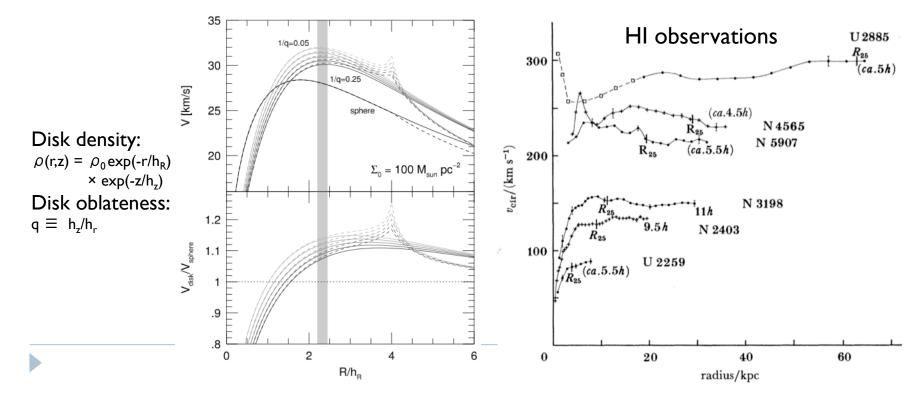
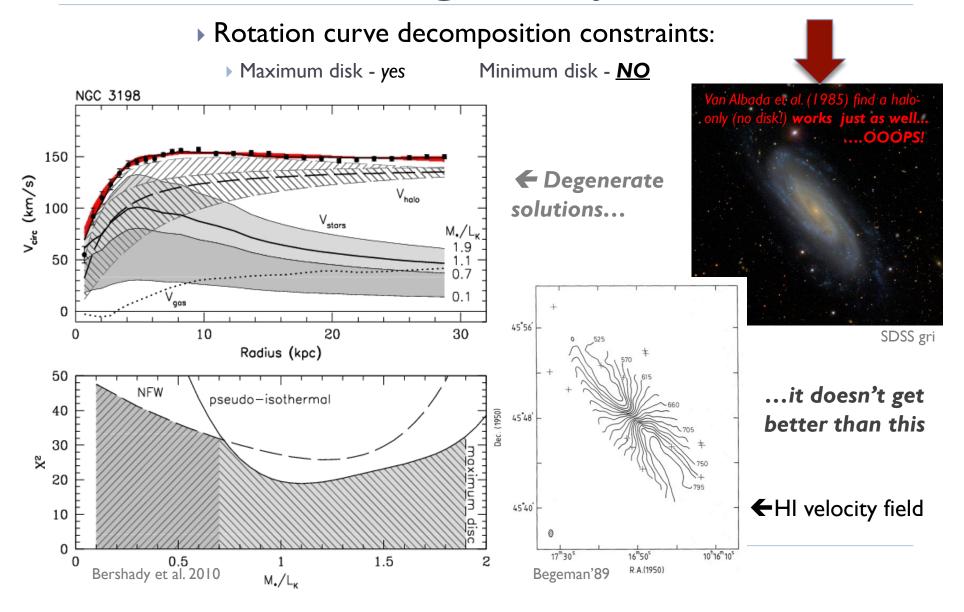
Astronomy 330


Lecture 11 08 Oct 2010

Outline

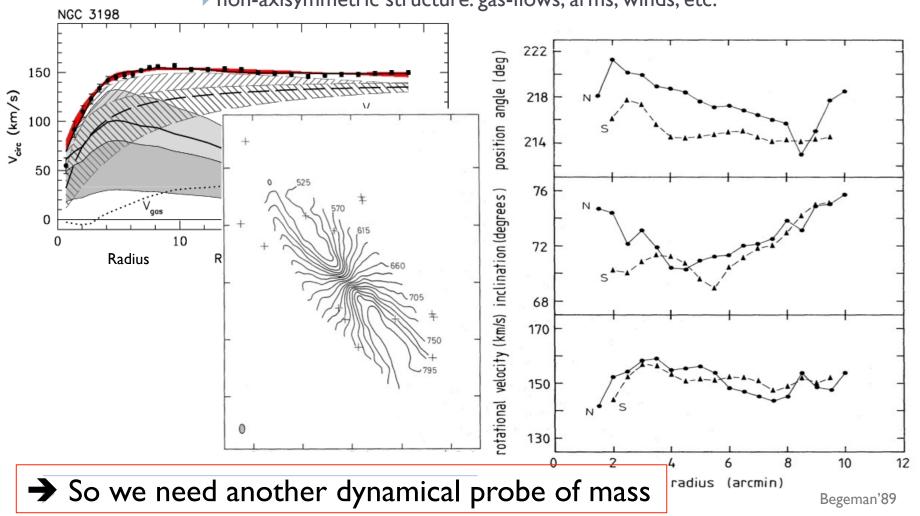
- ▶ Review: disk potentials & rotation curves
 - Disk-halo degeneracy
- Characteristics of dynamical systems
- Disk Galaxies
 - Structural properties
 - Kinematics

