{v_Rv_z}}{R} + \nu\frac{\partial\Phi}{\partial z} = 0$$

We also substitute the definition

$$\sigma_i^2 = \overline{v_i^2} - \overline{v_i}^2$$

Where <v_i> (second term) is zero for a system in steady state

$$\frac{\partial (\nu \sigma_{\rm z}^{2})}{\partial z} + \nu \frac{\partial \Phi}{\partial z} = 0$$
 (I) CBE

- Now use Poisson's equation to define the potential Φ in cylindrical coordinates assuming azimuthal symmetry (no dependence of V and Φ on Φ):
 - ► 4πGν(x) = $\nabla^2 \Phi$ (x) = $d^2 \Phi / dz^2 + (I/R) d [R(d\Phi / dR)] / dR$
 - Remember: $\rho = v_i m_i = \langle v \rangle \langle m \rangle$; we drop $\langle v \rangle$ notation here
- For $d\Phi/dR = v2(R)/R$ and V(R) constant, the last term vanishes
- In general, in a highly flattened system near the mid-plane the 2nd term on the r.h.s. is much smaller than Ist term.

$$\frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \vee$$

(2) Poisson

▶ Next, integrate Poisson over z and relate to CBE:

Note
$$\frac{\partial \Phi}{\partial z} = 0$$
 $z = 0$
 $z = 0$

▶ To complete the calculation to find σ_{z} , integrate one more time in z.

- To do this last step (integrate [3] in z), let's assume something about the mass distribution function in the vertical direction.
 - Based on what we know from light profiles of external galaxies:
 - $V(R,z) = V_0 \exp(-z/h_z R/h_R)$
- Suggest a general vertical density function:
 - $V(z) = 2^{-2/n} V_0 \operatorname{sech}^{2/n} (nz/2h_z)$
 - ▶ n=I → $V(z) = (V_0/4) \operatorname{sech}^2(z/2h_z)$ isothermal case
 - ▶ n=2 → $V(z) = (V_0/2)$ sech (z/h_z) intermediate
- ightharpoonup The surface-density Σ_{disk} follows from direct integration:
 - \rightarrow n=I \rightarrow $\sum_{disk} = v_0 h_z$
 - → n=2 → Σ_{disk} = (π/2) V_0 h_z
 - → $n=\infty$ → $\sum_{disk} = 2v_0 h_z$

The gradient of the potential follows from the corresponding indefinite integral:

$$\frac{\partial \Phi}{\partial z} = 2\pi G \int v \, dz$$

$$\Rightarrow = 2\pi G v_0 h_z \tanh(z/2h_z), \qquad n = I$$

$$\Rightarrow = 2\pi G v_0 h_z \arctan[\sinh(z/h_z)], \qquad n = 2$$

$$\Rightarrow = 2\pi G v_0 h_z [I-\exp(z/h_z)], \qquad n = 3$$

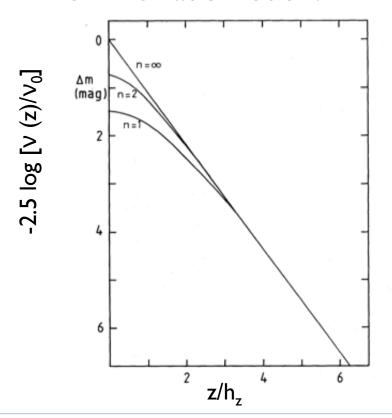
Lastly, we integrate the gradient of the potential $\frac{\partial \Phi}{\partial z}$ and divide by V to solve for σ_z^2 :

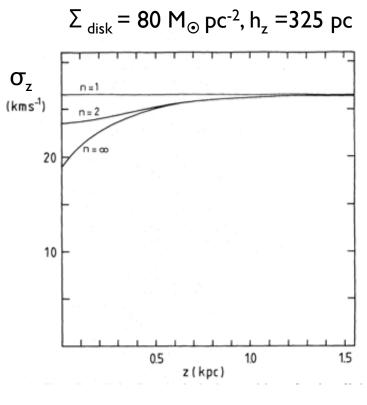
$$\sigma_z^2 = 2\pi G h_z \sum_{disk} n = 1$$

$$\sigma_z^2 = 1.705 I \pi G h_z \sum_{disk} n = 2$$

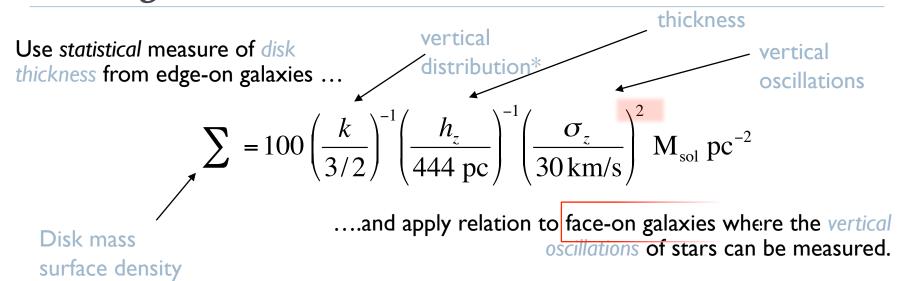
$$\sigma_z^2 = 3\pi/2 G h_z \sum_{disk} n = 3$$

- If the disk is locally isothermal, $d\sigma_z^2/dz = 0$
 - Why is this? What does isothermal mean in terms of kinematic motion?





