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ABSTRACT

Two new methods are proposed for linear regression analysis for data with

measurement errors. Both methods are designed to accommodate intrinsic

scatter in addition to measurement errors. The �rst method is a direct extension

of the ordinary least squares (OLS) estimator to allow for measurement errors.

It is quite general in that a) it allows for measurement errors on both variables,

b) it allows the measurement errors for the two variables to be dependent, c) it

allows the magnitudes of the measurement errors to depend on the observations,

and d) other `symmetric' lines such as the bisector and the orthogonal regression

can be constructed. The second method is a weighted least squares (WLS)

estimator, which applies only in the case where the `independent' variable is

measured without error and the magnitudes of the measurement errors on the

'dependent' variable are independent from the observations. The methods are

applied to two astronomical data sets: (i) A sample of X-ray temperatures and

velocity dispersions for galaxy clusters, and (ii) Color-luminosity relations for

�eld galaxies. Other example applications are discussed, such as the Tully-Fisher

relation and the Tolman test. Simulations with arti�cial data sets are used to

evaluate the small sample performance of the estimators.

Subject headings: statistical methods: analytical, numerical | galaxies: clusters

| cosmology: color-luminosity relation, Tully-Fisher relation, Tolman test
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1. Introduction

Linear regression analysis is used extensively in everyday astronomical research.

Because of the nature of the scienti�c objectives in astronomy and astrophysics, regression

methods found in standard statistics text books are not always satisfactory to the scientist.

Regression methods for astronomy has been the subject of two recent papers: Isobe et al.

(1991) (IFAB hereafter) and Feigelson & Babu (1992) (FB hereafter). IFAB consider

regression methods for data that have no measurement errors and present formulas for

the slope and intercept and their con�dence intervals for a variety of regression lines used

in astronomical research. The presence of measurement errors in observational datasets

greatly complicates the application of linear regression techniques. Signi�cant measurement

errors occur with great frequency in astronomical research. This problem is addressed in

Section 4 of FB, who review the available models and methods. The �ndings of FB can be

summarized as follows:

� The naive use of the ordinary least squares (OLS) estimator can cause considerable

biases when the `explanatory' variable is subject to measurement error. Thus suitable

regression methods must be developed that account for the measurement errors.

� The measurement error models studied in the statistical literature (cf. Fuller 1987)

are not realistic for the majority of astronomical applications, because they assume

homoscedastic measurement errors (in which the magnitude of the measurement

error is the same for all datapoints). Homoscedastic measurement errors models are

reviewed in Sections 2.2 and 4.1 of FB.

� The distinguishing feature of astronomical data with measurement errors is that the

size of the error (standard deviation in statistical parlance) is known, but can vary

from observation to observation. Methods for such heteroscedastic measurement
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errors are reviewed in Section 4.2 of FB, but only under the assumption that the

true (but unobservable due to measurement error) variables have no intrinsic scatter.

That is, the true points are assumed to lie exactly on a straight line, which implies

they have correlation one. Software packages which perform regressions under this

assumption are mentioned in FB, including ORDPACK (Boggs et al. 1990), which

also does nonlinear regression.

� Practical methods for the case where there is intrinsic scatter in addition to

heteroscedastic measurement errors are virtually nonexistent; see Section 4.3 in FB.

Since most astronomical applications involve both heteroscedastic measurement errors

and intrinsic scatter, there is a big gap in the available methodology.

In this paper we address the important problem of �tting regression models with

data having heteroscedastic measurement errors of known standard deviation, and entirely

unknown intrinsic scatter. The standard deviations of the measurement errors are allowed

to depend on the true (but unknown) value of the measured quantity. Both of our methods

pertain only to linear (as opposed to nonlinear) regression and are based on transparent

ideas that make them very intuitive.

The �rst method is a direct generalization of the OLS estimator, modi�ed to

accommodate the measurement error. The second method is a weighted least squares

(WLS) estimator which applies when only the `response' variable is subject to measurement

error. Note that our WLS method is di�erent from the WLS referred to in Section 4 of FB

because our method includes estimation of the intrinsic scatter.

We only consider simple linear regression here (i.e. only one `explanatory' variable);

extensions of this method to multiple regressions will appear in a sequel paper. The paper

is organized as follows. In the next section we introduce the basic idea of our method.
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In subsection 2.1 we consider the case where both the response and the explanatory

variable are subject to potentially correlated measurement errors. We use the acronym

BCES(X

2

jX

1

) (for Bivariate Correlated measurement Errors and intrinsic Scatter) to denote

the present generalization of the OLS(X

2

jX

1

). In subsection 2.2 we consider the case where

only the response variable is subject to measurement error, and we introduce a competing

procedure based on WLS. In Section 3 we study other versions of the �rst method, namely

the BCES-bisector and BCES-orthogonal regression; these regression lines are de�ned in

terms of BCES(X

2

jX

1

) and BCES(X

1

jX

2

). In Section 4 we apply these methods to some

astronomical data sets and use simulations as a methodological tool to investigate the small

sample performance of the four BCES estimators and the WLS estimator. We discuss more

general applications of BCES in Section 5. The mathematical derivations are given in the

Appendix.

2. Simple Regression

Let the variables of interest be denoted by (X

1i

;X

2i

) and the observed data be denoted

by

(Y

1i

; Y

2i

;�

i

); i = 1; : : : n; (1)

where for each i, �

i

is a symmetric 2 � 2 matrix with elements denoted by �

11;i

; �

22;i

,

and �

12;i

, for the two diagonal and the common o� diagonal elements, respectively. The

observed data are related to the unobserved variables of interest by

Y

1i

= X

1i

+ �

1i

; and Y

2i

= X

2i

+ �

2i

; (2)

where the errors (�

1i

; �

2i

) have a joint bivariate distribution with zero mean and covariance

matrix �

i

, for all i. In this model we allow �

i

to depend on (Y

1i

; Y

2i

); thus we do not
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require that (�

1i

; �

2i

) be independent from (X

1i

;X

2i

). However, we assume that �

i

is the

only aspect of the distribution of (�

1i

; �

2i

) that depends on (Y

1i

; Y

2i

). In other words, we

assume that, given �

i

, (�

1i

; �

2i

) is independent from (X

1i

;X

2i

).