Review: rotation curves


- Recall: flattened potential of double exponential disk does not give flat rotation curve
- ▶ spiral galaxies have flat rotation curves → dark halo
 - $\rho_{halo}(r)$: pseudo-isothermal or NFW, go as $1/r^2$ for large r

The Disk-Halo Degeneracy

- Q: Is it possible to decompose the rotation curve of a spiral galaxy into disk, bulge, and halo components?
 - Estimate individual components $v_{c,i}^2$ constrained by $v_c^2 = \sum_i v_{c,i}^2$
- ▶ **A:** No; Solutions are degenerate
- Degeneracies:
 - Unconstrained fitting functions for halo:
 - e.g., pseudo-isotherm. vs NFW
 - ▶ Disk M/L (Υ_{disk}) uncertain
 - Stellar populations Y_∗: depends on SFH, IMF, and detailed knowledge of all phases of stellar evolution.
 - ▶ ISM
 - □ Gas
 - □ Atomic: straightforward to measure
 - Molecular: harder to measure
 - □ Dust: probably insignificant
 - Dark matter?
 - Non-circular motions
- However, it is possible to set upper-limits on the disk (socalled maximum disks)


The Disk-Halo Degeneracy: best case

The Disk-Halo Degeneracy: Best case

▶ Formal χ^2 not meaningful at level of ΔV_{circ} <5 km/s

Characteristics of dynamical systems - 1

Summary:

- $v_c \equiv \sqrt{(r d\Phi/dr)} = \sqrt{(GM(r)/r)}$, circular velocity
- $v_e \equiv (2|\Phi|)^{1/2}$, escape velocity
- $t_{\rm dyn} \equiv \sqrt{(3\pi/16G \rho)}$
- $t_{\rm ff} \equiv \sqrt{(I/G \rho)}$, free-fall time ~ $t_{\rm dyn}$
- $t_{cross} \equiv R/v$, use characteristic radius and velocity

Characteristics of dynamical systems - 2

- ▶ Relaxation from N-body encounters of stars:
 - $t_s \equiv v^3 / (4\pi G^2 m_*^2 n)$, ...time-scale for strong encounters
 - $\sim 4 \times 10^{12} \, \text{yr} \, (\text{v/10 km s}^{-1})^3 (\text{m}_*/\text{M}_\odot)^{-2} \, (\text{n/1pc}^{-3})^{-1}$
 - → unimportant except in very dense star systems
 - However, many weak encounters cumulate such that after a time t_{relax}, the amplitude of the perturbed motion of the star is comparable to its initial motion:
 - $t_{relax} \equiv t_s / 2 \ln \Lambda$
 - $\sim 2 \times 10^{12} \, \text{yr} \, (\text{v/10 km s}^{-1})^3 (\text{m}_*/\text{M}_\odot)^{-2} \, (\text{n/1 pc}^{-3})^{-1} \, (\text{ln} \, \Lambda)^{-1}$
 - ▶ where $\Lambda = b_{max}/b_{min} \sim R/r_s = N/2$ for isolated system of N stars
 - \square when $\frac{1}{2}$ Nm_{*}v² ~ G(Nm_{*})²/2R and r_s = 2Gm_{*}/V²
 - $t_{relax}/t_{cross} \sim N / 6 ln N/2$
 - ▶ Still very large for realistic N (10^{10} to 10^{11} for galaxies)