Finally....the Disk Mass formula



CBE- v_R and $v_R v_{\phi}$ moments:

Multiplying CBE by $v_R v_{\phi}$, integrating over all velocities, assuming steady state, azimuthal symmetry, and using the divergence theorem yields:

$$\frac{\partial (\nu \overline{v_R^2 v_\phi})}{\partial R} + \frac{\partial (\nu \overline{v_R v_z v_\phi})}{\partial z} - \frac{\nu}{R} \left(\overline{v_\phi^3} - \overline{v_\phi} R \frac{\partial \Phi}{\partial R} - 2 \overline{v_R^2 v_\phi} \right) = 0$$

Multiplying CBE by v_R , integrating over all velocities, and assuming azimuthal symmetry (ϕ -derivatives=0) yields:

$$\frac{\partial (\nu \overline{v_R})}{\partial t} + \frac{\partial (\nu \overline{v_R^2})}{\partial R} + \frac{\partial (\nu \overline{v_z} \overline{v_R})}{\partial z} + \nu \left(\frac{\overline{v_R^2} - \overline{v_\phi^2}}{R} + \frac{\partial \Phi}{\partial R} \right) = 0$$

CBE- v_R and v_Rv_{ϕ} moments: Epicycle approximation

The CBE- v_R and $v_R v_{\phi}$ moments combined with this identify (valid when ellipsoid is aligned with the potential and symmetric about v_{ϕ}):

$$\overline{(v_{\phi} - \overline{v_{\phi}})^3} = (\overline{v_{\phi}^3} - \overline{v_{\phi}}\overline{v_{\phi}^2}) - 2\overline{v_{\phi}}(\overline{v_{\phi}^2} - \overline{v_{\phi}}^2) = 0$$

yield
$$\overline{v_R^2} \left(\frac{\partial \overline{v_\phi}}{\partial R} + \frac{\overline{v_\phi}}{R} \right) - \frac{2 \overline{v_\phi}}{R} (\overline{v_\phi^2} - \overline{v_\phi}^2) = 0$$

Which can be rearranged to give:

$$\frac{\sigma_{\phi}^2}{\sigma_R^2} = \frac{1}{2} \left(\frac{\partial {\rm ln} \overline{v_{\phi}}}{\partial {\rm ln} R} + 1 \right)$$

This is powerful because it gives us another piece of information to uncover all of the ellipsoid components

 $\sigma_{\text{R}}:\sigma_{\varphi}:\sigma_{z}$

CBE-v_R moment: Asymmetric drift

• Eliminating time derivatives and assuming there are no streaming motions ($\langle v_r \rangle^2 = 0$) yields:

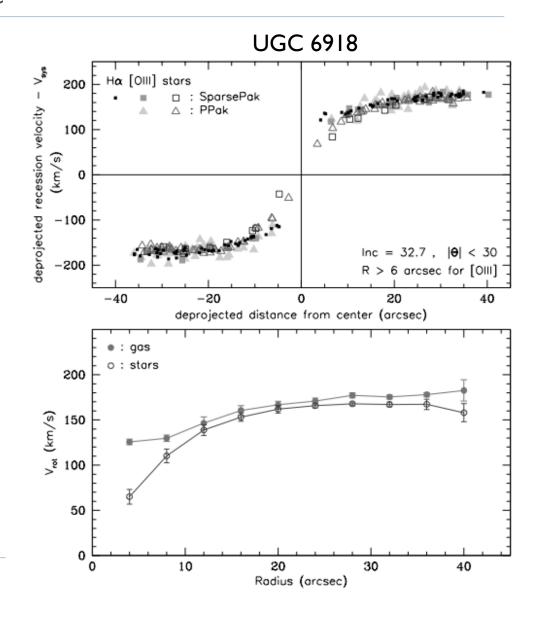
$$v_c^2 - \overline{v_\phi}^2 = \sigma_\phi^2 - \sigma_R^2 - \frac{R}{\nu} \frac{\partial (\nu \sigma_R^2)}{\partial R} - R \frac{\partial (\overline{v_r v_z})}{\partial z}$$

- Collisionless particles have tangential velocities smaller than the circular speed of the potential, in quadrature proportion (**think: energy**) to their velocity dispersion.
- This is powerful because it relates the velocity dispersion ellipsoid components to tangential velocities, thereby giving us another piece of information to uncover all of the ellipsoid components $\sigma_R:\sigma_{\varphi}:\sigma_z$
- Now the problem is *over* constrained, i.e., σ_{maj} , σ_{min} plus *two* dynamical relations (epicycle approx. and asymmetric drift).
 - A good thing because there are a lot of assumptions.

Asymmetric drift

- Assume the gas tangential velocity is close to v_c
 - Why is this reasonable?
- V_{ϕ} is the tangential velocity of the stars

Bershady et al. 2010



Wrapping up:

If we make some assumptions

- b about the distribution function V(R,z), namely a double exponential in R and z,
- b that the ellipsoid tilt yields a last term between 0 and σ_z^2
- ightharpoonup and we substitute in the epicycle approximation to eliminate σ_{φ}

$$v_c^2 - \overline{v_\phi}^2 \approx \sigma_R^2 \left(\frac{1}{2} \frac{\partial \ln \overline{v_\phi}}{\partial \ln R} + \frac{2R}{h_\sigma} + \frac{R}{h_R} - 1 \right) + \frac{\sigma_z^2}{2}$$

This formula, plus direct measurments of

 V_c , V_{ϕ} , σ_{maj} , σ_{min}

are our best-bet combination for

- \triangleright directly measuring Σ_{disk}
- decomposing rotation curves,
- determing disk M/L, and
- > the dark-mater density distribution.

