Astronomy 330 Lecture 13

Lecture 13 15 Oct 2010

Outline

Review:

- Spiral arms
 - Winding problem
 - Density waves,
 - Epicycles
 - □ Linblad resonances
 - □ Co-rotation
- Star-formation
 - Multiple tracers
 - Discontinuities in redshift
 - Insensitivity to low-mass stars
- Scaling relations
 - Tully-Fisher relation: a scaling law
- Dynamics of collisionless systems:
 - Measuring disk mass
 - Collisionless Boltzmann equation

Star formation

- Basic raw materials:
 - Molecular mass at some critical density
 - recall instabilities to gravitational collapse: the Jean's length
 - Spiral arms collect gas into shocks, accelerating collapse
- On a large enough scale, clouds should make stars according to the initial mass function (IMF) and do so largely in clusters
 - there are interesting deviations from this
- Whatever factors give rise to spiral structure, this is where most of the star-formation occurs.
- What we do see: Massive stars and the effect of their radiation
- What we don't see (directly): lowmass stars
 - How can we detect them?

Tracers of massive stars: UV to Mid-IR

UV luminosity

- Directly traces the massive stars and their supply of ionizing photons
- Susceptible to extinction!
- Requires UV telescope (GALEX)

Emission lines arising from ionized gas

- Not as susceptible to extinction (at least $H\alpha$)
- Measures the number of recombinations = number of ionizing photons = number of massive stars

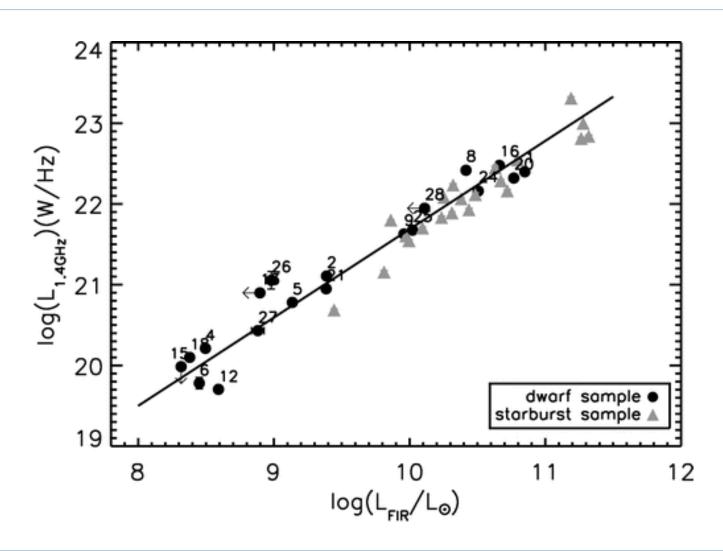
Warm Dust

- Photons warm surrounding dust → dust reradiates in sub-mm and far-IR (based on properties of dust: T and composition)
- Unaffected by extinction (it is the extincting material!)

Tracers of massive stars: radio continuum

- ▶ Continuous radiation from free electrons (free-free emission)
 - Depends on electron density P_e
 - ρ edepends on number of ionizing photons and number of massive stars
 - Unaffected by extinction
- Radio synchrotron emission
 - Massive stars explode → expanding shocks accelerate particles to relativistic velocities → combine with magnetic field → synchrotron emission
 - Indirect measure of number of Sne
- ▶ The Far-IR/Radio continuum correlation:
 - ► Massive stars warm dust → Far-IR
 - ► SNe accelerate cosmic rays → radio continuum
 - But this hasn't really been demonstrated and
 - Implies a fixed fraction of SNe energy is converted into cosmic rays

Far-Infrared – Radio-Continuum correlation



Tracers of star formation

Is any one better than the others?