Characteristics of dynamical systems - 3

Instabilities to collapse: the Jean's length

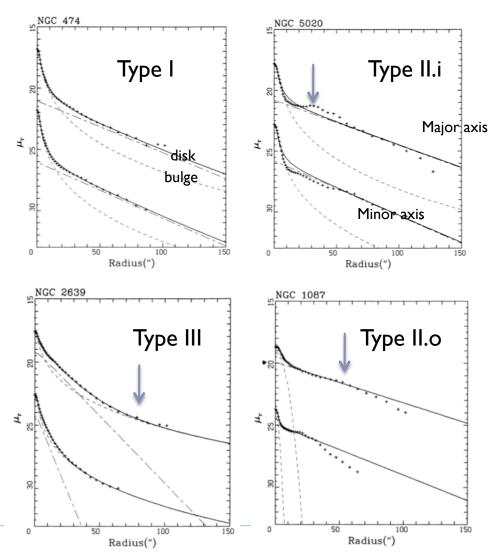
- $c_s \equiv \sqrt{(k_B T / \mu m_H)}$
 - ightharpoonup sound-speed for temperature T and mol. mass μ m_H
- $\lambda_{\rm J} \equiv {\rm cs}\sqrt{(\pi/{\rm G}\,\rho)} \sim {\rm c_s}\,{\rm t_{\rm ff}}$
- $M_{\rm J} \equiv (\pi/6) \ \lambda_{\rm J}^{3} \rho = 20 \ M_{\odot} (T/10 \text{K})^{3/2} (100 \text{cm}^{-3}/\text{n})^{1/2}$
- What this basically says is that regions smaller than the soundcrossing time have time to re-arrange their density structure in response to gravity, and hence are stable *against* gravitational collapse; larger structures are unstable to collapse.
- It is relevant for setting the mass-scales for star-formation and galaxy formation.

Disk Galaxies

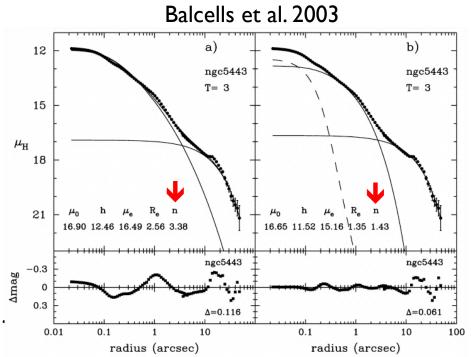
Disk Galaxies: distribution of starlight

De-composition of the light profile

- Disk generally fit with an exponential or two
 - $I(r) = I_0 e^{-r/hR}$
 - ▶ I₀= central surface brightness
 - \rightarrow h_R = scale length of the exponential
- ▶ Bulge generic function that goes as r^{1/n}
 - ▶ $I(r)=I_ee^{-k}$ where $k = b_n[(r/r_e)^{1/n}-I]$
 - □ Sersic profile: n=4 fits many ellipticals; n=1 is exponential; n=1/2 is Gaussian
 - ▶ I_e= effective surface brightness, r_e= effective radius :
 - □ where half the total light is enclosed
 - $b_n \sim 2n-0.33$ for I<n<10.
 - n = 1.7±0.7 (Balcells et al. 2003)
- Halo
 - Doesn't contribute much light, treat as extension of bulge

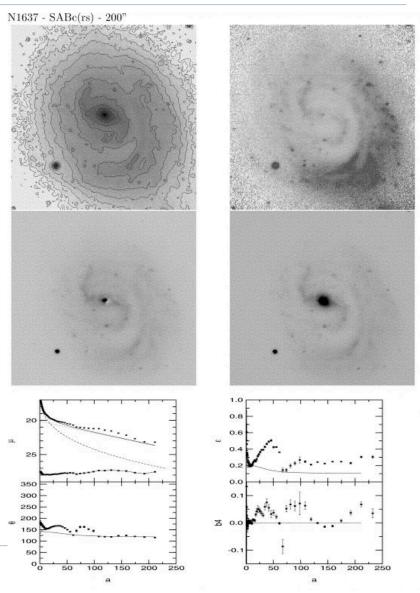

Disk Galaxies: distribution of starlight

- Central surface brightness
 - Usually measured in mag arcsec⁻² ($\mu = -2.5\log I + const.$)
 - It is independent of distance! (ignoring cosmological dimming)
- Freeman's law (1970): luminous spirals have nearly constant disk central surface-brightness:
 - $\mu_0 = 21.65$ (B-band), 21 (R-band), 20.65 (I-band) ± 0.65 mag arcsec⁻²
 - Turns out to be a Malmquist-like bias; lower-luminosity systems have lower μ_0
- Central surface-brightness for bulges:
 - typically 10-100 times higher.
 - Easy to see!
- Bulge-to-disk (B/D) luminosity ratio a key parameter in describing disk-galaxies