In most cases, the measurement errors for the two variables are independent (so

�

12;i

= 0 for all i), and the observed data is of the form

(Y

1i

; Y

2i

;�

11;i

;�

22;i

);

with �

kk;i

denoting the variance of �

ki

; k = 1; 2.

Remark 1. Very often, astronomical data sets will not give explicitly the magnitude of the

uncertainty of the errors (i.e. �

11;i

; �

22;i

). Instead the uncertainty is reported in the form

of (1��)100% (e.g. 95%) con�dence intervals Y

1i

� c

1i

; Y

2i

� c

2i

. In this case the �'s can be

recovered from the relation c

ki

= z

�=2

q

�

kk;i

, for k = 1; 2, where z

�=2

is the (1� �=2)100-th

percentile of the standard normal distribution.

It is assumed that the variables of interest follow the usual simple regression model

X

2i

= �

1

+ �

1

X

1i

+ e

i

; (3)

where the intrinsic scatter (or dispersion) e

i

is assumed to have zero mean and �nite

variance. We want to estimate the regression coe�cients �; � and also estimate the

uncertainties of these estimators using the data in (1). The proposed estimation method is

described in the following subsection.

2.1. Both Variables with Measurement Error

The proposed method for estimating the parameters in (3) is based on the fact that

these parameters are related to the moments of the bivariate distribution of (X

1i

;X

2i

). In
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particular,

�

1

=

C(X

1i

;X

2i

)

V (X

1i

)

; and �

1

= E(X

2i

)� �

1

E(X

1i

); (4)

where C(X

1i

;X

2i

) denotes the covariance of X

1i

and X

2i

, V (X

1i

) denotes the variance

of X

1i

and E denotes expected value. In the case of no measurement errors, the OLS

estimators are simply moment estimators, so the OLS estimators are obtained by replacing

the population moments in (4) by sample moments. The proposed estimators generalize the

OLS estimators by replacing the population moments in (4) by moment estimators obtained

from the observed data (1). These moment estimators are based on the following result.

Proposition 2..1 Let the observed data in (1) be related to the variables of interest

(X

1i

;X

2i

) according to relation (2). Then we have (with k = 1 or 2)

E(Y

ki

) = E(X

ki

) (5)

V (Y

ki

) = V (X

ki

) + E(�

kk;i

) (6)

C(Y

1i

; Y

2i

) = C(X

1i

;X

2i

) + E(�

12;i

): (7)

The proof is given in the Appendix.

Using Proposition 2..1 and relation (4) we can express the regression parameters �

1

; �

1

in terms of the population moments of the observable data. Thus,

�

1

=

C(Y

1i

; Y

2i

)� E(�

12;i

)

V (Y

1i

)� E(�

11;i

)

; and �

1

= E(Y

2i

)� �E(Y

1i

): (8)

This relation suggests the following extension of the OLS estimator to data with

measurement errors,

^

�

1

=

P

n

i=1

(Y

1i

�

�

Y

1

)(Y

2i

�

�

Y

2

)�

P

n

i=1

�

12;i

P

n

i=1

(Y

1i

�

�

Y

1

)

2

�

P

n

i=1

�

11;i

(9)

�̂

1

=

�

Y

2

�

^

�

1

�

Y

1

: (10)



{ 8 {

Theorem 2..1 Let �

2

�

1

denote the variance of the random variable

�

1i

=

(Y

1i

� E(Y

1i

))(Y

2i

� �

1

Y

1i

� �

1

) + �

1

�

11;i

��

12;i

V (Y

1i

)� E(�

11;i

)

:

(Note that the dependence of �

1i

on �

1

; �

1

is not made explicit in the notation.) Also, let

�

2

�

1

denote the variance of the random variable �

1i

= Y

2i

� �

1

Y

1i

� E(Y

1i

)�

1i

. Then

n

1=2

(

^

�

1

� �

1

) ) N(0; �

2

�

1

) (11)

n

1=2

(�̂

1

� �

1

) ) N(0; �

2

�

1

): (12)

Next, let

^

�

1i

be obtained by substituting the unknown quantities in �

i1

by their obvious

estimators (i.e. substitute sample means in place of population means, sample variances

in place of population variances, and

^

�

1

; �̂

1

in place of �

1

; �

1

). Also let

^

�

1i

be a similarly

obtained estimated version of �

1i

. Then

�̂

2

�

1

= n

�1

n

X

i=1

(

^

�

1i

�

�

^

�

1

)

2

(13)

�̂

2

�

1

= n

�1

n

X

i=1

(

^

�

1i

�

�

^

�

1

)

2

; (14)

are consistent estimators of �

2

�

1

, �

2

�

1

, respectively.

The proof is given in the Appendix.

The theorem implies that the variance of

^

�

1

is estimated by

b

V (

^

�

1

) = n

�1

�̂

2

�

1

; it also

implies that a (1� �)100% con�dence interval for �

1

is

^

�

1

� z

�=2

�̂

�

1

n

�1=2

: (15)

Similar implications hold for the variance of �̂

1

and for con�dence intervals for �

1

.