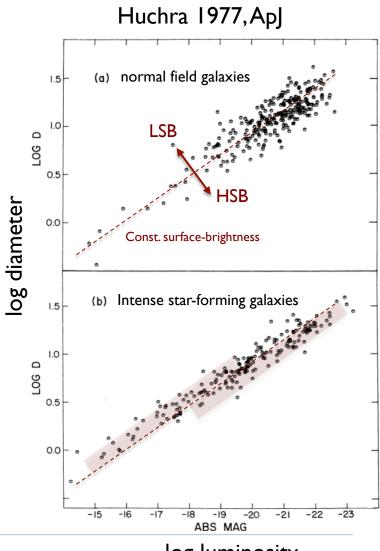
- Depends on redshift
- UV hard to measure at low redshift
 - not visible from ground
- \triangleright H α hard to measure at high redshift
 - moves into NIR where sky is bright
- Sub-mm sensitivity and radio continuum sensitivity isn't what it needs to be for high-redshift measurements

Primary limitations are two-fold:

- Only measures the number of massive stars (those massive enough to emit lots of ionizing photons)
- No single tracer can be used well over broad range in redshift

Scaling relations

- V, L, size correlate (the physical scale of disk systems)
 - "Larger" systems tend to have higher disk surface-brightness, older stellar populations, less gas, higher metallicity (i.e., the Hubble Sequence)
- ▶ Important 2nd-order effect:
 - matter-density increases with V, L, size
 - concentration, surface-brightness
 - \rightarrow dynamical time-scales decrease $t_{dyn} \sim \sqrt{(I/G \rho)}$
 - → SFR, gas consumption and enrichment more rapid
 - → drives Hubble Sequence ???
 At some level it must.

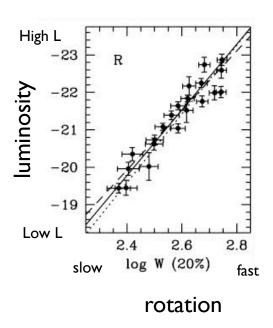


Scaling relations continued

What about mass?

The tightest correlation for disk galaxies is between V and L. This is called the **Tully-Fisher (TF)**relation

R-band (red light) TF:



Tully-Fisher relation: Measurement

- Details of the measurement
- Velocity:
 - Measure of circular rotation
 - line-width or rotation curve
 - Corrections:
 - inclination (1/sin i)
 - turbulent broadening (if line width)
- Luminosity:
 - Corrections:
 - total flux
 - Galactic extinction
 - internal extinction (which depends on inclination)
 - distance
 - □ distance modulous
 - □ redshifting of band-pass, the so-called "k" correction

Inclination:

- Axial ratios of light profile (photometric ellipticity)
 - Correct for disk oblateness
- Shape of iso-velocity contours (if 2D kinematics are available)

Surrogates measures of rotation

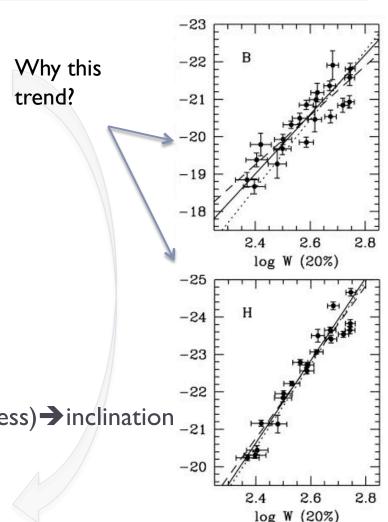
Galactocentric distance (kpc)

Spatial information vs sensitivity: **4.** Single dish (fiber): I. Interferometer/IFU: Line width $W \sim 2V_c$ → Velocity field max 2D map of velocities, or data cube 50% max Major axis W_{50} 00 57 45 RIGHT ASCENSION (B1950) 20% max W_{20} 2. Position-velocity diagram (PVD): Slice down the Equivalent to long-slit spectrum major axis Velocity (km/s) 3. Rotation curve Projected velocity Integrate in x (and y) Flip (in V) and fold (in x) Major axis

Tully-Fisher relationship: Scatter

Small!

- 0.5-0.3 mag in blue (B, 0.44 μ m)
- ▶ 0.1 mag in near-IR (H, I.6 μ m)
- of galaxies with rotation curves and flat V(R) (Verheijen 2001)
 - ▶ Too small?
 - Source of dispersion
 - Measurement errors (random)
 - Measurement errors (systematic)
 - Extinction
 - ▶ Shape of light-distribution (oblateness) → inclination
 - ▶ Shape of rotation curve $\rightarrow V_c$
 - Cosmic variance
 - Variations in M/L with galaxy type