Bulge/Disk decomposition

- ► Traditionally these have been done as ID fits in radius (Kent 1985, ApJS, 59, 115)
- Several distinct disk profile types:
 - Inner breaks (Freeman 1970)
 - ► Type I, II(.i)
 - Outer breaks (Erwin et al. 2006, Pohlen & Truillo 2006, A&A, 454, 759)
 - ▶ Type II.o, III
- Most disks show smooth exponential behavior between I<R/h_R<4</p>
- Few extend far beyond R/h_R=4 in starlight

Bulge/Disk decomposition

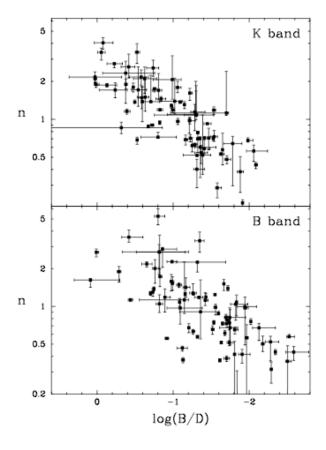

- Recent work has focused on high-resolution in the NIR to probe bulge structure
 - HST H-band SB profile: NGC 5443 (Sb).
 - (a) Solid lines = Sersic bulge + exponential disk
 - (b) Adding central point source in leads to a better fit
 - \rightarrow n = 1.7±0.7
 - w/o central source, overestimate n.
 - What is the cusp?
- Bulges have near-exponential radial light-profiles, likes disks, but not highly flattened.
 - Heated inner disks?

Bulge/Disk decomposition

- Best modern methods do simultaneous fits of both inclined exponential disk and a Sersic-profile bulge in 2D
 - e.g., De Souza et al. 2004,ApJS, 153, 411
- Reveals wealth of residual structure:
 - Lopsidedness (m=1)
 - ▶ Bars, oval distortions (m=2)
 - ▶ spiral arms (m=2,3,...)

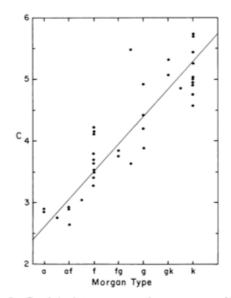
Fourier modes **↑**

Oval distortions


- ▶ 50% of disk galaxies have some sort of oval distortion
 - (bar, linear structure, m=1 Fourier mode at center of galaxy):
 - stars and gas in largely radial orbits, precessing in phase.
 - More easily seen in red light (old stars), but often gas
- Outstanding questions:
 - Are bars long-lived or short-lived phenomenon?
 - Investigations of distant samples inconclusive.
 - □ e.g, Abraham et al. 1999, MNRAS, 308, 569
 - Do bars give rise to bulges?
 - e.g., pseudo-bulges (Kormendy & Freeman 2004)

NGC 1300

Trends along Hubble sequence


- Important structural parameters:
 - μ_0 , h_R , h_R , h_R
- Also gas and stellar content
- ▶ Early → Late
 - Decreasing:
 - disk size (h_R), disk surface-brightness μ_0
 - ▶ B/D and bulge Sersic index n
 - Overall luminosity, rotation speed
 - metallicity, mean stellar age
 - Increasing:
 - gas content
 - star-formation (per unit mass)
 - disk thickness
 - Lopsidedness, asymmetry (i.e., irregularity!)