Finally let �̂

�

1

;�

1

be the sample covariance obtained from (

^

�

1i

;

^

�

1i

). The proof of the

theorem implies that the covariance between

^

�

1

and �̂

1

is estimated by

d

Cov(

^

�

1

; �̂

1

) = n

�1

�̂

�

1

;�

1

:
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This estimated covariance function can be used for constructing a simultaneous con�dence

ellipsoid for

^

�

1

and �̂

1

. See for example Johnson & Wichern (1988).

2.2. Only the Response Variable with Measurement Error

In this subsection we describe a WLS estimator for the case that X

1i

is observed

without error. This estimator requires the additional assumption that the measurement

error in X

2i

in independent of X

2i

.

In the case that �

11;i

= 0 for all i (so also �

12;i

= 0), relations (2) and (3) imply

Y

2i

= X

2i

+ �

2i

= �

1

+ �

1

X

1i

+ e

i

+ �

2i

= �

1

+ �

1

X

1i

+ e

�

i

;

where we have set e

�

i

= e

i

+ �

2i

. This is the typical setting for the application of WLS,

provided that the variance of e

�

i

is independent of Y

2i

. To do so, however, we need to

estimate the variance of e

�

i

. Note that, under the assumption made,

V (e

�

i

) = V (e

i

) + �

22;i

:

Thus V (e

�

i

) is unknown because the intrinsic scatter V (e

i

) is unknown. We propose the

following method for estimating V (e

i

).

Step 1. Obtain �̂

OLS

;

^

�

OLS

by a direct application of OLS to the data (Y

2i

;X

1i

).

Step 2. Calculate the residuals

R

i

= Y

2i

� �̂

OLS

�

^

�

OLS

X

1i

:
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Step 3. Obtain the estimator of V (e

i

) from

d

V (e

i

) = n

�1

n

X

i=1

(R

i

�

�

R)

2

� n

�1

n

X

i=1

�

22;i

: (16)

It can be shown that the estimator of V (e

i

) described in (16) is consistent. Next, set

d

V (e

�

i

) = �̂

�2

i

=

d

V (e

i

) + �

22;i

; (17)

and let A be the n� n matrix with diagonal elements �̂

�2

i

and with all o�-diagonal elements

equal to zero. In terms of A, a general formula for the WLS estimator is given in Arnold

(1981). For the present simple regression problem, this formula gives the following WLS

estimators for �

1

,

^

�

WLS

=

P

�̂

��2

i

P

�̂

��2

i

X

1i

Y

2i

�

P

�̂

��2

i

X

1i

P

�̂

��2

i

Y

2i

P

�̂

��2

i

P

�̂

��2

i

X

2

1i

� (

P

�̂

��2

i

X

1i

)

2

(18)

�̂

WLS

=

P

�̂

��2

i

X

2

1i

P

�̂

��2

i

Y

2i

�

P

�̂

��2

i

X

1i

P

�̂

��2

i

X

1i

Y

2i

P

�̂

��2

i

P

�̂

��2

i

X

2

1i

� (

P

�̂

��2

i

X

1i

)

2

: (19)

Variance estimates for the WLS estimators are

b

V (

^

�

WLS

) =

P

�̂

��2

i

P

�̂

��2

i

P

�̂

��2

i

X

2

1i

� (

P

�̂

��2

i

X

1i

)

2

(20)

b

V (�̂

WLS

) =

P

�̂

��2

i

X

2

1i

P

�̂

��2

i

P

�̂

��2

i

X

2

1i

� (

P

�̂

��2

i

X

1i

)

2

: (21)

Note that these are conditional (given X

11

; : : : ;X

1n

) estimates of the variance of the WLS

estimators and, when the �̂

�

i

are all equal, reduce to the usual variance estimates of the

OLS estimator (Draper & Smith, 1981).

3. Other Estimators

The ordinary least squares line of the `dependent' variable X

2

against the explanatory

or `independent' variable X

1

(OLS(X

2

jX

1

)) minimizes the sum of the squares of the X

2
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residuals. In general, the OLS(X

2

jX

1

) line is di�erent than the OLS(X

1

jX

2

) line, which is

obtained by treating X

1

as the `dependent' variable and X

2

as the `independent' variable.

In many problems, however, the choice of independent variable is not clear (see below),

and it is desired to use a slope estimator that treats the two variables symmetrically. In

this section we present extensions of two symmetric regression lines to the present setting

of bivariate measurement errors. Our derivations are based on the connection between the

slopes of the symmetric regression lines and those of OLS(X

2

jX

1

) and OLS(X

1

jX

2

). The

extension of the OLS(X

1

jX

2

) slope is presented �rst.

3.1. BCES(X

1

jX

2

)

The basic idea, as well as the proofs needed for extending the OLS(X

1

jX

2

) line to data

with measurement errors, is the same as those of Section 2.1. Thus we just present the

formulas without derivations.

Let

^

�

2

denote this slope with respect to the X

1

�axis. Then

^

�

2

=

P

n

i=1

(Y

2i

�

�

Y

2

)

2

�

P

n

i=1

�

22;i

P

n

i=1

(Y

1i

�

�

Y

1

)(Y

2i

�

�

Y

2

)�

P

n

i=1

�

12;i

: (22)

The intercept of the OLS(XjY) line is given by

�̂

2

=

�

Y

2

�

^

�

2

�

Y

1

:

De�ne the random variables

�

2i

=

(Y

2i

� E(Y

2i

))(Y

2i

� �

2

Y

1i

� �

2

) + �

2

�

12;i

� �

22;i

C(Y

1i

; Y

2i

)� E(�

12;i

)

;

�

2i

= Y

2i

� �

2

Y

1i

� E(Y

1i

)�

2i

;

and let

^

�

2i

,

^

�

2i

be their estimated versions. Let �̂

2

�

2

, �̂

2

�

2

, be the sample variances obtained

from

^

�

2i

; i = 1; : : : ; n and

^

�

2i

; i = 1; : : : ; n, respectively. Arguing as in the proof of Theorem
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2.1, the variances of

^

�

2

and �̂

2

are estimated by

b

V (

^

�

2

) = n

�1

�̂

2

�

2

;

b

V (�̂

2

) = n

�1

�̂

2

�

2

;

respectively. Also the covariance between

^

�

2

and �̂

2

is estimated by

d

Cov(

^

�

2

; �̂

2

) = n

�1

�̂

�

2

;�

2

;

where �̂

�

2

;�

2

is the sample covariance obtained from (

^

�

2i

;

^

�

2i

).