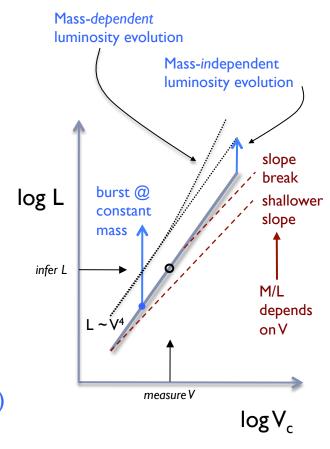


Tully-Fisher relation: Implications

- ▶ Why is M/L so constant from galaxy to galaxy?
 - Here we're talking about M/L of the entire galaxy:
 - Mass is dominated by dark halo
 - Luminosity is dominated by disk
 - Total mass: M proportional to $[V_{max}^2 h_R]$
 - ▶ Total luminosity: L proportional to $[I_0h_R]$ (ignoring bulge)
 - L proportional to $[V_{max}^4 (M/L)^2 I_0]$
 - A universal M/L implies remarkable constancy of the ratio of dark to luminous matter
 - Or worse, a fine-tuning of the dark-to-luminous mass ratio as the stellar M/L varies.
- What does this tell us about galaxy formation and feedback?

Tully-Fisher relation: diagnostic tool

- Standard candle: V is distance-independent
- Structural probe: slope and scatter
 - ▶ Since L is proportional to $[V_{max}^4 (M/L)^2 I_0]$
 - → M vs log(V) should have slope of 10
 - and should depend on surface-brightness
 - ▶ Slope is < 10, varies with wavelength
 - No dependence on surface-brightness
- Evolutionary probe
 - ▶ Changes in M/L with time
 - Assume M roughly constant
 - □ Secular changes in L: star-formation history
 - ☐ Stochastic changes in L (star-formation bursts)
 - □ Scatter increases with burst duty-cycle



Dynamics of collisionless systems

Motivation:

- Circular rotation is too simple and v_c gives us too little information to constrain Φ and hence ρ (e.g., rotation curves)
- Without Φ and hence ρ we can't understand how mass has assembled and stars have formed
 - We can't even predict how the Tully-Fisher relation should evolve
- Gas is messy because it requires understanding hydrodynamics, and likely magneto-hydrodynamics.
- At are disposal are stars, nearly collisionless tracers of Φ!

Dynamics of collisionless systems

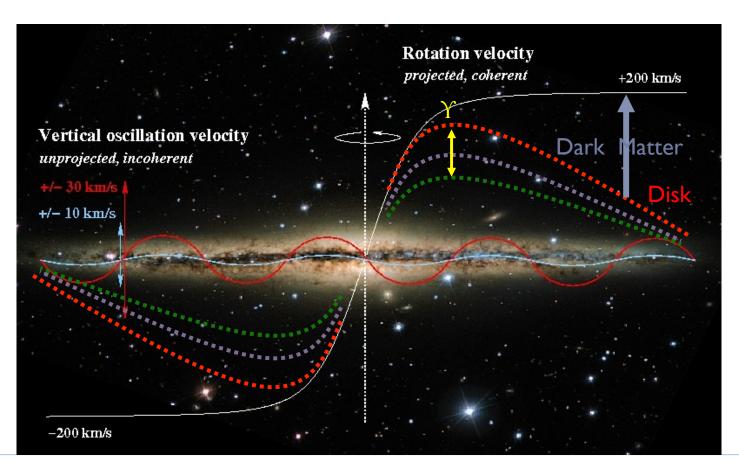
- How we'll proceed:
 - Start with the Continuity Equation (CE)
 - Use CE to motivate the Collissionless Bolztmann Equation (CBE), like CE but with a force term (remember $\nabla \Phi(\mathbf{x})!$)
 - Develop moments of CBE to relate v and σ and higher-order moments of velocity to Φ and ρ .
- Applications to realistic systems and real problems
 - Velocity ellipsoid
 - Asymmetric drift