Graham 2001, AJ 121, 820

Trends along Hubble sequence

- Nent (1985) showed that light-concentration (C) and mean surface-brightness (μ_e) correlated with each other, B/D, and the Morgan spectral type.
 - Requires no B/D decomposition to characterize disk systems

7.0 6.0 5.0 C 4.0 4.0 4.0 4.0 4.0 4.0 4.0 6.0 8/T

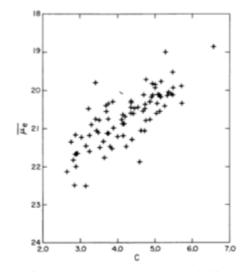
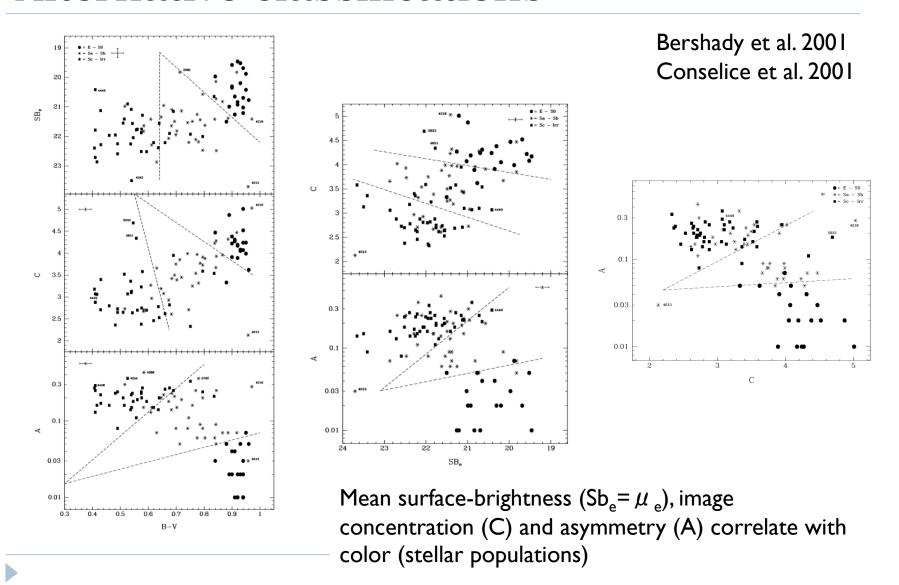
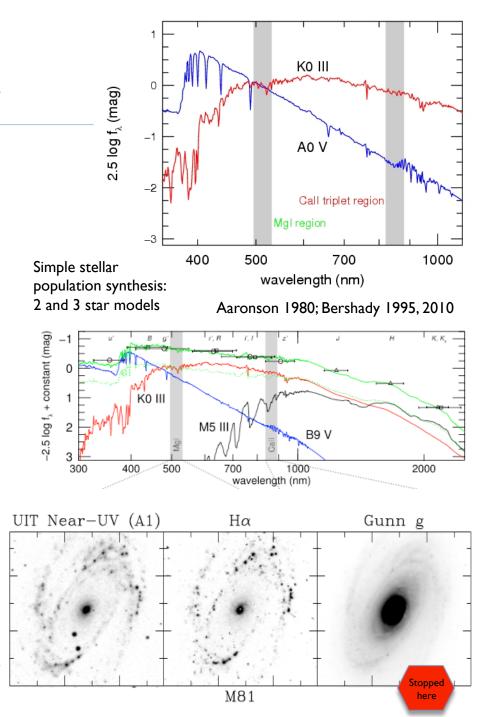



Fig. 10.—Correlation between concentration parameter c and B/T. Dashed line at B/T = 0.63 marks the point where bulge/disk decompositions become unreliable.

Ftg. 9.—Correlation between concentration parameter c and Morgan type. The line drawn is an eyeball fit to the points.

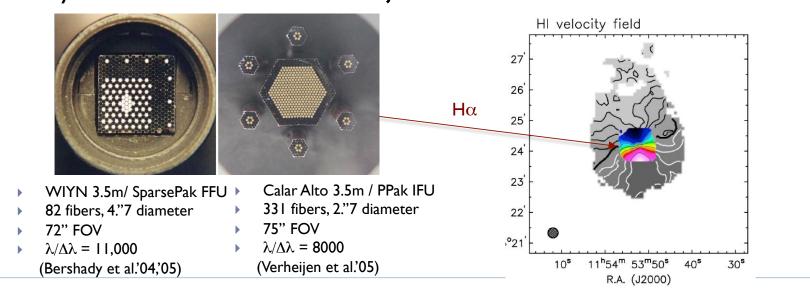

Fig. 12.—Correlation between mean surface brightness $\bar{\mu}_e$ inside effective radius r_e as a function of concentration parameter c.