Finally, let �̂

�

1

;�

2

be the sample covariance obtained from (

^

�

1i

;

^

�

2i

). Then the covariance

between

^

�

1

and

^

�

2

is estimated by

d

Cov(

^

�

1

;

^

�

2

) = n

�1

�̂

�

1

;�

2

:

3.2. The BCES-Bisector

The bisector is intuitively de�ned as the line that bisects the two ordinary least squares

lines. The slope of the bisector line is given in terms of the slopes of BCES(X

2

jX

1

) and

BCES(X

1

jX

2

) lines so its computation is straightforward.

With the notation introduced above, the bisector is given by

^

�

3

= (

^

�

1

+

^

�

2

)

�1

[

^

�

1

^

�

2

� 1 +

q

(1 +

^

�

2

1

)(1 +

^

�

2

2

)]; (23)

while the intercept of the bisector line is given by

�̂

3

=

�

Y

2

�

^

�

3

�

Y

1

: (24)

De�ne

^

�

3i

=

(1 +

^

�

2

2

)

^

�

3

(

^

�

1

+

^

�

2

)

q

(1 +

^

�

2

1

)(1 +

^

�

2

2

)

^

�

1i

+

(1 +

^

�

2

1

)

^

�

3

(

^

�

1

+

^

�

2

)

q

(1 +

^

�

2

1

)(1 +

^

�

2

2

)

^

�

2i

; (25)

^

�

3i

= Y

2i

�

^

�

3

Y

1i

� E(Y

1i

)

^

�

3i

; (26)
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and let �̂

2

�

3

, �̂

2

�

3

, be the sample variances obtained from

^

�

3i

; i = 1; : : : ; n and

^

�

3i

; i = 1; : : : ; n,

respectively. Using arguments similar to those in Appendix A of IFAB and the proof of

Theorem 2.1, it follows that the variances of

^

�

3

and �̂

3

are estimated by

b

V (

^

�

3

) = n

�1

�̂

2

�

3

;

b

V (�̂

3

) = n

�1

�̂

2

�

3

;

respectively. Also the covariance between

^

�

3

and �̂

3

is estimated by

d

Cov(

^

�

3

; �̂

3

) = n

�1

�̂

�

3

;�

3

;

where �̂

�

3

;�

3

is the sample covariance obtained from (

^

�

3i

;

^

�

3i

).

Remark 3.1. The variance of

^

�

3

is related to the variances of

^

�

1

and

^

�

2

through the

formula given in Table 1 of IFAB. In particular,

^

V (

^

�

3

) =

^

�

2

3

(

^

�

1

+

^

�

2

)

2

(1 +

^

�

2

1

)(1 +

^

�

2

2

)

[(1 +

^

�

2

2

)

2

b

V (

^

�

1

) + 2(1 +

^

�

2

1

)(1 +

^

�

2

2

)

d

Cov(

^

�

1

;

^

�

2

)

+ (1 +

^

�

2

1

)

2

b

V (

^

�

2

)]: (27)

It can be shown analytically, that the formula in (27) will always give a somewhat smaller

value for the variance of

^

�

3

than the formula in (27), but this di�erence will be negligible

for large sample sizes.

3.3. BCES-Orthogonal Regression

The slope of the BCES-orthogonal regression line bisector line is also given in terms

of the slopes of BCES(X

2

jX

1

) and BCES(X

1

jX

2

) lines. In fact the relation is the same as

when no measurement errors are present (see Table 1 in IFAB). Thus its computation is

straightforward.

Let

^

�

4

denote the BCES-orthogonal regression slope and �̂

4

the corresponding

intercept.
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De�ne

^

�

4i

=

^

�

4

^

�

2

1

q

4 + (

^

�

2

�

^

�

�1

1

)

2

^

�

1i

+

^

�

4

q

4 + (

^

�

2

�

^

�

�1

1

)

2

^

�

2i

; (28)

^

�

4i

= Y

2i

�

^

�

4

Y

1i

� E(Y

1i

)

^

�

4i

; (29)

and let �̂

2

�

4

, �̂

2

�

4

, be the sample variances obtained from

^

�

4i

; i = 1; : : : ; n and

^

�

4i

; i = 1; : : : ; n,

respectively. Using arguments similar to those in Appendix A of IFAB and the proof of

Theorem 2.1, it follows that the variances of

^

�

4

and �̂

4

are estimated by

b

V (

^

�

4

) = n

�1

�̂

2

�

4

;

b

V (�̂

4

) = n

�1

�̂

2

�

4

;

respectively. Also the covariance between

^

�

4

and �̂

4

is estimated by

d

Cov(

^

�

4

; �̂

4

) = n

�1

�̂

�

4

;�

4

;

where �̂

�

4

;�

4

is the sample covariance obtained from (

^

�

4i

;

^

�

4i

). A remark similar to Remark

3.1 applies in this case as well.

4. Example Applications To Real Data

Application of the above methods for small samples are given for several examples from

extragalactic astronomy.