Disk heating Disk mass Disk stability

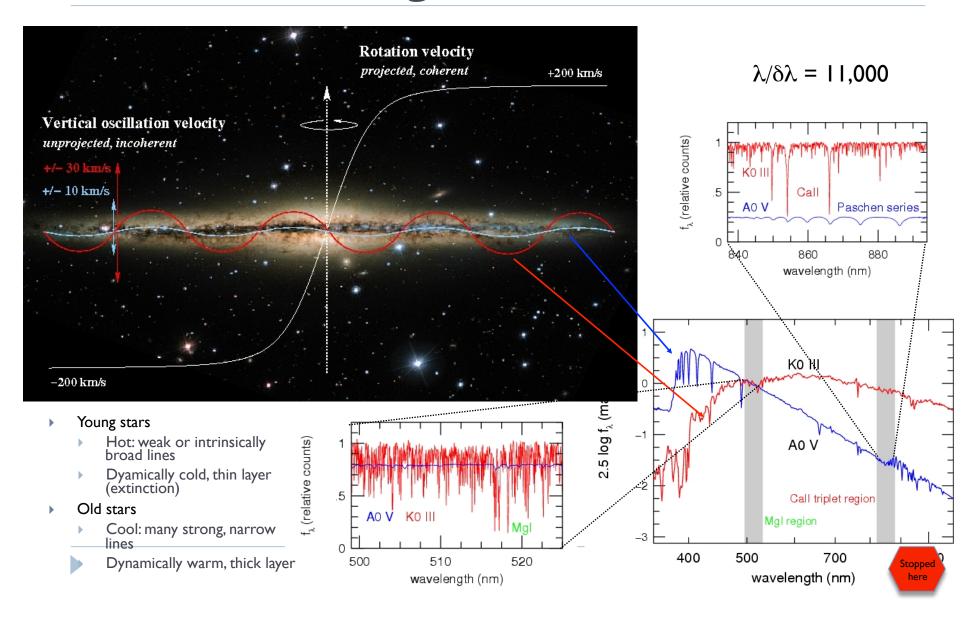
Don't be intimidated by moment-integrals of differential equations in cylindrical coordinates: follow the terms, and look for physical intuition.

Example: Breaking the Disk-Halo Degeneracy

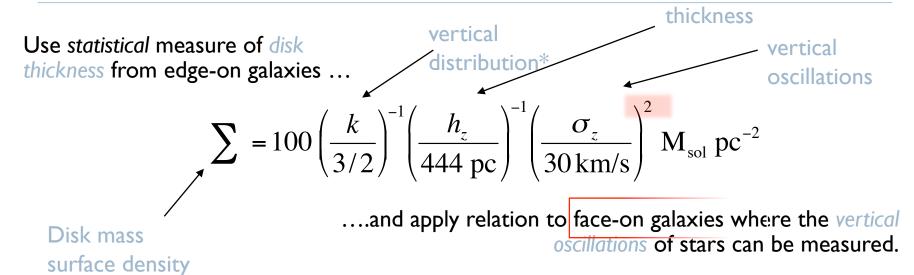
- Rotation provides the total mass within a given radius.
- Vertical oscillations of disk stars provides disk mass within given height



The kinematic signal



Disk Mass formula

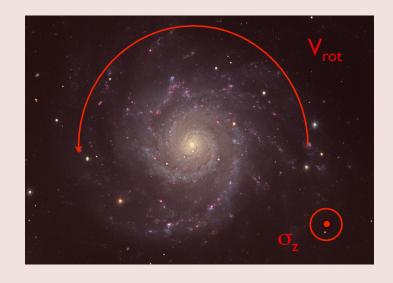


Edge-on or Nearly Face-on?

- Rotation projected
- Vertical dispersion inaccessible except via statistical kinematic correlations
- √ Vertical height projected
- Rotation velocity
 projected, coherent
 +200 km/s

 Vertical oscillation velocity
 unprojected, incoherent
 +/- 30 km/s
 +/- 10 km/s

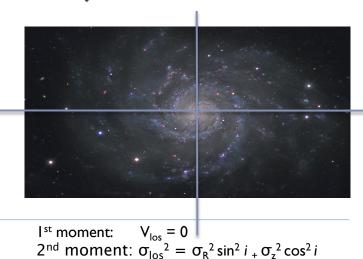
- Rotation accessible at high spectral resolution
- √ Vertical dispersion projected
- Vertical height inaccessible except via statistical photometric correlations



The problem

- If you look at completely face-on galaxies you can't measure rotation → can't estimate total mass (total potential)
- Even if you look at moderate inclination (i~30°) galaxies, you get components of the stellar velocity dispersion (σ) which are not vertical (σ_z) but radial (σ_R) or tangential (σ_{ϕ}).
- In other words, σ is a vector the velocity ellipsoid
- From the solar neighborhood we expect: $\sigma_R > \sigma_{\phi} > \sigma_z$
- ▶ But we can only observe 2 spatial dimensions:
 - How do we solve for σ_z ?
- And how do we solve for σ_R, which turns out to be interesting for understanding disk heating?