Alternative classifications

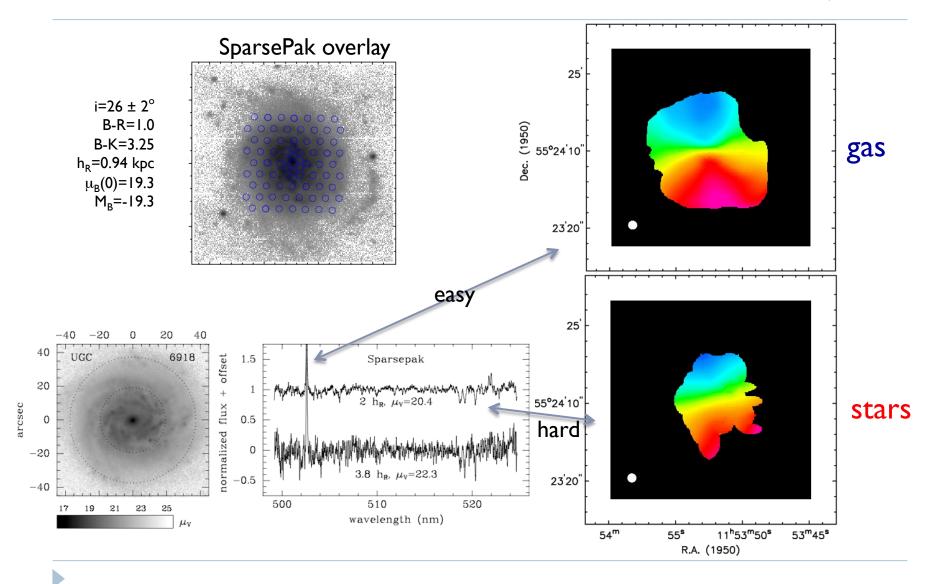
Optical vs NIR view

- Modern measurements
 - Digital detectors: CCDs or IR arrays
- Hot stars emit relatively little in the near-IR compared to cool stars of comparable total (bolometric) luminosity.
- Giant stars emit much of their radiation in near-IR
 - → Galaxies appear less "splotchy" in the red and NIR because you see mostly the cool, older stars that are relaxed.
 - Effects of extinction mitigated:
 - A \equiv -2.5log(I_{obs}/I_{em})= 1.065 τ , where τ is optical depth, and goes as $\sim \lambda^{-1}$
 - more accurate view of the stellar distribution.

Disk Galaxy Kinematics: 3D

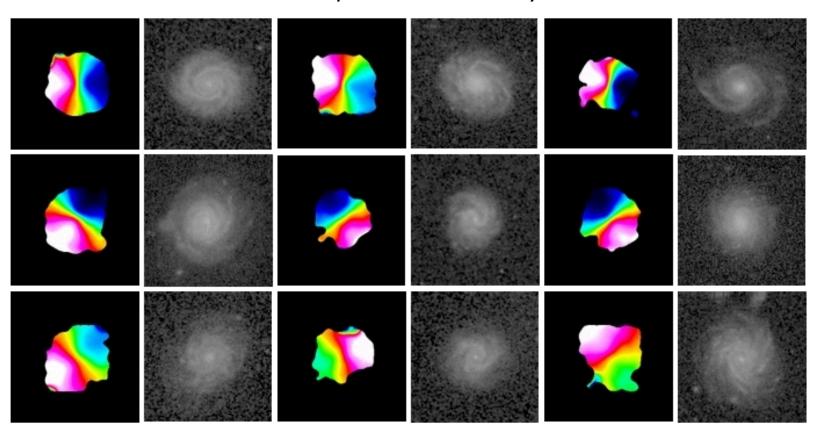

From easy to hard:

- Ionized gas kinematics based on centroids of the optical emission lines ([OII], [OIII], H α).
- ▶ HI kinematics based on radio interferometric studies.
- Stellar velocity fields and dispersions largely based on centroids and widths of stellar absorption lines.
 - We'll come back to this.