4.1. Uncorrelated errors and intrinsic scatter in X

1

and X

2

Galaxy clusters contain two luminous tracers of their gravitational potential, galaxies

and hot, di�use gas. The virial theorem implies that if clusters are in quasi-static

equilibrium, then the kinetic energy of either the galaxies or the gas may be used to

estimate the depth of the gravitational potential (see Bird, Mushotzky & Metzler 1995 for a
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recent review). The correlation between galaxy velocity dispersion and temperature of the

X-ray emitting gas has been studied for the last decade (Mushotzky 1984; Edge & Stewart

1991; Lubin & Bahcall 1993; Bird, Mushotzky & Metzler 1995). Improvements in the sizes

of optical datasets and the resolution of X-ray spectrometers have reduced measurement

errors in the velocity dispersions and temperatures. We now �nd that the scatter due to

measurement errors is comparable to the intrinsic scatter due to the stochastic formation

histories of the clusters. The measurement errors for galaxy velocity dispersions and X-ray

temperatures are uncorrelated. As a consequence, linear regressions relating functions of

these two quantities should use the BCES technique ignoring the correlated error term �

12;i

.

Although the quality of the cluster datasets has improved in recent years, the number

of temperature-velocity dispersion pairs is still small: Lubin & Bahcall (1993) present

the largest cluster database to date, with 41 clusters of all morphological types. Bird,

Mushotzky & Metzler (1995) argue that morphological selection is important for quantifying

the relationship between velocity dispersion and temperature, and present a database

limited to clusters dominated by central galaxies (22 systems). Whichever selection criteria

are employed, for samples of fewer than 50 datapoints, the issue of small number bias

becomes critical.

To understand the e�ect of small sample sizes for the two regrssions most commonly

used in the literature ((X

2

jX

1

) and the bisector), we simulated cluster datasets based on

the canonical virial relationship between cluster velocity dispersion and temperature, log

� / log T

0:5

. We employed a Monte Carlo computer routine which simulates 22 cluster

temperatures between 2.0 and 10.0 keV and generates velocity dispersions using the virial

relation and a true slope for BCES(X

2

jX

1

) of 0.5. It also incorporates a velocity term

for the intrinsic scatter in the relationship (which is generated by choosing a velocity

perturbation from a uniform distribution of width 150 km s

�1

) as well as measurement
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errors in both velocity and temperature (these are modelled as Gaussians; the dispersion in

velocities is 150 km s

�1

and in temperature is 0.5 keV). With a 1000 Monte Carlo datasets

of sample size 22, both BCES(X

2

jX

1

) and BCES-bisector regression slopes had biases of

about 0.1. This level of bias is presumably due to the large measurement errors and intrinsic

dispersion (relative to the range of X

1

= log T and X

2

= log �) and the small sample size.

The BCES-bisector returned a slope of 0:55 � 0:03 for our simulations. In comparison the

BCES bisector, when applied to the Bird, Mushotzky & Metzler (1995) dataset, yields

�

r

= 10

2:50�0:09

T

0:61�0:13

; (30)

(where �

r

is the galaxy cluster velocity dispersion corrected for subtracture), consistent

with the simulations using the virial relationship.

4.2. Correlated errors and intrinsic scatter in X

1

and X

2

4.2.1. Color-luminosity relations

Color-luminosity (CL) relations for galaxies have been characterized by linear

regressions of color (C) against absolute magnitude (M) (Baum 1959). Often C and M both

include the same band, so that their errors are correlated. Most studies have also noted that

the scatter about the linear CL regression is larger than can be explained by measurement

error alone (e.g. Mobasher et al. 1986). Regressions for this type of data, then, fall exactly

in the domain of the models developed in sections 2.1 and 3.

Almost without exception, studies of color-luminosity relations have used OLS(X

2

jX

1

),

where M has been taken as the independent variable. These regressions typically do not

weight by errors in X

2

(C), although several studies have included some form of robust

estimation via iterative rejection of outlying points (Griersmith 1980, Bothun et al. 1985,
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Bower et al. 1992, and Bershady 1995). However, none of these studies have taken into

account the correlation in the errors of color and magnitude. Wyse (1982) avoided this

issue by �tting a linear regression directly to magnitudes in two bands.

To assess the magnitude of the biases present in analyses using incorrect statistical

models, in Table 1 we compare a wide range of linear regression models �t to CL relations

for two subsets of data from Bershady (1995). \BCES" models include bivariate, correlated

errors and intrinsic scatter (this paper). \BES" models include bivariate errors and intrinsic

scatter, but without the correlated term �

12;i

(this paper). \BE" models, for the orthogonal

case alone, include bivariate errors but no error correlation or intrinsic scatter (Bershady

1995). This method is derived from a Maximum Likelihood formulation (Stetson 1989),

which is solved numerically. Finally, \OLS" models are those of IFAB, which include

only homoscedastic intrinsic scatter. For each model the analytic estimates and standard

deviations for � and � are listed on the �rst line, with the results from 1000 simulations via

bootstrap resampling on the following line.

As might be expected from the shallow slope and substantial scatter in the CL

relation, the (X

1

jX

2

) regressions (and therefore the bisectors) are steeper than the (X

2

jX

1

)

regressions. More subtle is the change (bias) with respect to models which include correlated

errors and intrinsic scatter: slopes become steeper for (X

1

jX

2

) and bisector regressions

and shallower for (X

1

jX

2

) and orthogonal regressions when correlated errors and intrinsic

scatter are excluded from the regression models. For each family of models, orthogonal and

(X

2

jX

1

) regressions yield comparable slopes for these particular data sets.