Ist moment: $V_{los} = V \sin i$ 2^{nd} moment: $\sigma_{los}^2 = \sigma_{\phi}^2 \sin^2 i + \sigma_z^2 \cos^2 i$



los = line of sight

Continuity Equation

- The mass of fluid in closed volume V, fixed in position and shape, bounded by surface S at time t
 - $M(t) = \int \rho(\mathbf{x}, t) d^3 \mathbf{x}$
- Mass changes with time as
 - $dM/dt = \int (d\rho / dt) d^3x = -\int \rho v \cdot d^2S$

NB: d = partial derivative

- ▶ mass flowing out area-element d^2S per unit time is $\rho \mathbf{v} \cdot d^2S$
- The above equality allows us to write

$$\int (d\rho / dt) d^3x + \int \rho v \cdot d^2S = 0$$

$$\int [d\rho / dt + \nabla \cdot (\rho v)] d^3x = 0$$
Divergence theorem

Since true for any volume

$$\int d\rho \, dt + \nabla \cdot (\rho \, \mathbf{v}) = 0 \qquad \text{This is CE}$$

In words: the change in density over time (Ist term) is a result of a net divergence in the flow of fluid (2nd term). Stars are a collisionless fluid.

Collisionless Boltzmann Equation

- Generalize concept of spatial density ρ to phase-space density $f(\mathbf{x}, \mathbf{v}, t)$ d³**x** d³**v**, where $f(\mathbf{x}, \mathbf{v}, t)$ is the distribution function (DF)
 - $f(\mathbf{x}, \mathbf{v}, t) d^3\mathbf{x} d^3\mathbf{v}$ gives the number of stars at a given time in a small volume $d^3\mathbf{x}$ and velocities in the range $d^3\mathbf{v}$

The number-density of stars at location \mathbf{x} is the integral of $f(\mathbf{x}, \mathbf{v}, t)$ over velocities:

The mean velocity of stars at location **x** is then given by

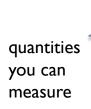
$$> \langle \mathbf{v}(\mathbf{x},t) \rangle = \int \mathbf{v} f(\mathbf{x},\mathbf{v},t) d^3\mathbf{v} / \int f(\mathbf{x},\mathbf{v},t) d^3\mathbf{v}$$

$$u(\mathbf{x}) \equiv \int f d^3 \mathbf{v}$$

$$\overline{v}_i \equiv rac{1}{
u} \int f v_i d^3 {f v}_i$$

S&G notation

Notation we'll adopt



CBE continued

- ▶ **Goal**: Find equation such that given $f(\mathbf{x}, \mathbf{v}, t_0)$ we can calculate $f(\mathbf{x}, \mathbf{v}, t)$ at any t, ...
 - and hence our observable quantities n(x,t), $\langle v(x,t) \rangle$, etc.
 - $f(\mathbf{x}, \mathbf{v}, \mathbf{t}_0)$ is our initial condition
 - The gravitational potential does work on $f(\mathbf{x}, \mathbf{v}, t)$

- Introduce some useful notation and relate to the potential

 - $\mathbf{w}' \equiv d\mathbf{w} / d\mathbf{t} = (\mathbf{x}', \mathbf{v}') = (\mathbf{v}, -\mathbf{\nabla}\Phi) = (\mathbf{w}_1 ... \mathbf{w}_3, -\mathbf{\nabla}\Phi)$

CBE continued

- ► Recall CE gives: $d\rho/dt + \nabla \cdot (\rho \mathbf{v}) = 0$
- Replace $\rho(\mathbf{x},t) \rightarrow f(\mathbf{x},\mathbf{v},t)$
- CE gives:
 - - $\int dv_i/dx_i = 0$ x_i,v_i independent elements of phase-space
 - ▶ $dv_i'/dv_i = 0$ $v' = -\nabla \Phi$, and the gradient in the potential does not depend on velocity.

CBE

Vector notation