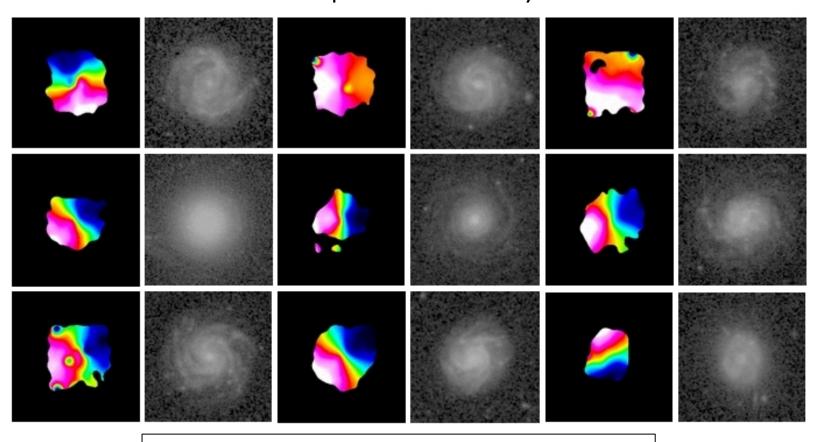


Disk Galaxy Kinematics: 3D

- Optical fibers and image slicers...
 -feeding conventional long-slit spectrographs...
 -have opened up 2D mapping of disk velocities (3D data = data cube).
- Data cubes:
 - Once only the domain of radio astronomy, where we could probe only neutral or molecular gas
 - We can now probe ionized gas and stars, much more quickly.
- ▶ Why bother with radio ?? Here's just one of several critical reasons:



Disk kinematics: UGC 6918 = NGC 3982


Symmetric, normal galaxies

WIYN/SparsePak $H\alpha$ velocity fields

Bi-symmetries and Asymmetries

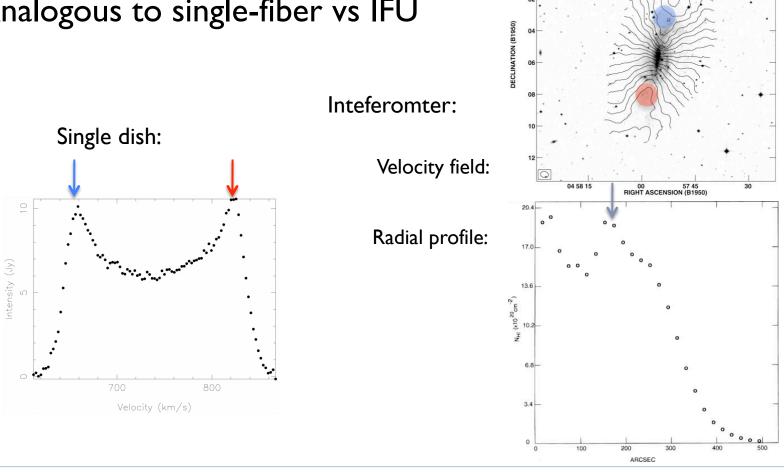
WIYN/SparsePak $H\alpha$ velocity fields