What are the e�ects on possible scienti�c conclusions? If the CL relation is to be

understood physically (e.g. Arimoto & Yoshii 1987), then the \BCES" models should

be used since they will give unbiased results. However, the variances for (X

2

jX

1

) and

orthogonal regressions are comparable for all models, as are the regression slopes for the
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two samples for a given model. (In contrast the variances for the (X

1

jX

2

) and bisector

regressions become larger when intrinsic scatter and measurement error are excluded from

the statistical model.) One might therefore be tempted to conclude that the OLS(X

2

jX

1

)

and BE-orthogonal models adopted in previous studies are satisfactory for comparisons of

CL regression slopes for relative di�erences between di�erent galaxy types (e.g. Mobasher

et al. 1986 and Bershady 1995, respectively) or at di�erent redshifts (Stanford et al. 1995).

While this appears to be the case for the particular data set used here, OLS and BE models

yield biased results and therefore their estimated variances are not necessarily meaningful

quantities since they do not include the e�ects of the unknown bias. Hence BCES models

should be used even for slope comparisons between samples.

When using CL relations to estimate distance moduli (e.g. Sandage 1972), zeropoint

di�erences between samples may be better estimated using cross-correlation techniques

(e.g. Dressler 1984), as done by Bower et al. (1992).

To provide further guidance on the issues of bias and accuracy, we conducted two

simulation studies with arti�cially generated data sets designed to closely match the above

observed color-luminosity distributions. One set of simulations, (X

1i

;X

2i

); i = 1; : : : ; n,

was generated according to the model in (3) with �

1

= 2:5, and �

1

= 0:07. The range of

the X

1

-values was (-28, -18) and the intrinsic scatter was generated according to a normal

distribution with zero mean and standard deviation 0.55. Normal measurement errors were

added to the (X

1

;X

2

)-values in order to simulate the observed data (Y

1i

; Y

2i

); i = 1; : : : ; n.

The range for the variances of the measurement errors was (0.18, 0.45), with the covariance

�xed at 0.15. A second set of simulations used �

1

=0.12 0.12, a measurement error on X

1

with variance ranging from (0.03,0.3), a range of variance of the measurement error on X

2

of (0.06,0.6), and a range of the covariance of the two measurement errors of (0.03,0.3);

all other parameters were the same as before. For both simulation sets, the randomly
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generated data (Y

1i

; Y

2i

);�

i

were fed into the BCES routine and the entire process was

repeated 1000 times. The recorded outcome was the average (over the 1000 simulation runs)

of the estimated coe�cients, the sample variance of the the 1000 estimated coe�cients, and

the average value of the variance formulas for each of the estimated coe�cients. Samples of

n = 50, 150 and 500 were generated to understand the e�ects of small sample sizes on the

estimated coe�cients and variances.

For these simulation studies,

^

�

1

(BCES(X

2

jX

1

)) performed best in all respects: Even

with n = 50 the bias (small-sample bias) was small and the sample variance over the 1000

simulations closely matched the average variance computed from the formula. The variance

of

^

�

1

was the smallest of all the estimators (a factor of 4 better than the next smallest

variance). There was no noticeable change in the performance of BCES(X

2

jX

1

) for the

di�erent sets of simulation runs. The performance of the other estimators did change with

the simulation runs. When the true �

1

slope was 0.07, BCES(X

1

jX

2

) and BCES-orthogonal

regressions had considerable biases in their slopes

^

�

2

and

^

�

4

for n = 50. When �

1

was set

to 0.12, BCES-orthogonal regression slope,

^

�

4

, performed better than BCES(X

1

jX

2

) and

BCES-bisector regressions slopes

^

�

2

and

^

�

3

in terms of both bias and variance for n = 150

and 500. On the basis of these simulation results we recommend the use of BCES(X

2

jX

1

)

for color-luminosity data sets similar to those presented here. An important caveat is that

di�erent model speci�cations might result in di�erent performance of the estimators. This

should be checked for each speci�c study.

4.2.2. The Tully-Fisher relation

Another example of data with correlated errors is the relation between spectral

line-width (internal velocity) and luminosity of spiral galaxies (Tully & Fisher 1977).

Here too there exists a dispersion about the linear regression in addition to measurement
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error (e.g. Pierce & Tully 1992). The error correlation occurs because both the velocity

(corrected for projection) and absolute magnitude (corrected for dust extinction) depend

on the inferred inclination. There can be non-negligible uncertainties in the inclination

measurement, particularly for galaxies that are not spatially well-resolved. In all cases,

linear regressions should be computed for the Tully-Fisher relation using the BCES model

in preference over other existing models.

One limitation of the current model is that it does not allow for changes in the scatter

along the regression. The sample of Mathewson et al. (1992) suggests that the scatter in

the current Tully-Fisher relation (as de�ned by 21-cm integrated line-widths) increases at

lower velocities or luminosities. Future work should consider statistical models with variable

intrinsic scatter, as well as estimation of this scatter.

4.3. Errors in X

2

only and intrinsic scatter

A fundamental test in observational cosmology is veri�cation that redshift is caused by

a secular change in the metric (Tolman 1930), namely universal expansion. If true, then

surface-brightness scales as the kinematic factor (1+z)

�4

, independent of other cosmological

parameters (although for astrophysical sources such as galaxies, the dimming is modi�ed

by the K-correction). One of the few (and certainly the most comprehensive) attempts

to perform the Tolman test has been implemented by Sandage & Perelmuter (1990, and

references therein). They �nd that the surface-brightness of galaxies is not constant, but

depends on a number of variables, including luminosity. As a result, galaxy samples will

have some intrinsic dispersion in surface-brightness at a given redshift. However, in terms

of measurement errors, redshifts can typically be measured with high precision compared to

the apparent magnitudes and sizes needed to derive surface-brightnesses. Hence, the linear

regression for surface-brightness vs. log(1+z) for such a data set is well approximated by
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the WLS model presented here. In fact, any linear correlation as a function of redshift is

likely to fall in this category for astrophysical sources.

We also tested the WLS method with two simulation studies. The �rst simulated

data sets were generated as described in the simulations reported in subsection 4.2.1, but

without adding the error in the X

1

variable. The small-sample bias of the WLS estimator

was comparable to that of BCES(X

2

jX

1

), but the variance of the WLS estimator was an

order of magnitude smaller than that of BCES(X

2

jX

1

)! The same results were found for

the second simulated data set with parameters designed to mimic the Tolman test in the

K band, assuming surface-brightnesses are measured in large, metric apertures to redshifts

of �0.4, and K-corrected surface-brightnesses are plotted versus 2.5 log(1+z): �

1

= 16, �

1

= 4, X

1

in the range (0, 0.4), intrinsic scatter given by a normal distribution with zero

mean and standard deviation of 0.3, and normal measurement errors on X

2

with variances

in the range (0.03, 0.3). However, the formula for the con�dence interval on

^

�

1

for this

second study gave conservative results (i.e. wider con�dence intervals) even for sample sizes

of 500. Only for sample sizes of 900 did the formula for the con�dence interval capture

the true variability of the WLS estimator. This may be due to the narrow range of the

X

1

-values (the con�dence interval formula performed well for much smaller numbers for the

�rst simulation set).

On the basis of these simulation results we recommend the use of the WLS estimator

whenever the X

1

variable is observed without measurement error and the magnitudes of

the measurement errors can be assumed independent from the observations. This would be

case for the Tolman test, for example, when 
ux measurements are background-limited. As

an additional bonus, the WLS provides an estimate of the intrinsic scatter. However, for a

narrow range of X

1

-values, we recommend the use of bootstrap con�dence intervals even for

relatively large sample sizes.
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5. Discussion

To our knowledge, the methods presented here are the only algorithms that apply

to data with both measurement errors and intrinsic scatter. When is it necessary to use

one of the above methods over the techniques discussed in IFAB or FB? There are two

basic criteria for selecting a statistical model to use for studying correlations in data, bias

and uncertainty. Their relative importance depends somewhat on the speci�c scienti�c

objective.

If the purpose is to test a theory which predicts correlation slopes and/or zeropoints

for some set of observables, then bias is the principal criterion. The statistical model which

best approximates the real data is expected to give the least-biased regression, and so the

choice becomes an issue of approximation. Because astronomy largely consists of passive

observations and not active experiments, there is rarely an `explanatory' variable free of

measurement error. Moreover, correlations between variables for astronomical systems

almost always have intrinsic scatter, which is simply a re
ection of these systems' complex,

multi-variate dependencies. The `Fundamental Plane' for elliptical galaxies is one good

astronomical example of this complexity (cf. Santiago & Djorgovski 1993). For cases where

the intrinsic scatter may be much larger than measurement error, or vice-versa, the methods

in IFAB or those outlined in FB, respectively, may provide acceptable approximations.

However, at this time we cannot quantify \much larger". The methods presented here are

valid in general and, since they reduce to the methods considered in IFAB in the case of no

measurement errors, we recommend that the present methods be used in all cases.

There are some situations where di�erential measurements are designed simply to

detect di�erences in slope between samples. Here the most accurate regression estimate

may be desired, and should be assessed via simulations of arti�cial data sets, as illustrated

above. However, if the statistical model is incorrect, then the estimated variance does not
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necessarily include e�ects of bias, which may di�er from sample to sample. Again, BCES

models are the most general and should provide the least-biased estimates of regression

slopes and variances.

Within a family of regressions models (e.g. BCES or OLS), the choice of particular

regression ((X

2

jX

1

), (X

1

jX

2

), etc.) is only an issue of accuracy, and not bias. As has been

emphasized in IFAB, the di�erent regression methods give di�erent slopes even at the

population level. All slopes are related to the second moments of the bivariate distribution

of the data. Again, the most accurate regression should be assessed via simulations.

In the case where the X

1

variable is measured without error, our simulations for two

di�erent arti�cial data sets revealed that the WLS estimator has smaller variance than

BCES(X

2

jX

1

). However WLS is consistent only when the error magnitude is independent

from the observation. While the BCES estimators are consistent under general conditions,

the simulations suggest they can be improved under the additional assumption that the

measurement errors on X

1

, X

2

are independent from the observations. Weighted versions of

the BCES estimators under this additional assumption will be the subject of a forthcoming

paper.

The present procedures resulted from an interdisciplinary collaboration of

astrophysicists and mathematical statisticians via the newly founded Statistical Consulting

Center for Astronomy (SCCA). Further information about SCCA can be obtained through

the World Wide Web (http://www.stat.psu.edu/scca/homepage.html), or by contacting

SCCA@stat.psu.edu. A FORTRAN package which includes the algorithms in this paper

and IFAB, including bootstrap resampling error analysis, is available via anonymous ftp

(contact mab@astro.psu.edu).
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A. Proofs

Proof of Proposition 2.1. Relation (5) is obvious from relation (2) and the fact

that, conditionally on �

kk;i

, the errors �

ki

; k = 1; 2 have zero mean. To show (6), note that

E(Y

2

ki

) = E[E(Y

2

ki

j�

kk;i

)]

= E[E((Y

ki

�X

ki

)

2

+X

2

ki

+ 2X

ki

(Y

ki

�X

ki

)j�

kk;i

)]

= E[E(�

2

ki

+X

2

ki

+ 2X

ki

�

ki

j�

kk;i

)]

= E(�

kk;i

) + E(X

2

ki

):

Since the variance of any random variable Z is V (Z) = E(Z

2

) + [E(Z)]

2

, (6) follows from

the above relation and (5). Similarly, the proof of (7) follows from

E(Y

1i

Y

2i

) = E[E(Y

1i

Y

2i

j�

ki

)]

= E[E(�

1i

�

2i

+X

1i

X

2i

+X

1i

�

2i

+X

2i

�

1i

j�

ki

)]

= E(�

12;i

) + E(X

1i

X

2i

);

the fact that the covariance of any two random variables Z

1

; Z

2

, is Cov(Z

1

; Z

2

) =

E(Z

1

Z

2

)� E(Z

1

)E(Z

2

) and from (5).