This is easy: Ihr in bright-time on a 3.5m telescope

Radio Telescopes

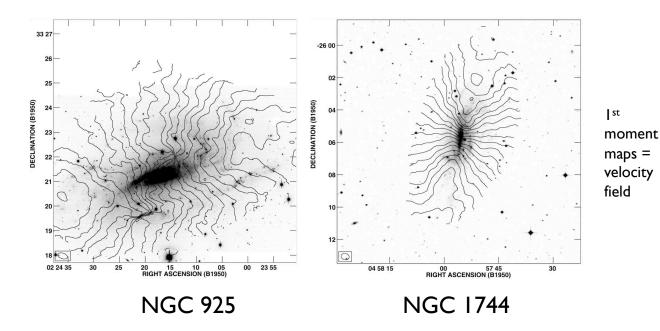
Single dish: Green Bank

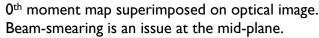
Interferometers:VLA


HI Kinematics of Disk Galaxies

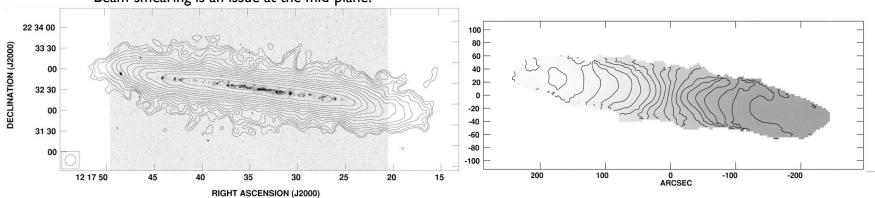
- Until the last decade, this has been the only source of bidimensional kinematics of external galaxies.
- Interferometric observations yield a 3-dimensional map (a data cube) of the distribution and kinematics of HI
 - ➤ x,y,z (RA, DEC, velocity).
 - Moment 0 = total intensity (integrate over v)
 - Moment I = velocity field (mean velocity as function of position)
 - ▶ Moment 2 = velocity dispersion
 - etc. (skew, kurtosis)
 - These concepts are generic and apply to all line data, e.g., optical emission lines, stellar absorption lines.
 - ▶ HI data cubes take 10's of hours to collect on the world's biggest interferometers.

Single-dish vs Inteferometer


- Sensitivity vs spatial information
- Analogous to single-fiber vs IFU

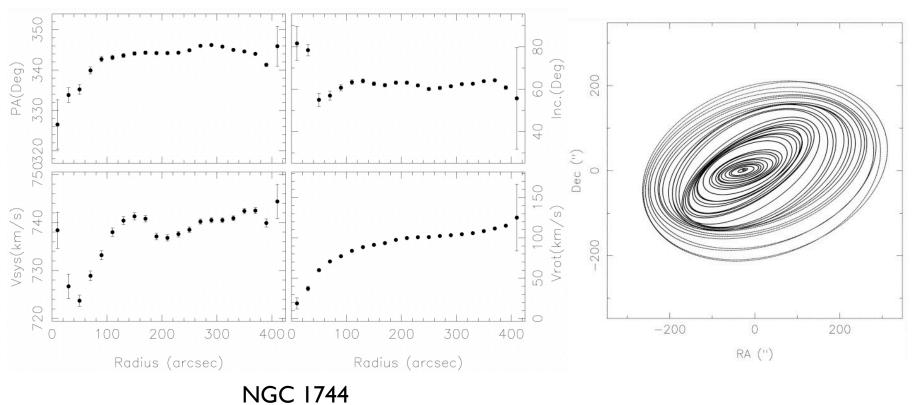

HI spider diagrams

Moderate inclination:


Note beam size relative to optical structure.

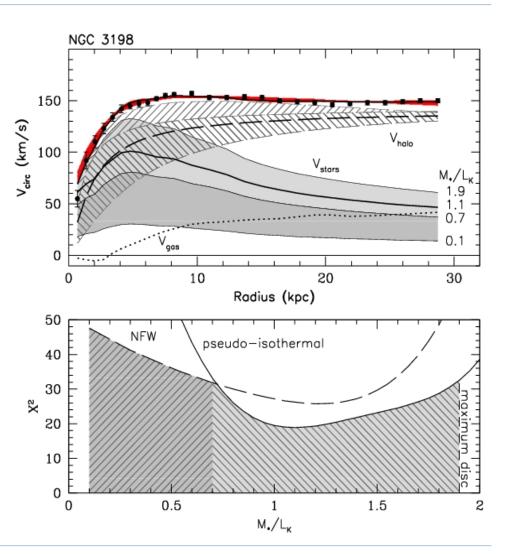
Highly inclined:

Ist moment map = Velocity field



Deriving the rotation curve

- We only measure the radial velocity (i.e. velocity along the line of sight). How do we translate this into a velocity field?
- Components
 - Systemic velocity (e.g. Hubble flow)
 - Inclination, i, (i.e. if its face-on we see no rotation)
 - Azimuthal angle (of the major axis)
 - $V_c = V_{SYS} + V(R)(\sin i)(\cos \phi)$


Deriving the rotation curve

▶ Tilted ring models allow you to fit the circular velocity, inclination, position angle as a function of radius.

Deriving the rotation curve

 But it's still just a rotation curve, degenerate to disk+halo, good for estimating total mass only.