Proof of Theorem 2.1. Write S

Y

1

;Y

2

= n

�1

P

n

i=1

(Y

1i

�

�

Y

1

)(Y

2i

�

�

Y

2

), and

S

2

Y

1

= n

�1

P

n

i=1

(Y

1i

�

�

Y

1

)

2

. We will need the following relations.

p

n(S

Y

1

;Y

2

� C(Y

1

; Y

2

)) = n

�1=2

n

X

i=1

(Y

1i

Y

2i

�E(Y

1

Y

2

))� E(Y

1

)n

1=2

(

�

Y

2

� E(Y

2

)) (A1)
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� E(Y

2

)n

1=2

(

�

Y

1

� E(Y

1

)) + o

p

(1);

p

n(S

2

Y

1

� V (Y

1

)) = n

�1=2

n

X

i=1

(Y

2

1i

�E(Y

2

1

))� 2E(Y

1

)n

1=2

(

�

Y

1

�E(Y

1

)) (A2)

+ o

p

(1);

where o

p

(1) denotes a quantity that converges to zero in probability as n!1: Write

p

n(

^

�

1

� �

1

) =

p

n

"

S

Y

1

;Y

2

�

�

�

12

S

2

Y

1

�

�

�

11

�

C(Y

1i

; Y

2i

)� E(�

12;i

)
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1i

)� E(�

11;i
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#

(A3)

=
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n

"
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�

�
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� E(�
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))

V (Y

1i

)� E(�

11;i

)

� [C(Y

1i

; Y

2i

)� E(�

12;i

)]

S

2

Y

1

� V (Y

1i

)� (

�

�

11

� E(�

11;i

)

[V (Y

1i

)� E(�

11;i

)]

2

#

+ o

p

(1)

Using (A1) and (A2), it can be seen after some algebra that (A3) can be written as

p

n(

^

�

1

� �

1

) =

p

n(

�

�

1

� E(�

1i

)) + o

p

(1);

and this completes the proof of the asymptotic normality part of the theorem. That (13)

and (14) provide consistent estimators of �

2

�

1

and �

2

�

1

is straightforward.
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TABLE 1

Regressions For The Color-luminosity Relation: (V

0

�K)

0

= �M

K

+ �

bk type galaxies (N=34) am; fm type galaxies (N=60)

�t

^

� �̂(�) �̂ �̂(�)

^

� �̂(�) �̂ �̂(�)

BCES(X

2

j X

1

) -0.123 0.034 -0.22 0.79 -0.114 0.018 0.48 0.46

-0.126 0.045 -0.28 1.04 -0.113 0.022 0.52 0.55

BCES(X

1

j X

2

) -0.179 0.053 -1.46 1.21 -0.273 0.107 -3.46 0.26

-0.196 0.035 -1.83 0.81 -0.328 0.153 -4.82 0.38

BCES Bisector -0.151 0.039 -0.84 0.91 -0.193 0.050 -1.46 0.12

-0.160 0.034 -1.05 0.79 -0.216 0.060 -2.03 0.15

BCES Orthogonal -0.124 0.034 -0.24 0.72 -0.116 0.018 0.43 0.45

-0.127 0.044 -0.30 1.03 -0.115 0.022 0.46 0.54

BES(X

2

j X

1

) -0.106 0.032 0.16 0.75 -0.097 0.019 0.90 0.48

-0.108 0.034 0.12 0.80 -0.094 0.021 0.97 0.52

BES(X

1

j X

2

) -0.208 0.050 -2.09 1.14 -0.321 0.118 -4.63 2.92

-0.229 0.052 -2.57 1.19 -0.399 0.244 -6.58 6.05

BES Bisector -0.157 0.036 -0.96 0.84 -0.207 0.052 -1.81 1.29

-0.167 0.036 -1.21 0.84 -0.236 0.073 -2.53 1.81

BES Orthogonal -0.108 0.033 0.13 0.69 -0.100 0.019 0.84 0.47

-0.109 0.035 0.09 0.81 -0.097 0.021 0.91 0.53

BE Orthogonal (ML) -0.083 � � � 0.68 � � � -0.095 � � � 0.96 � � �

-0.083 0.019 0.69 0.43 -0.094 0.023 0.97 0.59

OLS(X

2

j X

1

) -0.105 0.031 0.20 0.72 -0.096 0.019 0.94 0.48

-0.108 0.034 0.12 0.79 -0.094 0.021 0.98 0.52

OLS(X

1

j X

2

) -0.342 0.124 5.09 2.78 -0.450 0.139 -7.83 3.46

-0.329 0.121 -4.79 2.73 -0.521 0.286 -9.60 7.10

OLS Bisector -0.220 0.067 -2.38 1.54 -0.265 0.056 -3.25 1.39

-0.215 0.067 -2.26 1.54 -0.287 0.077 -3.80 1.91

OLS Orthogonal -0.107 0.032 0.14 0.69 -0.099 0.019 0.85 0.47

-0.111 0.036 0.05 0.85 -0.098 0.021 0.89 0.53

1


